PCB布线的基本原则
pcb走线的基本原则
pcb走线的基本原则:
1.信号线与其回来的线构成环路面积尽可能小,即环路面积尽可能小以减小电磁干扰。
2.布线长度应尽可能短,以减小信号的延迟和噪声。
振荡器应放在离器件很近的位置。
3.不允许出现一端悬空的布线,以防止信号在不同层间形成闭环。
4.防止时钟信号线在地层内形成闭环。
尽可能在时钟线的两侧包地线,条件不允许,
也应该使时钟线和地线紧邻走线。
5.PCB走线应尽量避免直角和锐角,以减小信号的反射和辐射。
6.为减少线间串扰,应保证线中心间距不少于三倍线宽。
7.在高频数字电路中,走线应细一些、短一些好。
大电流信号、高电压信号与小信号
之间应该注意隔离。
两面板布线时,两面的导线宜相互垂直、斜交、或弯曲走线,避免相互平行,以减小寄生耦合。
8.高频信号线应尽可能走线的长度与宽度适中的直线,需要时应放置必要的导孔或过
孔来调整传输路径,以减小信号的延迟与失真。
9.在多层板中,对延迟要求高的信号线,应放在靠近顶层的内层,并避免与其他信号
线长距离平行布线或放置通孔。
10.在满足电气性能的前提下,模拟电路的电源线和地线应尽可能宽,以减小电阻和电
感,从而避免噪声干扰。
11.在多层板中,对电源和地的引脚应尽可能接近对应的连接孔,以减小连接阻抗和电
感。
12.尽量使用45°的折线而不是90°的折线来减小信号的反射。
13.在使用4层板时,对IC的去耦电容的布线需要充分考虑。
它要放在尽可能靠近IC
的电源和地引脚处,同时要确保过孔的数量最少。
PCB布线的基本原则
PCB布线的基本原则1.确定信号和电源线路的走向:首先需要确定各个信号和电源线路的走向,包括线路的起点和终点。
一般情况下,信号线和电源线应该尽量平行且相距较远,以减少互相的干扰。
同时,还需要避免信号线和电源线与其他线路交叉,特别是高速信号线和高功率电源线。
2.抗干扰:为了减少外界干扰对信号的影响,应将高灵敏度的信号线(如模拟信号线)远离干扰源。
此外,应尽量避免信号线和地线、电源线相交,例如,在走线时应避免模拟信号线与数字信号线、模拟信号线与功率线交叉。
3.信号线长度一致性:对于同一组信号,为了保持信号的同步性和时序的准确性,应尽量保持信号线的长度一致。
4.地线规划:地线是PCB布线中至关重要的一部分。
地线的分布应均匀,并尽量避免出现地线环,以减少地线的电感和电阻。
同时,也要避免地线和时序信号线、高速信号线相交。
5.功率线路布线:功率线路通常比较宽厚,因为它需要承载较大的电流。
在布线时,应尽量减少功率线的长度,以降低电流的感应电压降。
6.执行MI规则:MI规则是一种常用的PCB布线规则,它主要包括保持布线的连续性、保持布线的一致性、减少布线上的开关次数、尽量避免交叉布线等。
7.分层布线:对于复杂的电路板,可以采用分层布线的方式,将信号线、电源线和地线分别布在不同的层上,以减少干扰和交叉。
8.良好的接地:接地是保证电路工作的稳定性的关键。
在布线过程中,需要确保接地的连续性和稳定性,尽量减少接地回路的面积。
9.适当的引脚规划:对于大规模集成电路或者高频电路,需要合理规划引脚的连接方式,使信号线的长度最短、走向最直接。
10.使用正交布线:正交布线是指将信号线以垂直或者水平的方式进行布线,可以有效地避免信号线之间的干扰。
总之,良好的PCB布线应该考虑信号和电源线路的走向、抗干扰能力、信号线长度一致性、地线规划、功率线路布线、遵循MI规则、分层布线、良好的接地、适当的引脚规划和正交布线。
这些基本原则能够在布线过程中提供指导,保证电路的性能和可靠性。
PCB布线原则
pcb的地线,电源线,信号线2015-08-13一、布线的总原则:(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
(2)以每个功能电路的核心元件为中心,围绕它来进行布局。
元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接。
(3)在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件平行排列。
这样,不但美观。
而且装焊容易,易于批量生产。
(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。
电路板的最佳形状为矩形。
长宽比为3:2成4:3.电路板面尺寸大于200X 150mm时。
应考虑电路板所受的机械强度。
(5)电源线与地线(或者中性线)要按照井”字形布线。
二、导线宽度与间距的选择与确定:根据印制电路板电流的大小,尽量加粗电源线宽度,减少环路电阻。
印制导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。
当铜箔厚度为0.05mm,宽度为1〜1.5mm时。
通过2A的电流,温度不会高于3 C ,导线宽度为1.5mm可满足要求。
对于集成电路,尤其是数字电路,通常选0.02〜0.3mm 导线宽度。
当然,只要允许,还是尽可能用宽线•尤其是电源线和地线。
导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。
对于集成电路,尤其是数字电路,只要工艺允许,导线可使间距小至5~8mm。
线宽太小,则印刷导线电阻大,线上的电压降也就大,影响电路的性能,线宽太宽则布线密度不高,板面积增加,除了增加成本外,也不利于小型化• 地线,电源线,信号线之间的关系:地线〉电源线>信号线,通常信号线宽为:0.2〜0.3mm,最细宽度可达0.05 〜0.07mm,电源线为1.2 〜2.5 mm 。
但是对大电流的话,如果电流负荷以20A/ 平方毫米计算,当覆铜箔厚度为0.5MM 时,(一般为这么多,)则1MM(约40MIL)线宽的电流负荷为1代因此,线宽取1-- 2.54MM(40 --100MIL)能满足一般的应用要求,大功率设备板上的地线和电源,根据功率大小,可适当增加线宽,而在小功率的数字电路上,为了提高布线密度,最小线宽取0.254--1.27MM(10 --15MIL)就能满足• 同一电路板中,电源线.地线比信号线粗.按上面所说的计算,可以算出20A 的电流要20MM 这是由于当电流密度确定后,线路的截面积必须与通过的电流成正比。
pcb板布线原则
pcb板布线原则PCB板布线原则是电子电路设计中非常重要的一部分。
在布线过程中,我们需要考虑不同信号线之间的干扰、信号传输的效率以及板子尺寸等因素。
以下是一些常用的PCB板布线原则。
1. 布线必须符合电路设计的要求在布线之前,需要认真研究电路图纸,掌握各种电路元件的特性及其连接方式,明确各节点之间的关系。
尤其是注重信号的传输与噪声的滤除问题,保证每一个信号路径都是尽可能短且电阻、电容、电感匹配合适。
2. 信源至功率放大器之间布线要短由信号源到功率放大器的布线应该尽可能短,这是因为在长电路中,电阻、电感、电容会对信号产生衰减,导致信号质量的降低。
3. 保持信号线和电源线分离信号和电源是两个不同的电路,它们之间应该进行分离。
这是为了避免电源对信号线产生干扰,确保信号传输的稳定性和可靠性。
4. 信号之间需要保持一定的距离在布线过程中,信号线之间需要保持一定的距离,避免不同信号线之间的互相干扰。
不同信号线之间的干扰是电磁干扰的一种。
为了克服这种现象,可以适当地增加信号线之间的距离。
5. 大电流与小信号线要分开布线大电流线和小信号线应该分开布线。
当大电流线与小信号线重叠在一起时,会产生磁场干扰,造成信号失真。
6. 在布线过程中留出足够的空间在布线过程中,需要留出足够的空间,以保证线路间的间隔充分,从而避免可能的干扰。
同时,考虑到PCB的尺寸限制,需要尽可能地利用板子的空间,以提高电路的密度。
7. 接地线的设计要合理在布线设计中,接地线是非常关键的一部分。
接地线的设计应该合理,使接地电压尽可能低,并能很好地保护电路免受噪声、干扰等恶劣环境的影响。
8. PCB板设计中对温度和湿度的考虑在PCB板的设计过程中,需要考虑到环境因素的影响。
例如,当环境温度较高时,需要保证较高的温度下电路工作的可靠性和稳定性。
PCB板布局原则布线技巧
PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。
比如,将稳压电路、放大电路、数字电路等放在不同的区域内。
-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。
因此,尽量把线路缩短,减少线路长度。
-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。
因此,尽量避免线路的交叉,使布局更加清晰。
-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。
-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。
2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。
-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。
-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。
-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。
-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。
总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。
通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。
PCB的布线原则介绍
PCB的布线原则介绍PCB(Printed Circuit Board)布线是在电子产品的设计和制造过程中非常重要的一步,它涉及到电路连接的实现和优化,对电气性能和可靠性有着直接影响。
下面将介绍一些PCB布线的原则和技巧。
1.分层布线原则:为了减少信号串扰和提高布线效果,通常使用多层PCB来进行布线。
不同信号层之间约束通过信号引线进行连接。
2.信号流布线原则:PCB布线应遵循信号流动路径的原则,尽量在布线中使用直线、平行和垂直线路,避免使用弯曲和串扰风险较大的线路。
3.引脚位置原则:为了便于布线和减少信号串扰风险,应该将高速信号的输入和输出引脚安排在同一侧或者上下相邻的地方。
4.良好的地平面原则:地平面是整个PCB布线设计中非常重要的一部分,要做到尽量连续、稳定和低阻抗。
良好的地平面可以减少信号回流路径长度,提高信号质量和抗干扰能力。
5.模拟数字分区原则:为了减少模拟信号和数字信号之间的干扰,布线时应该将它们分开布线,模拟信号通常靠近输入/输出接口,数字信号靠近芯片和处理器。
6.信号引线长度控制原则:为了提高信号的稳定性和可靠性,应尽量控制信号引线的长度,避免过长而引起信号失真或者串扰。
7.信号引线宽度控制原则:为了适应高速信号的要求,应尽量增加信号引线的宽度,减小电流密度,提高信号的传输速率。
8.信号层间距控制原则:为了减少层间串扰风险,应根据信号分布和技术需求,适当调整信号层的间距,通常越窄越好,但过窄会增加制造难度。
9.电源与分布原则:为了减少电源干扰,应设计分布式电源和地平面。
并且将电源线和信号线分开布线,以减少干扰。
10.阻抗匹配原则:为了保证传输线和匹配网络的工作效果,应根据设计要求和信号特征,选择合适的阻抗值。
11.元器件布局原则:元器件布局的合理性会直接影响到整个PCB布线的效果,因此在布局时应考虑信号传输要求、热问题、电源分布等因素。
12.电磁兼容原则:为了减少电磁辐射和电磁接收的干扰,应设计良好的屏蔽和周边环境,并尽量使用低辐射的元器件。
PCB设计规范
PCB设计规范一.PCB 设计的布局规范(一)布局设计原则1. 组件距离板边应大于5mm。
2. 先放置与结构关系密切的组件,如接插件、开关、电源插座等。
3. 优先摆放电路功能块的核心组件及体积较大的元器件,再以核心组件为中心摆放周围电路元器件。
4. 功率大的组件摆放在利于散热的位置上,如采用风扇散热,放在空气的主流通道上;若采用传导散热,应放在靠近机箱导槽的位置。
5. 质量较大的元器件应避免放在板的中心,应靠近板在机箱中的固定边放置。
6. 有高频连线的组件尽可能靠近,以减少高频信号的分布参数和电磁干扰。
7. 输入、输出组件尽量远离。
8. 带高电压的元器件应尽量放在调试时手不易触及的地方。
9. 手焊元件的布局要充分考虑其可焊性,以及焊接时对周围器件的影响。
手焊元件与其他元件距离应大于1.5mm.10. 热敏组件应远离发热组件。
对于自身温升高于30℃的热源,一般要求:a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于2.5mm;b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于4.0mm。
若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在额定范围内。
11. 可调组件的布局应便于调节。
如跳线、可变电容、电位器等。
12. 考虑信号流向,合理安排布局,使信号流向尽可能保持一致。
13. 布局应均匀、整齐、紧凑。
14. 表贴组件布局时应注意焊盘方向尽量取一致,以利于装焊。
15. 去耦电容应在电源输入端就近放置。
16. 可调换组件(如: 压敏电阻,保险管等) ,应放置在明显易见处17. 是否有防呆设计(如:变压器的不对称脚,及Connect)。
18. 插拔类的组件应考虑其可插拔性。
影响装配,或装配时容易碰到的组件尽量卧倒。
(二)对布局设计的工艺要求1. 外形尺寸从生产角度考虑,理想的尺寸范围是“宽(200 mm~250 mm)×长(250 mm ~350 mm)”。
pcb板布线的基本规则
pcb板布线的基本规则PCB板布线是电子设备设计中非常重要的一环,它的质量直接影响着整个电路的性能和稳定性。
为了确保布线的质量,以下是PCB板布线的一些基本规则。
一、信号线和电源线的分离在PCB板布线时,应将信号线和电源线分开布置。
这样可以避免信号线受到电源线的干扰,保证信号的传输质量。
一般情况下,信号线和电源线应分布在不同的层面,或采用不同的走线方式。
二、信号线和地线的配对布线信号线与地线之间的配对布线可以有效减小信号的串扰和电磁干扰。
在PCB板上,应尽量将信号线与地线紧密相邻,并保持平行走向,以减小信号线的回路面积和电磁辐射。
同时,还应尽量减少信号线与地线之间的交叉,避免形成环路。
三、差分信号线的布线对于差分信号线,应采用平衡布线的方式。
即将正负两个信号线以相同的长度和走线路径布置在板上,以减小信号的传输时间差和共模噪声。
此外,还应尽量减少差分信号线与其他信号线的交叉,以避免干扰。
四、高速信号线的布线对于高速信号线,应采用短、直、宽的布线方式。
短信号线可以减小信号的传输时间,直信号线可以减小信号的传输延迟,宽信号线可以增加信号的传输带宽。
此外,还应尽量减少高速信号线与其他信号线的交叉,避免干扰。
五、规避过孔和过桥在PCB板布线时,应尽量避免过孔和过桥的情况。
过孔会引起信号的串扰和电磁辐射,过桥会增加信号的传输路径和延迟。
因此,应合理规划布线路径,避免过孔和过桥的出现。
六、规避射频干扰射频信号对布线的要求非常高,容易受到干扰。
在PCB板布线时,应尽量避免射频信号线与其他信号线的交叉,减小射频信号的回路面积和电磁辐射。
同时,还应采用屏蔽罩等措施来减小射频信号的干扰。
七、保持布线的对称性在PCB板布线时,应尽量保持布线的对称性。
对称布线可以减小信号的传输差异和串扰,提高信号的稳定性和抗干扰能力。
同时,对称布线还可以减小板上的电磁辐射,提高整个电路的抗干扰能力。
总结起来,PCB板布线的基本规则包括信号线和电源线的分离、信号线和地线的配对布线、差分信号线的布线、高速信号线的布线、规避过孔和过桥、规避射频干扰、保持布线的对称性等。
PCB板布局原则布线技巧
PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。
2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。
3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。
4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。
5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。
二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。
2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。
3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。
对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。
4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。
对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。
5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。
同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。
6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。
7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。
三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。
2.尽量减小信号线的面积,减少对周围信号的干扰。
3.尽量采用四方对称布线,减少线路不平衡引起的干扰。
4.尽量降低线路阻抗,提高信号的传输质量。
详细的PCB布线基本原则
详细的PCB布线基本原则PCB(Printed Circuit Board)布线是电子设备中不可或缺的一环,其目的是将电子元器件之间的电路连接起来,并确保信号传输的可靠性和稳定性。
正确的布线可以提高电路的工作性能,同时降低由于电磁干扰和信号串扰而产生的问题。
以下是PCB布线的一些基本原则。
1.分隔高频和低频信号:将高频和低频信号的路径分隔开,以防止互相干扰。
高频信号的路径应该尽可能短,并避免穿越大地平面或其他高频信号路径。
低频信号的路径可以较长,但要避免与高频信号路径平行。
2.按照信号传输方向布线:信号的传输方向应该在布线时考虑到。
例如,时钟信号的传输通常是单向的,因此应该将时钟信号源与接收器位置相对接近,并减少信号路径中的转弯。
3.避免信号与电源路径的交叉:信号路径和电源路径的交叉会引起信号串扰和电磁干扰。
为了避免这种问题,应将信号和电源路径分开,并相互保持一定的距离。
4.最短路径原则:信号传输的路径应尽量保持短。
较长的路径会增加信号的传输延迟和失真的概率。
当需要穿越其他信号路径或电源路径时,应该选择避开或找到合适的桥接方法。
5.地线参考面:地线是电路中非常重要的一部分,它提供信号的参考电位。
在布线时,应尽可能保持地线平面的连续性,并避免信号和电源线干扰地线。
地线参考面可以是整个PCB板上的铜层,或者是单独的地线平面。
6.电源线宽度和容量:电源线应根据所需的电流容量和耦合噪声的要求来设计。
较宽的电源线可以减小线路的电阻和电压降,从而提供更稳定的电源。
同时,在布线时应避免电源线与信号线的交叉和平行。
7.信号层和电源层的分离:为了减小信号的串扰和电磁干扰,可以将信号层和电源层分离。
通过使用电源和地层之间的晶体管来隔离不同信号之间的互相干扰,以及信号层和电源层之间的电磁干扰。
8.差分信号布线:对于差分信号,可以采用相邻信号线进行正负极性的布线。
通过将正负信号线紧密地靠近并平行布线,可以最大限度地减小串扰和噪声的影响。
PCB板布局布线基本规则
PCB板布局布线基本规则一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件;3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4.元器件的外侧距板边的距离为5mm;5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9.其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB布局布线的一些规则
PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
PCB布线时遵循的一些基本原则
PCB布线时遵循的一些基本原则连线要精简,尽可能短,尽量少拐弯,力求走线简单明了(特殊要求除外,如阻抗匹配和时序要求).过长的走线会改变传输线的阻抗特性,使信号的上升时间变长,从而抑制信号的最高传输频率.避免尖角走线和直角走线,宜45°走线和圆弧走线.1.增加走线的寄生电容,影响信号的完整性 2.阻抗不连续造成信号的反射 3.直角尖端易产生EMI效应走线尽可能少换层,少打过孔(via).1.via造成阻抗不连续2.产生寄生电容和寄生电感,影响信号完整性 3.不同的参考层影响信号回流信号间的距离(S)尽可能增大,相邻信号层的走线宜互相垂直/0斜交/弯曲走线,避免相互平行.减少串扰和耦合造成的信号干扰.电源线和地线的宽度尽可能宽(通常为W20).元器件换层引线和电容的引线尽可能缩短.优化布线.PCB布线的常见形式单根走线(single trace)菊花链(Daisy Chain)走线:从驱动端开始,依次到达各接收端星形(Star)走线:通常所说的“T”点拓扑形式布线蛇形走线:通常所说的饶线,主要目的是为了调节延时,时序匹配S≧3H(S:走线平行部分的间距H:信号与参考平面的间距)差分走线(differential pair)驱动端发送两个等值反相的信号,接受端通过比较这两个电压的差值来判断逻辑状态“0”或“1”,承载差分信号的那对走线称为差分走线与传统单根走线相比的优势抗干扰能力强抑制EMI非常有效时序定位精确各种角色介绍Logic : 原理图设计, 负责具体的FUNCTION 设计, 也是比较掌握全局的人, 相当于小的EPM, 有些事情可以请Logic的人出面协调.如用料方面, 换Solution 等SI: 负责板内高速线的阻抗, 如线宽, 线距,线长, 拓扑结构, 跨层, 如果绕线等问题须与SI 沟通.MCAD: 负责机构设计, ECAD 如果在空间上遇到和机构有冲突的, 首先和机构协商改动方案,如机构不肯退让的请EPM 出面协调.Thermal: 负责系统散热, 板内温控设计等工作(Thermal sensor 零件是由散热工程师决定它靠近那些相关零件放置,他们跟电子工程师和机构工程师沟通后,在电路图上和机构图上表示出来,有时候可能只是在电路图上标示出来,靠近什么元件放。
PCB板布局布线的基本规则详解
PCB板布局布线的基本规则详解
PCB又被称为印刷电路板(PrintedCircuitBoard),它可以实现电子元器件间的线路连接和功能实现,也是电源电路设计中重要的组成部分。
今天就将以本文来介绍PCB板布局布线的基本规则。
一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;
2.定位孔、标准孔等非安装孔周围 1.27mm内不得贴装元、器件,螺钉等安装孔周围
3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;
3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;
4.元器件的外侧距板边的距离为5mm;
5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;
6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;
7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;
8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;
9.其它元器件的布置:
所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;
10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);。
PCB电路板布局布线基本原则
PCB电路板布局布线基本原则1.电源分配:电源的布局是电路布局的首要考虑因素。
电源线应该尽量短,粗,走直线,避免与其他信号线相交,以减少干扰和电源噪声。
2.信号与地平面的分离:为了防止信号间的串扰和杂散电磁辐射,应尽量隔离模拟信号和数字信号以及高频信号和低频信号。
同时,需要设置大面积的地平面,以提供良好的地连接,降低噪声。
3.分区规划:将电路板划分为不同的模块或功能区,根据信号层次、噪声敏感度和功率特性来确定布局,各个区域之间应平衡布局,避免相互干扰。
4.元件布局:元件之间的布局应考虑信号的流向、施加特性和相互关系。
一般来说,从输入到输出的信号流向应是逐渐增强的。
另外,重要的元件和模块应放在离输入和输出较近的位置,以便于调试和维护。
5.确定关键信号线:在布局和布线中,关键信号线,如时钟信号、高速差分信号等,需要特别关注。
这些信号线需要尽量走最短的路径,减少路径中的阻抗变化和反射,同时需要与其他信号线保持最小的距离,以减少串扰。
6.信号层次:不同的信号层次应通过合理的布局和布线来满足设计要求。
高频信号需要使用内层铜箔进行引导,而尽量与数字信号、低频信号和电源线分开。
对于高频信号,尽量使用短而宽的线路,并使用适当的层间连接技术来减小阻抗。
7.传导和辐射:在布局和布线中需要考虑到传导和辐射两个方面的干扰。
传导干扰可以通过合理的布局和接地设计来减少,而辐射干扰则需要通过电路板的屏蔽和接地设计来避免。
8.压降和散热:在布线中需要注意电流路径的压降问题,尽量使用宽而短的线路来减小电阻和电压降。
同时,需要合理设计散热结构,确保电路板的温度在可接受范围内。
综上所述,PCB电路板布局和布线的基本原则主要包括电源分配、信号与地平面的分离、分区规划、元件布局、关键信号线的处理、信号层次设计、传导和辐射的控制、压降和散热的考虑等。
这些原则可以帮助设计师设计出性能优良、可靠稳定的PCB电路板。
PCB布线基本原则
PCB 布线规则3推荐1. 一般规则1.1 PCB板上预划分数字、模拟、DAA信号布线区域。
1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3 高速数字信号走线尽量短。
1.4 敏感模拟信号走线尽量短。
1.5 合理分配电源和地。
1.6 DGND、AGND、实地分开。
1.7 电源及临界信号走线使用宽线。
1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2. 元器件放置2.1 在系统电路原理图中:a) 划分数字、模拟、DAA电路及其相关电路;b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;c) 注意各IC芯片电源和信号引脚的定位。
2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3 初步划分完毕後,从Connector和Jack开始放置元器件:a) Connector和Jack周围留出插件的位置;b) 元器件周围留出电源和地走线的空间;c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;b) 将元器件放置在数字和模拟信号布线区域的交界处。
2.5 放置所有的模拟器件:a) 放置模拟电路元器件,包括DAA电路;b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;d) 对於串行DTE模块,DTE EIA/TIA-232-E系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如阻流圈和电容等。
pcb布局布线技巧及原则(全面)
pcb布局布线技巧及原则[ 2020-11-16 0:19:00 | By: lanzeex ]PCB 布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8 mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB布线的基本规则与技巧
PCB布线的基本规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一环,它涉及到电路设计的优化、信号传输的质量以及电路板的可靠性等方面。
以下是一些PCB布线的基本规则与技巧。
1.分隔高频与低频信号:在布线过程中,应将高频和低频信号分隔开来,以减少相互干扰。
可以通过增加地线、使用地层或远离干扰源等方式实现。
2.避免信号线与电源线、地线交叉:信号线与电源线、地线交叉会引起互相干扰,影响信号的传输质量。
在布线时应尽量避免信号线与其他线路的交叉,并采取合适的措施进行隔离。
3.保持信号线的相互垂直:信号线之间保持垂直可以减少信号之间的干扰。
在布线时,应尽量使信号线垂直地通过其他信号线或电源线、地线。
4.尽量缩短信号线的长度:信号线的长度会对信号传输的延迟和损耗产生影响,因此在布线时应尽量缩短信号线的长度。
对于高频信号尤为重要。
5.使用平面与过孔进行地线连接:地线是电路板中非常重要的一条线路,它可以提供整个电路的参考电平。
在布线时,可以通过使用平面层与过孔来进行地线的连接,提高地线的连续性。
6.使用平面与过孔进行电源线连接:电源线的布线也是非常重要的,尤其是对于供电要求较高的芯片或模块。
在布线时,可以通过使用平面层与过孔来进行电源线的连接,减少电源线的阻抗。
7.控制线宽和线距:PCB布线中的线宽和线距对电路的阻抗、信号的传输速度以及电流的承载能力等都是有影响的。
在布线时要根据需要选择合适的线宽和线距,保证电路的性能。
8.避免信号环路:信号环路会引起信号的反馈和干扰,影响电路的正常工作。
在布线时应尽量避免信号环路的产生,可以采取断开一部分连接或改变布线路径等方式来解决。
9.保持信号对称性:对于差分信号线或时钟信号线,应保持信号的对称性。
在布线时应尽量使信号线的路径相同,长度相等,以减少差分信号之间的干扰。
10.考虑EMI(Electromagnetic Interference,电磁干扰):在布线过程中应考虑到电磁干扰的问题,采取一些措施来减少电磁辐射和干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB布线的基本原则
一位同事负责布的一块步进电机驱动板,性能指标老是达不到文档提到的性能,虽然能用,大电流丢步,高速上不去,波形差,在深入分析之后发现违背了一些PCB布线的基本原则,修改之后性能就非常好,这让我再一次的感受到PCB布线的重要性,尤其是我们经常做大功率电源、传感器这类对PCB布线要求极为严格的。
前几天在MSOS群中,网友“嗡嗡”提出PCB布线问题,我有感于之前步进电机布线引起的问题,把这个PCB布线用常识来理解,通俗易懂、避开电路回路、电磁场传输线等高深复杂,越讲越讲不清的东西,从根本上让大家明白怎么回事,不被一些专业术语约束,获得群内网友的认同。
PCB布线,就是铺设通电信号的道路连接各个器件,这好比修道路,连接各个城市通汽车,完全一回事。
道路建设要求一去一回两条线,PCB布线同样道理,需要形成一个两条线的回路,对于低频电路角度上讲,是回路,对于高速电磁场来讲,是传输线,最常见的如差分信号线。
比如USB、网线等。
对于传输线的阻抗特性等,本文不做进一步讲解。
可以说,差分信号线,是连接器件信号的理想模型。
对信号要求越高的,越要靠近差分信号线。
当一块板子器件非常多,若都按差分线布,一是PCB的面积太大,二是要布2N条线,工作量太大,难度也很大,于是人们针对实际需求提出了多层PCB的概念,最典型的就是双面PCB板。
把底部一层作为公共的参考回路,这样布线只需要布N+1根即可,PCB版面也大大缩小。
公共参考回路,也就是大家常说的参考地,针对大部分嵌入式行业来说,信号因为数字化后对信号质量要求不是很高,这样采用整层的参考地,可以缩小板面,又提高效率,大大节约了时间,深受大家喜欢。
实际上缩小板面就是缩短信号线长度,也可以部分抵消因为参考地引起的信号质量下降问题,所以在实际中,这种引入参考地的PCB布线效果,基本接近差分线理想模型。
到了今天,我们都习惯于这种方式,似乎PCB布线,就是要有一层参考地,没有为什么。
在双面板设计中,因为经常有交叉线存在,需要跳线到地层做交叉线交换,这个需要特别指出的是,这个跳线不能太长,若太长,容易分割参考地,尤其是对于一些信号质量要求高的线,底部的参考地不能被分割,。
否则信号的回路被完全破坏,参考地失去了意义。
所以一般的讲,参考地层只适合做信号线的短跳线用,信号线尽量布顶层,或者引入更多层的PCB板。
路与路之间靠的太近容易出现影响,比如坐高铁的时候,感觉的到对面开来火车对自己所坐火车的影响。
信号线也一样,不能靠的太近,若信号线与信号线之间是平行的,一定要保持一定的距离,这个以实验为准,并且底部要有很好的参考地。
低频小信号下,一般影响不是很大,高频强信号是需要注意的。
对于高频、大电流方面的PCB布线,比如开关电源等,最忌讳的就是驱动信号被输出强电流、强电压干扰。
MOS管的驱动信号,很容易受输出强电流的影响,两者要保持一定的距离,不要靠的太近。
模拟音响时代,运放放大倍数过高,就会出现自激效应,原因同MOS 管一样。
PCB布线的载体是PCB板,一般参考地跟PCB板边离1mm附近,信号线离参考地边缘1mm 附近,这样把信号都约束在PCB板内,可以降低EMC辐射。
当对PCB设计还没有概念的,就多想想我们日常的道路,两者完全一致。