概率——列表法

合集下载

计算概率常用的方法

计算概率常用的方法

计算概率的常用方法掌握概率的求法是这一章节的重点,那么求概率有哪些方法呢?下面以中考题为例说明求概率的常用方法。

1、列举法(2009年广州)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别。

现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球。

(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能的情况。

(2)求红球恰好被放入②号盒子的概率。

解析:(1)3个小球分别放入编号为①、②、③的三个盒子的所有可能情况有:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红,共6种。

(3)由(1)可知,红球恰好放入②号盒子的情况有白红蓝、蓝红白,共2种,所以红球恰好放入②号盒子的概率P=2/6=1/3。

评注:在一次实验中,如果可能出现的结果只是有限个,且各种结果出现的可能性大小相等,我们可以通过列举实验结果的方法,分析出随机事件发生的概率。

2、列表法(2009年成都)有一个均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为x;另有3张背面完全相同,正面上分别写有数字-2、-1、1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值。

(1)用树状图或表格表示出的所有可能的情况。

(2)分别求出当S=0和S<2的概率。

解析:(1)列表法分析如下:(2)由表格可知,所有可能出现的情况共有12种,其中S=0的有2种,S<2的有5种。

P(S=0)=2/12=1/6;P(S<2)=5/12。

评注:当一次实验涉及两个因素(例如投掷两个骰子),并且出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法分析随机事件发生的概率。

3、树状图法(2009年安徽芜湖)“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立地从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区中随机选择一个为参观者服务。

列表法求概率

列表法求概率

第第二一个个
1
2

4
5
6
= 1
2
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) P(点数相同)
6 1 36 6
3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
P(点数和是9)= 4 1
3、什么样的情况下用列表法求概率?
尝试解答:如图,甲转盘的三个等分区域分别写
有数字1、2、3,乙转盘的四个等分区域分别写有数 字4、5、6、7。现分别转动两个转盘,求指针所指数 字之和为偶数的概率。
用列表法求概率的步 骤是什么?
解:

12 3
乙45 76
乙 甲
4
5
6
7
1 (1,4) (1,5) (1,6) (1,7)
“同时掷两个质地相同的骰子” 两个骰子各出现的点数为1~6点
“把一个骰子掷两次” 两次骰子各出现的点数仍为1~6点
归纳
随机事件“同时”与“先后”的关系:
“两个相同的随机事件同时发生”与 “一个随机事件先后两次发生”的结果是一样的。
课堂练习
一个口袋中有4个小球,这4个小球分别标记 为1,2,3,4.随机摸取一个小球然后放回, 再随机摸取一个小球,求两次摸取的小球的标 号的和为3的概率.
P(都为黄色)=
1 6
乙 甲

绿



(红,红) (红,绿) (红,黄) (红,蓝)
黄1 (黄 1,红) (黄 1,绿) (黄 1,黄) (黄 1,蓝)
2 黄
(黄 2,红) (黄 2,绿) (黄 2,黄) (黄 2,蓝)

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册
A.


B.


1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.




D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.


B.


C.


D.


随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.


B.


C.


D.


随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机

用列表法求概率

用列表法求概率

的周围的正方形中有3
个地雷,我们把这个
区域记为A区,A区外
记为B区,,下一步
小王应该踩在A区还
是B区?
引例:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上;
“掷两枚硬币”共有几种结果?
正正
正反 反正 反反
为了不重不漏地列出所有这些结果, 你有什么好办法么?
2
1×2=2 2×2=4 3×2=6 4×2=8 5×2=10 6×2=12
3
1×3=3 2×3=6 3×3=9 4×3=12 5×3=15 6×3=18
4
1×4=4 2×4=8 3×4=12 4×4=16 5×4=20 6×4=24
5
1×5=5 2×5=10 3×5=15 4×5=20 5×5=25 6×5=30
乙转盘 4 5 6 7
45 67




共 12 种可能的结果
45 √
67 √
与求“指列针表所”指法数对字比之,结和果为怎偶么数样的?概率。
例2、同时掷两个质地相同的骰子,计算下列事件的概率:
(1)两个骰子的点数相同;(2)两个骰子的点数和是9;
(3)至少有个骰子的点数是2。
解:一 二 1
2
3
4
5
5、甲、乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 之积为奇数,那么甲得1分;如果点数之积为偶数,那么乙得1分。 连续投10次。 (1)请你想一想,谁获胜的机会大?,谁得分高,谁就获胜并说明理由 (2)你认为游戏公平吗?如果不公平,请你设计一个公平的游戏。
列出所有可能的结果:
1

用列举法求概率一一列举法和列表法

用列举法求概率一一列举法和列表法
游戏规则是: 如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.
用心领“悟”
1
2
3
解:每次游戏时,所有可能出现的结果如下:
游戏者获胜的概率为1/6.
转盘 摸球
1
1
2
(1,1)
(1,2)
2
(2,1)
(2,2)
3
(1,3)
(2,3)
1、现有两组电灯,每一组中各有红、黄、蓝、绿四盏灯,各组中的灯均为并联,两组等同时只能各亮一盏,求同时亮红灯的概率。
(3,4)
(3,3)
(3,2)
(3,1)
(2,6)
(2,5)
(2,4)
(2,3)
(2,2)
(2,1)
(1,6)
(1,5)
(1,4)
(1,3)
(1,2)
(1,1)
总结经验: 当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列 出所有可能的结果,通常采用列表的办法
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 满足两张牌的数字之积为奇数(记为事件A) 的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这9种情况,所以 P(A)=
(5,5)
(2,5)
(1,5)
5
(6,4)
(5,4)
(2,4)
(1,4)
4
6
5
2
1


此题用列树图的方法好吗?
P(点数相同)=
P(点数和是9)=
P(至少有个骰子的点数是2 )=
如果把例3中的“同时掷两个骰子”改为 “把一个骰子掷两次”,所得的结果有变化 吗?

用列表法求概率说课稿人教版

用列表法求概率说课稿人教版

用列表法求概率说课稿人教版人教版数学七年级上册第四章《概率》一、说教学目标1. 知识与技能:学会使用列表法求解概率问题。

2. 过程与方法:培养学生分析问题、探究规律的思维方法。

3. 情感态度和价值观:培养学生合作学习、积极思考的意识。

二、说教学重点学会使用列表法求解概率问题。

三、说教学难点能够灵活运用列表法解决实际生活中的概率问题。

四、说教学准备1. 教学素材:PPT、教辅资料、小黑板、彩色粉笔。

2. 教学方法:讲授结合实例演示的方法。

3. 教学手段:讲解、示范、讨论和练习。

五、说教学过程Step1 导入新课通过一个简短的问题引入新课:“小明家里有三个口袋,分别装着5颗红球、3颗蓝球和2颗黄球,如果张三随机从小明的口袋中取出一个球,那么他取到蓝球的概率是多少?”Step2 学习列表法求概率1. 板书教学:“列表法是指将所有可能发生的事件列举出来,然后根据已知条件计算概率。

”2. 通过示范演示的方式,以小明的口袋中球的颜色为例,将所有可能的球的颜色列举出来,然后根据已知条件计算蓝球的概率。

3. 让学生自己动手设计一个概率问题,并用列表法进行求解。

Step3 练习巩固1. 分组讨论:学生分成小组,每组设计一个概率问题,然后用列表法求解。

2. 小组展示:每个小组将自己的问题和求解过程展示给全班同学,让同学之间进行互动、交流。

3. 随堂练习:布置一些相关的概率问题,让学生自己在课堂上进行练习。

Step4 拓展延伸1. 引导学生思考:让学生思考如何用列表法求解复杂的概率问题,如从一副扑克牌中取出两张红心牌的概率是多少?2. 拓展讨论:学生讨论其他的计算概率的方法,如相对频数法和几何概率法。

六、说教学反思通过使用列表法求解概率问题的教学,让学生在实际操作中更好地理解了概率的概念和计算方法,并能够灵活运用列表法解决实际生活中的概率问题。

教学过程中,通过设计练习和讨论环节,增强了学生的动手能力和合作意识。

但在教学过程中,也要注意提醒学生列出所有可能的事件,避免遗漏,同时也要注意引导学生分析实际问题,理解概率的计算方法。

人教版九年级数学上册--25.用列表法求概率-课件

人教版九年级数学上册--25.用列表法求概率-课件
币反面向上(记为事件B)有2种,
由当上一表次可实知验共涉有及4种两等个可因能素性时的(如结掷果两,个骰子∴)P,(且B)可=2能/4出=1现/2的,结果较多
时,为不重复不遗漏地列出所有可能的结果,用列表法.
当堂训练
用列表法求概率
同时掷两枚质地均匀的骰子,计算下列事件的概率
知识点二
(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 为事件C)有11种,
由上表可知共有36种等可能性的结果, ∴P(C)=11/36,
课堂小结
列举法 求概率
用列表法求概率
知识梳理
当一次实验涉及一个因素时(如掷一枚骰子),用直接列举法.
列表法
前提条件:确保实验中每种结果出现的可能性大小相等. 适用对象:两个实验因素或分两步进行的实验.
用列表法求概率
提升能力
2.在6张卡片上分别写有1~6,随机的抽取一张后放不回放回,再随机的抽取一
张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?
解:列表如下:
其中第一次取出的数字能够整除第
1 2 3 4 5 6 2次取出的数字(记为事件A)有14种,
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
你们赢,如果落地后朝上的是一正一反,老师赢.请问,你们觉得这个游戏
公平吗?
你能把这问题改编成数学问题吗?
典例精讲
用直接列举法求概率
【例1】“先同后时将掷一两硬枚币硬掷币两”次,试求下列事件的概率: 第1枚 (1)两枚硬币全部正面向上;
(2)一枚硬币正面向上,一枚硬币反面向上;
知识点一

知识卡片-列表法与树状图法

知识卡片-列表法与树状图法

列表法与树状图法能量储备在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性的大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.注意:(1)用列举法求概率时,各种情况出现的可能性必须相同;(2)全面列举出所有可能的结果,各种情况不能重复,也不能遗漏;(3)所求概率是一个准确数,一般用分数表示.通关宝典★基础方法点方法点1:利用概率公式计算某个事件发生的概率时,可利用列表法或画树状图法找全所有可能出现的情况,并将可能出现的全部的结果数作为分母.例1袋中有大小相同、标号不同的白球2个,黑球2个.(1)从袋中连取2个球后不放回,取出的2个球中有1个白球,1个黑球的概率是多少?(2)从袋中有放回地取出2个球的顺序为黑、白的概率是多少?解:(1)根据题意列表如下:共有12种等可能情况,符合题意的有8种,故有1个白球,1个黑球的概率P =812=23. (2)画树状图如图所示.共有16种等可能情况,符合条件的有4种,故取球顺序为黑、白的概率P =416=14. ★ ★ 易混易误点易混易误点1:研究所有等可能结果时重复或遗漏例2 从装有两个红球、两个黄球(每个球除颜色外其他均相同)的袋中任意取出两个球,取出一个红球和一个黄球的概率是( )A.13B.23C.14D.12解析:我们不妨把四个球分别记为红1,红2,黄1,黄2,从中摸出两个球的所有可能结果为(红1,红2),(红1,黄1),(红1,黄2),(红2,黄1),(红2,黄2),(黄1,黄2),共6种,其中一红一黄共有4种,故其概率P =46=23.故选B . 答案:B分析:本题易错误地认为任意取出两个球,共可能出现“两红”“两黄”“一红一黄”三种可能的结果,所以任意取出两个球,取得一个红球和一个黄球的概率为13. 易混易误点2:不能准确区分放回抽样与不放回抽样对事件发生概率的影响例2 有完全相同的4个小球,上面分别标有数字1,-1,2,-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后不放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m ,n ,以m ,n 分别作为一个点的横坐标与纵坐标,求点(m ,n)不在第二象限的概率.解:用列表法.可以看出,共有12种等可能的情况,其中点(m,n)不在第二象限的有8种情况,所以点(m,n)不在第二象限的概率P=812=23.,注意:对于某一关注的结果,放回抽样与不放回抽样是完全不同的,本题易忽视“不放回”这一条件而错误地列出如下表格求错概率.蓄势待发考前攻略考查用列表法或画树状图法求事件的概率是中考的必考内容,命题形式有填空题、选择题、解答题,难度适中.试题常用的背景有摸球、抽取卡片、转转盘、掷骰子等富有生活气息及与社会生活息息相关的内容,是中考的命题趋势,要引起重视.完胜关卡。

人教版九年级数学上册: 用列表法求概率

人教版九年级数学上册: 用列表法求概率

6
人 教 版 九 年 级数学 上册: 用 列表 法求概 率
2.【广东广州中考】甲袋中装有 2 个相同的小球,分别写有数字 1 和 2;乙袋中
装有 2 个相同的小球,分别写有数字 1 和 2.从两个口袋中各随机取出 1 个小球,取
出的两个小球上都写有数字 2 的概率是( C )
A.12
B.13
C.14
人 教 版 九 年 级数学 上册: 用 列表 法求概 率
10
人 教 版 九 年 级数学 上册: 用 列表 法求概 率
6.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角 形的概率是13_0_____.
7.某学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名 女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概 率3是______. 5
的箱子中装有红、黄、白三种球各 1 个,这些球除颜色外无其他差别,从箱子中随
机摸出 1 个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同
的概率是( D )
A.217
B.13
C.19
D.29
人 教 版 九 年 级数学 上册: 用 列表 法求概 率
13
人 教 版 九 年 级数学 上册: 用 列表 法求概 率
率,通过比较,即可得到“踢到了小明处的可能性最小”的方案.
3
解答:(1)画出树状图如图所示:
根据树状图可知,所有的传球结果有 4 种,其中足球踢到了小华处的结果只有 1 种,∴P(足球踢到小华处)=14.
4
人 教 版 九 年 级数学 上册: 用 列表 法求概 率
(2)假设球从小明处开始踢,画出的树状图如图所示:

列表法求概率课件

列表法求概率课件

首先需要列出试验中所有可能的结果 。
将所有结果的概率相加,得到总概率 。
计算每个结果的概率
根据每个结果的等可能性和试验的限 制条件,计算每个结果的概率。
03
CATALOGUE
列表法求概率的实例
抛硬币实验
总结词:简单直观
详细描述:抛硬币实验是一种常见的概率实验,通过抛硬币的方式,我们可以观 察到正面和反面的出现情况,并利用列表法计算出概率。
06
CATALOGUE
总结与展望
概率计算的重要性
概率计算是决策分析的基础
概率计算在决策分析中扮演着重要的角色,它可以帮助我 们评估各种可能性的发生概率,从而做出更明智的决策。
概率计算在统计学中的应用
在统计学中,概率计算是不可或缺的一部分。通过概率计 算,我们可以对数据进行更深入的分析,从而得出更准确 的结论。
概率计算在金融领域的应用
在金融领域,概率计算被广泛应用于风险评估和投资决策 。通过计算各种可能性的发生概率,投资者可以更好地评 估潜在的风险和回报。
列表法的应用前景
列表法在概率计算中的优势
列表法是一种简单而直观的概率计算方法,它通过列出所有可能的结果和相应的概率来计 算事件的概率。这种方法适用于一些简单的情况,但对于复杂的问题,可能需要更高级的 方法。
列表法求概率课 件
目 录
• 概率的基本概念 • 列表法求概率 • 列表法求概率的实例 • 列表法与其他方法的比较 • 列表法的优缺点 • 总结与展望
01
CATALOGUE
概率的基本概念
概率的定义
概率
表示随机事件发生的可能性大小 的数值,记作P(A)。
概率的取值范围
0≤P(A)≤1,其中P(A)=0表示事 件A不可能发生,P(A)=1表示事 件A必然发生。

第1课时用列表法求概率

第1课时用列表法求概率
如果把 “ 放回 ” 改成 “ 不放回 ” 又如何 求以Байду номын сангаас的概率?
分析:当一次实验是投掷两枚骰子时, 为不重不漏地列出所有可能的结果,通 常采用列表法.
第1课时用列表法求概率
第1课时用列表法求概率
6
第1个
由表可看出,同时投掷两枚骰子, 共有36种等可能性 结果
(1)两枚骰子的点数相同的结果有6种,
所以
P(点数相同)=6/36=1/6
(2)两枚骰子的点数和是9 的结果共有4种,
所以
P(点数和是9 )=4/36=1/9.
(3)至少有一枚骰子的点数为2 的结果共有11种,
所以
P(点数为2 )=11/36.
若把例2中的“同时投掷两枚质地均匀的骰子”改为“把 一枚质地均匀的骰子投掷两次”,得到的结果有变化吗?为 什么?
(1) 由表格可看到,共有 4种等可能性的结果, 两枚硬币全部正面向上的结果只有1种, 所以 P(全部正面向上)=1/4 (2) 全部反面向上的只有1种, 所以 P(全部反面向上)=1/4
(3)一枚正面向上,一枚反面向上的共有2种, 所以 P(一正 一反)=2/4=1/2
第1课时用列表法求概率
练习: 袋子中装有两个红球,一个白球,除颜色外, 无其他差别,随机摸出一个小球记下它的颜色 后放回,再随机摸出一个小球,求下列事件的 概率 (1)第一次摸到红球,第二次摸到白球 (2)两次都摸到相同颜色 (3)摸到一红球,一白球
25.2 用列表法求概率
概率的定义:
一般地,对于一个随机事件A,我们把刻画它 发生可能性大小的数值,称为随机事件A发生 的概率,记作P(A)。
归纳:
一般地,如果在一次试验中,共有n种可能的 结果,并且它们发生的可能性都相等,事件A包 含其中的m种结果,那么事件A发生的概率

画树状图求概率-(列表法)

画树状图求概率-(列表法)

1.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少? 解:剪刀一A ,石头一B ,布一C ,画出树形图如下:由树形图可知,三人随机出拳的所有可能情况有27种,每种情况出现的可能性相同,其中,(1)不分胜负的有:AAA ,BBB ,CCC ,ABC ,共4个,P (三人不分胜负);274=(2)一人胜二人负的有:ACC ,AAB ,ABA ,BAA ,BBC ,CBB ,CAC ,CCA ,BCB ,共9个,P (一人胜二人负).31279==2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转. 解:画出树形图:由树形图可知,三辆车在十字路口随机选择的情况共有27种,每种情况出现的可能性大小相同,其中,(1)三辆车全部继续直行的结果只有一个,P (三辆车全部继续直行);271= (2)两辆车向右转,一辆车向左转的结果有3个,P (两辆车向右转,一辆车向左转);91273==(3)至少有两辆车向左转的结果有7个,P (至少有两辆车向左转).277= 3.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数的和是5; (2)至少有一个骰子的点数为5. 解:列表如下: 第2个 第1个 1234561 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)可能性相等.由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A )的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41369=. (2)至少有一个骰子的点数为5(记为事件B )的结果有11个,所以P(B)=1136.4.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.解:(1)画树形图来找出所有可能情况.甲摸得球的颜色:乙摸得球的颜色或用列表法思考所有情况.列表如下:乙甲白红黑白 白,白 红,白 黑,白 红 白,红 红,红 黑,红 黑白,黑红,黑黑,黑(2)由树形图可得,该试验的所有可能情况有9种,其中乙摸到与甲相同颜色球有三种情况,每种情况出现的机会均等,乙取胜的概率为⋅=31935.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明. 解:(1)每个小球被摸到的机会均等,故P (摸到蓝色小球)⋅=31(2)列表思考所有可能情况:小李小王红 黄 蓝 红 红,红 红,黄 红,蓝 黄 黄,红 黄,黄 黄,蓝 蓝蓝,红蓝,黄蓝,蓝由上表可知小王和小李先后摸球的所有情况有9种,每种情况出现的可能性相同,其中小王赢的情况有3种,小李赢的情况有6种. ∴P (小王赢),3193== P (小李赢) ,3296==∵∴此游戏规则对双方是不公平的.6.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.解:列表考虑所有可能情况:转盘A两个数字之积转盘B-1 0 2 11 -1 02 1-2 2 0 -4 -2-1 1 0 -2 -1由列表可知,由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴P(小力获胜),127=P(小明获胜).125=∴这个游戏对双方不公平.7.从3名男生和2名女生中随机抽取2012年伦敦奧运会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.解:(1)5名学生中有2名女生,所以抽取1名,恰好是女生的概率为25;(2)共有20种情况树状图如图DJ4,恰好是1名男生和1名女生的情况数有12种,所以概率为35.图DJ48.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数的和是5;(2)至少有一个骰子的点数为5.解:列表如下:可能性相等.由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A)的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41.369(2)至少有一个骰子的点数为5(记为事件B)的结果有11个,所以P(B)=1136.9.在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.小明先从袋中随机摸出一个小球,记下数字后不再放回,再从袋中剩下的3个小球中又随机摸出一个小球,记下数字.请用列表或画树状图的方法求出先后摸出的两个小球上的数字和为奇数的概率是多少?解:(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)23=.10.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 解:(1)10,50; (2)解:树状图如下:从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=. 11.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.(1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3) 1234 第一次摸球 第二次摸球 010 20 30 102030 100 20 30 103040 0 10 30 20203050 20 300 10 503040第一次第二次 和解:(1)P (两数相同)=13.(2)P (两数和大于10)=49.12.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球. (1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率. 解:(1)根据题意列表如下:(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种, 所以,P (两个数字之积是奇数)21126==. 13.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A .打扫街道卫生;B .慰问孤寡老人;C .到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容. (1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率. 解:(1)画树状图分析如下:树形图6 76 -276 7 76 -2 -2 -2(2)九年级学生代表到社区进行义务文艺演出的概率为2163P ==.14.把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P ,3296)(==牌面数字不同P . ∵31<32,∴此游戏规则不公平,小李赢的可能性大.15.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,3 4 53 (3,3) (3,4) (3,5)4 (4,3) (4,4) (4,5) 5(5,3) (5,4) (5,5)小李小王再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16种.∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平. 16.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由. 解:树状图为: 或列表为:开始红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝由上述树状图或表格知:所有可能出现的结果共有16种. ∴P (小明赢)=63168=,P(小亮赢)=105168=. ∴此游戏对双方不公平,小亮赢的可能性大.17.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是________; (2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是________; (3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.解:(1)12.(2)13. (3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.∴P (4的倍数)41164==. 18.除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是1 2 3 4 1第一次第二次 1 2 3 4 21 2 3 4 31 2 3 4 4开始否相等,并说明理由.解:摸出两个异色小球的概率与摸出两个同色小球的概率不相等. 画树状图如下(画出一种情况即可):∴摸出两个异色小球的概率为59,摸出两个同色小球的概率49.19.一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.解:(1)p (一个球是白球)=23. (2)树状图如下(列表略):开始∴P (两个球都是白球)2163==.20.小明和小亮利用三张卡片做游戏,卡片上分别写有A ,B ,B .这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.红 白 白 红红 白 白 红红 白 白 白开始 或红 红 白 白红红 白 白红红 白红开始 白2红白1 白1红白2 白1白2 红解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小明胜的概率为,∵ ≠ ,∴这个游戏对双方不公平21.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.解:根据题意列树状图如下:由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为,两数之积为负的情况有5种,则两数之积为为负的概率为.≠,因此该游戏不公平。

第二十五章概率初步25.2.1列表法(配套教参)-2023-2024学年九年级上册数学(教案)人教版

第二十五章概率初步25.2.1列表法(配套教参)-2023-2024学年九年级上册数学(教案)人教版
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步》中的“列表法”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算可能性大小的情况?”比如,抛硬币时,你想知道正面朝上的概率是多少。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
-组合事件概率的计算:对于多个事件组合的概率计算,学生容易混淆,需要通过具体例题引导学生理解。
-概率与实际问题的结合:将概率知识应用到实际问题中,学生可能会遇到情境分析、信息提取等方面的困难。
举例:
a)在掷两个骰子的例子中,学生需要构建一个包含所有可能结果的列表,并计算两个骰子点数和为7的概率是1/6,这是列表法构建和概率计算的难点。
-概率的计算方法:学生需要学会如何根据列表法计算单一事件和组合事件的概率,理解概率值的意义。
-概率在实际问题中的应用:培养学生将概率知识应用于解决生活中的问题,例如抛硬币、掷骰子等。
举例:在抛硬币的例子中,通过列表法展示所有可能的结果(正面、反面),并计算正面朝上的概率为1/2。
2.教学难点
-列表法的构建:学生需要理解如何构建一个完整的列表,确保不重不漏,这对于逻辑思维能力的培养至关重要。
五、教学反思
今天在讲解列表法这一部分内容时,我发现学生们对概率的概念已经有了初步的认识,这对于他们理解列表法有很大的帮助。在导入新课的时候,通过提问的方式引起学生的好奇心,他们表现出很强的求知欲,这是一个很好的开始。
在新课讲授环节,我尝试用简单的语言和生动的案例来解释列表法的概念,从学生的反应来看,他们能够跟上我的讲解思路。不过,我也注意到在讲解列表法构建的时候,有一部分学生显得有些迷惑,可能是因为他们之前没有接触过类似的逻辑构建问题。在今后的教学中,我需要更加注意这一点,对于难点部分要放慢讲解速度,让学生有更多的机会消化和理解。

高中数学必修二统计概率题型归纳

高中数学必修二统计概率题型归纳

高中数学必修二统计概率题型归纳高中数学中的统计和概率部分是相当重要的,尤其是在解决实际问题时。

本文将为同学们总结一些常见题型和解题技巧,以帮助大家更好地理解和掌握这一部分的知识。

一、统计概率概述统计和概率是描述随机现象的数学工具。

统计主要关注数据的收集、整理和分析,而概率则研究事件发生的可能性大小。

在高中数学中,这两部分知识经常结合在一起,用于解决实际问题。

二、题型归纳1. 平均数、中位数、众数、方差:这些是描述数据分布的重要指标,需要正确理解和运用。

例如,根据平均数求解题,就需要掌握如何根据样本数据来计算平均数。

2. 概率估算:这是一个重要的技巧,通常用于解决某些随机事件发生的可能性。

我们可以使用试验、比例和相关条件等方法来估算概率。

3. 抽样分布:在统计学中,抽样分布是重要的概念,需要了解如何从总体中抽取样本,并如何根据样本数据来估计总体参数。

4. 排列组合问题:这是概率论中的一个重要分支,需要掌握基本的排列组合公式和技巧。

5. 概率计算:包括条件概率、独立事件等,需要运用概率论的基本原理和方法进行计算。

三、解题方法1. 列表法:对于简单的概率问题,可以通过列表法清晰地看出可能的结果。

2. 公式法:对于一些特定的概率问题,可以运用公式法进行计算。

3. 计算机软件:对于更复杂的概率问题,可以利用计算机软件进行数值计算和模拟实验。

四、注意事项1. 理解概念:统计和概率的概念需要准确理解,不能混淆或错误运用。

2. 数据分析:在解决实际问题时,要善于运用数据分析和推理的方法来解决问题。

3. 解题步骤:在解题时,要按照一定的步骤和思路来进行,避免盲目尝试。

总的来说,高中数学中的统计和概率部分需要准确理解和运用,才能更好地解决实际问题。

通过本文的归纳和总结,相信大家能够更好地掌握这一部分的知识,并在考试中取得好成绩。

初三概率列表法数学练习题

初三概率列表法数学练习题

初三概率列表法数学练习题概率是数学中的一个重要概念,初中学生在学习及运用概率时,常常会遇到各种类型的概率问题。

概率列表法是解决某些复杂概率问题的一种有效方法,通过将各种可能性列出来并进行计算,可以得出相应的概率结果。

本文将给出几个适合初三学生练习的概率列表法数学练习题,以帮助学生提高概率计算能力。

练习题一:某班级的学生有30人,其中20人喜欢看电视剧,15人喜欢打篮球,10人同时喜欢看电视剧和打篮球。

现从这30人中随机抽取一人,请回答以下问题:1. 抽到的学生既喜欢看电视剧又喜欢打篮球的概率是多少?2. 抽到的学生只喜欢看电视剧或只喜欢打篮球的概率分别是多少?3. 抽到的学生既不喜欢看电视剧也不喜欢打篮球的概率是多少?解析:1. 从30人中抽取的学生同时喜欢看电视剧和打篮球的人数为10人,因此概率为10/30=1/3。

2. 从30人中抽取的学生只喜欢看电视剧的人数为20-10=10人,只喜欢打篮球的人数为15-10=5人,因此只喜欢看电视剧的概率为10/30=1/3,只喜欢打篮球的概率为5/30=1/6。

3. 从30人中抽取的学生既不喜欢看电视剧也不喜欢打篮球的人数为30-10-10-5=5人,因此概率为5/30=1/6。

练习题二:某班级的学生有40人,其中30人喜欢音乐,25人喜欢画画,20人既喜欢音乐又喜欢画画。

现从这40人中随机抽取一人,请回答以下问题:1. 抽到的学生既喜欢音乐又喜欢画画的概率是多少?2. 抽到的学生只喜欢音乐或只喜欢画画的概率分别是多少?3. 抽到的学生既不喜欢音乐也不喜欢画画的概率是多少?解析:1. 从40人中抽取的学生同时喜欢音乐和画画的人数为20人,因此概率为20/40=1/2。

2. 从40人中抽取的学生只喜欢音乐的人数为30-20=10人,只喜欢画画的人数为25-20=5人,因此只喜欢音乐的概率为10/40=1/4,只喜欢画画的概率为5/40=1/8。

3. 从40人中抽取的学生既不喜欢音乐也不喜欢画画的人数为40-30-25+20=5人,因此概率为5/40=1/8。

列表法求概率课件

列表法求概率课件

则P(摸到白球)=___1____,P(摸到黑球)=___0___,
3
P(摸到黄球)=___1____,P(摸到红球)=___1___。
2
6
2、柜子里有20双鞋,取出左脚穿旳一只鞋旳概率为__ 1 _。
2
3、掷一枚质地均匀旳骰子,点数为偶数旳概率为 1 ,
点数不大于5旳概率为__2____。
2
3
4、一副扑1克牌(54张,不算配牌),任意抽取1张,抽到黑桃8旳
6、有一种不透明旳袋子中装有红、绿、黄三种颜色旳小球各1个。 除了颜色外无其他差别。随机摸出1个小球后,记下球旳颜色, 然后放回,再随机摸出一种。求下列事件旳概率。
(1)两次颜色相同旳概率 (2)第一次为红色,第二次为黄色旳概率 (3)一种绿色、一种黄色旳概率
课后延伸:
1、上面旳题目中,假如摸出第一种球后“不放回”

(白,黄) (白,蓝)
游戏者获胜旳概率是1/6.
(红,绿) (白,绿)
3、一张圆桌旁有四个座位,A先 坐在如图所示旳座位上,B、C、 D三人随机坐到其他三个座位上。 则A与B不相邻而坐旳概
率为( 1)。 3
A 圆桌
基础复习训练
1、盒中有3个黄球,2个白球,1个红球,每个球除颜色外
都相同,从中任意摸出一球,
又怎样?
2、同步掷3枚硬币,3枚硬币全部正面朝上旳概率
是多少?
1、染色体隐性遗传病,只有致病基因在纯合状态(dd)时才会发 病,在杂合状态(Dd)时,因为正常旳显性基因型D存在,致病基 因d旳作用不能体现出来,但是自己虽不发病,却能将病传给后裔, 经常父母无病,子女有病,如下表所示:
(1)子女发病旳概率是多少?
2、用列表法求概率旳关键是什么?

25.2.1 列表法

25.2.1 列表法
“同时抛掷两枚质地 均匀的硬币”与“先后两 次抛掷一枚质地均匀的硬 币”,这两种实验的所有 可能结果一样吗?
没有变化
1.不透明袋中装有红、绿小球各一个除颜色外无其他差别,随机摸 出一个小球后,放回并摇匀,再随机摸出一个,求下列事件的概率. (1)第一次摸到红球,第二次摸到绿球; (2)两次都摸到相同的颜色的小球; (3)两次摸到的球中一个绿球、一个红球。
列表法中表格构造特点: 两个因素所组合的 所有可能情况,即n
另一个因素所包含 的可能情况
在所有可能情况n中,再找到满足条件的事件的个 数m,最后代入公式计算.
1.暗线本:P140 T3 2.《学导练》 3.《课堂10分钟》 4.《课后作业》
满足至少有一个骰子点数为2(记为事件C)的结果有11个。 11 P (C ) 36
2.在6张卡片上分别写有1~6 的整数,随机地抽取一张后放回,在随机地抽取一张。那么 第二次取出的数字能够整除第一取出的数字的概率是多少? 解:依题意,列表如下: 第1 次 1 2 3 4 5 6 第2 次
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 总共36种结果,每种结果出现的可能性相同 第二次取出数字能够整除第一取出数字(记为事件A)的结果有14个 14 7 P ( A) 36 18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.2 用列表法求概率
(一)用列表法求概率
1.(2017-云南中考)在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,它们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机取出1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字。

(1)用列表法写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.
2.(2016-昆明中考)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表的方法,表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.
3.(2009-云南中考)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个. 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用列表法说明理由.
4.(2016-云南中考)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表的方法,把抽奖一次可能出现的结果表示出来;(2)求能中奖的概率P.
5.(2015-云南中考)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方体骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其它都相同).先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.
(1)请用列表的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;
(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢.问小明和小王谁赢的可能性更大?请说明理由.
6.(2015-昆明中考)小云玩抽卡片和转转盘游戏,有两张正面分别标有数字1,2的
不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字-1,
3,4(如图所示);小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数
字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则
重转一次,直到指针指向某一区域为止)。

(1)请用列表的方法,表示出两次所得数字可能出现的所以结果;(2)求出两个数字之积为负数的概率。

相关文档
最新文档