淀粉酶的研究进展[文献综述]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文文献综述
生物工程
淀粉酶的研究进展
1. 淀粉酶简介
淀粉酶是催化淀粉、糖原转化成葡萄糖、麦芽糖及其它低聚糖的一类酶的总称,广泛应用于淀粉工业、食品工业、医药、纺织、洗涤剂、青贮饲料、微生态制剂以及酿酒等行业[1]。淀粉酶是最早用于工业化生产的酶,迄今为止仍是用途最广、产量最大的酶制剂产品之一[2]。
不同种类的淀粉酶水解淀粉会生成不同的产物。常见的淀粉酶可以分为以下几种:α-淀粉酶(EC3.2.l.1),也叫液化酶;β-淀粉酶(EC3.2.1.2);葡萄糖淀粉酶(EC3,2.1.3),也叫γ -淀粉酶,简称糖化酶(缩写GA或G):异淀粉酶(EC3.2.1.68)等[3]。α-淀粉酶能随机地作用于淀粉的非还原端,生成麦芽糖、麦芽三糖、糊精等还原糖,所得产物的还原性末端葡萄糖单位碳原子为α构型,同时该酶能使淀粉浆的粘度下降;β-淀粉酶是从淀粉的非还原性末端切下一分子的麦芽糖,其产物还原性末端葡萄糖单位碳原子为β构型;葡萄糖淀粉酶是从底物非还原末端依次水解α-l,4糖苷键和分支的α-1,6-糖苷键,生成葡萄糖。异淀粉酶是只水解糖原或支链淀粉分支点的α-1,6糖苷键,切下侧枝链[5]。
对淀粉酶的分类和作用机制研究较多,可按来源、产物的旋光度、作用机制等进行分类。但近年随着酶学性质的研究的发展,对酶的作用机制、方式等研究不断取得新成果,分类学问题出现许多难点。我国在食品方面研究和应用的微生物酶估计有30多种[6],其中淀粉酶有α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶、异淀粉酶、普鲁兰酶、环糊精生成酶等。
2. 淀粉酶的生产
2.1 淀粉酶的来源
淀粉酶的来源很广泛,可以来自于植物、动物以及微生物。大部分的淀粉酶存在于微生物中,微生物中主要的两种淀粉酶为α-淀粉酶及葡糖淀粉酶,此外,主要存在于植物中的β-淀粉酶也存在于少量微生物中。
α-淀粉酶可以从几种细菌、真菌和酵母中分离获得。但是,由于细菌淀粉酶具有几个比较优良的特性,因此,细菌淀粉酶用的比较多,特别是淀粉液化芽孢杆菌已用于工业化生产[5]。
不像其他的淀粉酶,微生物仅产生少量的β-淀粉酶,有杆菌(假单孢杆菌和梭状芽孢杆菌)等。
葡糖淀粉酶具有多种来源,植物、动物及微生物,但是,商业上所用的葡糖淀粉酶也是来源于微生物,在所有微生物中,真菌是葡糖淀粉酶的主要来源。
2.2 淀粉酶的生产
淀粉酶的生产主要有两种方法,即液态发酵和固态发酵。由于固态发酵具有经济上和工程上的优点,因此人们常常采用这种方法生产淀粉酶。
2.2.1 α-淀粉酶的生产
杆菌是α-淀粉酶的最重要的来源而且可以用于酶的生产。解淀粉芽孢杆菌和地衣芽孢杆菌可以生产耐热的α-淀粉酶,同时也可以进行生产酶及淀粉的水解[5]。
在乳清、玉米浆以及大豆粉的基础上,开发了一些简单而又便宜的培养基用于α-淀粉酶的生产,这种培养基也可以进一步开发成为工业生产α-淀粉酶用的培养基。一些研究表明,不同的碳源会影响α-淀粉酶的产量,乳糖、葡聚糖及可溶性淀粉有利于酶的产量的提高,当使用葡萄糖时,酶的产量非常高。溶氧率也是α-淀粉酶发酵生产时的一个重要的因素,高的溶氧率可以产生大量的酶。
丝状真菌是胞外酶的最大的生产者,因此,用这些菌来生产α-淀粉酶也引起人们的兴趣,嗜热真菌是α-淀粉酶最好的生产菌,调节其生长条件和培养基成分,可以使酶的产量增加。
固定化细胞培养技术也用于α-淀粉酶的生产,用这种技术可以极大地提高酶的产量,如将地衣芽孢杆菌固定在膜上,生产的α-淀粉酶比游离细胞产量多176%。
2.2.2 β-淀粉酶的生产
如前所述,β-淀粉酶主要来源于植物,因此用微生物生产β-淀粉酶的工作不多。可以产生β-淀粉酶的微生物有多黏芽孢杆菌、蜡状芽孢杆菌、巨大芽孢杆菌、假单胞菌等。
人们用来自于木薯、玉米、土豆、小麦和小麦麸等的废弃淀粉作为底物来生产β-淀粉酶,发现以木萝和小麦麸为底物的β-淀粉酶产量最高;还有人用固定化细胞的方法来生产β-淀粉酶,在所有的方法中,离子化的凝胶作用于β-淀粉酶的生产最有效。
2.2.3 葡糖淀粉酶的生产
用黑曲霉以固状培养的方式生产葡糖淀粉酶已作了大量的工作,这些研究包括农副业与工业的废弃物如小麦麸、米糠等对黑曲霉生长和活性的影响,此外,这些物质及湿度还明显地影响酶的生产。一些细菌和酵母也可以生产葡糖淀粉酶。
发酵罐的设计和结构也影响酶的生产,如栽培木箱36小时所产生的酶的量相当于摇瓶培养96小时所产生的酶的量。此外,培养方法不同酶的产量也不一样,如分批培养比一次投料的效果更好。
2.3 淀粉酶的纯化和性质
运用于医药和治疗的淀粉酶需要更高的纯度,因此,开发出一种经济有效的方法对酶进行纯化
从而获得具有活性的化学纯的酶是非常重要的。传统上,对发酵罐中的淀粉酶的纯化分为几个步骤:培养物的离心、用超滤法获得选择一定浓度的上清液、用硫酸铵或有机溶剂如冷乙醇获得沉淀中的酶、粗制的酶用色谱法和胶过滤纯化。
细菌的α-淀粉酶可以从杆菌中获得,人们已经研究了喜温菌株和耐热菌株的纯化和特性。一些研究者用硫酸铵沉淀、离子交换色谱和胶过滤法纯化获得了同质的α-淀粉酶,焦碳酸二乙酯可以抑制此酶的活性。由地衣芽孢杆菌生产的细胞外耐热型α-淀粉酶可以用下面的方法纯化:在乙二醇/葡聚糖系统中做两层分离,然后用胶过滤和离子交换色谱进行纯化[7,8,9]。
细胞外淀粉酶的基本性质反映了细菌所生长环境的酸碱度和温度,如某些碱性杆菌生长于50℃,pH为10.5,其产生的α-淀粉酶的最适温度和pH分别为60℃和pH值11.0~12.0;另一类杆菌生长的最适pH为8.5,所产的α-淀粉酶最适pH为9.0。
在工业化的生产中,人们常常用自动聚焦的纯化技术获得化学纯的淀粉酶,这种方法可以纯化一些枯草芽孢杆菌产生的α-淀粉酶。此法可以采用大量的起始反应物,可以大量生产α-淀粉酶。
在真菌中,获得纯化的α-淀粉酶仅有很少的一些菌株,因此它们的性质研究也不多。不同的菌株所产的α-淀粉酶性质不一样[10]。
酵母的α-淀粉酶获得纯化的酵母α-淀粉酶也不多,从隐球酵母生产的可以消化生淀粉的耐热α-淀粉酶的纯化仅用一步方法便可以解决,这种酶与黑曲霉和米曲霉产生的α-淀粉酶性质相似[11]。
从微生物中获得的β-淀粉酶比从植物中获得的β-淀粉酶具有更高的耐热性,β-淀粉酶与α-淀粉酶相比,其最适的pH更高,而且不需要Ca2+作为酶的稳定剂和提高酶的活性,用硫酸分级分离,离子交换色谱和胶过滤的方法纯化。Hg2+、Zn2+和Cu2+可以抑制酶的活性,Na+可以激活酶。加入支链淀粉酶可以极大地提高酶对生淀粉的降解。此外,麦芽糖是β-淀粉酶运用于生谷物淀粉的水解产物。
许多菌株产生的葡糖淀粉酶已获得纯化,性质也获得了确定。总的来说,葡糖淀粉酶的最适pH 为4.5~5.0,最适温度为40~60℃,但也有一些例外,有些酶的最适pH值可达11.0。
商业上从黑曲霉中获得的葡糖淀粉酶制备物中包含有六种类型,其分子大小明显不同,最适的pH值在3.5~5.0之间。通过纯化根霉产生的葡糖淀粉酶,可以获得两种葡糖淀粉酶,一种酶具有强的脱支链的活性,另一种酶脱支链的能力较强。此外,还有对生淀粉的吸收和消化能力都特别强。
3. 淀粉酶的研究进展
淀粉酶中,尤以α-淀粉酶最为常用,随着社会需求的增大,工业生产对α-淀粉酶的需求量越来越大。