PCB布线的基本设计方法和原则要求
PCB电路设计规范及要求
PCB电路设计规范及要求板的布局要求一、印制线路板上的元器件放置的通常顺序:1、放置与结构有紧密配合的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK 功能将其锁定,使之以后不会被误移动;2、放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC 等;3、放置小器件。
二、元器件离板边缘的距离:1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、可能的话所有的元器件均放置在离板的边缘3mm以内或至少大于板厚,这是由于在大批量生产的流水线插件和进行波峰焊时,要提供给导轨槽使用,同时也为了防止由于外形加工引起边缘部分的缺损,如果印制线路板上元器件过多,不得已要超出3mm范围时,可以在板的边缘加上3mm的辅边,辅边开V 形槽,在生产时用手掰断即可。
三、高低压之间的隔离:在许多印制线路板上同时有高压电路和低压电路,高压电路部分的元器件与低压部分要分隔开放置,隔离距离与要承受的耐压有关,通常情况下在2000kV时板上要距离2mm,在此之上以比例算还要加大,例如若要承受3000V的耐压测试,则高低压线路之间的距离应在3.5mm以上,许多情况下为避免爬电,还在印制线路板上的高低压之间开槽。
四、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
pcb布线规则及技巧
使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。
PCB布局与布线规则
一般PCB基本设计流程............................................................................................................ - 1 - PCB布线工艺要求 ............................................................................................................. - 2 - 用PROTEL99制作印刷电路版的基本流程 ........................................................................... - 4 - 一、元件布局基本规则.............................................................................................................. - 9 - PCB布局 .................................................................................................................................. - 10 - PCB元器件通用布局要求....................................................................................................... - 11 - PCB板布局原则....................................................................................................................... - 11 - 华为PCB布局原则.................................................................................................................. - 12 - PCB布线 .................................................................................................................................. - 13 - PCB布线经验(一) ................................................................................................................. - 15 - PCB布线经验(二) ................................................................................................................. - 16 - 板的布局: ............................................................................................................................... - 18 - 总结几个常用的操作技巧:.................................................................................................... - 20 - 如何提高抗干扰能力和电磁兼容性........................................................................................ - 20 - 滤波电容、去耦电容、旁路电容作用.................................................................................... - 23 -一般PCB基本设计流程前期准备->PCB结构设计->PCB布局->布线->布线优化和丝印->网络和DRC检查和结构检查->制版。
PCB工艺规范及PCB设计安规原则
PCB工艺规范及PCB设计安规原则为确保PCB(Printed Circuit Board)设计的质量和可靠性,制定并遵守一系列工艺规范以及安全规则是非常重要的。
本文将阐述PCB工艺规范及PCB设计的安规原则。
一、PCB工艺规范1.板材选择:-必须符合设计要求的电气性能、机械性能、尺寸等要求;-必须符合应用环境的工作温度范围。
2.排布与布线:-尽量减少板上的布线长度,增加抗干扰能力;-根据电路频率、信号速度等要求合理设计布线;-所有布线层之间,要合理选用必要的接地和供电是层,增强电磁兼容性。
3.参考设计规则:-依据电路功能和各器件的规格书,正确设计布线规则;-合理设置电线宽度、间隙及线距。
4.等电位线规定:-等电位线使用实线表示;-必须保证等电位线闭合,不得相互交叉。
5.电气间隙要求:-不同电压等级的电源线,必须保持一定的电气间隙,避免跳线;-电源与信号线应尽量分成两组布线;-信号线与信号线之间应保持一定距离,以减少串扰。
6.焊盘设计:-合理布局焊盘和接插件位置;-焊盘和焊孔的直径、间距等必须满足可焊性和可靠性要求。
7.线宽、间隔规定:-根据电流、信号速度和PCB层数等因素,合理决定线宽和线距;-涂阻焊层的孔内径要适应最小焊盘直径;8.焊盘过孔相关规范:-不得将NC、不焊接引脚和地板连接到焊盘;-必需焊接的引脚应通至PCB底面或RX焊盘,不得配通至其他焊盘。
二、PCB设计的安规原则1.电源输入与保护:-保证电流符合设计要求,在输入端添加过压、过流、短路等保护电路。
2.信号线与地线的安全:-信号线与地线应保持一定距离,以避免干扰和电磁辐射;-尽量避免使用跳线。
3.防静电保护:-添加ESD保护电路,提高抗静电能力;-配置合适的接地网络,减少静电影响。
4.温度管理:-避免过大的电流密度,以减少热量;-根据散热要求设计散热装置。
5.安全封装:-选择符合安全认证标准的元器件封装;-避免封装错误和元器件方向错误。
PCB布局、布线基本规则
PCB布局、布线基本规则(PCB)又被称为印刷电路板(Printed Circuit Board),它可以实现(电子元器件)间的线路连接和功能实现,也是(电源电路)设计中重要的组成部分。
今天就将以本文来介绍PCB板布局布线的基本规则。
元件布局基本规则按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时(数字电路)和(模拟)电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装(元器件);卧装电阻、电感(插件)、电解(电容)等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;元器件的外侧距板边的距离为5mm;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;(电源)插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要(信号)线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
元件基本布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;(cpu)入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB印制电路板设计技术要求
PCB印制电路板设计技术要求PCB(Printed Circuit Board,印制电路板)是电子设备中用于支持和连接各种电子组件的基础元件。
设计一块高质量、可靠的PCB是保证电子设备性能和稳定性的重要步骤。
下面将介绍一些PCB设计的技术要求。
1.元件布局和定位:元件布局和定位是PCB设计的基础,正确的元件布局和定位对于电路的性能和布线的可靠性至关重要。
布局应该将元件放置在合适的位置,以便于信号的流通和热量的散发。
元件之间的间距应当适中,以便于布线并避免电磁干扰。
元件的定位应当准确,确保其与元件的连接点对齐。
2.布线规则和长度匹配:布线是PCB设计中最重要的环节之一,良好的布线能够保证电路的稳定性和性能。
布线规则包括信号层与电源层的分割、信号线与电源线的分离、地线的铺设等。
布线中还需进行长度匹配,即保持关键信号线的长度一致,以确保信号的同步传输和稳定性。
3.层次划分和层间连接:在设计复杂的PCB时,为了提高布线的效率和可靠性,可以采用多层PCB设计。
层次划分可以根据信号和电源的分布情况,将信号层、地层、电源层等划分到不同的PCB层次中。
层间连接则通过过孔(Via)进行,通过过孔将不同PCB层次之间的信号连接起来。
4.PCB尺寸和形状:PCB的尺寸和形状应当满足设备的要求,并考虑到制造和装配的限制。
PCB尺寸的选择应当充分考虑元件的布局、线路的布线以及设备的外形和空间要求。
同时,不规则形状的PCB设计也会增加制造的复杂度和成本,因此应当尽可能选择规整的形状。
5.阻抗控制和信号完整性:在高速数字电路和射频电路设计中,阻抗控制和信号完整性非常重要。
在布线过程中,应当通过调整信号线的宽度和间距,以及信号层和地层的分布,来实现所需要的阻抗匹配。
同时,需要采取一些措施来减少或避免信号的串扰和噪声。
6.焊盘和焊接技术:在PCB设计中,焊盘和焊接技术的合理选择对于元件的连接和电路的稳定性至关重要。
焊盘的形状和尺寸应当根据元件的引脚形态和间距进行设计,以保证焊接的可靠性。
PCB设计规则(DRC)
PCB设计规则(DRC)
PCB设计规则(DRC)设置设计规则(DRC)(一)、PCB设计的基本原则:PCB设计规则分为10个类别1、
布局原则(1)、元件的布局要求均衡,疏密有序,避免头重脚轻。
(2)、元件布局应按照元件的关键性来进行,先布置
关键元件如微处理器、DSP、FPGA、存储器等,按照数据线和地址线的走向,就近原则布置元件。
(3)、存储器模块
尽量并排放置,以缩短走线长度。
(4)、尽可能按照信号流
向进行布局。
注意:零件布局,应当从机械结构散热、电磁干扰、将来布线的方便性等方面综合考虑。
先布置与机械尺寸有关的器件,并锁定这些器件,然后是大的占位置的器件和电路的核心元件,再是外围的小元件。
2、布线原则(1)、一定要确保导线的宽度达到导线的载流要求,并尽可能宽些,留出余量。
电源和地的导线要更宽,具体数值视实际情况而定。
地线>电源线>导线(2)、导线间最小间距是由线的绝缘电阻和击穿电阻决定的,在可能的情况下尽量定得大一些,一般不能小于12mil。
(3)、设计布线时,走线尽量少拐弯,力求线条简单明了。
(4)、微处理器芯片的数据线地址线应
尽量平行布置。
(5)、输入端与输入端边线应避免相邻平行,以免产生反射干扰,必要时应加线隔离。
两相邻的布线要相互垂直。
平行容易产生寄生耦合。
(6)、利用包地,覆铜等
工艺提高PCB的稳定性和抗干扰性。
(二)重点规则1、零件(元件)之间最小距离。
1、零件方向。
2、零件放置所在层。
3、导线的宽度。
4、导线所在层。
PCB设计规范
PCB设计规范一.PCB 设计的布局规范(一)布局设计原则1. 组件距离板边应大于5mm。
2. 先放置与结构关系密切的组件,如接插件、开关、电源插座等。
3. 优先摆放电路功能块的核心组件及体积较大的元器件,再以核心组件为中心摆放周围电路元器件。
4. 功率大的组件摆放在利于散热的位置上,如采用风扇散热,放在空气的主流通道上;若采用传导散热,应放在靠近机箱导槽的位置。
5. 质量较大的元器件应避免放在板的中心,应靠近板在机箱中的固定边放置。
6. 有高频连线的组件尽可能靠近,以减少高频信号的分布参数和电磁干扰。
7. 输入、输出组件尽量远离。
8. 带高电压的元器件应尽量放在调试时手不易触及的地方。
9. 手焊元件的布局要充分考虑其可焊性,以及焊接时对周围器件的影响。
手焊元件与其他元件距离应大于1.5mm.10. 热敏组件应远离发热组件。
对于自身温升高于30℃的热源,一般要求:a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于2.5mm;b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于4.0mm。
若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在额定范围内。
11. 可调组件的布局应便于调节。
如跳线、可变电容、电位器等。
12. 考虑信号流向,合理安排布局,使信号流向尽可能保持一致。
13. 布局应均匀、整齐、紧凑。
14. 表贴组件布局时应注意焊盘方向尽量取一致,以利于装焊。
15. 去耦电容应在电源输入端就近放置。
16. 可调换组件(如: 压敏电阻,保险管等) ,应放置在明显易见处17. 是否有防呆设计(如:变压器的不对称脚,及Connect)。
18. 插拔类的组件应考虑其可插拔性。
影响装配,或装配时容易碰到的组件尽量卧倒。
(二)对布局设计的工艺要求1. 外形尺寸从生产角度考虑,理想的尺寸范围是“宽(200 mm~250 mm)×长(250 mm ~350 mm)”。
PCB设计规范
PCB设计规范二O 一O 年八月目录一.PCB 设计的布局规范- - - - - - - - - - - - - - - - - - - - - - - - -- - 3 ■布局设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ------ - - 3 ■对布局设计的工艺要求- - - - - - - - - - - - - - - - - - - - - ------- - - 4 二.PCB 设计的布线规范- - - - - - - - - - - - - - - - - - - - - - - - - - 15 ■布线设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - 15 ■对布线设计的工艺要求- - - - - - - - - - - - - - - - - - - - - - - ------ 16 三.PCB 设计的后处理规范- - - - - - - - - - - - - - - - - - - -- - - - - 25 ■测试点的添加- - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - - 25 ■PCB 板的标注- - - - - - - - - - - - - - - - - - - - - - - - ----- - - - - 27 ■加工数据文件的生成- - - - - - - - - - - - - - - - - - - - - - ----- - - - 31 四.名词说明- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - 33 ■金属孔、非金属孔、导通孔、异形孔、装配孔- - - - - - - - - ---- - 33 ■定位孔和光学定位点- - - - - - - - - - - - - - - - - - - - - - - ------ - 33 ■负片(Negative)和正片(Positive)- - - - - - - - - - - --- - - - - 33 ■回流焊(Reflow Soldering)和波峰焊(Wave Solder)- - --- - - 34 ■PCB 和PBA - - - - - - - - - - - - - - - - - - - - - - - - - - ---- --- - - 34一.PCB 设计的布局规范(一)布局设计原则1.距板边距离应大于5mm。
最全PCB设计规范
最全PCB设计规范PCB设计规范是指对PCB板设计与布线进行规范化的要求和标准。
合理的PCB设计规范可以提高电路的可靠性、可制造性和可维护性,减少设计错误和生产问题。
以下是一个最全的PCB设计规范指南:一、尺寸和层数规范1.预留适当的板边用于固定和装配。
2.保持板厚适当,符合设备尺寸和散热要求。
3.层数应根据电路需求合理选择,减少层数可以降低生产成本。
二、元器件布局规范1.分配适当的空间给每个元器件,避免过于拥挤。
2.避免敏感元器件(如高频元器件)靠近高噪声源(如高压变压器)。
3.分组布局,将相关功能的元器件放在一起,便于调试和维护。
三、信号线布线规范1.信号线走线应尽量保持短而直的原则,减小传输延迟和信号损耗。
2.高频信号线避免与高电流线路交叉,以减少互相干扰。
3.分层布线,将高频信号和低频信号分开,避免互相干扰。
四、电源和地线布线规范1.电源线和地线应尽量宽而短,以降低阻抗。
2.使用大面积的地平面,减少地回流电流的路径。
3.电源线和地线应尽量平行走线,减少电感和电容。
五、阻抗控制规范1.布线时应根据需求控制差分对阻抗和单端信号阻抗。
2.保持差分对信号的平衡,避免阻抗不匹配。
3.使用合适的线宽和间距设计走线,以满足阻抗要求。
六、焊盘和插孔规范1.确保焊盘和插孔的尺寸、形状和位置符合零部件要求,并适合选用的焊接工艺。
2.避免焊盘和插孔之间过于拥挤,以便于手动和自动插件。
七、丝印规范1.丝印应清晰可见,包括元器件标识、引脚标识、极性标识等。
2.不要在元器件安装位置上涂抹丝印墨水,以免影响焊接质量。
八、通孔布局规范1.确保通孔位于焊盘的中心,避免焊盘过大或过小,影响焊接质量。
2.根据电路需求选择合适的通孔类型(如PTH、NPTH等)。
九、防静电规范1.PCB板表面清洁,避免灰尘和静电积累。
2.使用合适的静电防护手套和接地装置进行操作。
十、符号和标识规范1.适当添加电路图符号和标识,便于后续调试和维护工作。
PCB设计布局及布线规则
PCB设计布局规则1. 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。
按工艺设计规范的要求进行尺寸标注。
2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。
根据某些元件的特殊要求,设置禁止布线区。
3. 综合考虑PCB性能和加工的效率选择加工流程。
加工工艺的优选顺序为:元件面单面贴装--元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)--双面贴装--元件面贴插混装、焊接面贴装。
4.布局操作的基本原则A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.D. 相同结构电路部分,尽可能采用“对称式”标准布局;E. 按照均匀分布、重心平衡、版面美观的标准优化布局;F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。
G. 如有特殊布局要求,应双方沟通后确定。
5. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。
当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。
9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm(50mil)的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接。
PCB设计的基本原则要求)
9.布线条宽窄和线条间距要适中,电容器两焊盘间距应尽可能与电容引线脚的间距相符;
10.设计应按一定顺序方向进行,例如可以由左往右和由上而下的顺序进行。
(5)强电流引线(公共地线,功放电源引线等)应尽可能宽些,以降低布线电阻及其电压降,可减小寄生耦合而产生的自激。
(6)阻抗高的走线尽量短,阻抗低的走线可长一些,因为阻抗高的走线容易发笛和吸收信号,引起电路不稳定。电源线、地线、无反馈组件的基极走线、发射极引线等均属低阻抗走线,射极跟随器的基极走线、收录机两个声道的地线必须分开,各自成一路,一直到功效末端再合起来,如两路地线连来连去,极易产生串音,使分离度下降。
5.进出接线端布置
(1)相关联的两引线端不要距离太大,一般为2~3/10英寸左右较合适。
(2)进出线端尽可能集中在1至2个侧面,不要太过离散。
6.设计布线图时要注意管脚排列顺序,组件脚间距要合理。
7.在保证电路性能要求的前提下,设计时应力求走线合理,少用外接跨线,并按一定顺充要求走线,力求直观,便于安装,高度和检修。
3、PCB布线图设计原则
首先需要对所选用组件器及各种插座的规格、尺寸、面积等有完全的了解;对各部件的位置安排作合理的、仔细的考虑,主要是从电磁场兼容性、抗干扰的角度,走线短,交叉少,电源,地的路径及去耦等方面考虑。各部件位置定出后,就是各部件的联机,按照电路图连接有关引脚,完成的方法有多种,印刷线路图的设计有计算机辅助设计与手工设计方法两种。
(2)竖放:当电路组件数较多,而且电路板尺寸不大的情况下,一般是采用竖放,竖放时两个焊盘的间距一般取1~2/10英寸。
4.电位器:IC座的放置原则
(1)电位器:在稳压器中用来调节输出电压,故设计电位器应满中顺时针调节时输出电压升高,反时针调节器节时输出电压降低;在可调恒流充电器中电位器用来调节充电电流折大小,设计电位器时应满中顺时针调节时,电流增大。
PCB布局布线的一些规则
PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
PCB布线时遵循的一些基本原则
PCB布线时遵循的一些基本原则连线要精简,尽可能短,尽量少拐弯,力求走线简单明了(特殊要求除外,如阻抗匹配和时序要求).过长的走线会改变传输线的阻抗特性,使信号的上升时间变长,从而抑制信号的最高传输频率.避免尖角走线和直角走线,宜45°走线和圆弧走线.1.增加走线的寄生电容,影响信号的完整性 2.阻抗不连续造成信号的反射 3.直角尖端易产生EMI效应走线尽可能少换层,少打过孔(via).1.via造成阻抗不连续2.产生寄生电容和寄生电感,影响信号完整性 3.不同的参考层影响信号回流信号间的距离(S)尽可能增大,相邻信号层的走线宜互相垂直/0斜交/弯曲走线,避免相互平行.减少串扰和耦合造成的信号干扰.电源线和地线的宽度尽可能宽(通常为W20).元器件换层引线和电容的引线尽可能缩短.优化布线.PCB布线的常见形式单根走线(single trace)菊花链(Daisy Chain)走线:从驱动端开始,依次到达各接收端星形(Star)走线:通常所说的“T”点拓扑形式布线蛇形走线:通常所说的饶线,主要目的是为了调节延时,时序匹配S≧3H(S:走线平行部分的间距H:信号与参考平面的间距)差分走线(differential pair)驱动端发送两个等值反相的信号,接受端通过比较这两个电压的差值来判断逻辑状态“0”或“1”,承载差分信号的那对走线称为差分走线与传统单根走线相比的优势抗干扰能力强抑制EMI非常有效时序定位精确各种角色介绍Logic : 原理图设计, 负责具体的FUNCTION 设计, 也是比较掌握全局的人, 相当于小的EPM, 有些事情可以请Logic的人出面协调.如用料方面, 换Solution 等SI: 负责板内高速线的阻抗, 如线宽, 线距,线长, 拓扑结构, 跨层, 如果绕线等问题须与SI 沟通.MCAD: 负责机构设计, ECAD 如果在空间上遇到和机构有冲突的, 首先和机构协商改动方案,如机构不肯退让的请EPM 出面协调.Thermal: 负责系统散热, 板内温控设计等工作(Thermal sensor 零件是由散热工程师决定它靠近那些相关零件放置,他们跟电子工程师和机构工程师沟通后,在电路图上和机构图上表示出来,有时候可能只是在电路图上标示出来,靠近什么元件放。
PCB布板布线规则
细述PCB板布局布线基本规则的线路连接和功能实现,也是电源电路设计中重要的组成部分。
今天就将以本文来介绍PCB 板布局布线的基本规则。
一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB布线的基本规则与技巧
PCB布线的基本规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一环,它涉及到电路设计的优化、信号传输的质量以及电路板的可靠性等方面。
以下是一些PCB布线的基本规则与技巧。
1.分隔高频与低频信号:在布线过程中,应将高频和低频信号分隔开来,以减少相互干扰。
可以通过增加地线、使用地层或远离干扰源等方式实现。
2.避免信号线与电源线、地线交叉:信号线与电源线、地线交叉会引起互相干扰,影响信号的传输质量。
在布线时应尽量避免信号线与其他线路的交叉,并采取合适的措施进行隔离。
3.保持信号线的相互垂直:信号线之间保持垂直可以减少信号之间的干扰。
在布线时,应尽量使信号线垂直地通过其他信号线或电源线、地线。
4.尽量缩短信号线的长度:信号线的长度会对信号传输的延迟和损耗产生影响,因此在布线时应尽量缩短信号线的长度。
对于高频信号尤为重要。
5.使用平面与过孔进行地线连接:地线是电路板中非常重要的一条线路,它可以提供整个电路的参考电平。
在布线时,可以通过使用平面层与过孔来进行地线的连接,提高地线的连续性。
6.使用平面与过孔进行电源线连接:电源线的布线也是非常重要的,尤其是对于供电要求较高的芯片或模块。
在布线时,可以通过使用平面层与过孔来进行电源线的连接,减少电源线的阻抗。
7.控制线宽和线距:PCB布线中的线宽和线距对电路的阻抗、信号的传输速度以及电流的承载能力等都是有影响的。
在布线时要根据需要选择合适的线宽和线距,保证电路的性能。
8.避免信号环路:信号环路会引起信号的反馈和干扰,影响电路的正常工作。
在布线时应尽量避免信号环路的产生,可以采取断开一部分连接或改变布线路径等方式来解决。
9.保持信号对称性:对于差分信号线或时钟信号线,应保持信号的对称性。
在布线时应尽量使信号线的路径相同,长度相等,以减少差分信号之间的干扰。
10.考虑EMI(Electromagnetic Interference,电磁干扰):在布线过程中应考虑到电磁干扰的问题,采取一些措施来减少电磁辐射和干扰。
PCB板基础知识布局原则布线技巧设计规则
PCB 板基础知识一、PCB 板的元素1、 工作层面对于印制电路板来说,工作层面可以分为6大类,信号层 signal layer内部电源/接地层 internal plane layer机械层mechanical layer 主要用来放置物理边界和放置尺寸标注等信息,起到相应的提示作用;EDA 软件可以提供16层的机械层;防护层mask layer 包括锡膏层和阻焊层两大类;锡膏层主要用于将表面贴元器件粘贴在PCB 上,阻焊层用于防止焊锡镀在不应该焊接的地方;丝印层silkscreen layer 在PCB 板的TOP 和BOTTOM 层表面绘制元器件的外观轮廓和放置字符串等;例如元器件的标识、标称值等以及放置厂家标志,生产日期等;同时也是印制电路板上用来焊接元器件位置的依据,作用是使PCB 板具有可读性,便于电路的安装和维修;其他工作层other layer 禁止布线层 Keep Out Layer钻孔导引层 drill guide layer钻孔图层 drill drawing layer复合层 multi-layer2、 元器件封装是实际元器件焊接到PCB 板时的焊接位置与焊接形状,包括了实际元器件的外形尺寸,所占空间位置,各管脚之间的间距等;元器件封装是一个空间的功能,对于不同的元器件可以有相同的封装,同样相同功能的元器件可以有不同的封装;因此在制作PCB 板时必须同时知道元器件的名称和封装形式;(1) 元器件封装分类通孔式元器件封装THT,through hole technology表面贴元件封装 SMT Surface mounted technology另一种常用的分类方法是从封装外形分类: SIP 单列直插封装DIP 双列直插封装PLCC 塑料引线芯片载体封装PQFP 塑料四方扁平封装SOP 小尺寸封装TSOP 薄型小尺寸封装PPGA 塑料针状栅格阵列封装PBGA 塑料球栅阵列封装CSP 芯片级封装2 元器件封装编号编号原则:元器件类型+引脚距离或引脚数+元器件外形尺寸例如 DIP14 等;3常见元器件封装电阻类 普通电阻AXIAL-⨯⨯,其中⨯⨯表示元件引脚间的距离;可变电阻类元件封装的编号为VR ⨯, 其中⨯表示元件的类别;电容类 非极性电容 编号RAD ⨯⨯,其中⨯⨯表示元件引脚间的距离;极性电容 编号RB xx -yy ,xx 表示元件引脚间的距离,yy 表示元件的直径; 二极管类 编号DIODE-⨯⨯,其中⨯⨯表示元件引脚间的距离;晶体管类 器件封装的形式多种多样;集成电路类SIP 单列直插封装DIP 双列直插封装PLCC 塑料引线芯片载体封装PQFP 塑料四方扁平封装SOP 小尺寸封装TSOP 薄型小尺寸封装PPGA 塑料针状栅格阵列封装PBGA 塑料球栅阵列封装CSP 芯片级封装3、 铜膜导线 是指PCB 上各个元器件上起电气导通作用的连线,它是PCB 设计中最重要的部分;对于印制电路板的铜膜导线来说,导线宽度和导线间距是衡量铜膜导线的重要指标,这两个方面的尺寸是否合理将直接影响元器件之间能否实现电路的正确连接关系; 印制电路板走线的原则:◆走线长度:尽量走短线,特别对小信号电路来讲,线越短电阻越小,干扰越小;◆走线形状:同一层上的信号线改变方向时应该走135°的斜线或弧形,避免90°的拐角;◆走线宽度和走线间距:在PCB 设计中,网络性质相同的印制板线条的宽度要求尽量一致,这样有利于阻抗匹配;走线宽度 通常信号线宽为: ~,10mil电源线一般为~ 在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线焊盘、线、过孔的间距要求PAD and VIA : ≥ 12milPAD and PAD : ≥ 12milPAD and TRACK : ≥ 12milTRACK and TRACK : ≥ 12mil密度较高时:PAD and VIA : ≥ 10milPAD and PAD : ≥ 10milPAD and TRACK : ≥ 10milTRACK and TRACK : ≥ 10mil4、 焊盘和过孔引脚的钻孔直径=引脚直径+10~30mil引脚的焊盘直径=钻孔直径+18milPCB 布局原则1、 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性; 按工艺设计规范的要求进行尺寸标注;2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域;根据某些元件的特殊要求,设置禁止布线区;3. 综合考虑PCB性能和加工的效率选择加工流程;加工工艺的优选顺序为:元件面单面贴装——元件面贴、插混装元件面插装焊接面贴装一次波峰成型——双面贴装——元件面贴插混装、焊接面贴装;4、布局操作的基本原则A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.D. 相同结构电路部分,尽可能采用“对称式”标准布局;E. 按照均匀分布、重心平衡、版面美观的标准优化布局;F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil;G. 如有特殊布局要求,应双方沟通后确定;5. 同类型插装元器件在X或Y方向上应朝一个方向放置;同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验;6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件;7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间;8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔;当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接;9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直, 阻排及SOPPIN间距大于等于元器件轴向与传送方向平行;PIN间距小于50mil的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接;10. BGA与相邻元件的距离>5mm;其它贴片元件相互间的距离>;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;有压接件的PCB,压接的接插件周围5mm内不能有插装元、器件,在焊接面其周围5mm内也不能有贴装元、器件;11. IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短;12. 元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔;13. 用于阻抗匹配目的阻容器件的布局,要根据其属性合理布置;串联匹配电阻的布局要靠近该信号的驱动端,距离一般不超过500mil;匹配电阻、电容的布局一定要分清信号的源端与终端,对于多负载的终端匹配一定要在信号的最远端匹配;14. 布局完成后打印出装配图供原理图设计者检查器件封装的正确性,并且确认单板、背板和接插件的信号对应关系,经确认无误后方可开始布线;布线布线是整个PCB设计中最重要的工序;这将直接影响着PCB板的性能好坏;在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求;如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门;其次是电器性能的满足;这是衡量一块印刷电路板是否合格的标准;这是在布通之后,认真调整布线,使其能达到最佳的电器性能;接着是美观;假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块;这样给测试和维修带来极大的不便;布线要整齐划一,不能纵横交错毫无章法;这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了;布线时主要按以下原则进行:①.一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能;在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:~,最细宽度可达~,电源线一般为~;对数字电路的 PCB 可用宽的地导线组成一个回路, 即构成一个地网来使用模拟电路的地则不能这样使用②.预先对要求比较严格的线如高频线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰;必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合;③.振荡器外壳接地,时钟线要尽量短,且不能引得到处都是;时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;④.尽可能采用45o的折线布线,不可使用90o折线,以减小高频信号的辐射;要求高的线还要用双弧线⑤.任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;⑥.关键的线尽量短而粗,并在两边加上保护地;⑦.通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出;⑧.关键信号应预留测试点,以方便生产和维修检测用⑨.原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用;或是做成多层板,电源,地线各占用一层;Alitum Designer的PCB板布线规则对于PCB的设计, AD提供了详尽的10种不同的设计规则,这些设计规则则包括导线放置、导线布线方法、元件放置、布线规则、元件移动和信号完整性等规则;根据这些规则, Protel DXP进行自动布局和自动布线;很大程度上,布线是否成功和布线的质量的高低取决于设计规则的合理性,也依赖于用户的设计经验;对于具体的电路可以采用不同的设计规则,如果是设计双面板,很多规则可以采用系统默认值,系统默认值就是对双面板进行布线的设置;本章将对Protel DXP的布线规则进行讲解;设计规则设置进入设计规则设置对话框的方法是在PCB电路板编辑环境下,从Protel DXP的主菜单中执行菜单命令Desing/Rules ……,系统将弹出如图6-1所示的PCB Rules and Constraints EditorPCB设计规则和约束对话框;图6-1 PCB设计规则和约束对话框该对话框左侧显示的是设计规则的类型,共分10类;左边列出的是Desing Rules 设计规则 ,其中包括Electrical 电气类型、 Routing 布线类型、 SMT 表面粘着元件类型规则等等,右边则显示对应设计规则的设置属性;该对话框左下角有按钮Priorities ,单击该按钮,可以对同时存在的多个设计规则设置优先权的大小;对这些设计规则的基本操作有:新建规则、删除规则、导出和导入规则等;可以在左边任一类规则上右击鼠标,将会弹出如6-2所示的菜单;在该设计规则菜单中, New Rule是新建规则; Delete Rule是删除规则; ExportRules是将规则导出,将以 .rul为后缀名导出到文件中; Import Rules是从文件中导入规则;Report ……选项,将当前规则以报告文件的方式给出; 图6 —2设计规则菜单下面,将分别介绍各类设计规则的设置和使用方法;电气设计规则Electrical 电气设计规则是设置电路板在布线时必须遵守,包括安全距离、短路允许等4个小方面设置;1 . Clearance 安全距离选项区域设置安全距离设置的是PCB 电路板在布置铜膜导线时,元件焊盘和焊盘之间、焊盘和导线之间、导线和导线之间的最小的距离;下面以新建一个安全规则为例,简单介绍安全距离的设置方法;1 在Clearance上右击鼠标,从弹出的快捷菜单中选择New Rule ……选项,如图6-3所示;图6-3 新建规则系统将自动当前设计规则为准,生成名为Clearance_1的新设计规则,其设置对话框如图6-4所示;图6-4 新建Clearance_1设计规则2 在Where the First object matches选项区域中选定一种电气类型;在这里选定Net单选项,同时在下拉菜单中选择在设定的任一网络名;在右边Full Query中出现InNet 字样,其中括号里也会出现对应的网络名;3 同样的在where the Second object matches选项区域中也选定Net单选项,从下拉菜单中选择另外一个网络名;4 在Constraints选项区域中的Minimum Clearance文本框里输入8mil ;这里Mil 为英制单位, 1mil=10 -3 inch, linch= ;文中其他位置的mil也代表同样的长度单位;5 单击Close按钮,将退出设置,系统自动保存更改;设计完成效果如图6-5所示;图6-5 设置最小距离2 . Short Circuit 短路选项区域设置短路设置就是否允许电路中有导线交叉短路;设置方法同上,系统默认不允许短路,即取消Allow Short Circuit复选项的选定,如图6- 6所示;图6-6 短路是否允许设置3 . Un-Routed Net 未布线网络选项区域设置可以指定网络、检查网络布线是否成功,如果不成功,将保持用飞线连接;4 . Un-connected Pin 未连接管脚选项区域设置对指定的网络检查是否所有元件管脚都连线了;布线设计规则Routing 布线设计规则主要有如下几种;1 . Width 导线宽度选项区域设置导线的宽度有三个值可以供设置,分别为Max width 最大宽度、 Preferred Width 最佳宽度、 Min width 最小宽度三个值,如图6-7所示;系统对导线宽度的默认值为10mil ,单击每个项直接输入数值进行更改;这里采用系统默认值10mil设置导线宽度;图6 -7 设置导线宽度2. Routing Topology 布线拓扑选项区域设置拓扑规则定义是采用的布线的拓扑逻辑约束; Protel DXP中常用的布线约束为统计最短逻辑规则,用户可以根据具体设计选择不同的布线拓扑规则; Protel DXP提供了以下几种布线拓扑规则;Shortest 最短规则设置最短规则设置如图6-8所示,从Topology下拉菜单中选择Shortest选项,该选项的定义是在布线时连接所有节点的连线最短规则;图6 -8 最短拓扑逻辑Horizontal 水平规则设置水平规则设置如图6- 9所示,从Topoogy下拉菜单中选择Horizontal选基;它采用连接节点的水平连线最短规则;图6-9 水平拓扑规则Vertical 垂直规则设置垂直规则设置如图6-10所示,从Tolpoogy下拉菜单中选择Vertical选项;它采和是连接所有节点,在垂直方向连线最短规则;图 6-10 垂直拓扑规则Daisy Simple 简单雏菊规则设置简单雏菊规则设置如图 6-11所示,从Tolpoogy下拉菜单中选择Daisy simple选项;它采用的是使用链式连通法则,从一点到另一点连通所有的节点,并使连线最短;图 6-11简单雏菊规则Daisy-MidDriven 雏菊中点规则设置雏菊中点规则设置如图6-12所示,从Tolpoogy下拉菜单中选择Daisy_MidDiven 选项;该规则选择一个Source 源点,以它为中心向左右连通所有的节点,并使连线最短;图 6-12雏菊中点规则Daisy Balanced 雏菊平衡规则设置雏菊平衡规则设置如图6-13所示,从Tolpoogy下拉菜单中选择Daisy Balanced 选项;它也选择一个源点,将所有的中间节点数目平均分成组,所有的组都连接在源点上,并使连线最短;图 6-13雏菊平衡规则Star Burst 星形规则设置星形规则设置如图6-14所示,从Tolpoogy下拉菜单中选择Star Burst选项;该规则也是采用选择一个源点,以星形方式去连接别的节点,并使连线最短;图 6-14 Star Burst 星形规则3. Routing Rriority 布线优先级别选项区域设置该规则用于设置布线的优先次序,设置的范围从0~100 ,数值越大,优先级越高,如图6-15所示;图 6-15 布线优先级设置4. Routing Layers 布线图选殴区域设置该规则设置布线板导的导线走线方法;包括顶层和底层布线层,共有32个布线层可以设置,如图6-16所示;图 6-16 布线层设置由于设计的是双层板,故Mid-Layer 1到Mid-Layer30都不存在的,该选项为灰色不能使用,只能使用Top Layer和Bottom Layer两层;每层对应的右边为该层的布线走法;Prote DXP提供了11种布线走法,如图6 -17所示;图 6-17 11 种布线法各种布线方法为: Not Used该层不进行布线; Horizontal该层按水平方向布线 ;Vertical该层为垂直方向布线; Any该层可以任意方向布线; Clock该层为按一点钟方向布线; Clock该层为按两点钟方向布线; Clock该层为按四点钟方向布线;Clock该层为按五点钟方向布线; 45Up该层为向上45 °方向布线、 45Down该层为向下 45 °方法布线; Fan Out该层以扇形方式布线;对于系统默认的双面板情况,一面布线采用Horizontal 方式另一面采用Vertical 方式;5 . Routing Corners 拐角选项区域设置布线的拐角可以有45 °拐角、90 °拐角和圆形拐角三种,如图6-18所示;图 6-18 拐角设置从Style上拉菜单栏中可以选择拐角的类型;如图6 -16中Setback文本框用于设定拐角的长度; To文本框用于设置拐角的大小;对于90 °拐角如图6-19所示,圆形拐角设置如图6-20所示;图 6-19 90 °拐角设置图 6-20 圆形拐角设置6 . Routing Via Style 导孔选项区域设置该规则设置用于设置布线中导孔的尺寸,其界面如图6-21所示;图 6 -21 导孔设置可以调协的参数有导孔的直径via Diameter和导孔中的通孔直径Via Hole Size ,包括Maximum 最大值、 Minimum 最小值和Preferred 最佳值;设置时需注意导孔直径和通孔直径的差值不宜过小,否则将不宜于制板加工;合适的差值在10mil以上;阻焊层设计规则Mask 阻焊层设计规则用于设置焊盘到阻焊层的距离,有如下几种规则;1 . Solder Mask Expansion 阻焊层延伸量选项区域设置该规则用于设计从焊盘到阻碍焊层之间的延伸距离;在电路板的制作时,阻焊层要预留一部分空间给焊盘;这个延伸量就是防止阻焊层和焊盘相重叠,如图6 —22所示系统默认值为4mil,Expansion设置预为设置延伸量的大小;图 6 — 22 阻焊层延伸量设置2 . Paste Mask Expansion 表面粘着元件延伸量选项区域设置该规则设置表面粘着元件的焊盘和焊锡层孔之间的距离,如图6 —23所示,图中的Expansion设置项为设置延伸量的大小;图 6 — 23 表面粘着元件延伸量设置内层设计规则Plane 内层设计规则用于多层板设计中,有如下几种设置规则;1 . Power Plane Connect Style 电源层连接方式选项区域设置电源层连接方式规则用于设置导孔到电源层的连接,其设置界面如图6 —24所示;图 6 — 24 电源层连接方式设置图中共有5项设置项,分别是:Conner Style 下拉列表:用于设置电源层和导孔的连接风格;下拉列表中有 3 个选项可以选择: Relief Connect 发散状连接、 Direct connect 直接连接和 No Connect 不连接;工程制板中多采用发散状连接风格;Condctor Width 文本框:用于设置导通的导线宽度;Conductors 复选项:用于选择连通的导线的数目,可以有 2 条或者 4 条导线供选择;Air-Gap 文本框:用于设置空隙的间隔的宽度;Expansion 文本框:用于设置从导孔到空隙的间隔之间的距离;2. Power Plane Clearance 电源层安全距离选项区域设置该规则用于设置电源层与穿过它的导孔之间的安全距离,即防止导线短路的最小距离,设置界面如图6 — 25所示,系统默认值20mil;图 6 — 25 电源层安全距离设置3 . Polygon Connect style 敷铜连接方式选项区域设置该规则用于设置多边形敷铜与焊盘之间的连接方式,设置界面如图6 — 26所示;图 6 — 26 敷铜连接方式设置该设置对话框中Connect Style 、 Conductors和Conductor width的设置与Power Plane Connect Style选项设置意义相同,在此不同志赘述;最后可以设定敷铜与焊盘之间的连接角度,有90angle90 ° 和45Angle 45 °角两种方式可选;测试点设计规则Testpiont 测试点设计规则用于设计测试点的形状、用法等,有如下几项设置;1 . Testpoint Style 测试点风格选项区域设置该规则中可以指定测试点的大小和格点大小等,设置界面如图6 — 27所示;图 6 — 27 测试点风格设置该设置对话框有如下选项:Size文本框为测试点的大小, Hole Size文本框为测试点的导孔的大小,可以指定Min 最小值、 Max 最大值和 Preferred 最优值;Grid Size文本框:用于设置测试点的网格大小;系统默认为1mil大小;Allow testpoint under component 复选项:用于选择是否允许将测试点放置在元件下面;复选项Top 、 Bottom等选择可以将测试点放置在哪些层面上;右边多项复选项设置所允许的测试点的放置层和放置次序;系统默认为所有规则都选中;2 . Testpoint Usage 测试点用法选项区域设置测试点用法设置的界面如图6 — 28所示;图 6 — 28 测试点用法设置该设置对话框有如下选项:Allow multiple testpoints on same net复选项:用于设置是否可以在同一网络上允许多个测试点存在;Testpoint 选项区域中的单选项选择对测试点的处理,可以是Required 必须处理、 Invalid 无效的测试点和 Don't care 可忽略的测试点;电路板制板规则Manufacturing 电路板制板规则用于对电路板制板的设置,有如下几类设置:1. Minimum annular Ring 最小焊盘环宽选项区域设置电路板制作时的最小焊盘宽度,即焊盘外直径和导孔直径之间的有效期值,系统默认值为10 mil;2 . Acute Angle 导线夹角设置选项区域设置对于两条铜膜导线的交角,不小于90 °;3 . Hole size 导孔直径设置选项区域设置该规则用于设置导孔的内直径大小;可以指定导孔的内直径的最大值和最小值;Measurement Method下拉列表中有两种选项: Absolute以绝对尺寸来设计, Percent以相对的比例来设计;采用绝对尺寸的导孔直径设置对话框如图6 — 29所示以mil为单位;图 6 — 29 导孔直径设置对话框4 . Layers Pais 使用板层对选项区域设置在设计多层板时,如果使用了盲导孔,就要在这里对板层对进行设置;对话框中的复选取项用于选择是否允许使用板层对 layers pairs 设置;本章中,对Protel DXP提供的10种布线规则进行了介绍,在设计规则中介绍了每条规则的功能和设置方法;这些规则的设置属于电路设计中的较高级的技巧,它设计到很多算法的知识;掌握这些规则的设置,就能设计出高质量的PCB电路;双面板布线技巧一双面板布线技巧在当今激烈竞争的电池供电市场中,由于成本指标限制,设计人员常常使用双面板;尽管多层板4层、6层及8层方案在尺寸、噪声和性能方面具有明显优势,成本压力却促使工程师们重新考虑其布线策略,采用双面板;在本文中,我们将讨论自动布线功能的正确使用和错误使用,有无地平面时电流回路的设计策略,以及对双面板元件布局的建议;自动布线的优缺点以及模拟电路布线的注意事项设计PCB 时,往往很想使用自动布线;通常,纯数字的电路板尤其信号电平比较低,电路密度比较小时采用自动布线是没有问题的;但是,在设计模拟、混合信号或高速电路板时,如果采用布线软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题;例如,图1中显示了一个采用自动布线设计的双面板的顶层;此双面板的底层如图2所示,这些布线层的电路原理图如图3a和图3b所示;设计此混合信号电路板时,经仔细考虑,将器件手工放在板上,以便将数字和模拟器件分开放置;采用这种布线方案时,有几个方面需要注意,但最麻烦的是接地;如果在顶层布地线,则顶层的器件都通过走线接地;器件还在底层接地,顶层和底层的地线通过电路板最右侧的过孔连接;当检查这种布线策略时,首先发现的弊端是存在多个地环路;另外,还会发现底层的地线返回路径被水平信号线隔断了;这种接地方案的可取之处是,模拟器件12位A/D转换器MCP3202和参考电压源MCP4125放在电路板的最右侧,这种布局确保了这些模拟芯片下面不会有数字地信号经过;图3a和图3b所示电路的手工布线如图4、图5所示;在手工布线时,为确保正确实现电路,需要遵循一些通用的设计准则:尽量采用地平面作为电流回路;将模拟地平面和数字地平面分开;如果地平面被信号走线隔断,为降低对地电流回路的干扰,应使信号走线与地平面垂直;模拟电路尽量靠近电路板边缘放置,数字电路尽量靠近电源连接端放置,这样做可以降低由数字开关引起的di/dt效应;这两种双面板都在底层布有地平面,这种做法是为了方便工程师解决问题,使其可快速明了电路板的布线;厂商的演示板和评估板通常采用这种布线策略;但是,更为普遍的做法是将地平面布在电路板顶层,以降低电磁干扰;图 1 采用自动布线为图3所示电路原理图设计的电路板的顶层图 2 采用自动布线为图3所示电路原理图设计的电路板的底层图 3a 图1、图2、图4和图5中布线的电路原理图图 3b 图1、图2、图4和图5中布线的模拟部分电路原理图有无地平面时的电流回路设计对于电流回路,需要注意如下基本事项:1. 如果使用走线,应将其尽量加粗;。
PCB主线布线规范—IO
PCB主线布线规范—I/O
一、PS/2
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;2.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;3.信号线一起走,不要穿插其他线;
4.尽量不要跨内层切割线,少打VIA。
二、COM
1.电容(或排容)尽量靠近CONNECTOR;
2.布线顺序CONNECTOR→电容→IC;
3.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;4.信号线一起走,不要穿插其他线;
5.尽量不要跨内层切割线,少打VIA。
三、VGA
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;
2.R、G、B布线走differential,必须同时换层,尽量包地且至少隔100mil打GND孔,减少EMI;
3.HSYNC、VSYNC等间距大于10mil;
4.尽量不要跨内层切割线,少打VIA。
四、PRINTER
1.布线顺序CONNECTOR→电容→电阻→IC;
2.电容尽量靠近CONNECTOR;
3.正背面尽量铺GND铜箔,多打VIA连通,减少EMI;4.信号线一起走,不要穿插其他线;
5.尽量不要跨内层切割线,少打VIA。
五、USB
1.布线顺序CONNECTOR→电容→电感→电容→电阻→IC;
2.同组布线走differential,等长,同时换层,尽量不要跨内层切割线;
3.根据guideline设置线宽间距,组之间间距大于20mil。
和其他高频线大于40mil;
4.正背面尽量铺GND铜箔,多打VIA连通,减少EMI。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB布线的基本设计方法和原则要求
一、印刷线路元件布局结构设计讨论
一台性能优良的仪器,除选择高质量的元器件,合理的电路外,印刷线路板的元件布局和电气连线方向的正确结构设计是决定仪器能否可靠工作的一个关键问题,对同一种元件和参数的电路,由于元件布局设计和电气连线方向的不同会产生不同的结果,其结果可能存在很大的差异。
因而,必须把如何正确设计印刷线路板元件布局的结构和正确选择布线方向及整体仪器的工艺结构三方面联合起来考虑,合理的工艺结构,既可消除因布线不当而产生的噪声干扰,同时便于生产中的安装、调试与检修等。
下面我们针对上述问题进行讨论,由于优良“结构”没有一个严格的“定义”和“模式”,因而下面讨论,只起抛砖引玉的作用,仅供参考。
每一种仪器的结构必须根据具体要求(电气性能、整机结构安装及面板布局等要求),采取相应的结构设计方案,并对几种可行设计方案进行比较和反复修改。
印刷板电源、地总线的布线结构选择‐‐‐‐系统结构:模拟电路和数字电路在元件布局图的设计和布线方法上有许多相同和不同之处。
模拟电路中,由于放大器的存在,由布线产生的极小噪声电压,都会引起输出信号的严重失真,在数字电路中,TTL噪声容限为0.4V~0.6V,CMOS噪声容限为Vcc的0.3~0.45倍,故数字电路具有较强的抗干扰的能力。
良好的电源和地总线方式的合理选择是仪器可靠工作的重要保证,相当多的干扰源是通过电源和地总线产生的,其中地线引起的噪声干扰最大。
二、印刷电路板图设计的基本原则要求
1.印刷电路板的设计,从确定板的尺寸大小开始,印刷电路板的尺寸因受机箱外壳大小限制,以能恰好安放入外壳内为宜,其次,应考虑印刷电路板与外接元器件(主要是电位器、插口或另外印刷电路板)的连接方式。
印刷电路板与外接元件一般是通过塑料导线或金属隔离线进行连接。
但有时也设计成插座形式。
即:在设备内安装一个插入式印刷电路板要留出充当插口的接触位置。
对于安装在印刷电路板上的较大的元件,要加金属附件固定,以提高耐振、耐冲击性能。
2.布线图设计的基本方法
首先需要对所选用元件器及各种插座的规格、尺寸、面积等有完全的了解;对各部件的位置安排作合理的、仔细的考虑,主要是从电磁场兼容性、抗干扰的角度,走线短,交叉少,电源,地的路径及去耦等方面考虑。
各部件位置定出后,就是各部件的连线,按照电路图连接有关引脚,完成的方法有多种,印刷线路图的设计有计算机辅助设计与手工设计方法两种。
最原始的是手工排列布图。
这比较费事,往往要反复几次,才能最后完成,这在没有其它绘图设备时也可以,这种手工排列布图方法对刚学习印刷板图设计者来说也是很有帮助的。
计算机辅助制图,现在有多种绘图软件,功能各异,但总的说来,绘制、修改较方便,并且可以存盘贮存和打印。
接着,确定印刷电路板所需的尺寸,并按原理图,将各个元器件位置初步确定下来,然后经过不断调整使布局更加合理,印刷电路板中各元件之间的接线安排方式如下:
(1)印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决。
即,让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或
从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题。
(2)电阻、二极管、管状电容器等元件有“立式”,“卧式”两种安装方式。
立式指的是元件体垂直于电路板安装、焊接,其优点是节省空间,卧式指的是元件体平行并紧贴于电路板安装,焊接,其优点是元件安装的机械强度较好。
这两种不同的安装元件,印刷电路板上的元件孔距是不一样的。
(3)同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上。
特别是本级晶体管基极、发射极的接地点不能离得太远,否则因两个接地点间的铜箔太长会引起干扰与自激,采用这样“一点接地法”的电路,工作较稳定,不易自激。
(4)总地线必须严格按高频-中频-低频一级级地按弱电到强电的顺序排列原则,切不可随便翻来复去乱接,级与级间宁肯可接线长点,也要遵守这一规定。
特别是变频头、再生头、调频头的接地线安排要求更为严格,如有不当就会产生自激以致无法工作。
调频头等高频电路常采用大面积包围式地线,以保证有良好的屏蔽效果。
(5)强电流引线(公共地线,功放电源引线等)应尽可能宽些,以降低布线电阻及其电压降,可减小寄生耦合而产生的自激。
(6)阻抗高的走线尽量短,阻抗低的走线可长一些,因为阻抗高的走线容易发笛和吸收信号,引起电路不稳定。
电源线、地线、无反馈元件的基极走线、发射极引线等均属低阻抗走线,射极跟随器的基极走线、收录机两个声道的地线必须分开,各自成一路,一直到功效末端再合起来,如两路地线连来连去,极易产生串音,使分离度下降。
三、印刷板图设计中应注意下列几点
1.布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修(注:指在满足电路性能及整机安装与面板布局要求的前提下)。
2.各元件排列,分布要合理和均匀,力求整齐,美观,结构严谨的工艺要求。
3.电阻,二极管的放置方式:分为平放与竖放两种:
(1)平放:当电路元件数量不多,而且电路板尺寸较大的情况下,一般是采用平放较好;对于1/4W以下的电阻平放时,两个焊盘间的距离一般取4/10英寸,1/2W 的电阻平放时,两焊盘的间距一般取5/10英寸;二极管平放时,1N400X系列整流管,一般取3/10英寸 540X系列整流管,一般取4~5/10英寸。
(2)竖放:当电路元件数较多,而且电路板尺寸不大的情况下,一般是采用竖放,竖放时两个焊盘的间距一般取1~2/10英寸。
4.电位器:IC座的放置原则
(1)电位器:在稳压器中用来调节输出电压,故设计电位器应满中顺时针调节时输出电压升高,反时针调节器节时输出电压降低;在可调恒流充电器中电位器用来调节充电电流折大小,设计电位器时应满中顺时针调节时,电流增大。
电位器安放位轩应当满中整机结构安装及面板布局的要求,因此应尽可能放轩在板的边缘,旋转柄朝外。
(2)IC座:设计印刷板图时,在使用IC座的场合下,一定要特别注意IC座上定位槽放置的方位是否正确,并注意各个IC脚位是否正确,例如第1脚只能位于IC 座的右下角线或者左上角,而且紧靠定位槽(从焊接面看)。
5.进出接线端布置
(1)相关联的两引线端不要距离太大,一般为2~3/10英寸左右较合适。