pcb布局布线基本原则
pcb布线规则及技巧
![pcb布线规则及技巧](https://img.taocdn.com/s3/m/65b67606ff4733687e21af45b307e87101f6f8a2.png)
使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。
pcb走线的基本原则
![pcb走线的基本原则](https://img.taocdn.com/s3/m/e5474238a36925c52cc58bd63186bceb18e8ed6f.png)
pcb走线的基本原则:
1.信号线与其回来的线构成环路面积尽可能小,即环路面积尽可能小以减小电磁干扰。
2.布线长度应尽可能短,以减小信号的延迟和噪声。
振荡器应放在离器件很近的位置。
3.不允许出现一端悬空的布线,以防止信号在不同层间形成闭环。
4.防止时钟信号线在地层内形成闭环。
尽可能在时钟线的两侧包地线,条件不允许,
也应该使时钟线和地线紧邻走线。
5.PCB走线应尽量避免直角和锐角,以减小信号的反射和辐射。
6.为减少线间串扰,应保证线中心间距不少于三倍线宽。
7.在高频数字电路中,走线应细一些、短一些好。
大电流信号、高电压信号与小信号
之间应该注意隔离。
两面板布线时,两面的导线宜相互垂直、斜交、或弯曲走线,避免相互平行,以减小寄生耦合。
8.高频信号线应尽可能走线的长度与宽度适中的直线,需要时应放置必要的导孔或过
孔来调整传输路径,以减小信号的延迟与失真。
9.在多层板中,对延迟要求高的信号线,应放在靠近顶层的内层,并避免与其他信号
线长距离平行布线或放置通孔。
10.在满足电气性能的前提下,模拟电路的电源线和地线应尽可能宽,以减小电阻和电
感,从而避免噪声干扰。
11.在多层板中,对电源和地的引脚应尽可能接近对应的连接孔,以减小连接阻抗和电
感。
12.尽量使用45°的折线而不是90°的折线来减小信号的反射。
13.在使用4层板时,对IC的去耦电容的布线需要充分考虑。
它要放在尽可能靠近IC
的电源和地引脚处,同时要确保过孔的数量最少。
PCB布线的基本原则
![PCB布线的基本原则](https://img.taocdn.com/s3/m/49429096c0c708a1284ac850ad02de80d4d80637.png)
PCB布线的基本原则1.确定信号和电源线路的走向:首先需要确定各个信号和电源线路的走向,包括线路的起点和终点。
一般情况下,信号线和电源线应该尽量平行且相距较远,以减少互相的干扰。
同时,还需要避免信号线和电源线与其他线路交叉,特别是高速信号线和高功率电源线。
2.抗干扰:为了减少外界干扰对信号的影响,应将高灵敏度的信号线(如模拟信号线)远离干扰源。
此外,应尽量避免信号线和地线、电源线相交,例如,在走线时应避免模拟信号线与数字信号线、模拟信号线与功率线交叉。
3.信号线长度一致性:对于同一组信号,为了保持信号的同步性和时序的准确性,应尽量保持信号线的长度一致。
4.地线规划:地线是PCB布线中至关重要的一部分。
地线的分布应均匀,并尽量避免出现地线环,以减少地线的电感和电阻。
同时,也要避免地线和时序信号线、高速信号线相交。
5.功率线路布线:功率线路通常比较宽厚,因为它需要承载较大的电流。
在布线时,应尽量减少功率线的长度,以降低电流的感应电压降。
6.执行MI规则:MI规则是一种常用的PCB布线规则,它主要包括保持布线的连续性、保持布线的一致性、减少布线上的开关次数、尽量避免交叉布线等。
7.分层布线:对于复杂的电路板,可以采用分层布线的方式,将信号线、电源线和地线分别布在不同的层上,以减少干扰和交叉。
8.良好的接地:接地是保证电路工作的稳定性的关键。
在布线过程中,需要确保接地的连续性和稳定性,尽量减少接地回路的面积。
9.适当的引脚规划:对于大规模集成电路或者高频电路,需要合理规划引脚的连接方式,使信号线的长度最短、走向最直接。
10.使用正交布线:正交布线是指将信号线以垂直或者水平的方式进行布线,可以有效地避免信号线之间的干扰。
总之,良好的PCB布线应该考虑信号和电源线路的走向、抗干扰能力、信号线长度一致性、地线规划、功率线路布线、遵循MI规则、分层布线、良好的接地、适当的引脚规划和正交布线。
这些基本原则能够在布线过程中提供指导,保证电路的性能和可靠性。
PCB板布局布线基本规则
![PCB板布局布线基本规则](https://img.taocdn.com/s3/m/70d8c509e55c3b3567ec102de2bd960590c6d9aa.png)
PCB板布局布线基本规则PCB(Printed Circuit Board)板布局布线是电路设计中的关键步骤之一,正确合理的布局布线可以保证电路的性能与稳定性。
下面将介绍一些PCB板布局布线的基本规则。
1.分离高频与低频信号:将高频与低频信号进行分离布局,以减少干扰。
高频信号线与低频信号线应尽可能平行布线,减少交叉。
2.分离模拟与数字信号:模拟与数字信号互相干扰的可能性较大,应将二者分离布局。
同时,在两者的接口处应预留地线屏蔽来降低非线性失真。
3.分层布局:将电路分布在不同的层次上,以减少干扰。
一般将模拟信号和数字信号分布在不同的层次上,并通过地平面、电源平面等层次进行电磁屏蔽。
4.自上而下布局:从信号源开始,自上而下分布。
这样可以减少信号线的长度,降低信号线的阻抗。
在布局时应尽量控制信号线的长度,避免过长导致信号衰减。
5.电源布局:电源是整个电路的基础,应尽可能靠近电源输入端布局,减少电源线路长度,降低电源线的阻抗。
同时,电源线应与信号线分离布线,避免互相干扰。
6.地线布局:地线在板布局中同样非常重要。
应尽量缩短地线的长度,减低地线的阻抗,并合理布局地线的走向,避免地线回团。
7.路径最佳化:布局时应保证信号路径的最短化,减少信号线的长度,降低信号传输时的延迟和衰减。
8.信号线与分量之间的距离:信号线与分量之间的距离尽可能短,可以减少耦合与串扰。
9.三角规则:同一面板上尽量遵循三角形规则,将相关信号线布局成三角形状,以减少互相干扰。
10.差分线布局:对于高速信号线,采用差分传输可以减少噪声和串扰。
差分信号线应尽可能平行布线,并保持等长。
11.布线层次顺序:布线时应按照信号的重要程度进行布线,先布线主干信号,再布线次要信号。
12.符号规范:在布线过程中应遵循相应的电气规范,使用适当的符号表示不同的信号。
总的来说,PCB板布局布线中的基本规则都是为了减少干扰、降低阻抗、缩短信号路径,保证电路的性能稳定性。
PCB板布局原则布线技巧
![PCB板布局原则布线技巧](https://img.taocdn.com/s3/m/f32a2f684a73f242336c1eb91a37f111f1850dc6.png)
PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。
比如,将稳压电路、放大电路、数字电路等放在不同的区域内。
-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。
因此,尽量把线路缩短,减少线路长度。
-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。
因此,尽量避免线路的交叉,使布局更加清晰。
-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。
-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。
2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。
-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。
-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。
-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。
-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。
总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。
通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。
PCB的布线原则介绍
![PCB的布线原则介绍](https://img.taocdn.com/s3/m/f645b50632687e21af45b307e87101f69e31fb1a.png)
PCB的布线原则介绍PCB(Printed Circuit Board)布线是在电子产品的设计和制造过程中非常重要的一步,它涉及到电路连接的实现和优化,对电气性能和可靠性有着直接影响。
下面将介绍一些PCB布线的原则和技巧。
1.分层布线原则:为了减少信号串扰和提高布线效果,通常使用多层PCB来进行布线。
不同信号层之间约束通过信号引线进行连接。
2.信号流布线原则:PCB布线应遵循信号流动路径的原则,尽量在布线中使用直线、平行和垂直线路,避免使用弯曲和串扰风险较大的线路。
3.引脚位置原则:为了便于布线和减少信号串扰风险,应该将高速信号的输入和输出引脚安排在同一侧或者上下相邻的地方。
4.良好的地平面原则:地平面是整个PCB布线设计中非常重要的一部分,要做到尽量连续、稳定和低阻抗。
良好的地平面可以减少信号回流路径长度,提高信号质量和抗干扰能力。
5.模拟数字分区原则:为了减少模拟信号和数字信号之间的干扰,布线时应该将它们分开布线,模拟信号通常靠近输入/输出接口,数字信号靠近芯片和处理器。
6.信号引线长度控制原则:为了提高信号的稳定性和可靠性,应尽量控制信号引线的长度,避免过长而引起信号失真或者串扰。
7.信号引线宽度控制原则:为了适应高速信号的要求,应尽量增加信号引线的宽度,减小电流密度,提高信号的传输速率。
8.信号层间距控制原则:为了减少层间串扰风险,应根据信号分布和技术需求,适当调整信号层的间距,通常越窄越好,但过窄会增加制造难度。
9.电源与分布原则:为了减少电源干扰,应设计分布式电源和地平面。
并且将电源线和信号线分开布线,以减少干扰。
10.阻抗匹配原则:为了保证传输线和匹配网络的工作效果,应根据设计要求和信号特征,选择合适的阻抗值。
11.元器件布局原则:元器件布局的合理性会直接影响到整个PCB布线的效果,因此在布局时应考虑信号传输要求、热问题、电源分布等因素。
12.电磁兼容原则:为了减少电磁辐射和电磁接收的干扰,应设计良好的屏蔽和周边环境,并尽量使用低辐射的元器件。
PCB板布局原则布线技巧
![PCB板布局原则布线技巧](https://img.taocdn.com/s3/m/cb8ef7aa18e8b8f67c1cfad6195f312b3169eb1b.png)
PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。
2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。
3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。
4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。
5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。
二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。
2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。
3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。
对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。
4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。
对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。
5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。
同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。
6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。
7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。
三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。
2.尽量减小信号线的面积,减少对周围信号的干扰。
3.尽量采用四方对称布线,减少线路不平衡引起的干扰。
4.尽量降低线路阻抗,提高信号的传输质量。
详细的PCB布线基本原则
![详细的PCB布线基本原则](https://img.taocdn.com/s3/m/1646d5664a35eefdc8d376eeaeaad1f34693118b.png)
详细的PCB布线基本原则PCB(Printed Circuit Board)布线是电子设备中不可或缺的一环,其目的是将电子元器件之间的电路连接起来,并确保信号传输的可靠性和稳定性。
正确的布线可以提高电路的工作性能,同时降低由于电磁干扰和信号串扰而产生的问题。
以下是PCB布线的一些基本原则。
1.分隔高频和低频信号:将高频和低频信号的路径分隔开,以防止互相干扰。
高频信号的路径应该尽可能短,并避免穿越大地平面或其他高频信号路径。
低频信号的路径可以较长,但要避免与高频信号路径平行。
2.按照信号传输方向布线:信号的传输方向应该在布线时考虑到。
例如,时钟信号的传输通常是单向的,因此应该将时钟信号源与接收器位置相对接近,并减少信号路径中的转弯。
3.避免信号与电源路径的交叉:信号路径和电源路径的交叉会引起信号串扰和电磁干扰。
为了避免这种问题,应将信号和电源路径分开,并相互保持一定的距离。
4.最短路径原则:信号传输的路径应尽量保持短。
较长的路径会增加信号的传输延迟和失真的概率。
当需要穿越其他信号路径或电源路径时,应该选择避开或找到合适的桥接方法。
5.地线参考面:地线是电路中非常重要的一部分,它提供信号的参考电位。
在布线时,应尽可能保持地线平面的连续性,并避免信号和电源线干扰地线。
地线参考面可以是整个PCB板上的铜层,或者是单独的地线平面。
6.电源线宽度和容量:电源线应根据所需的电流容量和耦合噪声的要求来设计。
较宽的电源线可以减小线路的电阻和电压降,从而提供更稳定的电源。
同时,在布线时应避免电源线与信号线的交叉和平行。
7.信号层和电源层的分离:为了减小信号的串扰和电磁干扰,可以将信号层和电源层分离。
通过使用电源和地层之间的晶体管来隔离不同信号之间的互相干扰,以及信号层和电源层之间的电磁干扰。
8.差分信号布线:对于差分信号,可以采用相邻信号线进行正负极性的布线。
通过将正负信号线紧密地靠近并平行布线,可以最大限度地减小串扰和噪声的影响。
PCB布局布线基本规则
![PCB布局布线基本规则](https://img.taocdn.com/s3/m/cd906137f56527d3240c844769eae009581ba2ee.png)
PCB布局布线基本规则1.尽量减少电路板的层数。
每增加一层电路板的层数会增加制造成本和设计复杂度,同时也会增加信号传输的延迟。
因此,尽量保持电路简单,减少层数。
2.分离高频和低频信号。
高频信号容易受到干扰,因此应当尽量与低频信号分离。
可以采用不同的层或区域来布置高频和低频信号的元件,或者使用地平面分离高频和低频信号。
3.分割地平面和电源平面。
电路板上应该有专门的地平面和电源平面,以提供良好的电源和地引线。
这样可以减少信号线和引线的长度,降低电磁干扰。
4.保持信号线和供电线的最小间隔。
信号线和供电线之间的间隔越小,电磁干扰就越小。
因此,在布局时要尽量将信号线和供电线保持一定的距离,避免相互干扰。
5.将相互影响的元件放在一起。
相互影响的元件包括开关、驱动器、传感器等。
将它们放在相邻的位置可以减少互相作用产生的干扰。
6.避免产生环形信号线。
环形信号线会产生反射和干扰,影响信号传输稳定性。
因此,布线时应尽量避免产生环形信号线。
7.避免交叉布线。
交叉布线会产生互相干扰,影响信号传输质量。
因此,布线时应尽量避免信号线交叉。
如果无法避免,可以采用信号线层间的穿越或使用防干扰技术。
8.尽量使用直线布线。
直线布线可以减小信号的传输延迟和损耗。
此外,直线布线还可以提高电子产品的散热性能,提高整体性能。
9.保持信号线、供电线和地线的长度一致。
信号线、供电线和地线的长度一致可以减少信号的传输延迟和损耗,提高信号质量。
10.避免布线在电源和地线附近。
电源和地线附近会有较高的电磁干扰和噪声。
因此,布线时应尽量避免信号线在电源和地线附近。
以上是PCB布局布线的一些基本规则,通过遵循这些规则可以提高电路的可靠性和稳定性,减少噪声和电磁干扰,提高电子产品的整体品质。
当然,不同的电路和产品可能有更具体的规格和要求,设计者还需要根据具体情况进行布局和布线。
PCB板基础知识布局原则布线技巧设计规则
![PCB板基础知识布局原则布线技巧设计规则](https://img.taocdn.com/s3/m/de89e1bd900ef12d2af90242a8956bec0975a51e.png)
PCB板基础知识布局原则布线技巧设计规则PCB(Printed Circuit Board)板是电子产品中常用的一种电路元件,它由导线和电子元器件组成。
在进行PCB板的设计时,需要遵循一些基础知识、布局原则、布线技巧和设计规则,以确保电路板的稳定性和可靠性。
一、PCB板基础知识1.PCB板的分类:单面板、双面板、多层板。
2.PCB板的材料:常用的材料有FR-4玻璃纤维布基板和铝基板。
3.PCB板的层次结构:底层、封装层(元器件的焊接)、布线层(导线的布局)。
4.PCB板的元器件封装:常用的有DIP封装、SMD封装和BGA封装。
二、布局原则1.分区布局原则:将整个电路板划分为功能区、电源区和信号区,使各个区域之间的干扰最小。
2.元件布局原则:将功能相似的元器件尽量靠近,减少导线长度,降低电磁干扰。
3.重要性能电路布局原则:将音频、射频等重要性能电路放置在相对比较靠近电源接口的位置,以避免电源和地的干扰。
4.高功率元件布局原则:高功率元件(如继电器、驱动板等)应远离低功率元件,以避免高功率元件的热与电磁干扰对低功率元件产生不利影响。
三、布线技巧1.信号线布线技巧:要尽量避免信号线的交叉,使信号线按照逻辑关系进行布线,减少互相干扰的可能。
2.电源线布线技巧:按照电流大小和电压的需求进行布线,尽量减小电源线的长度和电阻。
3.地线布线技巧:要保证地线的连续性和稳定性,避免形成环路和过长的回流路径。
4.时钟信号布线技巧:时钟信号的布线应尽量短且相等,以避免时钟偏差和信号失真。
5.差分信号布线技巧:差分信号的正负线要尽量靠近,长度要保持一致,以降低互相干扰的可能性。
四、设计规则1.间距规则:不同电压等级之间、信号与电源之间、信号与地之间要有足够的间距以保证安全性和稳定性。
2.导线规则:要根据电流大小和导线的宽度选择合适的线宽,以确保导线的稳定性和通气性。
3.焊盘规则:要根据元器件的引脚数目确定焊盘的大小,以保证焊接的可靠性和稳定性。
PCB板布局布线基本规则
![PCB板布局布线基本规则](https://img.taocdn.com/s3/m/a70990fde009581b6bd9eb63.png)
PCB板布局布线基本规则一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件;3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4.元器件的外侧距板边的距离为5mm;5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9.其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB布局布线的一些规则
![PCB布局布线的一些规则](https://img.taocdn.com/s3/m/31a8309d85254b35eefdc8d376eeaeaad1f316a3.png)
PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
PCB布线时遵循的一些基本原则
![PCB布线时遵循的一些基本原则](https://img.taocdn.com/s3/m/aaeb4318fad6195f312ba624.png)
PCB布线时遵循的一些基本原则连线要精简,尽可能短,尽量少拐弯,力求走线简单明了(特殊要求除外,如阻抗匹配和时序要求).过长的走线会改变传输线的阻抗特性,使信号的上升时间变长,从而抑制信号的最高传输频率.避免尖角走线和直角走线,宜45°走线和圆弧走线.1.增加走线的寄生电容,影响信号的完整性 2.阻抗不连续造成信号的反射 3.直角尖端易产生EMI效应走线尽可能少换层,少打过孔(via).1.via造成阻抗不连续2.产生寄生电容和寄生电感,影响信号完整性 3.不同的参考层影响信号回流信号间的距离(S)尽可能增大,相邻信号层的走线宜互相垂直/0斜交/弯曲走线,避免相互平行.减少串扰和耦合造成的信号干扰.电源线和地线的宽度尽可能宽(通常为W20).元器件换层引线和电容的引线尽可能缩短.优化布线.PCB布线的常见形式单根走线(single trace)菊花链(Daisy Chain)走线:从驱动端开始,依次到达各接收端星形(Star)走线:通常所说的“T”点拓扑形式布线蛇形走线:通常所说的饶线,主要目的是为了调节延时,时序匹配S≧3H(S:走线平行部分的间距H:信号与参考平面的间距)差分走线(differential pair)驱动端发送两个等值反相的信号,接受端通过比较这两个电压的差值来判断逻辑状态“0”或“1”,承载差分信号的那对走线称为差分走线与传统单根走线相比的优势抗干扰能力强抑制EMI非常有效时序定位精确各种角色介绍Logic : 原理图设计, 负责具体的FUNCTION 设计, 也是比较掌握全局的人, 相当于小的EPM, 有些事情可以请Logic的人出面协调.如用料方面, 换Solution 等SI: 负责板内高速线的阻抗, 如线宽, 线距,线长, 拓扑结构, 跨层, 如果绕线等问题须与SI 沟通.MCAD: 负责机构设计, ECAD 如果在空间上遇到和机构有冲突的, 首先和机构协商改动方案,如机构不肯退让的请EPM 出面协调.Thermal: 负责系统散热, 板内温控设计等工作(Thermal sensor 零件是由散热工程师决定它靠近那些相关零件放置,他们跟电子工程师和机构工程师沟通后,在电路图上和机构图上表示出来,有时候可能只是在电路图上标示出来,靠近什么元件放。
pcb布局 布线基本原则
![pcb布局 布线基本原则](https://img.taocdn.com/s3/m/599c50018762caaedd33d499.png)
PCB布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB板布局布线的基本规则详解
![PCB板布局布线的基本规则详解](https://img.taocdn.com/s3/m/82080725ba1aa8114531d902.png)
PCB板布局布线的基本规则详解
PCB又被称为印刷电路板(PrintedCircuitBoard),它可以实现电子元器件间的线路连接和功能实现,也是电源电路设计中重要的组成部分。
今天就将以本文来介绍PCB板布局布线的基本规则。
一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;
2.定位孔、标准孔等非安装孔周围 1.27mm内不得贴装元、器件,螺钉等安装孔周围
3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;
3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;
4.元器件的外侧距板边的距离为5mm;
5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;
6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;
7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;
8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;
9.其它元器件的布置:
所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;
10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);。
PCB电路板布局布线基本原则
![PCB电路板布局布线基本原则](https://img.taocdn.com/s3/m/04a112bbfbb069dc5022aaea998fcc22bdd14341.png)
PCB电路板布局布线基本原则1.电源分配:电源的布局是电路布局的首要考虑因素。
电源线应该尽量短,粗,走直线,避免与其他信号线相交,以减少干扰和电源噪声。
2.信号与地平面的分离:为了防止信号间的串扰和杂散电磁辐射,应尽量隔离模拟信号和数字信号以及高频信号和低频信号。
同时,需要设置大面积的地平面,以提供良好的地连接,降低噪声。
3.分区规划:将电路板划分为不同的模块或功能区,根据信号层次、噪声敏感度和功率特性来确定布局,各个区域之间应平衡布局,避免相互干扰。
4.元件布局:元件之间的布局应考虑信号的流向、施加特性和相互关系。
一般来说,从输入到输出的信号流向应是逐渐增强的。
另外,重要的元件和模块应放在离输入和输出较近的位置,以便于调试和维护。
5.确定关键信号线:在布局和布线中,关键信号线,如时钟信号、高速差分信号等,需要特别关注。
这些信号线需要尽量走最短的路径,减少路径中的阻抗变化和反射,同时需要与其他信号线保持最小的距离,以减少串扰。
6.信号层次:不同的信号层次应通过合理的布局和布线来满足设计要求。
高频信号需要使用内层铜箔进行引导,而尽量与数字信号、低频信号和电源线分开。
对于高频信号,尽量使用短而宽的线路,并使用适当的层间连接技术来减小阻抗。
7.传导和辐射:在布局和布线中需要考虑到传导和辐射两个方面的干扰。
传导干扰可以通过合理的布局和接地设计来减少,而辐射干扰则需要通过电路板的屏蔽和接地设计来避免。
8.压降和散热:在布线中需要注意电流路径的压降问题,尽量使用宽而短的线路来减小电阻和电压降。
同时,需要合理设计散热结构,确保电路板的温度在可接受范围内。
综上所述,PCB电路板布局和布线的基本原则主要包括电源分配、信号与地平面的分离、分区规划、元件布局、关键信号线的处理、信号层次设计、传导和辐射的控制、压降和散热的考虑等。
这些原则可以帮助设计师设计出性能优良、可靠稳定的PCB电路板。
PCB布线基本原则
![PCB布线基本原则](https://img.taocdn.com/s3/m/0086ef18915f804d2b16c170.png)
PCB 布线规则3推荐1. 一般规则1.1 PCB板上预划分数字、模拟、DAA信号布线区域。
1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3 高速数字信号走线尽量短。
1.4 敏感模拟信号走线尽量短。
1.5 合理分配电源和地。
1.6 DGND、AGND、实地分开。
1.7 电源及临界信号走线使用宽线。
1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2. 元器件放置2.1 在系统电路原理图中:a) 划分数字、模拟、DAA电路及其相关电路;b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;c) 注意各IC芯片电源和信号引脚的定位。
2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3 初步划分完毕後,从Connector和Jack开始放置元器件:a) Connector和Jack周围留出插件的位置;b) 元器件周围留出电源和地走线的空间;c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;b) 将元器件放置在数字和模拟信号布线区域的交界处。
2.5 放置所有的模拟器件:a) 放置模拟电路元器件,包括DAA电路;b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;d) 对於串行DTE模块,DTE EIA/TIA-232-E系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如阻流圈和电容等。
Pcb布局规则和技巧
![Pcb布局规则和技巧](https://img.taocdn.com/s3/m/b381eeea250c844769eae009581b6bd97e19bc4f.png)
Pcb布局规则和技巧Pcb布局规章1、在通常状况下,全部的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在低层。
2、在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,在一般状况下不允许元件重叠;元件排列要紧凑,元件在整个版面上应分布匀称、疏密全都。
3、电路板上不同组件相临焊盘图形之间的最小间距应在1MM 以上。
4、离电路板边缘一般不小于2MM.电路板的最佳外形为矩形,长宽比为3:2或4:3.电路板面尺大于200MM乘150MM时,应考虑电路板所能承受的机械强度。
Pcb布局技巧在PCB的布局设计中要分析电路板的单元,依据其功能进行布局设计,对电路的全部元器件进行布局时,要符合以下原则:1、根据电路的流程支配各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持全都的方向。
2、以每个功能单元的核心元器件为中心,围绕他来进行布局。
元器件应匀称、整体、紧凑的排列在PCB上,尽量削减和缩短各元器件之间的引线和连接。
3、在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件并行排列,这样不但美观,而且装旱简单,易于批量生产。
特别元器件的位置在布局时一般要遵守以下原则:1、尽可能缩短高频元器件之间的连接,设法削减他们的分布参数及和相互间的电磁干扰。
易受干扰的元器件不能相互离的太近,输入和输出应尽量远离。
2一些元器件或导线有可能有较高的电位差,应加大他们的距离,以免放电引起意外短路。
高电压的元器件应尽量放在手触及不到的地方。
3、重量超过15G的元器件,可用支架加以固定,然后焊接。
那些又重又热的元器件,不应放到电路板上,应放到主机箱的底版上,且考虑散热问题。
热敏元器件应远离发热元器件。
4、对与电位器、可调电感线圈、可变电容器、微动开关等可调元器件的布局应考虑整块扳子的结构要求,一些常常用到的开关,在结构允许的状况下,应放置到手简单接触到的地方。
pcb布局布线技巧及原则(全面)
![pcb布局布线技巧及原则(全面)](https://img.taocdn.com/s3/m/268d101df524ccbff0218455.png)
pcb布局布线技巧及原则[ 2020-11-16 0:19:00 | By: lanzeex ]PCB 布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8 mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB板布局布线基本规则
![PCB板布局布线基本规则](https://img.taocdn.com/s3/m/f3dd460f52ea551810a687c1.png)
一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
如何提高抗干扰能力和电磁兼容性在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?1、下面的一些系统要特别注意抗电磁干扰:(1) 微控制器时钟频率特别高,总线周期特别快的系统。
(2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。
(3) 含微弱模拟信号电路以及高精度A/D变换电路的系统。
2、为增加系统的抗电磁干扰能力采取如下措施:(1) 选用频率低的微控制器:选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。
同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。
虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。
(2) 减小信号传输中的畸变微控制器主要采用高速CMOS技术制造。
信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。
当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。
信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。
可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。
微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间。
在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间。
也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。
而且过孔数目也应尽量少,最好不多于2个。
当信号的上升时间快于信号延迟时间,就要按照快电子学处理。
此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。
用以下结论归纳印刷线路板设计的一个规则:信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。
(3) 减小信号线间的交*干扰:A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。
信号在AB线上的延迟时间是Td。
在D点,由于A点信号的向前传输,到达B点后的信号反射和AB线的延迟,Td时间以后会感应出一个宽度为Tr的页脉冲信号。
在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时间的两倍,即2Td的正脉冲信号。
这就是信号间的交*干扰。
干扰信号的强度与C点信号的di/at有关,与线间距离有关。
当两信号线不是很长时,AB上看到的实际是两个脉冲的迭加。
CMOS工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv噪声并不影响其工作。
若图中AB线是一模拟信号,这种干扰就变为不能容忍。
如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交*干扰就会变小。
原因是,大面积的地减小了信号线的特性阻抗,信号在D端的反射大为减小。
特性阻抗与信号线到地间的介质的介电常数的平方成反比,与介质厚度的自然对数成正比。
若AB线为一模拟信号,要避免数字电路信号线CD对AB的干扰,AB线下方要有大面积的地,AB线到CD线的距离要大于AB线与地距离的2~3倍。
可用局部屏蔽地,在有引结的一面引线左右两侧布以地线。
(4) 减小来自电源的噪声电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。
电路中微控制器的复位线,中断线,以及其它一些控制线最容易受外界噪声的干扰。
电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。
模拟电路中的模拟信号更经受不住来自电源的干扰。
(5) 注意印刷线板与元器件的高频特性在高频情况下,印刷线路板上的引线,过孔,电阻、电容、接插件的分布电感与电容等不可忽略。
电容的分布电感不可忽略,电感的分布电容不可忽略。
电阻产生对高频信号的反射,引线的分布电容会起作用,当长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发射。
印刷线路板的过孔大约引起0.6pf的电容。
一个集成电路本身的封装材料引入2~6pf电容。
一个线路板上的接插件,有520nH的分布电感。
一个双列直扦的24引脚集成电路扦座,引入4~18nH的分布电感。
这些小的分布参数对于这行较低频率下的微控制器系统中是可以忽略不计的;而对于高速系统必须予以特别注意。
(6) 元件布置要合理分区元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题,原则之一是各部件之间的引线要尽量短。
在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。
G 处理好接地线印刷电路板上,电源线和地线最重要。
克服电磁干扰,最主要的手段就是接地。
对于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。
印刷线路板上,要有多个返回地线,这些都会聚到回电源的那个接点上,就是所谓单点接地。
所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇集到这个接地点上来。
与印刷线路板以外的信号相连时,通常采用屏蔽电缆。
对于高频和数字信号,屏蔽电缆两端都接地。
低频模拟信号用的屏蔽电缆,一端接地为好。
对噪声和干扰非常敏感的电路或高频噪声特别严重的电路应该用金属罩屏蔽起来。
(7) 用好去耦电容。
好的高频去耦电容可以去除高到1GHZ的高频成份。
陶瓷片电容或多层陶瓷电容的高频特性较好。
设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容。
去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。
数字电路中典型的去耦电容为0.1uf的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。
1uf,10uf电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。
在电源进入印刷板的地方和一个1uf或10uf的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。
每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uf。
最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酝电容。
去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uf,对微控制器构成的系统,取0.1~0.01uf之间都可以。
3、降低噪声与电磁干扰的一些经验。
(1) 能用低速芯片就不用高速的,高速芯片用在关键地方。
(2) 可用串一个电阻的办法,降低控制电路上下沿跳变速率。
(3) 尽量为继电器等提供某种形式的阻尼。
(4) 使用满足系统要求的最低频率时钟。
(5) 时钟产生器尽量*近到用该时钟的器件。
石英晶体振荡器外壳要接地。
(6) 用地线将时钟区圈起来,时钟线尽量短。
(7) I/O驱动电路尽量*近印刷板边,让其尽快离开印刷板。
对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射。
(8) MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。
(9) 闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。
(10) 印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合。
(11) 印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。
(12) 单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。
(13) 时钟、总线、片选信号要远离I/O线和接插件。
(14) 模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。
(15) 对A/D类器件,数字部分与模拟部分宁可统一下也不要交*。
(16) 时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。
(17) 元件引脚尽量短,去耦电容引脚尽量短。
(18) 关键的线要尽量粗,并在两边加上保护地。