3动态规划
第3章 动态规划PPT课件
三、备忘录方法
•备忘录方法的控制结构与直接递归方法的控制结构相同,区别
在于备忘录方法为每个解过的子问题建立了备忘录以。
m0
int lookupChain(int i, int j)
{
if (m[i][j] > 0) return m[i][j];
if (i == j) return 0;
用动态规划算法解此问题,可依据其递归式以自底向 上的方式进行计算。在计算过程中,保存已解决的子 问题答案。每个子问题只计算一次,而在后面需要时 只要简单查一下,从而避免大量的重复计算,最终得 到多项式时间的算法
13
用动态规划法求最优解
void matrixChain(int [ ] p, int[][ ] m, int [ ][ ] s)
设有四个矩阵 A,B,C,,它D们的维数分别是:
A5010B1040C4030D305
总共有五中完全加括号的方式
(A((BC)D)) (A(B(CD))) ((AB)(CD)) ((A( B)C)D) ((A(BC))D)
16000, 10500, 36000, 87500, 34500 7
矩阵连乘问题
• 给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的 子序列时,称Z是序列X和Y的公共子序列。
• 给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y 的最长公共子序列。
18
最长公共子序列的结构
设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为 Z={z1,z2,…,zk} ,则 (1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。 (2)若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。 (3)若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。
动态规划.pdf
第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。
即决策过程可划分为明显的阶段。
二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。
广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。
三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。
四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。
•连续型动态决策问题。
2、按决策过程演变的性质分为:•确定型动态决策问题。
•随机型动态决策问题。
五1、阶段(stage)n :作出决策的若干轮次。
n = 1、2、3、4、5。
2、状态(state)S n :每一阶段的出发位置。
构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。
阶段的起点。
3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。
构成决策集,记为D n (S n )。
阶段的终点。
D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。
4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。
如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。
动态规划的基本思想
动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。
这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。
一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。
它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。
动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。
二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。
2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。
3. 设置边界条件:确定最简单的子问题的解,即边界条件。
4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。
5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。
三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。
问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。
根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。
2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。
动态规划的应用举例大全
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。
动态规划的基本原理和基本应用
动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划的实施步骤
动态规划的实施步骤什么是动态规划?动态规划(Dynamic Programming,简称DP)是一种在数学、计算机科学和经济学中使用的算法的优化技术。
动态规划基于分阶段决策的理念,通过将一个大问题划分为一系列的子问题,并按照一定的顺序求解这些子问题,最终达到求解整个问题的目的。
动态规划可以有效地解决多阶段决策问题,避免了重复计算,提高了问题求解的效率。
动态规划的实施步骤动态规划的实施步骤通常可以分为以下几个步骤:1. 定义状态在动态规划中,首先需要定义问题的状态。
状态是指解决问题所需要的关键信息,它可以是一个值、一个数组或一个矩阵等。
状态的选择要满足两个条件:一是要能够用于问题的求解,二是要能够通过已知信息推导出后续状态。
状态的定义往往是问题的关键和难点之一。
2. 确定状态转移方程状态转移方程是动态规划问题的核心,它描述了问题的当前状态与下一个状态之间的关系。
通过定义好状态转移方程,我们可以逐步求解问题的解。
状态转移方程通常有两种形式:递推式和递归式。
递推式是指从已知状态推导出后续状态的公式,递归式是指将问题的求解转化为更小规模的子问题的表达式。
3. 初始化边界条件在求解动态规划问题时,通常需要给定一些初始的边界条件。
这些边界条件是问题求解的起点,通过这些边界条件可以向后递推求解问题的解。
边界条件的选取要根据问题的具体情况进行分析,确保问题能够得到正确的求解。
4. 递推求解在定义好状态、状态转移方程和边界条件后,就可以开始进行动态规划的求解了。
利用状态转移方程,从初始状态出发,逐步更新状态,直到求解出最终的结果。
在递推求解的过程中,通常需要使用一些辅助数据结构,如数组或矩阵,来保存中间结果。
5. 返回最优解在求解动态规划问题时,通常还需要返回最优解。
最优解是指问题的最优解决方案,它是通过求解过程中得到的状态选择得到的。
在求解过程中,可以使用一些辅助数组或矩阵来保存最优解的信息,以便最后返回最优解。
《算法设计与分析》第3章 动态规划法
最优解的递推关系 定义m[i:j],表示矩阵连乘A[i:j]所需的最少计算 量 则有: i j 0 m[i ][ j ] i j minj{m[i ][ k ] m[k 1][ j ] pi 1 pk p j } i k
假设:N个矩阵的维数依序放在一维数组p中, 其中Ai的维数记为Pi-1×Pi
A=A1×A2×A3×…×An
A=(A1×A2×…×Ak) × (Ak+1×Ak+2×…×An)
B
C
1.2 穷举法
穷举法:列举出所有可能的计算次序,并计算出 每一种计算次序相应需要的数乘次数,从中找出 一种数乘次数最少的计算次序。
穷举法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序有P(n)种。 由于每种加括号方式都可以分解为两个子连乘的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
【程序】矩阵连乘的 穷举法实现 int MatrixChain::LookupChain(int i, int j) { if(i==j) return 0; int u=LookupChain(i+1,j)+p[i-1]*p[i]*p[j]; //k=i s[i][j]=i; //记录最优分解位置 for ( int k=i+1;k<j; k++ ) { //遍历k int t=LookupChain(i,k)+LookupChain(k+1,j) +p[i]*p[k+1]*p[j+1]; if (t<u) { u=t; s[i][j]=k; //记录最优分解位置 } } int MatrixChain::LookupChain() return u; { } return LookupChain(1,n);
《动态规划》课件
xx年xx月xx日
• 动态规划概述 • 动态规划的基本概念 • 动态规划的求解方法 • 动态规划的应用实例 • 动态规划的优化技巧 • 动态规划的总结与展望
目录
01
动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法。
特点
动态规划适用于具有重叠子问题和最 优子结构的问题,通过将问题分解为 子问题,可以找到最优解。
动态规划的适用范围
最优化问题
01
动态规划适用于解决最优化问题,如最大/最小化问题、决策问
题等。
子问题重叠
02
动态规划适用于子问题重叠的情况,即子问题之间存在共享状
态或参数。
递归关系
03
动态规划适用于具有递归关系的问题,可以通过递归方式求解
机器调度问题
总结词
动态规划可以应用于机器调度问题,以确定最优的调度方案,满足生产需求并降低成本 。
详细描述
机器调度问题是一个经典的优化问题,涉及到如何分配任务到机器上,以最小化成本或 最大化效率。通过动态规划,可以将机器调度问题分解为一系列子问题,如确定每个任 务的调度顺序、分配机器等,并逐个求解子问题的最优解,最终得到整个调度方案的最
VS
详细描述
记忆化搜索法是一种优化技术,通过存储 已解决的子问题的解,避免重复计算,提 高求解效率。这种方法适用于子问题数量 较少且相互独立的情况。
04
动态规划的应用实例
最短路径问题
总结词
通过动态规划解决最短路径问题,可以找到 从起点到终点的最短路径。
详细描述
在图论中,最短路径问题是一个经典的优化 问题,旨在找到从起点到终点之间的一条路 径,使得路径上的所有边的权重之和最小。 动态规划是一种有效的解决方法,通过将问 题分解为子问题并存储子问题的解,避免了 重复计算,提高了求解效率。
动态规划的基本思想
动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。
它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。
动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。
这种思想在很多实际问题中都能够得到应用。
动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。
2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。
3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。
4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。
5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。
6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。
动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。
在这个过程中,重叠子问题的求解是动态规划的特点之一。
由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。
动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。
通过利用已解决的子问题的最优解,可以有效地解决原问题。
动态规划算法在实际应用中有着广泛的应用。
它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。
动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。
总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。
动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。
动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。
动态规划
5 . 最短路问题:给定一个交通网络图如下,其 中两点之间的数字表示距离(或花费),试求从A点 到G点的最短距离(总费用最小)。
1 C1 3 6 8 3 D1 1 2 2 2 5 E2 2 D2 E1 3
5
A 3
B1
6
8 B2 7 6
C2
5
3
5
F1
3
4
G
C3 8 C4
3
4 D3
3
3 4 E3
6
6
F2
3.航天飞机飞行控制问题:由于航天飞机的运 动的环境是不断变化的,因此就要根据航天飞机飞 行在不同环境中的情况,不断地决定航天飞机的飞 行方向和速度(状态),使之能最省燃料和实现目 的(如软着落问题)。
不包含时间因素的静态决策问题(本质上是一 次决策问题)也可以适当地引入阶段的概念,作为 多阶段的决策问题用动态规划方法来解决。 4.线性规划、非线性规划等静态的规划问题也可 以通过适当地引入阶段的概念,应用动态规划方法 加以解决。
f k sk min d k sk , uk sk f k 1 uk sk u k Dk s k f 6 s6 0或 写 成 5 s5 d 5 s5 , F f
k 5,4,3,2,1
动态规划的基本方程(二)
D4(D1)={E1,E2},D4(D2)= {E1,E2}
D5(E1)={F}, D5(E2)={F}
4 A 5
2 B1 3 5 B2 8 7 7
⑷状态转移方程 上例中的状态转移方程sk+1=uk(sk)
C1 5 8 C2 45 3 C3 4 84 C4
D1 3 5 E1 4 6 D2 2 3 E2 1 3 D3
第6章_动态规划ppt课件
第一章 动态规划的基本方法 §1 动态规划的研究对象
特征:包含有随时同变化的因素和变量,整个 过程可以分为若干个相互联系的阶段,而且每个 阶段都要做出决策。
PPT学习交流
1
应用:
企业管理:动态规划可以用来解决最优路径问题、资源 分配问题、生产调度问题、库存问题、装载问题、排序 问题、设备更新问题、生产过程最优控制问题等等。
xk(sk)Dk(sk)
PPT学习交流
10
PPT学习交流
11
在实际过程中,可供选择的策略有一定的范围,此 范围称为允许策略集合,用P表示,从允许策略集合中 找出达到最优效果的策略称为最优策略。
五、状态转移方程
在多阶段决策过程中,第k阶段到第(k+1)阶段的 演变规律,称为状态转移方程。当给定了第K阶段的状 态变量sk和决策变量xk时,根据状态转移方程,第 (k+1)阶段的状态Sk+1的值也随之而定。也就是说, sk+1将依某种函数关系与(sk,xk(sk))相对应,这种对 应关系常记为:
一个阶段包含若干个状态,描述状态的变量称为状 态变量。常用sk表示第k阶段的某一状态。所有状态 变量组成的集合,称为状态变量集合。常用Sk表示第 k阶段的状态变量集合。 三、决策和决策变量
决策就是某阶段状态给定以后,从该状态演变 到下一阶段某状态的选择。描述决策的变量,称为 决策变量。常用xk(sk)表示第k阶段当状态处于sk时 的决策变量,在实际问题中,决策变量的取值往往 限制在某一范围内,此范围称为允许决策集合,通 常用Dk(sK)表示第k阶段的允许决策集合,显然有:
二、动态规划的基本方程 动态规划函数基本方程的一般形式为:
fk(sk)opvk( tsk,xk(sk) )fk 1(sk 1)
动态规划求解方法
动态规划求解方法动态规划(Dynamic Programming)是一种常见的求解优化问题的方法,它通过将问题分解成更小的子问题,并保存子问题的解来降低时间复杂度。
动态规划通常使用一个表格来记录子问题的解,然后根据递推关系计算出更大问题的解。
动态规划的求解方法一般包含以下几个步骤:1.定义问题:首先,需要明确要解决的问题是什么。
动态规划通常适用于求解具有最优子结构性质的问题,即原问题的最优解可以通过一系列子问题的最优解得到。
2.确定状态:接下来,需要确定动态规划的状态。
状态是问题中会变化的量,它包含了问题的关键信息。
在动态规划中,状态可以是一个或多个变量。
3.建立转移方程:然后,需要建立问题的转移方程。
转移方程描述了问题状态之间的关系,用来计算子问题的最优解。
转移方程可以通过观察问题的特点或者使用递推关系得到。
4.确定初始条件:接下来,需要确定边界条件或初始条件。
边界条件是问题中的一些特殊情况,它们通常是一些最小子问题的解。
初始条件是指将边界条件中的解赋值给表格中对应的位置。
5.使用递推关系计算:最后,使用递推关系将表格中的其他位置的解计算出来。
通常,可以使用自底向上的方法,从表格的第一个位置开始计算,依次填充整个表格。
动态规划的优点在于它可以将一个复杂的问题分解成多个子问题,然后通过记录子问题的解来减少重复计算。
这样,可以大大提高求解问题的效率。
动态规划通常适用于求解满足最优化原理和无后效性条件的问题。
最优化原理是指问题的最优解具有递归的结构,即解可以通过子问题的最优解得到。
无后效性条件是指问题的当前状态决定了未来的决策,与过去的决策无关。
动态规划在算法设计和实现中有很多经典的应用,例如最长公共子序列问题、0/1背包问题、最短路径问题等。
下面简要介绍其中的两个经典应用。
1.最长公共子序列问题:给定两个字符串s1和s2,求它们的最长公共子序列。
最长公共子序列是指在两个字符串中以相同的顺序出现的最长的子序列。
《动态规划》课件
动态规划具有最优子结构和重叠子问题的特点,能够通过保存已解决的子问题来避免重复计 算。
应用场景
动态规划广泛应用于路线规划、资源分配、序列匹配等问题,能够有效地解决复杂的优化和 决策问题。
动态规划的优缺点
1 优点
动态规划能够提供最优的解决方案,同时能够高效地解决问题,避免重复计算。
2 缺点
使用动态规划解决问题需要设计状态转移方程,对于复杂问题可能需要较高的思维和计 算复杂度。
《动态规划》PPT课件
欢迎来到《动态规划》PPT课件! 本课程将深入探讨动态规划的应用和技巧, 帮助你理解这一强大的问题求解方法。
什么是动态规划
动态规划是一种通过将问题拆分为更小的子问题,并根据子问题的解来求解 原问题的方法。它可以应用于许多领域,包括优化、组合数学和图论。动态规划的特点 Nhomakorabea应用场景
参考资料
• 经典教材 • 学术论文 • 网络资源
确定问题的初始状态和结束条件,作为动态规划的边界。
4
确定优化方向
选择最优的状态转移路径,以达到问题的最优解。
经典问题解析
斐波那契数列
通过动态规划求解斐波那契数列,可以有效 地避免重复计算,提高计算效率。
最长公共子序列
使用动态规划求解最长公共子序列,可以在 时间复杂度为O(n*m)的情况下找到最长公共 子序列。
最优子结构
定义
最优子结构表示一个问题的最优解可以通过子 问题的最优解来构建。
举例
在路径规划问题中,通过求解子问题的最短路 径,可以获得整个路径规划的最短路径。
重叠子问题
定义
重叠子问题表示一个问题的子问题会被重复计 算多次。
举例
在斐波那契数列中,计算每个数字需要依赖于 前两个数字,导致重复计算了相同的子问题。
第3章 动态规划
7
完全加括号的矩阵连乘积
完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积 A 是完全加括号的,则 A 可 表示为2个完全加括号的矩阵连乘积 B 和 C 的乘积并加括号,即 A = (BC )
设有四个矩阵 它们的维数分别是: A, B, C , D,它们的维数分别是:
10
矩阵连乘问题
给定n 给定n个矩阵 { A1 , A2 ,..., An } , 其中 Ai 与 Ai +1 是可乘 考察这n 的, i = 1,2,..., n − 1 。考察这n个矩阵的连乘积
A1 A2 ... An
由于矩阵乘法满足结合律,所以计算矩阵的连乘可以 由于矩阵乘法满足结合律, 有许多不同的计算次序。 有许多不同的计算次序。这种计算次序可以用加括号 的方式来确定。 的方式来确定。 若一个矩阵连乘积的计算次序完全确定, 若一个矩阵连乘积的计算次序完全确定,也就是说该 连乘积已完全加括号,则可以依此次序反复调用2个矩 连乘积已完全加括号,则可以依此次序反复调用2 阵相乘的标准算法计算出矩阵连乘积
动态规划的基本原理和基本应用
动态规划的基本原理和基本应用
一、动态规划的基本原理
动态规划(Dynamic Programming)是一种运用在运筹学中的一种数
学规划方法。
它的基本思路是:将一个复杂的求解问题分解成若干个更简
单的子问题,再从这些子问题出发,求出各子问题的解,回溯到原问题求
出原问题的解,通常情况下,动态规划的核心是对于每一个子问题只求解
一次,存储子问题的解,避免了重复求解子问题。
1.最优子结构性质:具有最优子结构性质的问题可以用动态规划求解,即如果一些问题的求解最优解由其子问题的最优解组合而成,那么该问题
也是最优的;
2.重复子问题性质:具有重复子问题性质的问题可以用动态规划求解,即一些问题的解可以由重复的子问题的解组合而成;
3.边界条件:求解动态规划的问题要求有边界条件,即知道求解问题
的初始和终止条件;
4.最优化原理:即求解问题的全局最优解可以由求子问题的最优解组
合而成,求解问题从最优解的最终状态开始,逐渐迭代至初始状态;
5.无后效性:即状态仅取决于其之前的几个状态,不受其之后状态的
影响。
二、动态规划的基本应用
1.适用于短路径问题:在交通运输、通信网络中。
动态规划的三个实施步骤
动态规划的三个实施步骤什么是动态规划动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通常用于求解最优化问题。
动态规划的核心思想是将复杂问题分解成较简单的子问题,并通过子问题的最优解推导出原问题的最优解。
动态规划的三个实施步骤动态规划的实施步骤通常包括以下三个阶段:1.划分阶段:将原问题划分成若干个子问题,通过划分可以简化问题的复杂度。
2.确定状态:定义状态表示问题的不同阶段和状态,以及状态之间的关系。
状态的选择对最终解决问题的效率和准确性有很大影响。
3.推导方程:根据子问题的最优解和状态之间的关系,推导出原问题的最优解,并通过递推和迭代求解。
下面将详细介绍每个步骤。
1. 划分阶段在划分阶段,我们需要将原问题划分成若干个子问题。
通常,问题的划分可以基于以下两种方式之一:•递归划分:将原问题拆分成规模更小的相同类型的子问题,直到问题规模较小,可以直接得到解答。
•迭代划分:通过迭代的方式,逐步处理原问题的不同阶段,每个阶段都可以看作是一个子问题。
划分阶段可以大大减少问题的复杂度,使得问题的求解更加可行和高效。
2. 确定状态确定状态是动态规划的核心步骤,它需要定义状态并建立状态之间的关系。
状态表示问题的不同阶段和状态,以及状态之间的关联关系。
在确定状态时,通常需要考虑以下几个因素:•问题的边界状态:例如,问题的起始状态和最终状态。
•中间状态的定义:例如,问题的中间阶段的状态。
•状态之间的转移方程:即状态之间的关联关系,包括过程中的选择和决策。
通过合理地确定状态,可以将复杂问题简化成易于求解的子问题,并能够快速推导出原问题的最优解。
3. 推导方程在推导方程阶段,我们通过子问题的最优解和状态之间的关系,推导出原问题的最优解。
根据问题的具体特点和状态定义,推导方程可以采用不同的方式,例如:•递推方程:通过递归地求解子问题,逐步推导出原问题的最优解。
•迭代方程:通过迭代地更新状态,逐步得到原问题的最优解。
动态规划
状态 B1 在决策 u2 ( B1 ) 作用下的一个新的状态,记作u2 ( B1 ) C2 . 4、策略 策略是一个按顺序排列的决策组成的集合。由过程的第 k 阶段开始到 终止状态为止的过程,称为问题的后部子过程(或称为 k 子过程)。
返回 结束
动态规划
由每段的决策按照顺序排列组成的决策函数序列
k 1,2,, n.
对于动态规划模型的指标函数,应具有可分离性,并满足递推关系
Vk ,n k [ sk , uk ,Vk 1,n ( sk 1 ,, sn1 )]
在实际问题中指标函数都满足这个性质。 常见的指标函数有下列两种形式 (1)过程和任一子过程的指标是它所包含的各阶段指标的和,即
指标函数的最优值,称为最优值函数,记作 f k (sk ) 它表示从第 k 阶段 的状态 sk 开始到第 n 阶段的终止状态的过程,采取最优策略所得到的 指标函数值。即
f k ( sk ) opt Vk ,n ( sk , uk ,, sn1 )
uk ,,un
返回 结束
动态规划
在不同的问题中,指标函数的含义不同,它可能是距离,利润,成本 ,产品的产量,资源消耗等。 二、动态规划的基本思想和基本方程 结合最短路问题介绍动态规划的基本思想 。最短路线有一个重要特性,
这种递推关系式称为动态规划的基本方程。
返回
结束
动态规划
资源分配问题 某工业部门根据国家计划的安排,将某种高效率的设备 五台,分配给所属的甲、乙、丙三个工厂,各工厂若获得 这种设备之后,可以为国家提供盈利如表2-2所示。
问这五台设备应如何分配给工厂,才能使国家得到的 盈利最大。
返回
结束
动态规划
表2-2
数据结构之动态规划动态规划的基本思想和常见应用场景
数据结构之动态规划动态规划的基本思想和常见应用场景动态规划(Dynamic Programming,DP)是一种通过将问题分解为更小的子问题来解决复杂问题的方法。
它的基本思想是利用已解决过的子问题的解来求解当前问题的解,从而避免重复计算,提高算法效率。
动态规划的应用广泛,可以用于解决一些优化问题、最优化问题以及组合优化问题等。
动态规划的基本思想可以用以下三个步骤来概括:1. 定义子问题:将原问题划分为一个或多个子问题,并找到它们之间的关系。
2. 构建状态转移方程:根据子问题之间的关系,找到问题的递推关系,将问题转化为子问题的解。
3. 解决问题:通过递推计算或者自底向上的方法,求解问题的最终解。
动态规划的核心是状态转移方程。
状态转移方程描述了子问题与原问题之间的关系,通过它可以求解原问题的解。
在构建状态转移方程时,需要考虑如何选择最优子结构并进行状态转移,以及确定初始状态和边界条件。
动态规划常见的应用场景包括:1. 最优化问题:如最短路径问题、最长递增子序列问题、背包问题等。
这类问题中,动态规划可以帮助我们找到最优解。
2. 组合优化问题:如旅行商问题(TSP)、任务分配问题等。
这类问题中,动态规划可以帮助我们找到最佳的组合方案。
3. 概率计算问题:如概率图模型中的推断问题、隐马尔可夫模型中的预测问题等。
这类问题中,动态规划可以帮助我们计算复杂的概率。
举例来说,我们可以通过动态规划求解最长递增子序列问题。
给定一个序列,我们希望找到其中最长递增的子序列的长度。
首先,定义状态dp[i]表示以第i个元素结尾的最长递增子序列的长度。
然后,我们可以根据dp[i-1]和第i个元素的大小关系来更新dp[i]的值,即dp[i]= max(dp[i], dp[j]+1),其中j为i之前的某个位置,且nums[j] < nums[i]。
最后,我们通过遍历数组,找到dp数组中的最大值,即可得到最长递增子序列的长度。
第3章 动态规划_jlwan12讲解
O(n) 2(2n1 1) 2n1
12
复杂性高的原因:子问题重复计算
n=5,计算子问题:81个;不同的子问题:15个
子 1-1 2-2 3-3 4-4 5-5 1-2 2-3 3-4 4-5 1-3 2-4 3-5 1-4 2-5 1-5
问 题
数 8 12 14 12 8 4 5 5 4 2 2 2 1 1 1
设计一个动态规划算法,通常可以按以下几 个步骤进行:
(1)刻画最优解的结构特性; (2)递归定义最优解值; (3)以自底向上方式计算最优解值; (4)根据计算得到的信息构造一个最优解。
其中,第(1)至(3)步是动态规划算法的 基本步骤。最优解值是最优解的目标函数的值。
使用动态规划技术的条件:优化原则
n1
T(n) O(n) T(k) T(n k) O(n) 2 T(k)
k 1
k 1
k 1
数学归纳法证明 T(n)2n1
n=2,显然为真
假设对于任何小于n 的 k 命题为真, 则
T
(
n)
O(n)
n1
2 T
(k
)
O(n)
n1
2
2
k
1
k 1
k 1
(3) 列出关于优化函数的递推方程 (或不等式)和边界条件 (4) 考虑是否需要设立标记函数 (5) 自底向上计算,以备忘录方法 (表格)存储中间结果
18
3.3.1 投资问题
m 元钱,n 项投资,fi (x): 将 x 元投入第 i 项项目的效益 目标函数 max {f1(x1) + f2(x2) + … + fn(xn) } 约束条件 x1 + x2 + … + xn = m,xi N 实例:5万元钱,4个项目,效益函数如下表所示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机算法设计与分析 @ Ningbo University
2页
算法总体思想
�ห้องสมุดไป่ตู้
动态规划算法与分治法类似,其基本思想也是将待求 解问题分解成若干个子问题
T(n)
=
n
T(n/2)
T(n/2)
T(n/2)
T(n/2)
计算机算法设计与分析 @ Ningbo University
3页
算法总体思想
�
但是经分解得到的子问题往往不是互相独立的。不同 子问题的数目常常只有多项式量级。在用分治法求解 时,有些子问题被重复计算了许多次。
8页
矩阵连乘问题 给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1, 2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次 序计算矩阵连乘积需要的数乘次数最少。 �穷举法:列举出所有可能的计算次序,并计算出每一种计算 次序相应需要的数乘次数,从中找出一种数乘次数最少的计算 次序。 算法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序为P(n)。 由于每种加括号方式都可以分解为两个子矩阵的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)(catalan (catalan数 数)的递推式如下:
计算机算法设计与分析 @ Ningbo University
1页
• • • • • • • • • • • •
通过应用范例学习动态规划算法设计策略。 (1)矩阵连乘问题; (2)最长公共子序列; (3)最大子段和 (4)凸多边形最优三角剖分; (5)多边形游戏; (6)图像压缩; (7)电路布线; (8)流水作业调度; (9)背包问题; (10)最优二叉搜索树。 (?)下围棋
计算机算法设计与分析 @ Ningbo University
12页
分析最优解的结构
�
特征:计算A[i:j]的最优次序所包含的计算矩阵子链 A[i:k] 和A[k+1:j]的次序也是最优的。 矩阵连乘计算次序问题的最优解包含着其子问题的最优解。 这种性质称为最优子结构性质。问题的最优子结构性质是 该问题可用动态规划算法求解的显著特征。
计算机算法设计与分析 @ Ningbo University
4页
算法总体思想
�
如果能够保存已解决的子问题的答案,而在需要时再 找出已求得的答案,就可以避免大量重复计算,从而 得到多项式时间算法。
T(n)
n/2
T(n/4) T(n/4) T(n/4)
=
n
n/2
T(n/4)
n/2
n/2
T(n/4)
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4)T(n/4)
计算机算法设计与分析 @ Ningbo University
11页
矩阵连乘问题 �动态规划 将矩阵连乘积
Ai Ai +1... A j 简记为A[i:j] ,这里i≤j
考察计算A[i:j]的最优计算次序。设这个计算次序在矩阵 Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相应完全 加括号方式为 ( Ai Ai +1... Ak )( Ak +1 Ak + 2 ... A j ) 计算量:A[i:k]的计算量加上A[k+1:j]的计算量,再加上 A[i:k]和A[k+1:j]相乘的计算量
计算机算法设计与分析 @ Ningbo University
15页
用动态规划法求最优解
void MatrixChain (int *p,int n,int **m,int **s){ for (int i = 1; i <= n; i++) m[i][i] = 0; for (int r = 2; r <= n; r++) //r为 (矩阵个数从2 //r为i,j的间隔 i,j的间隔( 矩阵个数从2到n个变化) 个变化) for (int i = 1; i <= n - r+1; i++) { //保持间隔为 r,遍历一次 //保持间隔为r m[i][i]+ m[i][i]+ int j=i+r-1; //(对上层循环的矩阵 ,变化分割位置,求[i][j] 的最优计算) ) //(对上层循环的矩阵, 变化分割位置,求[i][j]的最优计算 m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j]; //间隔为 1,计算次数放到m[][] //间隔为1 ,计算次数放到m[][] s[i][j] = i; //s[][],分割位置在 i,即k=i //s[][],分割位置在i ,即k=i for (int k = i+1; k < j; k++) { //间隔逐渐增大,找出 m[i][j]的最优分割 的最优分割 //间隔逐渐增大,找出m[i][j] int t = m[i][k] + m[k+1][j] + p[i-1] *p[k]*p[j]; if (t < m[i][j]) { m[i][j] = t; s[i][j] = k;} } } } A1 A2 A3 A4 A5 A6 自底向上求出任意间隔 30×35 35×15 15×5 5×10 10×20 20×25 的计算代价
1 ⎧ n =1 ⎪ n −1 P (n) = ⎨ P (k ) P (n − k ) ⇒ P (n) = Ω (4 n / n 3/ 2 ) ∑ n >1 ⎪ ⎩ k =1
计算机算法设计与分析 @ Ningbo University 9页
矩阵连乘问题
令h(0)=1,h(1)=1,catalan数满足递归式: h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2),这是n阶递推关系 �1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …
计算机算法设计与分析 @ Ningbo University
10页
矩阵连乘问题
1.括号化问题。 矩阵连乘: P=a0×a1×a2×a3×……×an,共有(n+1)项,依据乘法结合律,不改变 其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种) 类似题目:有N个节点的二叉树共有多少种情形? 2.出栈次序问题。 一个栈(无穷大)的进栈序列为1,2,3,..n, 有多少个不同的出栈序列? 类似题目:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另 外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就 有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈) 3.将多边行划分为三角形问题。 将一个凸多边形区域分成三角形区域的方法数? 类似题目:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个 街区去上班。如果他从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道 路? 类似题目:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法 数?
�
A = 50 × 10 B = 10 × 40 C = 40 × 30 D = 30 × 5
�
总共有五中完全加括号的方式
( A(( BC ) D )) ( A( B (CD ))) (( AB )(CD )) ((( AB )C ) D ) (( A( BC )) D )
16000, 10500, 36000, 87500, 34500
A = 50 × 10 B = 10 × 40 C = 40 × 30 D = 30 × 5
m[i , j ] = m[i , k ] + m[k + 1, j ] + pi −1 pk p j
这里
�
Ai 的维数为
pi −1 × pi
可以递归地定义m[i,j]为:
0 i= j ⎧ ⎪ m[i , j ] = ⎨ min{m[i , k ] + m[k + 1, j ] + pi −1 pk p j } i < j ⎪ ⎩ i≤ k < j k 的位置只有 j − i 种可能 当K位于哪个位置时值最佳
A1 A2 ... An
�
�
由于矩阵乘法满足结合律,所以计算矩阵的连乘可以 有许多不同的计算次序。这种计算次序可以用加括号 的方式来确定。 若一个矩阵连乘积的计算次序完全确定,也就是说该 连乘积已完全加括号,则可以依此次序反复调用2个矩 阵相乘的标准算法计算出矩阵连乘积。
计算机算法设计与分析 @ Ningbo University
计算机算法设计与分析 @ Ningbo University 14页
计算最优值
�
对于1≤i≤j≤n不同的有序对(i,j)对应于不同的子问题。因此, 不同子问题的个数最多只有
⎛n⎞ 2 ⎟ ⎜ + n = Θ ( n ) ⎜ 2⎟ ⎝ ⎠
�
�
由此可见,在递归计算时,许多子问题被重复计算多次。这也 是该问题可用动态规划算法求解的又一显著特征。 用动态规划算法解此问题,可依据其递归式以自底向上的方式 进行计算。在计算过程中,保存已解决的子问题答案。每个子 问题只计算一次,而在后面需要时只要简单查一下,从而避免 大量的重复计算,最终得到多项式时间的算法