高中数学立体几何题型
高一立体几何题型及解题方法

高一立体几何题型及解题方法
高一立体几何是数学中的一个重要部分,也是高中数学中难度较大的内容之一。
下面介绍一些高一立体几何的题型及解题方法。
1. 空间向量题型
空间向量题型是高一立体几何中比较基础的题型,需要掌握空间向量的基本概念和运算规律。
解题时需要根据向量的定义和性质,运用向量加法、数乘等基本运算法则,求解向量的模长、方向余弦等相关量。
2. 空间几何体积题型
空间几何体积题型是高一立体几何中比较常见的题型,需要掌握各种几何体的面积和体积公式,并能够灵活运用这些公式进行计算。
解题时需要注意几何体的立体图形,确定所求的体积或面积,再根据公式进行计算。
3. 立体图形的相似题型
立体图形的相似题型需要掌握几何体的相似性质和基本比例关系,能够根据相似性质推导出几何体的相关量。
解题时需要注意几何体的相似条件,确定所求的比例关系,再根据比例关系求解相关量。
4. 空间几何位置关系题型
空间几何位置关系题型需要掌握空间中点、线、面的位置关系及相关性质。
解题时需要注意点、线、面的位置关系,确定所求的相关量,再根据相关性质进行计算。
总之,高一立体几何的题型比较多,需要学生具备扎实的基础知
识和灵活的解题思路,加强对几何图形和空间位置关系的理解和掌握,才能顺利解决高一立体几何的各种题型。
高中必修二数学 立体几何题型总结

高中必修二数学立体几何题型总结
高中数学必修二中的立体几何部分是高考的重要考点之一,下面是一些常见的立体几何题型及其解题方法:
1. 空间几何体的表面积和体积
解题方法:熟练掌握各种空间几何体的表面积和体积的公式,根据题目要求进行计算。
2. 空间几何体的直观图和三视图
解题方法:通过观察和分析空间几何体的直观图和三视图,掌握几何体的形状和大小,进而解决相关问题。
3. 空间点、线、面的位置关系
解题方法:理解空间点、线、面的位置关系,掌握各种位置关系的判定定理和性质定理,能够灵活运用解决相关问题。
4. 空间几何体的旋转体问题
解题方法:掌握旋转体的形成过程和性质,通过分析旋转体的轴和母线,利用旋转体的性质进行计算和证明。
5. 空间几何体的平行和垂直问题
解题方法:掌握空间几何体的平行和垂直的判定定理和性质定理,能够灵活运用解决相关问题。
6. 空间几何体的最值问题
解题方法:通过分析几何体的结构特征,利用几何体的性质和不等式等数学知识,求得空间几何体的最值。
7. 空间几何体的实际应用问题
解题方法:通过建立空间几何模型,将实际问题转化为数学问题,利用几何体的性质和数学知识解决实际问题。
以上是高中数学必修二中立体几何部分的一些常见题型及解题方法,掌握这些题型和方法对于提高立体几何部分的解题能力非常有帮助。
高中数学立体几何测试题(10套)

∴ BD ∥平面 PMN ,
位置关系为
平行
。
∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中
点
A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线
高中立体几何练习题

高中立体几何练习题几何学是数学中非常重要的一个分支,而立体几何则是其中的一个重要部分。
在高中阶段,学生需要掌握各种与立体几何相关的概念和定理,并且能够运用这些知识解决实际问题。
本文将为大家提供一些高中立体几何的练习题,以帮助大家巩固知识和提高解题能力。
练习题一:三棱柱1. 一个三棱柱的底面是一个等边三角形,边长为8cm,高度为10cm。
求该三棱柱的体积和表面积。
2. 一个三棱柱的体积是72cm³,底面边长为6cm。
求该三棱柱的高度和表面积。
练习题二:四棱柱和四棱锥1. 一个正四棱柱的底面是一个边长为4cm的正方形,高度为6cm。
求该四棱柱和与之相似的正四棱锥的体积比值。
2. 一个四棱柱的底面是一个边长为10cm的正方形,高度为8cm。
求该四棱柱和与之相似的四棱锥的表面积比值。
练习题三:球体和圆柱1. 一个半径为4cm的球从中间切割,得到两个半球。
求这两个半球的表面积之和。
2. 一个圆柱的底面半径为3cm,高度为10cm。
在底面上画一个直径,求这个直径与圆柱的侧面交点处的高度和侧面的面积。
练习题四:棱台和棱锥1. 一个棱台的上底是一个边长为6cm的正三角形,下底是一个边长为12cm的正六边形,高度为8cm。
求该棱台的体积和表面积之和。
2. 一个棱台的上底是一个边长为8cm的正方形,下底是一个边长为12cm的正六边形,高度为10cm。
求该棱台的体积和表面积的比值。
以上仅为一些高中立体几何的练习题,希望能够帮助大家巩固知识并提高解题能力。
在解答这些题目时,可以根据已学习的定理和公式进行计算,并注意单位和精度的问题。
同时也要灵活运用几何思维和建模能力,将实际问题转化为几何图形,从而更好地解决问题。
祝各位同学在立体几何学习中取得好成绩!。
高中数学立体几何10道大题

高中数学立体几何10道大题1.在四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC垂直于面ABCD,已知∠ABC=45°,AB=2,BC=22,SB=SC=3.1) 证明平面SCD与平面SAB的交线l平行于AB;2) 证明SA垂直于BC;3) 求直线SD与面SAB所成角的正弦值。
2.在四棱锥P-ABCD中,底面ABCD是平行四边形,P为其顶点,O为其中心,PO平行于AB且PO=2,M为PD的中点,AD=AC=1,O为AC的中点。
1) 证明PB平行于平面ACM;2) 证明AD在平面PAC上;3) 求直线AM与平面ABCD所成角的正切值。
3.在四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD均为等边三角形。
1) 证明CD垂直于平面PBD;2) 求二面角CPBD的平面角的余弦值。
4.在四棱锥P-ABCD中,PA垂直于底面ABCD,AC垂直于AD,ABCD为梯形,AB平行于DC,AB垂直于BC,PA=AB=BC=3,点E在棱PB上,且PE=2EB。
Ⅰ) 证明平面PAB垂直于平面PCB;Ⅱ) 证明PD平行于平面EAC;Ⅲ) 求平面AEC和平面PBC所成锐二面角的余弦值。
5.在图中,矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,平面ABCD与平面ABPE的交线为AB,且AB=BP=2,AD=AE=1,AE垂直于AB,且AE平行于BP。
1) 在面ABCD内是否存在点N,使得MN垂直于平面ABCD?若存在,请证明;若不存在,请说明理由;2) 求二面角D-PE-A的余弦值。
6.在直三棱柱ABC-A1B1C1中,平面A1BC垂直于侧面A1BB1,且AA1=AB=2.1) 证明AB垂直于BC;2) 若直线AC与平面A1BC所成角为α,求锐二面角AAC1B的大小。
7.在四棱锥V-ABCD中,底面ABCD为正方形,侧面VAD 为正三角形,平面VAD垂直于底面ABCD。
高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。
立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
高中数学立体几何题型归纳

高中数学立体几何题型归纳
高中数学立体几何是高考数学的一个重要组成部分,其题型归纳如下:
1. 计算题:主要要求异面直线所成的角、直线与平面所成的角、二面角、点到面的距离、表面积、体积等。
2. 证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。
3. 三视图问题:要求画出简单空间图形 (长方体、球、圆柱、圆锥、棱柱等的简易组合) 的三视图,并能识别上述三视图所表示的立体模型。
4. 空间直线与平面的位置关系问题:要求判断直线与平面的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。
5. 空间向量问题:要求理解空间向量的概念,掌握空间向量的加减法和数量积运算法则,能够运用空间向量求解立体几何问题。
6. 空间点、线、面之间的位置关系问题:要求判断点、线、面之间的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。
7. 立体几何中的证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。
此外,还有一些特殊的立体几何问题,如立方体问题、圆锥问题、球体问题等。
对于这些问题,需要结合实际情况进行具体分析,并注重理解和掌握相关的概念、定理和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六讲 立体几何新题型【考点透视】(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版.①理解空间向量的概念,掌握空间向量的加法、减法和数乘.②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图.空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。
【例题解析】考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题例1如图,正三棱柱111ABC A B C 的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB =sin AG AFG AF ∴==∠.所以二面角1A A D B--的大小为(Ⅲ)1ABD △中,111A BD BD A D A B S ==∴△1BCD S =△.在正三棱柱中,1A 到平面11BCC B 设点C 到平面1A BD 的距离为d . 由11A BCD C A BD V V --=,得111333BCDA BD S S d =△△,AB CD1A1C1BABCD1A1C1BOF1A BD d ∴=△∴点C 到平面1A BD解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A,(00A ,1(120)B ,,,1(12AB ∴=,,(210)BD =-,,,1(1BA =-. 12200AB BD =-++=,111430AB BA =-+-=,1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =-,,1(020)AA =,,.AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,. 令1z =得(1)=,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴为平面1A BD 的法向量.cos <n,11133222AB AB AB -->===n n∴二面角1A A D B --的大小为(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD的距离1122BC AB d AB -===小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2.如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.(Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:方法一 (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又⊂PQ 平面PQM ,所以PQ ⊥AD .同理PQ ⊥AB ,所以PQ ⊥平面ABCD .(Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.取OC 的中点N ,连接PN . 因为21,21===OC NO OA NO OQ PO ,所以OA NO OQPO =, 从而AQ ∥PN ,∠BPN (或其补角)是异面直线AQ 与PB 所成的角.因为3PB===,PN ===10)2()22(2222=+==ON OB BNQBCPADOM所以9333210392cos 222=⨯⨯-+=⋅-∠PN PB BN PN PB BPN +=. 从而异面直线AQ 与PB 所成的角是93arccos . (Ⅲ)连结OM ,则112.22OM AB OQ === 所以∠MQP =45°.由(Ⅰ)知AD ⊥平面PMQ ,所以平面PMQ ⊥平面QAD . 过P 作PH ⊥QM 于H ,PH ⊥平面QAD .从而PH 的长是点P 到平面QAD 的距离.又03,sin 452PQ PO QO PH PQ =+=∴==. 即点P 到平面QAD的距离是2. 方法二(Ⅰ)连结AC 、BD ,设O BD AC = .由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD .从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD . (Ⅱ)由题设知,ABCD 是正方形,所以AC ⊥BD .由(Ⅰ),QO ⊥平面ABCD . 故可分别以直线CA 、DB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P (0,0,1),A (22,0,0),Q (0,0,-2),B (0,22,0).所以)2,0,22(--=AQ(0,1)PB =-于是93,cos =〉〈. (Ⅲ)由(Ⅱ),点D 的坐标是(0,-22,0),)0,22,22(--=,(0,0,3)PQ =-,设),,(z y x =是平面QAD 的一个法向量,由⎪⎩⎪⎨⎧=⋅=⋅0AD n AQ n 得⎪⎩⎪⎨⎧=+=+002y x z x . 取x =1,得)2,1,1(--=n . 所以点P 到平面QAD 的距离322PQ n d n⋅==. 考点2 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 典型例题例3 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD 33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S 在Rt SCE ∆中,3222=+=CE SC SE在Rt SCF ∆中,30224422=++=+=CF SC SF又3,6=∴=∆SEF S EF由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h 故CD 与SE 间的距离为332. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 典型例题例4. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:解析一 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,又⊂11D B 平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O . 又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于362. 解析二 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则BACDOGH 1A 1C 1D1B 1O,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h即BD 到平面11D GB 的距离等于362. 小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点. 典型例题 例5如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形内. 解答过程:解法1:(I )由题意,CO AO ⊥,BO AO ⊥,BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB ,又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴O CADBE又132DE AO ==.∴在Rt CDE △中,515tan 3CE CDE DE===.∴异面直线AO 与CD 所成角的大小为15arctan .解法2:(I )同解法1.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,, (0023)OA ∴=,,,(213)CD =-,,,cos OA CD OA CD OA CD∴<>=,62322==.∴异面直线AO 与CD 所成角的大小为6arccos .小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:⎥⎦⎤ ⎝⎛2,0π. 例6.如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角.命题目的:本题主要考查二面角以及异面直线所成的角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:关键是用恰当的方法找到所求的空间距离和角并掌握利用空间向量求空间距离和角的一般方法.解答过程: (Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB , AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.是矩形的直径,是圆、ABFC O BC AF ∴ ,是正方形,又ABFC AC AB ∴==6由于ABFC 是正方形,所以∠BAF =450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BDcos ,||||100BD FE BD FE BDFE ⋅<>===设异面直线BD 与EF 所成角为α,则 .cos cos ,BD FE α=<>=故直线BD 与EF 所成的角为1082arccos . 考点5 直线和平面所成的角此类题主要考查直线与平面所成的角的作法、证明以及计算. 线面角在空间角中占有重要地位,是高考的常考内容. 典型例题例7.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB ==(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.考查目的:本小题主要考查直线与直线,直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解答过程:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥,DCASOBCS故SA AD ⊥,由AD BC ==SA =AO =,得1SO =,SD =. SAB △的面积211122S ABSA ⎛=- ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =,解得h= 设SD 与平面SAB所成角为α,则sinh SD α===所以,直线SD 与平面SBC 所成的我为解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O-0)A ,,(0B ,(0C ,,(001)S ,,,(2SA =,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,0E ⎫⎪⎪⎝⎭, 连结SE ,取SE 中点G ,连结OG ,12G ⎫⎪⎪⎝⎭,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与yβ互余.D,(DS =.22cos 11OG DS OG DSα==sin β=所以,直线SD 与平面SAB 所成的角为.小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 考点6 二面角此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视. 典型例题例8.如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ=,所以CO α⊥,又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=,ABCQ αβ PAB CQαβ POH从而BO PQ ⊥,又CO PQ ⊥,所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ=,BO α⊂,所以BO β⊥.过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则AO =3sin 302OH AO ==. 在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 于是在Rt BOH △中,tan 2BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=不妨设2AC =,则AO =1CO =.在Rt OAB △中,45ABO BAO ∠=∠=, 所以BO AO == 则相关各点的坐标分别是(000)O ,,,0)B ,,(0A ,(001)C ,,.所以(3AB =,,(0AC =,. 设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得00z -=+=⎪⎩,Q取1x =,得1(113)n =,,.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,. 所以12125cos ||||51n n n n θ===⨯.故二面角B AC P --的大小为5arccos. 小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面内的两条相交直线确定棱,②由二面角两个平面内的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小.例9.( 2006年重庆卷)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点. (Ⅰ)试证:CD ⊥平面BEF ;(Ⅱ)设PA =k ·AB ,且二面角E -BD -C 的平面角大于︒30,求k 的取值范围.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:解法一:(Ⅰ)证:由已知DF //=AB 且∠DAD 为直角,故ABFD 是矩形,从而CD ⊥BF .又PA ⊥底面ABCD,CD ⊥AD ,故由三垂线定理知CD ⊥PD .在△PDC 中,E 、F 分别PC 、CD 的中点,故EF ∥PD ,从而CD ⊥EF ,由此得CD ⊥面BEF . (Ⅱ)连结AC 交BF 于G .易知G 为AC 的中点.连接EG ,则在△PAC 中易知EG ∥PA .又因PA ⊥底面ABCD ,故EG ⊥底面ABCD .在底面ABCD 中,过G 作GH ⊥BD ,垂足为H ,连接EH .由三垂线定理知EH ⊥BD .从而∠EHG 为二面角E -BD -C 的平面角. 设AB=a ,则在△PAC 中,有 EG =21PA =21ka . 以下计算GH ,考察底面的平面图.连结GD .因S △GBD =21BD ·GH=21GB ·DF . 故GH =BDDFGB ⋅.在△ABD 中,因为AB =a ,AD =2a ,得BD =5a. 而GB =21FB =21AD =a ,DF =AB ,从而得 GH =BD AB GB ⋅= aaa 5⋅=.55a 因此tan ∠EHG=GH EG =.255521k a ka= 由k >0知EHG ∠是锐角,故要使EHG ∠>︒30,必须k 25>tan ︒30=,33 解之得,k 的取值范围为k >.15152 解法二:(Ⅰ)如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,设AB=a ,则易知点A,B,C,D,F 的坐标分别为 A (0,0,0),B (a ,0,0),C (2a ,2a ,0),D (0,2a ,0), F (a ,2a ,0). 从而DC =(2a ,0,0), BF =(0,2a ,0),DC ·BF =0,故DC ⊥BF .设PA =b ,则P (0,0,b ),而E 为PC 中点.故 E ⎪⎭⎫ ⎝⎛2,,b a a .从而=⎪⎭⎫⎝⎛2,,0b a ,·=0,故⊥. 由此得CD ⊥面BEF .(Ⅱ)设E 在xOy 平面上的投影为G ,过G 作GH ⊥BD 垂足为H ,由三垂线定理知EH ⊥BD . 从而∠EHG 为二面角E -BD -C 的平面角. 由PA =k ·AB 得P (0,0,ka ),E ⎪⎭⎫⎝⎛2,,ka a a ,G (a ,a ,0). 设H (x ,y ,0),则GH =(x -a ,y -a ,0), =(-a ,2a ,0), 由GH ·=0得-a (x -a )+2a (y -a )=0,即 x -2y =-a ①又因BH =(x-a,y,0),且BH 与BD 的方向相同,故aa x --=a y2,即 2x +y =2a ② 由①②解得x =53a ,y=54a ,从而GH =⎪⎭⎫⎝⎛--0,51,52a a ,|GH |=55a .tan ∠EHG = EG GH =a ka552=k 25. 由k >0知,∠EHG 是锐角,由∠EHG >,30︒得tan ∠EHG >tan ,30︒即k 25>.33 故k 的取值范围为k >15152. 考点7 利用空间向量求空间距离和角众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性. 典型例题 例10.如图,已知1111ABCD A B C D -是棱长为3的正方体,AMEF1B1A1D1C点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面; (2)若点G 在BC 上,23BG =,点M 在1BB 上, GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力. 过程指引:解法一:(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==.因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.从而EN AD ∥,1FD CN ∥. 又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB ==∠∠23132BC BGCF ==⨯=. 因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B . (3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠.因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB ==∠∠CAHMDEF 1B1A1D1CN21BM BC CF ===+,tan EM MH θ==解法二:(1)建立如图所示的坐标系,则(301)BE =,,,(032)BF =,,,1(333)BD =,,,所以1BD BE BF =+,故1BD ,BE ,BF 共面. 又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, 而(032)BF =,,,由题设得23203GM BF z =-+=, 得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB =,,,(030)BC =,,,所以10ME BB =,0ME BC =,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .(3)设向量(3)BP x y =,,⊥截面1EBFD ,于是BP BE ⊥,BP BF ⊥. 而(301)BE =,,,(032)BF =,,,得330BP BE x =+=,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,. 又(300)BA =,,⊥平面11BCC B ,所以BP 和BA 的夹角等于θ或πθ-(θ为锐角).于是cos 14BP BA BP BAθ==. 故tan θ=小结:向量法求二面角的大小关键是确定两个平面的法向量的坐标,再用公式求夹角;点面距离一般转化为AB 在面BDF 的法向量上的投影的绝对值.例11.如图,l 1、l 2是互相垂直的两条异面直线,MN 是它们的公垂线段,点A 、B 在l 1上,C 在l 2上,AM =MB =MNN(I )证明AC ⊥NB ;(II )若︒=∠60ACB ,求NB 与平面ABC 所成角的余弦值. 命题目的:本题主要考查异面直线垂直、直线与平面所成角的有关 知识,考查空间想象能力、逻辑思维能力和运算能力. 过程指引:方法一关键是用恰当的方法找到所求的空间角; 方法二关键是掌握利用空间向量求空间角的一般方法. 解答过程:解法一: (Ⅰ)由已知l 2⊥MN , l 2⊥l 1 , MN ∩l 1 =M, 可得 l 2⊥平面ABN . 由已知MN ⊥l 1 , AM =MB =MN ,可知AN =NB 且AN ⊥NB . 又AN 为AC 在平面ABN 内的射影. ∴AC ⊥NB(Ⅱ)∵Rt △CAN ≌Rt △CNB , ∴AC =BC ,又已知∠ACB =60°,因此△ABC 为正三角形. ∵Rt △ANB ≌Rt △CNB , ∴NC =NA =NB ,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心,连结BH ,∠NBH 为NB 与平面ABC 所成的角. 在Rt △NHB 中,cos ∠NBH = HB NB = 33AB 22AB = 63.解法二: 如图,建立空间直角坐标系M -xyz . 令MN=1, 则有A (-1,0,0),B (1,0,0),N (0,1,0),(Ⅰ)∵MN 是 l 1、l 2的公垂线, l 1⊥l 2, ∴l 2⊥平面ABN .l 2平行于z 轴. 故可设C (0,1,m ). 于是 =(1,1,m ), =(1,-1,0). ∴·=1+(-1)+0=0 ∴AC ⊥NB .(Ⅱ)∵ =(1,1,m ), =(-1,1,m ), ∴||=||, 又已知∠ACB =60°,∴△ABC 为正三角形,AC =BC =AB =2. 在Rt △CNB 中,NB =2, 可得NC =2,故C (0,1, 2). 连结MC ,作NH ⊥MC 于H ,设H (0,λ, 2λ) (λ>0). ∴=(0,1-λ,-2λ), =(0,1, 2) ∵ · = 1-λ-2λ=0, ∴λ= 13 ,∴H (0, 13, 23), 可得=(0,23, - 23), 连结BH , 则=(-1,13, 23),NC∵·=0+29 - 29 =0, ∴⊥, 又MC ∩BH =H , ∴HN ⊥平面ABC , ∠NBH 为NB 与平面ABC 所成的角. 又=(-1,1,0),∴cos ∠NBH = = 4323×2 =63. 考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断. 典型例题例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.[思路启迪]设四边形一边AD ,然后写出六棱柱体积,利用均值不等式,求出体积取最值时AD 长度即可.解答过程:如图(2)设AD =a ,易知∠ABC =60°,且∠ABD =30°⇒AB =3a . BD =2a ⇒正六棱柱体积为V .V =a a 360sin 212162⋅︒⋅⋅⋅)-(=a a ⋅22129)-(=a a a 4)21)(21(89--≤33289)(⋅ . 当且仅当 1-2a =4a ⇒ a =61时,体积最大,此时底面边长为1-2a =1-2×61=32.∴ 答案为61.例13 .如图左,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将△ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的度数为( )A CDEFGHI J(A 、B 、C )DFGHIJA 、90°B 、60°C 、45°D 、0°[思路启迪] 画出折叠后的图形,可看出GH ,IJ 是一对异面直线,即求异面直线所成角. 过点D 分别作IJ 和GH 的平行线,即AD 与DF ,所以 ∠ADF 即为所求. 因此GH 与IJ 所成角为60°,答案:B 例14.长方体ABCD -A 1B 1C 1D 1中,① 设对角线D 1B 与自D 1出发的三条棱分别成α、β、γ角求证:cos 2α+cos 2β+cos 2γ=1② 设D 1B 与自D 1出发的三个面成α、β、γ角,求证: cos 2α+cos 2β+cos 2γ=2[思路启迪] ①因为三个角有一个公共边即D 1B ,在构造 的直角三角形中,角的邻边分别是从长方体一个顶点出 发的三条棱,在解题中注意使用对角线长与棱长的关系 ③ 利用长方体性质,先找出α,β,γ,然后利用各边 ④ 所构成的直角三角形来解.解答过程:①连接BC 1,设∠BD 1C 1=α,长方体三条棱 长分别为a ,b ,c ,设D 1B =l则cos 2α=22l a 同理cos 2β=22l b ,cos 2γ=22lc∴cos 2α+cos 2β+cos 2γ=2222l+c +b a =1 ②连接D 1C ,∵ BC ⊥平面DCC 1D 1 ∴∠BD 1C 即是D 1B 与平面DCC 1D 1所成的角,不妨设∠BD 1C =α,则cos 2α=222+l b a 同理:cos 2β=222l+c b ,cos 2γ=222l ac +. 又∵l 2=a 2+b 2+c 2.ABCAD A 1B 1C 1D 1∴cos 2α+cos 2β+cos 2γ=2222)2l+c +b (a =2. 考点9.简单多面体的侧面积及体积和球的计算棱柱侧面积转化成求矩形或平行四边形面积,棱柱侧面积转化成求三角形的面积. 直棱柱体积V 等于底面积与高的乘积. 棱锥体积V 等于31Sh 其中S 是底面积,h 是棱锥的高. 典型例题例15. 如图,在三棱柱ABC -A 1B 1C 1中,AB =2a ,BC =CA =AA 1=a , A 1在底面△ABC 上的射影O 在AC 上 ① 求AB 与侧面AC 1所成角;② 若O 恰好是AC 的中点,求此三棱柱的侧面积. [思路启迪] ①找出AB 与侧面AC 1所成角即是∠CAB ;②三棱锥侧面积转化成三个侧面面积之和,侧面BCC 1B 1是正方形,侧面ACC 1A 1和侧面ABB 1A 1是平行四边形,分别求其面积即可. 解答过程:①点A 1在底面ABC 的射影在AC 上, ∴ 平面ACC 1A 1⊥平面ABC .在△ABC 中,由BC =AC =a ,AB =2a . ∴ ∠ACB =90°,∴ BC ⊥AC . ∴ BC ⊥平面ACC 1A 1.即 ∠CAB 为AB 与侧面AC 1所成的角在Rt △ABC 中,∠CAB =45°. ∴ AB 与侧面AC 1所成角是45°.② ∵ O 是AC 中点,在Rt △AA 1O 中,AA 1=a ,AO =21a . ∴ AO 1=23a . ∴ 侧面ACC 1A 1面积S 1=2123a =AO AC ⋅. 又BC ⊥平面ACC 1A 1 , ∴ BC ⊥CC 1.又BB 1=BC =a ,∴ 侧面BCC 1B 1是正方形,面积S 2=a 2.A 1B 1C 1AB CDO过O 作OD ⊥AB 于D ,∵ A 1O ⊥平面ABC , ∴A 1D ⊥AB . 在Rt △AOD 中,AO =21a ,∠CAD =45° ∴ OD =42a 在Rt △A 1OD 中,A 1D =222122342)+()(=a a O +A OD =a 87. ∴ 侧面ABB 1A 1面积S 3=a a D =A AB 8721⋅⋅=227a . ∴ 三棱柱侧面积 S =S 1+S 2+S 3=273221a )++(. 例16. 等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所成的二面角为30°,则四棱锥A —MNCB 的体积为 ( ) A 、23B 、23C 、3D 、3[思路启迪]先找出二面角平面角,即∠AKL ,再在△AKL 中求出棱锥的高h ,再利用V =31Sh 即可. 解答过程:在平面图中,过A 作AL ⊥BC ,交MN 于K ,交BC 于L .则AK ⊥MN ,KL ⊥MN . ∴ ∠AKL =30°.则四棱锥A —MNCB 的高h =︒⋅30sin AK =23. KL ⋅242S MNCB +==33⋅. ∴ 233331V MNCB A ⋅⋅=-=23. ∴ 答案 A例17.如图,四棱锥P —ABCD 中,底面是一个矩形,AB =3,ADABCMNKLABC MNKLP=1,又PA ⊥AB ,PA =4,∠PAD =60° ① 求四棱锥的体积;② 求二面角P -BC -D 的大小.思路启迪①找棱锥高线是关键,由题中条件可设△PAD 的高PH 即是棱锥的高. ②找出二面角平面角∠PEH ,在Rt △PHE 中即可求出此角. 解答过程:①∵ PA ⊥AB ,AD ⊥AB . ∴ AB ⊥面PAD .又AB ⊂面ABCD . ∴ 面PAD ⊥面ABCD .在面PAD 内,作PH ⊥AD 交AD 延长线于H . 则PH ⊥面ABCD ,即PH 就是四棱锥的高. 又∠PAD =60°,∴ PH = 3223460sin ==⋅︒⋅PA . ∴ 32321331S 31V ABCD ABCD P ===-⋅⨯⋅⋅⋅PH . ② 过H 作HE ⊥BC 交BC 延长线于E ,连接PE , 则HE =AB =3.∵ PH ⊥面ABCD , ∴ PE ⊥BC . ∴ ∠PEH 为二面角P -BC -D 的平面角. ∴ tan ∠PEH =332=HE PH . 即二面角的大小为 arctan332. 例18 .(2006年全国卷Ⅱ)已知圆O 1是半径为R 的球O 的一个小圆,且圆O 1的面积与球O 的表面积的比值为92,则线段OO 1与R 的比值为 . 命题目的:①球截面的性质;②球表面积公式. 过程指引:依面积之比可求得Rr,再在Rt △OO 1A 中即得 解答过程:设小圆半径为r ,球半径为R则92422=Rr ππ ⇒ 92422=R r ⇒ 322=R r∴ cos ∠OAO 1=322=R r 而31981sin 1=-==αR OO 故填31 【专题训练】 一、选择题1.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在BB 1上,且BD =1,若AD 与侧面AA 1CC 1所成的角为α,则α的值为 ( ) A.3π B. 4πC. 410arctanD. 46arcsin2.直线a 与平面α成θ角,a 是平面α的斜线,b 是平面α内与a 异面的任意直线,则a 与b 所成的角( )A. 最小值θ,最大值θπ-B. 最小值θ,最大值2πC. 最小值θ,无最大值D. 无最小值,最大值4π3.在一个︒45的二面角的一平面内有一条直线与二面角的棱成︒45角,则此直线与二面角的另一平面所成的角为( )A. ︒30B. ︒45C. ︒60D. ︒904.如图,直平行六面体ABCD -A 1B 1C 1D 1的棱长均为2,︒=∠60BAD ,则对角线A 1C 与侧面DCC 1D 1所成的角的正弦值为( ) A.21B. 23C.22 D. 435.已知在ABC ∆中,AB =9,AC =15,︒=∠120BAC ,它所在平面外一点P 到ABC ∆三B ACD D 1 C 1B 1A 1CBA1A1B 1C DABCDEA 1B 1C 1顶点的距离都是14,那么点P 到平面ABC ∆的距离为( )A. 13B. 11C. 9D. 76.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( )A.29B. 3C.556 D. 2 7.将︒=∠60QMN ,边长MN =a 的菱形MNPQ 沿对角线NQ 折成︒60的二面角,则MP 与NQ 间的距离等于( )A.a 23 B. a 43C. a 46D.a 43 8.二面角βα--l 的平面角为︒120,在α内,l AB ⊥于B ,AB =2,在β内,l CD ⊥于D ,CD =3,BD =1, M 是棱l 上的一个动点,则AM +CM 的最小值为( )A. 52B. 22C.26 D. 629.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a , 动点P 在线段AB 上, 动点Q 在线段CD 上,则P 与Q 的最短距离为( )A.a 21B. a 22C. a 23D.a 10.在一个正四棱锥,它的底面边长与侧棱长均为a ,现有一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为( )A. a )62(+B.a 262+ C. a )31(+ D. a 231+ 11.已知长方体ABCD -A 1B 1C 1D 1中,A 1A =AB =2,若棱AB 上存在点P ,使PC P D ⊥1,则棱AD 的长的取值范围是 ( )A. (]1,0B. (]2,0C. (]2,0D. (]2,112.将正方形ABCD 沿对角线AC 折起,使点D 在平面ABC 外,则DB 与平面ABC 所成的角一定不等于( )ED 1A 1C 1B 1ADB AD 1C 1B 1A 1M NA. ︒30B. ︒45C. ︒60D. ︒90二、填空题1.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则下列四个命题:① E 到平面ABC 1D 1的距离是21; ② 直线BC 与平面ABC 1D 1所成角等于︒45; ③ 空间四边形ABCD 1在正方体六个面内的射影围成面积最小值为21; ④ BE 与CD 1所成的角为1010arcsin2.如图,在四棱柱ABCD ---A 1B 1C 1D 1中,P 是A 1C 1上的动点,E 为CD 上的动点,四边形ABCD 满 足___________时,体积AEB P V -恒为定值(写上你认为正确的一个答案即可)3.边长为1的等边三角形ABC 中,沿BC 边高线AD折起,使得折后二面角B -AD -C 为60°,则点A 到 BC 的距离为_________,点D 到平面ABC 的距离 为__________.4.在水平横梁上A 、B 两点处各挂长为50cm 的细绳,AM 、BN 、AB 的长度为60cm ,在MN 处挂长为60cm 的木条,MN 平行于横梁,木条的中点为O ,若木条 绕过O 的铅垂线旋转60°,则木条比原来升高了 _________.5.多面体上,位于同一条棱两端的顶点称为相邻的.如图正方体的一个顶点A 在α平面内.其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别是1、2和4. P 是正方体其余四个顶点中的一个,则P 到平面α的距离可能是: ①3;②4;③5;④6;⑤7. 以上结论正确的为 .•O 1•ABDCPEA 1D 1C 1B 1。