千题百炼——高中数学100个热点问题(三):第96炼 平面几何

合集下载

千题百炼——高中数学100个热点问题(三):第90炼 取球问题

千题百炼——高中数学100个热点问题(三):第90炼 取球问题

第90炼 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。

2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。

5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。

二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。

第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率 解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5XB ⎛⎫⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。

中学平面几何竞赛练习题及答案

中学平面几何竞赛练习题及答案

中学平面几何竞赛练习题及答案1.两线平行与垂直的证明(1)利用两线平行与垂直的判定定理。

(2)利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。

(3)利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。

2.线段或角的和差倍分的证明(1)转化为相等问题。

如要证明a=b±c,可以先作出线段p=b±c,再去证明a=p,即所谓“截长补短”,角的问题仿此进行。

(2)直接用已知的定理。

例如:中位线定理,Rt△斜边上的中线等于斜边的一半;△的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。

3.线段或角相等的证明(1)利用全等△或相似多边形;(2)利用等腰△;(3)利用平行四边形;(4)利用等量代换;(5)利用平行线的性质或利用比例关系(6)利用圆中的等量关系等。

【竞赛例题剖析】【例1】∠ABC的顶点B在⊙O外,BA、BC均与⊙O相交,过BA与圆的交点K引∠ABC 平分线的垂线,交⊙O于P,交BC于M。

求证:线段PM为圆心到∠ABC平分线距离的2倍。

【分析】若角平分线过O,则P、M重合,PM=0,结论显然成立。

若角平分线不过O,则延长DO至D‘,使OD’=OD,则只需证DD‘=PM。

连结D’P、DM,则只需证DMPD‘为平行四边形。

过O作m⊥PK,则DD’,K P,∴∠D‘PK=∠DKPBL平分∠ABC,MK⊥BL→BL为MK的中垂线→∠DKB=∠DMK∴∠D’PK=∠DMK,∴D‘P∥DM。

而D’ D∥PM,∴DMPD‘为平行四边形。

【例2】在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。

【分析】方法1、结合中线和角平分线的性质,考虑用比例证明平行。

倍长中线:延长AM至M’,使AM=MA‘,连结BA’,如图6-1。

PQ∥AB←←←←∠A‘BQ=180°-(∠HBA+∠BAH+∠CAP)= 180°-90°-∠CAP=90°-∠BAP=∠ABQ方法2、结合角平分线和BH⊥AH联想对称知识。

千题百炼——高中数学100个热点问题(三):第85炼 几何概型

千题百炼——高中数学100个热点问题(三):第85炼 几何概型

ADF − BCE 内自由飞翔,由它飞入几何体 F − AMCD 内的概率为
第十一章
第 85 炼 几何概型
概率
随机
A.
3 4
B.
2 3
C.
1 3
D.
1 2
视图可得 可 得
思路:所求概率为棱锥 F − AMCD 的体积 棱柱 ADF − BCE 体积的比值。由
AD = DF = CD = a VADF − BCE = S ADF ⋅ DC = S ADCM =
答案:D


AD, DF , CD





1 1 1 AD ⋅ DF ⋅ DC = a 3 ,棱锥体积 VF − AMCD = DF ⋅ S ADMC ,而 2 2 3
1 3 1 V 1 AD ⋅ ( AM + CD ) = a 2 ,所以 VF − AMCD = a 2 。从而 P = F − AMCD = 2 4 4 VADF − BCE 2
第十一章
第 85 炼 几何概型
概率
随机
第 85 炼 几何概型
一 1 基础知识: 几何概型: 个 件发生的概率只 构成该 件区域的长度 面 为几何概型 或体 成比例, 这样的概
率模型为几何概率模型,简 2
对于一项试验,如果符合以 原 : 1 基本 件的个数为无限多个 2 基本 件发生的概率相同 通过建立几何模型,利用几何概型计算 件的概率
在题目 述中,判断是否运用几何概型处理,并确定题目中所用 个数确定几何模型:通常 →平面直角坐标系, 个 的个数 几何模型的 度相等:一个 →空间直角坐标系
→数轴,两个 2 类问题
从而将问题转化成为第

千题百炼- 立体几何综合小题必刷100题(原卷版)

千题百炼- 立体几何综合小题必刷100题(原卷版)

专题19 立体几何综合小题必刷100题任务一:善良模式(基础)1-30题一、单选题1.已知正四棱锥的底面边长和侧棱长均为2,则该正四棱锥的体积为( )A B .C D .2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列说法正确的是( ) A .若//m n ,n ⊂α,则//m αB .若//m α,n ⊂α,则//m nC .若m α⊂,n β⊂,//m n ,则//αβD .若//αβ,m α⊂,则//m β3.如图,空间四边形OABC 中,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,MN xOA yOB zOC =++,则x ,y ,z 的值分别为( )A .12,23-,12B .23-,12,12C .12,12,23-D .23,23,12-4.已知α,β,γ是三个不同的平面,m ,n 是两条不同的直线,下列命题为真命题的是( ) A .若//m α,//m β,则//αβB .若//m α,//n α,则//m nC .若m α⊥,n α⊥,则//m nD .若αγ⊥,βγ⊥,则//αβ5.已知四棱锥P ABCD -的正视图和侧视图均为边长为2(单位:cm )的正三角形,俯视图为正方形,则该四棱锥的体积(单位:3cm )是( )A .83BCD .436.在正方体1111ABCD A B C D -中,则直线1A D 与直线AC 所成角大小为( )A .30B .45C .60D .907.正方体1111ABCD A B C D -的棱长为2,P 为侧面11ABB A 内动点,且满足1PD △PBC 面积的最小值为( )A .1B C .2 D .2 8.在直三棱柱111ABC A B C -中,90ACB ∠=︒.1D 、1E 分别是11A B 、11A C 的中点,1CA CB CC ==,则1AE 与1BD 所成角的余弦值为( )A B C D9.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,则以下结论错误的是( )A .BD ∥平面CB 1D 1 B .AD ⊥平面CB 1D 1C .AC 1⊥BDD .异面直线AD 与CB 1所成的角为45°10.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且//a b ,则实数m 的值等于( )A .32B .-2C .0D .32或-2 11.正方体ABCD ­­A 1B 1C 1D 1中,E ,F 分别是线段BC ,CD 1的中点,则直线A 1B 与直线EF 的位置关系是( )A .相交B .异面C .平行D .垂直12.已知直三棱柱111ABC A B C -中,60ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A B .0 C D13.把一个皮球放入如图所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A .cmB .10 cmC .cmD .30 cm14.一种特殊的四面体叫做“鳖臑”,它的四个面均为直角三角形.如图,在四面体P -ABC 中,设E ,F 分别是PB ,PC 上的点,连接AE ,AF ,EF (此外不再增加任何连线),则图中直角三角形最多有( )A .6个B .8个C .10个D .12个15.在四棱锥P ABCD -中,底面是边长为4的正方形,且2,PA PB PD ===,则四棱锥外接球的表面积为( )A .4πB .8πC .36πD .144π二、多选题16.给出下列命题,其中正确的有( )A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .已知空间向量(1,0,1)a =,(2,1,2)b =-,则//a bD .已知空间向量(1,0,1)a =,(2,1,2)b =-,则向量a 在向量b 上的投影向量的坐标是848,,999⎛⎫- ⎪⎝⎭17.如图,正方体1111ABCD A B C D -的棱长为4,以下结论正确的是( )A .直线1B D 与1BC 是异面直线B .直线1A D 与1BC 平行C .直线1BD 与1BD 垂直D .三棱锥11A BC D -的体积为64318.如图,正方体1111ABCD A B C D -的棱长为1,点P 是棱1CC 上的一个动点(包含端点),则下列说法正确的是( )A .存在点P ,使//DP 面11AB DB .二面角1P BB D --的平面角大小为60︒C .1PB PD +D .P 到平面11AB D19.已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面.下列说法中正确的是( ) A .若//m α,m β⊂,a n β⋂=,则//m n B .若//m n ,//m α,则//n α C .若a n β⋂=,αβ⊥,βγ⊥,则n γ⊥ D .若m α⊥,m β⊥,//αγ,则//βγ20.在下列条件中,不能使M 与A ,B ,C 一定共面的是( )A .OM =2OA -OB -OC ;B .111532OM OA OB OC =++; C .0MA MB MC ++=;D .OM +OA +OB +OC =0;21.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .22.设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则( )A .该正方体的核长为2B .该正方体的体对角线长为3C 1D .空心球的外球表面积为(12π+23.在正三棱柱111ABC A B C -中,1AB =,12AA =,1BC 与1B C 交于点F ,点E 是线段11A B 上的动点,则下列结论正确的是( )A .1111222AF AB AC AA =++ B .存在点E ,使得AF BE ⊥C .三棱锥B AEF -D .直线AF 与平面11BCC B第II 卷(非选择题)三、填空题24.已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、BC 的中点,则三棱锥N ­DMC 1的体积为___________.25.已知正三棱锥的底面边长是6,侧棱与底面所成角为60︒,则此三棱锥的体积为__.26.如图,在直三棱柱111ABC A B C -中,∠ACB =90°,11AA AC BC ===,则异面直线1A B 与AC 所成角的余弦值是__________________.27.已知圆台上底半径为1,下底半径为3,高为2,则此圆台的外接球的表面积为______.28.如图,已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,侧棱1AA 长为3,且11120A AB A AD ∠=∠=︒,则1AC =__.29.如图,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2OM MA =,N 为BC 的中点,则用向量,,a b c 表示向量MN =________.30.已知四棱锥P﹣ABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且P A⊥平面ABCD.若四棱锥P﹣ABCD的体积为163,则球O的表面积为___________.任务二:中立模式(中档)1-40题一、单选题1.在三棱锥P -ABC 中,3APB BPC CPA π∠∠∠===,△P AB ,△P AC ,△PBC 的面积分别记为123,,S S S ,且123322S S S === )A BC D 2.在立体几何探究课上,老师给每个小组分发了一个正四面体的实物模型,同学们在探究的过程中得到了一些有趣的结论.已知直线//AD 平面α,直线//BC 平面α,F 是棱BC 上一动点,现有下列三个结论:⊥若,M N 分别为棱,AC BD 的中点,则直线//MN 平面α;⊥在棱BC 上存在点F ,使AF ⊥平面α;⊥当F 为棱BC 的中点时,平面ADF ⊥平面α.其中所有正确结论的编号是( )A .⊥B .⊥⊥C .⊥⊥D .⊥⊥3.已知圆台上底面半径为3,下底面半径为4,高为7,若点A 、B 、C 在下底面圆的圆周上,且AB BC ⊥,点Р在上底面圆的圆周上,则222PA PB PC ++的最小值为( )A .246B .226C .208D .1984.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和,例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为π2π3π3-⨯=,故其总曲率为4π,则四棱锥的总曲率为( )A .2πB .4πC .5πD .6π5.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且EF A BEF -的体积为( )A .112B .14 C D .不确定6.如图已知正方体1111ABCD A B C D -,点M 是对角线1AC 上的一点且1AM AC λ=,()0,1λ∈,则()A .当12λ=时,1AC ⊥平面1A DMB .当12λ=时,//DM 平面11CB DC .当1A DM 为直角三角形时,13λ=D .当1A DM 的面积最小时,13λ=7.如图所示,已知空间四边形的每条边和对角线长都等于a ,点E 、F 、G 分别为AB 、AD 、DC 的中点,则a 2等于( )A .2BA •ACB .2AD •BDC .2FG •CAD .2EF •BC8.如图一,矩形ABCD 中,2BC AB =,AM BD ⊥交对角线BD 于点O ,交BC 于点M .现将ABD △沿BD 翻折至A BD '的位置,如图二,点N 为棱A D '的中点,则下列判断一定成立的是( )A .BD CN ⊥B .AO '⊥平面BCDC .//CN 平面A OM 'D .平面A OM '⊥平面BCD9.点M 是棱长为3的正方体1111ABCD A B C D -中棱AB 的中点,12CN NC =,动点P 在正方形11AA D D (包括边界)内运动,且1//PB 平面DMN ,则PC 的长度范围为( )A .B .⎣C .D .⎣10.如图,在正方体1111ABCD A B C D -中,点M 在线段1BC (不包含端点)上运动,则下列判断中正确的是( )①1//A M 平面1ACD ; ②异面直线1A M 与1AD 所成角的取值范围是,32ππ⎛⎤⎥⎝⎦;③AC ⊥平面11MB D 恒成立; ④三棱锥1D AMC -的体积不是定值. A .①③ B .①② C .①②③ D .②④11.在四面体S ABC -中,SA ⊥平面ABC ,6BAC π∠=,SB =4,2SC SA ==,则该四面体的外接球的表面积是( )A .253πB .100πCD .20π12.已知圆锥SO 的母线长为 )A .B .24C .36πD .4813.如图,四棱锥P ABCD -的底面为矩形,PD ⊥底面ABCD ,1AD =,2PD AB ==,点E 是PB 的中点,过A ,D ,E 三点的平面α与平面PBC 的交线为l ,则下列结论中正确的有( )(1)//l 平面PAD ;(2)//AE 平面PCD ;(3)直线PA 与l (4)平面α截四棱锥P ABCD -所得的上、下两部分几何体的体积之比为35.A .1个B .2个C .3个D .4个14.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且PAD △是边长为2的正三角形,ABCD 是正方形,则四棱锥P ABCD -外接球的表面积为( )A .293π B .643π C .263π D .283π15.已知在正四面体ABCD 中,E 是AD 的中点,P 是棱AC 上的一动点,BP +PE 四面体内切球的体积为( )A B .13πC . D16.在棱长为2的正方体1111ABCD A B C D -中,点E ,F ,G ,H 分别为棱AB ,BC ,11C D ,11A D 的中点,若平面//α平面EFGH ,且平面α与棱11A B ,11B C ,1B B 分别交于点P ,Q ,S ,其中点Q 是棱11B C 的中点,则三棱锥1B PQS -的体积为( ) A .1B .12C .13D .1617.已知球O ,过其球面上A ,B ,C 三点作截面,若点O 到该截面的距离是球半径的一半,且2AB BC ==,120B ∠=︒,则球O 的表面积为( )(注:球的表面积公式24)S r π=A .643π B .83πC .323π D .169π18.如图,在正三棱柱ABC ­A 1B 1C 1中,AC =CC 1,P 是A 1C 1的中点,则异面直线BC 与AP 所成角的余弦值为( )A .0B .13C D19.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h 、2h 、3h ,则123::h h h =( )A.2B . C 2:2 D 6:620.如图,二面角l αβ--的大小是60︒,线段AB α⊂.B l ∈,AB 与l 所成的角为30.直线AB 与平面β所成的角的正弦值是( )A B C D二、多选题21.如图,已知正方体1111ABCD A B C D -,则四个推断正确的是( )A .111AC AD ⊥B .11AC BD ⊥C .平面11//A C B 平面1ACD D .平面11A C B ⊥平面11BB D D22.正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为11,,BC CC BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为92D .点C 到平面AEF 的距离为2323.正四棱锥P ABCD -的所有棱长为2,用垂直于侧棱PC 的平面α截该四棱锥,则( ) A .截面可以是三角形B .PA 与底面ABCD 所成的角为60︒C .PA 与底面ABCD 所成的角为45︒D .当平面α经过侧棱PC 中点时,截面分四棱锥得到的上下两部分几何体体积之比为3:124.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,下列说法正确的是( )A .三棱锥E BCD -B .三棱锥E BCD -C .存在某个位置,使得AE BD ⊥D .设二面角D ABE --的平面角为θ,且0θπ<<,则DAE θ<∠25.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中不正确的是( )A .1AC =B .BD ⊥平面1ACCC .向量1B C 与1AA 的夹角是60°D .直线1BD 与AC26.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为60C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为D .设正方体棱长为1,则过点E ,F ,A27.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M ,N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.则下列结论中正确的有( )A .当12a =时,ME 与CN 相交 B .MN 始终与平面BCE 平行 C .异面直线AC 与BF 所成的角为45︒D .当a =MN28.(多选)如图,ABCD ­A 1B 1C 1D 1为正方体,下面结论正确的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°29.已知四边形ABCD 为正方形,GD ⊥平面ABCD ,四边形DGEA 与四边形DGFC 也都为正方形,连接EF ,FB ,BE ,H 为BF 的中点,则下列结论正确的是( ) A .DE ⊥BFB .EF 与CH 所成角为3π C .EC ⊥平面DBFD .BF 与平面ACFE 所成角为4π30.下图中正方体1111ABCD A B C D -边长为2,则下列说法正确的是( )A .平面1C BD ⊥平面1A BDB .正方体1111ABCD A BCD -外接球与正四面体11A DBCC .正四面体11A DBCD .四面体1A ADB第II 卷(非选择题)三、填空题31.空间四面体ABCD 中,2AB CD ==,3AD BC ==,BD =BD 和AC 所成的角为3π,则该四面体的外接球的表面积为 __.32.如图,A 、B 、C 、D 、P 是球O 上5个点,ABCD 为正方形,球心O 在平面ABCD 内,PB PD =,2PA PC =,则P A 与CD 所成角的余弦值为______.33.已知圆锥、圆柱的底面半径和体积都相等,则它们的轴截面的面积之比的比值是___________34.中国有悠久的金石文化,印信是金石文化的代表之一.下左图是南北朝官员独孤信的印信,它是由正方形和正三角形围成.右图是根据这只印信作出的直观图,直观图的所有顶点都在一正方体的表面上(如果一个正八边形的八个顶点都在这个正方体同一个侧面的四条棱上,那么这个八边形的边长就等于这个直观图的棱长).__________.35.如图,在直三棱柱111ABC A B C -中,2BAC π∠=,11AB AC AA ===,已知G 与E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的平方取值范围为__________.36.如图,在长方体1111ABCD A B C D -中,已知1AA =M ,N 分别在棱DA ,DC 上.二面角1D MN D --的大小为30°.若三棱锥1D DMN -,则三棱锥1D DMN -的外接球的表面积为___________.37.异面直线a 、b 所成角为3π,直线c 与a 、b 垂直且分别交于A 、B ,点C 、D 分别在直线a 、b 上,若1AC =,2AB =,3BD =,则CD =________.38.已知四棱锥S ﹣ABCD 的底面是边长为4的正方形,SD ⊥面ABCD ,点M 、N 分别是AD 、CD 的中点,P 为SD 上一点,且SD =3PD =3,H 为正方形ABCD 内一点,若SH ∥面PMN ,则SH 的最小值为__.39.如图,在ABC 中,AB AC ==1cos 3BAC ∠=-,D 是棱BC 的中点,以AD 为折痕把ACD △折叠,使点C 到达点C '的位置,则当三棱锥C ABD '-体积最大时,其外接球的表面积为___________.40.在如图所示的实验装置中,正方形框架的边长都是1,且平面ABCD ⊥平面ABEF ,活动弹子,M N 分别在正方形对角线,AC BF 上移动,若CM BN =,则MN 长度的最小值为__________.任务三:邪恶模式(困难)1-30题一、单选题1.已知四面体ABCD M ,N 分别为棱AD ,BC 的中点,F 为棱AB 上异于A ,B 的动点.有下列结论: ①线段MN 的长度为1;②若点G 为线段MN 上的动点,则无论点F 与G 如何运动,直线FG 与直线CD 都是异面直线;③MFN ∠的余弦值的取值范围为;④FMN 1. 其中正确结论的为( ) A .①② B .②③C .③④D .①④2.已知三棱锥P ABC -,其中PA ⊥平面ABC ,2PA =,2AB AC ==,2BAC π∠=.已知点Q 为棱PA(不含端点)上的动点,若光线从点Q 出发,依次经过平面PBC 与平面ABC 反射后重新回到点Q ,则光线经过路径长度的取值范围为( )A .(1B .)4C .4⎫⎪⎭D .(3.如图,已知锐二面角l αβ--的大小为1θ,A α∈,B β∈,M l ∈,N l ∈,AM l ⊥,BN l ⊥,C ,D 为AB ,MN 的中点,若AM MN BN >>,记AN ,CD 与半平面β所成角分别为2θ,3θ,则( )A .122θθ<,132θθ<B .122θθ<,132θθ>C .122θθ>,132θθ<D .122θθ>,132θθ>4.在棱长为2的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的点(点M 与1A C 、不重合),有以下四个结论:⊥存在点M ,使得平面1A DM ⊥平面1BC D ; ⊥存在点M ,使得//DM 平面11B D C ;⊥若1A DM 的周长为L ,则L⊥若1A DM 的面积为S ,则S ∈⎝. 则正确的结论为( ) A .⊥⊥ B .⊥⊥⊥C .⊥⊥⊥D .⊥⊥5.在棱长为1的正方体1111ABCD A B C D -中,点P 是正方体棱上一点,若满足1PB PC d +=的点P 的个数为4,则d 的取值范围为( )A .)2B .C .2,1⎡⎣D .(16.在三棱锥D ABC -中,222AD AB AC BC ===,点A 在面BCD 上的投影G 是BCD △的垂心,二面角G AB C --的平面角记为α,二面角G BC A --的平面角记为β,二面角G CD A --的平面角记为γ,则( )A .αβγ>>B .αγβ>>C .βγα>>D .γβα>>7.已知正方体1111ABCD A B C D -的棱长为1,E 是1AA 的中点,F 是棱BC 上一点(不包括端点),则下列结论错误的是( )A .三棱锥11CB EF -的体积为定值16B .存在点F ,使得直线EF 与直线1CD 相交C .当F 是棱BC 的中点时,直线EF 与直线1CD 所成的角为π6D .平面1D EF 截正方体所得的截面是五边形8.如图,在等边三角形ABC 中,,D E 分别是线段,AB AC 上异于端点的动点,且BD CE =,现将三角形ADE 沿直线DE 折起,使平面ADE ⊥平面BCED ,当D 从B 滑动到A 的过程中,则下列选项中错误的是( )A .ADB ∠的大小不会发生变化 B .二面角A BDC --的平面角的大小不会发生变化 C .BD 与平面ABC 所成的角变大 D .AB 与DE 所成的角先变小后变大9.蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动.如图所示,已知某“鞠”的表面上有四个点A ,B ,C ,D 满足10cm AB BC CD DA DB =====,15cm AC =,则该“鞠”的表面积为( )A .2350cm 3πB .2700cm 3πC .2350cm πD 210.已知在Rt ABC △中,斜边2AB =,1BC =,若将Rt ABC △沿斜边AB 上的中线CD 折起,使平面ACD ⊥平面BCD ,则三棱锥A BCD -的外接球的表面积为( )A .13π3B .20π3C .10π3 D .7π311.如图,在长方体1111ABCD A B C D -中,3AB =,5AD =,14AA =,点F 是1AA 的中点,点E 为棱BC 上的动点,则平面1C EF 与平面11ABB A 所成的锐二面角正切的最小值是( )A .513BC D .13512.已知正方体1111ABCD A B C D -的棱长为M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB内,且三角形PMN 的面积PMN S =△P 的轨迹长度为( )A B C D13.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C D14.如图,等腰直角ABC 中,2AC BC ==,点P 为平面ABC 外一动点,满足PB AB =,2PBA π∠=,给出下列四个结论:①存在点P ,使得平面PAC ⊥平面PBC ; ②存在点P ,使得平面PAC ⊥平面PAB ; ③设PAC △的面积为S ,则S 的取值范围是(]0,4;④设二面角A PB C --的大小为α,则α的取值范围是π0,4⎛⎤⎥⎝⎦.其中正确结论是( ) A .①③ B .①④C .②③D .②④15.已知AB 、CD 是圆O 的两条直径,且60AOC ∠=︒,如图1,沿AB 折起,使两个半圆面所在的平面垂直,折到点D 位置,如图2.设直线BD '与直线OC 所成的角为θ,则( )A .90BD C '∠=︒且60θ>︒B .90BDC '∠=︒且60θ≤︒ C .90BD C '∠≠︒且60θ>︒ D .90BD C '∠≠︒且60θ≤︒二、多选题16.如图,底面ABCD 为边长是4的正方形,半圆面APD ⊥底面ABCD .点P 为半圆弧AD (不含A ,D 点)一动点.下列说法正确的是( )A .三梭锥P —ABD 的每个侧面三角形都是直角三角形B .三棱锥P —ABD 体积的最大值为83C .三棱锥P —ABD 外接球的表面积为定值32πD .直线PB 与平面ABCD17.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则( ) A .若112BF BC BD →→→⎛⎫=+ ⎪⎝⎭,则三棱锥的11-F B CC 的外接球表面积为4π B .若1//B F 平面1A BD ,则1B F 不可能垂直1CD C .若1C F ⊥平面1A CF ,则点F 的位置唯一D .若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半18.为弘扬中华民族优秀传统文化,某学校组织了《诵经典,获新知》的演讲比赛,本次比赛的冠军奖杯由一个铜球和一个托盘组成,如图⊥,已知球的体积为43π,托盘由边长为4的正三角形铜片沿各边中点的连线垂直向上折叠而成,如图⊥.则下列结论正确( )A .经过三个顶点,,ABC 的球的截面圆的面积为4π B .异面直线AD 与CF 所成的角的余弦值为58C .多面体ABCDEF 的体积为94D .球离球托底面DEF 119.已知边长为a 的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,下列说法正确的是( )A .在翻折的过程中,直线AD ,BC 始终不可能垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38aC .在翻折过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(14a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '20.如图,ABC 是由具有公共直角边的两块直角三角板组成的三角形,4CAD π∠=,3BCD π∠=.现将Rt ACD △沿斜边AC 翻折成△11(D AC D 不在平面ABC 内).若M ,N 分别为BC 和1BD 的中点,则在ACD △翻折过程中,下列结论正确的是( )A .//MN 平面1ACDB .1AD 与BC 不可能垂直C .二面角1D AB C -- D .直线1AD 与DM 所成角的取值范围为(,)63ππ21.已知边长为a 的菱形ABCD 中,π3ADC ∠=,将ADC 沿AC 翻折,下列说法正确的是( ) A .在翻折的过程中,直线AD ,BC 可能相互垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38aC .在翻折的过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(14a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '22.已知正方体1111ABCD A B C D -的棱长为2,O 是底面ABCD 的中心,P 是棱11B C 上一点(不与端点重合),则( )A .平面OCP 截正方体1111ABCD ABCD -所得截面一定是梯形 B .存在点P ,使得三棱锥1P ABD -的体积为23C .存在点P ,使得AP 与11CD 相交D .当P 是棱11B C 的中点时,平面OCP 截正方体1111ABCD A B C D -外接球所得截面圆的面积269π23.在四面体ABCD 中,AB AC ⊥,AC CD ⊥,直线AB ,CD 所成的角为60°,AB CD ==,4AC =,则四面体ABCD 的外接球表面积为( )A B .52π C .80π D .208π第II 卷(非选择题)三、填空题24θ,则当tan θ等于______时,侧面积最小.25.球面几何学是几何学的一个重要分支,在航海、航空、卫星定位等面都有广泛的应用,如图,A ,B ,C 是球面上不同的大圆(大圆是过球心的平面与球面的交线)上的三点,经过这三个点中任意两点的大圆的劣弧分别为,,AB BC CA ,由这三条劣弧围成的图形称为球面ABC .已知地球半径为R ,北极为点N ,P ,Q 是地球表面上的两点若P ,Q 在赤道上,且PQ =,则球面NPQ △的面积为________;若NP PQ QN R ===,则球面NPQ △的面积为________.26.如图,在矩形ABCD 中,2,4,AB BC E ==是边AD 的中点,将ABE △沿直线BE 折成A BE ∠',使得二面角A BE C '--的平面角为锐角,点F 在线段A B '上运动(包括端点),当直线CF 与平面A BE '所成角最大时,FBE 在底面ABCD 内的射影面积为___________.27.已知三棱锥A BCD -的三条侧棱两两垂直,AB 与底面BCD 成30角,P 是平面BCD 内任意一点,则AP BP的最小值是________.28.已知正方体1111ABCD A B C D -的棱长为2,点E 是棱AD 的中点,点,F G 在平面1111D C B A 内,若EF =CE BG ⊥,则FG 的最小值为_________.29.在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,得四边形1BFD E ,给出下列结论:①四边形1BFD E 有可能为梯形; ②四边形1BFD E 有可能为菱形; ③四边形1BFD E 在底面ABCD 内的投影一定是正方形; ④四边形1BFD E 有可能垂直于平面11BB D D ;⑤四边形1BFD E 其中正确结论的序号是_____________30.在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别是BC 和11C D 的中点,经过点A ,E ,F 的平面把正方体1111ABCD A B C D -截成两部分,则截面的周长为________.。

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。

千题百炼- 立体几何综合大题必刷100题(原卷版)

千题百炼- 立体几何综合大题必刷100题(原卷版)

专题20 立体几何综合大题必刷100题任务一:善良模式(基础)1-30题1.在棱长为1的正方体1111ABCD A B C D -中,E 为线段11A B 的中点,F 为线段AB 的中点.(1)求点B 到直线1AC 的距离;(2)求直线FC 到平面1AEC 的距离.2.如图,正方形11ABB A 的边长为2,11,AB A B 的中点分别为C ,1C ,正方形11ABB A 沿着1CC 折起形成三棱柱111ABC A B C -,三棱柱111ABC A B C -中,1,AC BC AD AA λ⊥=.(1)证明:当12λ=时,求证:1DC ⊥平面BCD ;(2)当14λ=时,求二面角1D BC C --的余弦值.3.如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的正切值.4.如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90.BAC ∠=︒点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ;(2)求二面角C EM N --的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE ,求线段AH 的长.5.已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的余弦值.6.如图所示,已知四棱锥P ABCD -中,四边形ABCD 为正方形,三角形PAB 为正三角形,侧面PAB ⊥底面ABCD ,M 是棱AD 的中点.(1)求证:PC BM ⊥;(2)求二面角B PM C --的正弦值.7.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.8.已知如图1所示,等腰ABC 中,4AB AC ==,BC =D 为BC 中点,现将ABD 沿折痕AD 翻折至如图2所示位置,使得3BDC π∠=,E 、F 分别为AB 、AC 的中点.(1)证明://BC 平面DEF ;(2)求四面体BCDE 的体积.9.在三棱柱ABC -A 1B 1C 1中,AB =2,BC =BB 1=4,1AC AB ==BCC 1=60°.(1)求证:平面ABC 1⊥平面BCC 1B 1:(2)设二面角C -AC 1-B 的大小为θ,求sinθ的值.10.如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,//AD BC ,∠BAD =90°,已知PA PC ==,2,3AD AB BC ===.(1)证明:AC PD ⊥;(2)若二面角P AC B --的余弦值为13,求四棱锥P ABCD -的体积.11.如图,四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 和侧面BCC 1B 1都是矩形,E 是CD 的中点,D 1E ⊥CD ,AB =2BC =2.(1)求证:平面CC 1D 1D ⊥底面ABCD ;(2)若平面BCC 1B 1与平面BED 1所成的锐二面角的大小为3π,求线段ED 1的长度.12.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAD ⊥平面ABCD ,PAD △是斜边PA 的长为E ,F 分别是棱PA ,PC 的中点,M 是棱BC 上一点.(1)求证:平面DEM ⊥平面PAB ;(2)若直线MF 与平面ABCD E DM F --的余弦值.13.如图所示,四棱锥E ABCD -的底面ABCD 是边长为2的正方形,侧面EAB ⊥底面ABCD ,EA EB =,F 在侧棱CE 上,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)求点D 到平面ACE 的距离.14.在三棱锥B -ACD 中,平面ABD ⊥平面ACD ,若棱长AC =CD =AD =AB =1,且∠BAD =30°,求点D 到平面ABC 的距离.15.如图,在长方体1111ABCD A B C D -中,1AB BC ==,12BB =,E 为棱1AA 的中点.(1)证明:BE ⊥平面11EB C ;(2)求二面角1B EC C --的大小.16.如下图,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2SA SD ==,3AB =.(1)求SA 与BC 所成角的余弦值;(2)求证:AB SD ⊥.17.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.18.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.19.如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点(I )求证BC PAC ⊥平面;(II )设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面20.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,点E 在线段AD 上,且CE AB ∥.(Ⅰ)求证:CE ⊥平面PAD ;(Ⅰ)若1==PA AB ,3AD =,CD =,45CDA ∠=︒,求四棱锥P ABCD -的体积.21.如图,直三棱柱ABC A B C '''-,90BAC ∠=,,AB AC AA λ'==点M ,N 分别为A B '和B C ''的中点. (∠)证明:MN ∠平面A ACC '';(∠)若二面角A MN C '--为直二面角,求λ的值.22.如图,在三棱锥S ABC -中, 侧面SAB 与侧面SAC 均为等边三角形,90,BAC ∠=︒O 为BC 中点. (∠)证明:SO ⊥平面;ABC(∠)求二面角A SC B --的余弦值.23.如图,在四棱锥P—ABCD 中,底面是边长为ⅠBAD =120°,且PAⅠ平面ABCD ,PA =M ,N 分别为PB ,PD 的中点.(1)证明:MNⅠ平面ABCD ;(2) 过点A 作AQⅠPC ,垂足为点Q ,求二面角A—MN—Q 的平面角的余弦值.24.如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====∠O 为AC 的中点. ∠1)证明:PO ⊥平面ABC ∠∠2)若点M在棱BC上,且2,求点C到平面POM的距离.MC MB25.如图,在三棱锥P∠ABC中,P A∠AB∠P A∠BC∠AB∠BC∠P A∠AB∠BC∠2∠D为线段AC的中点,E为线段PC上一点.(1)求证:P A∠BD∠(2)求证:平面BDE∠平面P AC∠(3)当P A∠平面BDE时,求三棱锥E∠BCD的体积.26.如图,在四棱锥P-ABCD中,PAⅠCD,ADⅠBC,ⅠADC=ⅠPAB=90°,BC=CD=1AD.2(Ⅰ)在平面PAD 内找一点M ,使得直线CMⅠ平面PAB ,并说明理由;(Ⅰ)证明:平面PABⅠ平面PBD .27.如图,在三棱台ABC–DEF 中,平面BCFEⅠ平面ABC ,ⅠACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BFⅠ平面ACFD ;(Ⅰ)求直线BD 与平面ACFD 所成角的余弦值.28.如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE 平面A 1C 1F ;(2)平面B 1DEⅠ平面A 1C 1F.29.如图,在三棱锥111ABC A B C -中,11BAC 90AB AC 2,4,A AA ∠====,在底面ABC 的射影为BC 的中点,D 为11B C 的中点.∠1)证明:11D A BC A ⊥平面∠∠2)求直线1A B 和平面11B C B C 所成的角的正弦值.30.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,,,60,AB AD AC CD ABC PA AB BC ⊥⊥∠===,E 是PC 的中点.(∠)证明CD AE ⊥;(∠)证明PD ⊥平面ABE ;--的大小.(∠)求二面角A PD C任务二:中立模式(中档)30-70题31.如图,在四棱锥P-ABCD中,底面ABCD为菱形,△P AD为正三角形,平面P AD⊥平面ABCD,E,F 分别是AD,CD的中点.(1)证明:BD⊥PF;(2)若AD=DB=2,求点C到平面PBD的距离;32.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠P AD为正三角形,平面P AD⊥平面ABCD,E,F 分别是AD,CD的中点.(1)证明:BD⊥PF;(2)若∠BAD=60°,求直线PC与平面PBD所成角的正弦值;33.如图,在四棱锥E -ABCD 中,AB ⊥CE ,AE ⊥CD ,BC AD ∥,AB =3,CD =4,AD =2BC =10.(1)证明:∠AED 是锐角;(2)若AE =10,求二面角A -BE -C 的余弦值.34.如图,在直四棱柱1111ABCD A B C D -中,12A E EA =(1)若F 为1BB 的中点,试在11A B 上找一点P ,使//PF 平面1CD E ;(2)若四边形ABCD 是正方形,且1BB 与平面1CD E ,求二面角1E D C D --的余弦值.35.如图1,已知ADE 为等边三角形,四边形ABCD 为平行四边形,1,2,BC BD BA ===ADE 沿AD 向上折起,使点E 到达点P 位置,如图2所示;且平面PAD ⊥平面PBD .(1)证明:PA BD ⊥;(2)在(1)的条件下求二面角A PB C --的余弦值.36.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,四边形ABCD 为梯形,//AB CD ,3AB =,1CD =,AD =60ABC ∠=,30BAD ∠=,点E 在AB 上,满足AD DE ⊥.(1)求证:平面PAD ⊥平面PBC ;(2)若点F 为PA 的中点,求平面PCD 与平面DEF 所成角的余弦值.37.在四棱锥P ABCD -中,PA ⊥平面ABCD ,22PA AB ==,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,E 为PD 的中点,在平面PCD 内作EF PC ⊥于点F .(1)求证:平面AEF ⊥平面PAC ;(2)求二面角P AC E --的余弦值.38.在正方体1111ABCD A B C D -中,点E 、F 分别在AB 、BC 上,且13AE AB =,13BF BC =.(1)求证:11A F C E ⊥;(2)求直线1A F 与平面1B EF 所成角的正弦值.39.如图,在多面体1111ABCD A B C D -中,1111,,,AA BB CC DD 均垂直于平面ABCD ,//AD BC ,11=2AB BC CD AA CC ====,1=1BB ,14AD DD ==.(1)证明:11A C ⊥平面11CDD C ;(2)求1BC 与平面11AA B B 所成角的余弦值.40.某商品的包装纸如图1,其中菱形ABCD 的边长为3,且60ABC ∠=︒,AE AF ==BE DF ==E ,F ,M ,N 汇聚为一点P ,恰好形成如图2的四棱锥形的包裹.(1)证明PA ⊥底面ABCD ;(2)设点T 为BC 上的点,且二面角B PA T --,试求PC 与平面P AT 所成角的正弦值.41.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,侧面PAB ⊥底面ABCD ,且P A =AB ,90PAB ∠=.(1)证明:PC BD ⊥;(2)若60ABC ∠=,求直线PC 与平面PBD 所成角的正弦值.42.1.如图,正方形ABCD 所在平面与等边ABE △所在平面成的锐二面角为60,设平面ABE 与平面CDE 相交于直线l .(1)求证://l CD ;(2)求直线DE 与平面BCE 所成角的正弦值.43.如图,在四棱锥P ABCD -中,//AD BC ,AB AD ⊥,平面APD ⊥平面ABCD ,点E 在AD 上,且AB BC AE ED ===,PA PD ==.(1)求证:CE PD ⊥.(2)设平面PAB ⋂平面PCD l =,求二面角E l A --的余弦值.44.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ADC =∠︒,4BC =,M ,N 分别为BC ,PC 的中点,1,,CD PD DC PM MD =⊥⊥.(1)证明:BC PM ⊥;(2)若PA =BN 与平面PDC 所成角的正弦值.45.如图,已知点P 在圆柱1OO 的底面圆O 上,120AOP ∠=,圆O 的直径4AB =,圆柱的高13OO =.(1)求点A到平面1A PO的距离;--的余弦值大小.(2)求二面角1A PB O46.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=AA1=2,点P为棱B1C1的中点,点Q为线段A1B上的一动点.(1)求证:当点Q为线段A1B的中点时,PQ⊥平面A1BC;BA,试问:是否存在实数λ,使得平面A1PQ与平面B1PQ(2)设BQ=λ1在,求出这个实数λ;若不存在,请说明理由.47.如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90ABC ∠=︒,2PA =,AC =(1)求证:平面PBC ⊥平面PAB ;(2)若二面角P BC A --的大小为45︒,过点A 作AN PC ⊥于N ,求直线AN 与平面PBC 所成角的大小.48.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2PA AB ==,60BAD ∠=︒.(1)求证:直线BD ⊥平面PAC ;(2)设点M 在线段PC 上,且二面角C MB A --的余弦值为57,求点M 到底面ABCD 的距离.49.如图,在三棱锥P ABC -中,底面ABC 是边长2的等边三角形,PA PC ==F 在线段BC 上,且3FC BF =,D 为AC 的中点,E 为的PD 中点.(Ⅰ)求证:EF //平面PAB ;(Ⅱ)若二面角P AC B --的平面角的大小为2π3,求直线DF 与平面PAC 所成角的正弦值.50.如图,直四棱柱1111ABCD A B C D -的底面是菱形,侧面是正方形,60DAB ∠=︒,经过对角线1AC 的平面和侧棱1BB 相交于点F ,且12B F BF =.(1)求证:平面1AC F ⊥平面11BCC B ;(2)求二面角1F AC C --的余弦值.51.直角梯形11AA B B 绕直角边1AA 旋转一周的旋转的上底面面积为9π,下底面面积为36π,侧面积为,且二面角111B AA C --为90,P ,Q 分别在线段1CC ,BC 上.(∠)若P ,Q 分别为1CC ,BC 中点,求1AB 与PQ 所成角的余弦值;(∠)若P 为1CC 上的动点、Q 为BC 的中点,求PQ 与平面11AAC C 所成最大角的正切值,并求此时二面角Q AP C --的余弦值.52.正多面体也称柏拉图立体,被喻为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a (如图),把它们拼接起来,使它们一个表面重合,得到一个新多面体.(1)求新多面体的体积;(2)求二面角A BF C --的余弦值;(3)求新多面体为几面体?并证明.53.中国是风筝的故乡,南方称“鹞”,北方称“鸢”,如图,某种风筝的骨架模型是四棱锥P ABCD -,其中AC BD ⊥于O ,4OA OB OD ===,8OC =,PO ⊥平面ABCD .(1)求证:PD AC ⊥;(2)试验表明,当12PO OA =时,风筝表现最好,求此时直线PD 与平面PBC 所成角的正弦值.54.在陕西汉中勉县的汉江河与定军山武侯坪一带,经常出土有铜、铁扎马钉等兵器文物.扎马钉(如题21图(1))是三国时蜀汉的著名政治家、军事家诸葛亮所发明的一种对付骑兵的武器,状若荆刺,故学名蒺藜,有铜、铁两种.扎马钉有四个锋利的尖爪,随手一掷,三尖撑地,一尖直立向上,推倒上尖,下尖又起,始终如此,使触者不能避其锋而被刺伤.即总有一个尖垂直向上,三尖对称支承于地.简化扎马钉的结构,如图(2),记组成该“钉”的四条等长的线段公共点为O ,钉尖为i A (1,2,3,4i =).(Ⅰ)判断四面体1234A A A A -的形状特征; (Ⅱ)若某个出土的扎马钉因年代久远,有一尖爪受损,其长度仅剩其他尖爪长度的23(即4123OA OA '=),如图(3),将2A ,3A ,4A '置于地面,求1OA 与面234A A A '所成角θ的正弦值.55.正多面体也称柏拉图立体,被誉为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a (如图),把它们拼接起来,使它们一个表面重合,得到一个新多面体.(1)求新多面体的体积;(2)求正八面体AEFBH 中二面角A BF C --的余弦值;(3)判断新多面体为几面体?(只需给出答案,无需证明)56.如图,已知在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,AB CD =,E 为棱PB 上一点,AC 与BD 交于点O ,且AC BD ⊥,1AD =,3BC PC PB ===,PO =(1)证明:AC DE ⊥;(2)是否存在点E ,使二面角B DC E --E 点位置,若不存在,请说明理由.57.如图,在三棱柱111ABC A B C ﹣中点,E 在棱1BB 上,点F 在棱CC 1上,且点,E F 均不是棱的端点,1,AB AC BB ⊥=平面,AEF 且四边形11AA B B 与四边形11AAC C 的面积相等.(1)求证:四边形BEFC 是矩形;(2)若2,AE EF BE ==ABC 与平面AEF 所成角的正弦值.58.如图,在三棱台111ABC A B C -中,11190,4,2,BAC AB AC A A A B ∠=︒====侧棱1A A ⊥平面,ABC 点D 在棱1CC 上,且1CD CC λ=(1)证明:1BB ⊥平面1AB C ;(2)当二面角C BD A --的余弦值为,求λ的值.59.在直四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,1,45AB BC ABC ∠===,点M 在棱1CC 上,点N 是BC 的中点,且满足1AM B N ⊥.(1)证明:AM ⊥平面11A B N ;(2)若M 是1CC 的中点,求二面角111A B N C --的正弦值.60.在四棱锥P ABCD -中,四边形ABCD 是边长为4的菱形,PB BD PD ===PA =(1)证明:PC ⊥平面ABCD ;(2)如图,取BC 的中点为E ,在线段DE 上取一点F 使得23DF FE =,求二面角F PA C --的大小.61.如图,在底面是菱形的四棱柱1111ABCD A B C D -中,60ABC ∠=,1112,AA AC A B A D ====E 在1A D 上.(1)求证:1AA ⊥平面ABCD ;(2)当E 为线段1A D 的中点时,求点1A 到平面EAC 的距离.62.已知四棱锥P ABCD -的底面是菱形,对角线AC 、BD 交于点O ,4OP OA ==,3OB =,OP ⊥底面ABCD ,设点M 满足()01PM MC λλ=<<.(1)若三棱锥P MBD -体积是169,求λ的值;(2)若直线PA 与平面MBD λ的值.63.光学器件在制作的过程中往往需要进行切割,现生产一种光学器件,有一道工序为将原材料切割为两个部分,然后在截面上涂抹一种光触媒化学试剂,加入纳米纤维导管后粘合.在如图所示的原材料器件直三棱柱ABC﹣A'B'C'中,AB⊥AC,AB=AC=AA'=a,现经过AB作与底面ABC所成角为θ的截面,且截面与B'C',A'C'分别交于不同的两点E,F.(1)试求截面面积S随θ变化的函数关系式S(θ);(2)当E和F分别为B C''和A C''的中点时,需要在线段AF上寻找一个点Q,用纳米纤维导管连接EQ,使得EQ与AB'所在直线的夹角最小,试求出纤维导管EQ的长.64.如图,四棱锥P﹣ABCD的底面ABCD为菱形,∠ABC=60°,P A⊥平面ABCD,且E,M分别为BC,PD的中点,点F为棱PC上一动点.(1)证明:平面AEF ⊥平面P AD .(2)若AB =P A ,在线段PC 上是否存在一点F ,使得二面角F ﹣AE ﹣M 定F 的位置;若不存在,说明理由.65.如图,三棱柱111ABC A B C -中,111AA B C =,11120BB C ∠=︒,1190AB C ∠=︒.(1)求证:ABC 为等腰三角形;(2)若11111AB C B AC ∠=∠,11B AB B BA ∠=∠,点M 在线段11B C 上,设111102B M B C λλ⎛⎫=<< ⎪⎝⎭,若二面角11A CM C --λ的值.66.如图,四棱锥P ABCD -中,底面ABCD 为菱形,2AB AD ==,60ABC ∠=︒,PA ⊥平面ABCD ,PA =(1)点E 在线段PC 上,37PE PC =,点F 在线段PD 上,35PF PD =,求证:PC ⊥平面AEF ; (2)设M 是直线AC 上一点,求CM 的长,使得MP 与平面PCD 所成角为45︒.67.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,1AB =,2PA =,E 为PB 的中点,点F 在棱PC 上,且PF PC λ=.(1)求直线CE 与直线PD 所成角的余弦值;(2)当直线BF 与平面CDE 所成的角最大时,求此时λ的值.68.如图,在四棱锥P ABCD ﹣中,四边形ABCD 为直角梯形,//AD BC ,90BAD ∠=︒,且1AB BC ==,2AD =,PA PD =,M 为AD 的中点,平面PAD ⊥平面ABCD ,直线PB 与平面ABCD 所成角的正切值为(1)求四棱锥PABCD ﹣的体积;(2)在棱CD 上(不含端点)是否存在一点Q ,使得二面角C AP Q --?若存在,请确定点Q 的位置;若不存在,请说明理由.69.已知四棱锥P ABCD -P 中,底面ABCD 是平行四边形,PA AB =,PAD BAD ∠=∠,,E F 分别是,AB DC 的中点,2,3,AD PF PE ===(1)求证:AD ⊥平面PAB ;(2)若PB =B PC A --的余弦值.70.如图,矩形ABCD 中,AB ADλ=()1λ>,将其沿AC 翻折,使点D 到达点E 的位置,且二面角C AB E --为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设F 是BE 的中点,二面角E AC F --的平面角的大小为θ,当[]2,3λ∈时,求cos θ的取值范围.任务三:邪恶模式(困难)70-100题71.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为,PA BD 中点,2PA PD AD ===.(1)求证://EF 平面PBC ;(2)求二面角E DF A --的余弦值;(3)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.72.请从下面三个条件中任选一个,补充在下面的横线上,并作答.∠()0BA PA PD ⋅+=;∠PC ∠点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD △是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD △沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F M 、分别是AB CE 、的中点,且___________.(1)求证:AB FM ⊥;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面PAD 所成的锐二面角的余弦值.注:如果选择多个条件分别解答,按第一个解答计分.73.蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.74.2022年北京冬奥会标志性场馆——国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带”,就像速度滑冰运动员高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带”又象征北京2022年冬奥会.其中“冰丝带”呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,体现了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如《九章算术》中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖眶父子在《缀术》提出祖暅原理:“幂势既同,则积不容异”,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.(Ⅰ)利用祖暅原理推导半径为R 的球的体积公式时,可以构造如图②所示的几何体M ,几何体M 的底面半径和高都为R ,其底面和半球体的底面同在平面α内.设与平面α平行且距离为d 的平面β截两个几何体得到两个截面,请在图②中用阴影画出与图①中阴影截面面积相等的图形并给出证明;(Ⅱ)现将椭圆()222210x y a b a b+=>>所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球A ,B (如图),类比(Ⅰ)中的方法,探究椭球A 的体积公式,并写出椭球A ,B 的体积之比.75.如图,已知边长为2的正方形材料ABCD ,截去如图所示的阴影部分后,可焊接成一个正四棱锥的封闭容器.设FCB θ∠=.(1)用θ表示此容器的体积;(2)当此容器的体积最大时,求tan θ的值.76.如图,在四面体ABCD 中,AB AC ⊥,平面ACD 与平面BCD 垂直且CD =(1)若2AB AC ==,证明:45BCD ∠<︒;(2)若33AB AC ==,当ACD △与BCD 面积之和最大时,求二面角C AB D --的余弦值.77.某人设计了一个工作台,如图所示,工作台的下半部分是个正四棱柱ABCD ﹣A 1B 1C 1D 1,其底面边长为4,高为1(1)当圆弧E 2F 2(包括端点)上的点P 与B 1的最短距离为DB 1Ⅰ平面D 2EF .(2)若D 1D 2=3.当点P 在圆弧E 2E 2(包括端点)上移动时,求二面角P ﹣A 1C 1﹣B 1的正切值的取值范围.78.平面凸六边形11MBB NC C 的边长相等,其中11BB C C 为矩形,1190BMC B NC ∠=∠=︒.将BCM ,11B C N △分别沿BC ,11B C 折至ABC ,111A B C ,且均在同侧与平面11BB C C 垂直,连接1AA ,如图所示,E ,G 分别是BC ,1CC 的中点.(1)求证:多面体111ABC A B C -为直三棱柱;(2)求二面角1A EG A --平面角的余弦值.79.如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是,PA PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.80.已知,图中直棱柱1111ABCD A B C D -的底面是菱形,其中124AA AC BD ===.又点,,,E F P Q 分别在棱1111,,,AA BB CC DD 上运动,且满足:BF DQ =,1CP BF DQ AE -=-=.(1)求证:,,,E F P Q 四点共面,并证明EF Ⅰ平面PQB .(2)是否存在点P 使得二面角B PQ E --?如果存在,求出CP 的长;如果不存在,请说明理由.81.如图1,ADC ∆与ABC ∆是处在同-个平面内的两个全等的直角三角形,30ACB ACD ︒∠=∠=90ABC ADC ︒∠=∠=,2AB =,连接是,BD E 边BC 上一点,过E 作// EF BD ,交CD 于点F ,沿EF 将CEF ∆向上翻折,得到如图2所示的六面体,P ABEFD -(1)求证:;BD AP ⊥(2)设),(BE EC R λλ=∈若平面PEF ⊥底面ABEFD ,若平面PAB 与平面PDF λ的值;(3)若平面PEF ⊥底面ABEFD ,求六面体P ABEFD -的体积的最大值.82.设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为AC BC ⊥,AC BC =,且平面PAB ⊥平面ABC .(1)确定O 的位置(需要说明理由),并证明:平面POC ⊥平面ABC .(2)与侧面PAB 平行的平面α与棱AC ,BC ,PC 分别交于D ,E ,F ,求四面体ODEF 的体积的最大值.83.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 是AB 的中点,BC AC =,2AB DC ==,14AA =.(Ⅰ)求证:1//BC 平面1A CD ;(Ⅰ)求平面11BCC B 与平面1A CD 所成锐二面角的平面角的余弦值.84.如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,ABD △为底面圆O 的内接正三角E 在母线PC 上,且1,AE CE EC BD ==⊥.(1)求证:平面BED ⊥平面ABD ;(2)设线段PO 上动点为M ,求直线DM 与平面ABE 所成角的正弦值的最大值.85.如图,三棱柱111ABC A B C -的底面是边长为4的正三角形,侧面11ACC A ⊥底面ABC ,且侧面11ACC A 为菱形,160A AC ∠=.(1)求二面角1A AB C 所成角θ的正弦值.(2),M N 分别是棱11A C ,11B C 的中点,又2AP BP =.求经过,,M N P 三点的平面截三棱柱111ABC A B C -的截面的周长.86.如图,在三棱台111ABC A B C -中,底面ABC 是边长为2的正三角形,侧面11ACC A 为等腰梯形,且1111AC AA ==,D 为11A C 的中点.(1)证明:AC BD ⊥;(2)记二面角1A AC B --的大小为θ,2,33ππθ⎡⎤∈⎢⎥⎣⎦时,求直线1AA 与平面11BB C C 所成角的正弦值的取值范围.87.如图,在四棱锥P ABCD -中,M ,N 分别是AB ,AP 的中点,AB BC ⊥,MD PC ⊥,//MD BC ,1BC =,2AB =,3PB =,CD =PD =(Ⅰ)证明://PC 平面MND ;(Ⅱ)求直线PA 与平面PBC 所成角的正弦值.88.设P 为多面体M 的一个顶点,定义多面体M 在点P 处的离散曲率为12231111()2k k k Q PQ Q PQ Q PQ Q PQ π--∠+∠++∠+∠,其中Q i (i =1,2,…,k ,k ≥3)为多面体M 的所有与点P 相邻的顶点,且平面Q 1PQ 2,平面Q 2PQ 3,…,平面Q k ﹣1PQ k 和平面Q k PQ 1遍历多面体M 的所有以P 为公共点的面.(1)如图1,已知长方体A 1B 1C 1D 1﹣ABCD ,AB =BC =1,1AA =P 为底面A 1B 1C 1D 1内的一个动点,则求四棱锥P ﹣ABCD 在点P 处的离散曲率的最小值;(2)图2为对某个女孩面部识别过程中的三角剖分结果,所谓三角剖分,就是先在面部取若干采样点,然后用短小的直线段连接相邻三个采样点形成三角形网格.区域α和区域β中点的离散曲率的平均值更大的是哪个区域?(确定“区域α”还是“区域β”)89.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,3PA PB ==.(1)证明:PAD PBC ∠=∠;(2)当直线PA 与平面PCD 所成角的正弦值最大时,求此时二面角P AB C 的大小.90.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在各顶点的曲率为233πππ-⨯=,故其总曲率为4π.(1)求四棱锥的总曲率;(2)若多面体满足:顶点数-棱数+面数2=,证明:这类多面体的总曲率是常数.91.已知四棱锥T ABCD -的底面是平行四边形,平面α与直线AD ,TA ,TC 分别交于点P ,Q ,R 且AP TQ CRx AD TA CT===,点M 在直线TB 上,N 为CD 的中点,且直线//MN 平面α.(1)设TA a =,TB b =,TC c =,试用基底{},,a b c 表示向量TD ;(2)证明,四面体T ABC -中至少存在一个顶点从其出发的三条棱能够组成一个三角形;(3)证明,对所有满足条件的平面α,点M 的线段上.92.如图,在四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,ⅠABC =3π,ⅠB 1BD =6π,11,B BA B BC ∠=∠11122,3AB A B B B ===。

高联难度几何题100道-打印整理版

高联难度几何题100道-打印整理版

高联难度平面几何100题第一题:证明角平分 (5)第二题:证明四点共圆 (6)第三题:证明角的倍数关系 (7)第四题:证明线与圆相切 (8)第五题:证明垂直 (9)第六题:证明线段相等 (10)第七题:证明线段为比例中项 (11)第八题:证明垂直 (12)第九题:证明线段相等 (13)第十题:证明角平分 (14)第十一题:证明垂直 (15)第十二题:证明线段相等 (16)第十三题:证明角相等 (17)第十四题:证明中点 (18)第十五题:证明线段的二次等式 (19)第十六题:证明角平分 (20)第十七题:证明中点 (21)第十八题:证明角相等 (22)第十九题:证明中点 (23)第二十题:证明线段相等 (24)第二十一题:证明垂直 (25)第二十二题:证明角相等 (26)第二十三题:证明四点共圆 (27)第二十四题:证明两圆相切 (28)第二十五题:证明线段相等 (29)第二十六题:证明四条线段相等 (30)第二十七题:证明线段比例等式 (31)第二十八题:证明角的倍数关系 (32)第二十九题:证明三线共点 (33)第三十题:证明平行 (34)第三十一题:证明线段相等 (35)第三十二题:证明四点共圆 (36)第三十三题:证明三角形相似 (37)第三十四题:证明角相等 (38)第三十五题:证明内心 (39)第三十六题:证明角平分 (40)第三十七题:证明垂直 (41)第三十八题:证明面积等式 (42)第三十九题:证明角平分 (43)第四十题:证明角相等 (44)第四十一题:证明中点 (45)第四十二题:证明中点 (46)第四十三题:证明角相等 (47)第四十四题:证明垂直 (48)第四十五题:证明角相等 (49)第四十六题:证明垂直 (50)第四十七题:证明四点共圆 (51)第四十八题:证明四点共圆 (52)第四十九题:证明四点共圆 (53)第五十题:证明角平分 (54)第五十一题:证明线段相等 (55)第五十二题:证明两圆外切 (56)第五十三题:证明垂直 (57)第五十四题:证明垂直 (58)第五十五题:证明垂直 (59)第五十七题:证中点 (61)第五十八题:证明角相等 (62)第五十九题:证明角相等 (63)第六十题:证明四点共圆 (64)第六十一题:证明四点共圆 (65)第六十二题:证明四点共圆 (66)第六十三题:证明角相等 (67)第六十四题:证明角的倍数关系 (68)第六十五题:证明中点 (69)第六十六题:伪旁切圆 (70)第六十七题:证明垂直 (71)第六十八题:证明平行 (72)第六十九题:证明圆心在某线上 (73)第七十题:证明三线共点 (74)第七十一题:证明垂直 (75)第七十二题:证明垂直 (76)第七十三题:证明中点 (77)第七十四题:证明垂直 (78)第七十五题:证明垂直 (79)第七十六题:证明三线共点 (80)第七十七题:证明平行 (81)第七十八题:证明平行 (82)第七十九题:证明三线共点、证明垂直 (83)第八十题:证明三点共线(牛顿定理) (84)第八十一题:证明角平分 (85)第八十二题:证明角相等 (86)第八十三题:证明三点共线 (87)第八十四题:证明四圆共点 (88)第八十六题:证明线段相等 (90)第八十七题:证明角相等 (91)第八十八题:证明线段相等 (92)第八十九题:证明线段相等 (93)第九十题:证明线段相等 (94)第九十一题:证明中点 (95)第九十二题:证明四点共圆 (96)第九十三题:证明西姆松定理及逆定理 (97)第九十四题:证明线段的和差关系等式 (98)第九十五题:证明角相等 (99)第九十七题:证明线段的和差关系等式 (100)第九十八题:证明角相等 (101)第九十九题:证明四点共圆 (102)第一百题:证明两三角形共内心 (103)第一题:证明角平分已知PE 、PF 是⊙O 的切线,A 、B 是一组对径点,PB 交⊙O 于另一点C ,直线AF 、BE 交于D 点。

千题百炼——高中数学100个热点问题(三):第92炼 算法——程序框图

千题百炼——高中数学100个热点问题(三):第92炼 算法——程序框图

第2题第92炼 算法——程序框图算法与程序框图在高考中常以小题出现,难度不大,主要考察循环结构。

在处理这类问题时关键在于计算的准确。

一、基础知识:读框图时,要抓住“看头,审尾,记过程”这三点1、看头:观察框图中变量的个数,以及赋予的初始值2、审尾:强调细致的“审查”循环结束时,变量所取到的最后一个值,这也是易错点3、记过程:为了保证计算的准确,在读取框图的过程中,可详细记录循环体中每经过一个步骤,变量取值的变化情况,以便于在跳出循环时能快速准确得到输出变量的值二、典型例题:例1:执行下图所示的程序框图,若输入2x =,则输出y 的值为 .思路:通过框图的判断语句可知y 关于x 的函数为:2321,01,012,1x x y x x x x x -<⎧⎪=+≤<⎨⎪+≥⎩,所以当2x =时,322212y =+⋅=答案:12例2:阅读右边的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .6思路:循环的流程如下:① 1,2i a ==② 2,5i a ==③ 3,16i a ==④ 4,65i a ==循环终止,所以4i =答案:B例3:某程序框图如图所示,若输出的57S =,则判断框内为( )A. 4?k >B. 5?k >C. 6?k >D. 7?k>思路:循环的流程如下:① 2,4k S ==② 3,11k S ==③ 4,26k S ==④ 5,57k S ==所以应该在此时终止,所以填入4?k >答案:A例4:执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )A. 120B. 720C. 1440D. 5040思路:循环的流程如下:① 1p =② 2,2k p ==③ 3,6k p ==④ 4,24k p ==⑤ 5,120k p ==⑥ 6,720k p ==答案:B例5:右图是一个算法的流程图,则输出S 的值是______思路:循环的流程如下:① 1123S =+=② 22,327n S ==+=③ 33,7215n S ==+=第4题④ 44,15231n S ==+=⑤ 55,31263n S ==+=循环结束,所以63S =答案:63S =例6:执行如图所示的程序框图,若输出i 的值为2,则输入x 的最大值是( )A .5B .6C .22D .33思路:因为输出的2i =,说明只经过了一次循环。

千题百炼- 平面向量综合必刷100题(原卷版)

千题百炼- 平面向量综合必刷100题(原卷版)

专题12 平面向量综合必刷100题任务一:善良模式(基础)1-30题一、单选题1.已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =( )A .BC .-2D .22.设ABC 中BC 边上的中线为AD ,点O 满足2AO DO =-,则OC =( )A .1233AB AC -+B .2133AB AC -C .1233AB AC -D .2133AB AC -+3.若平面向量,,a b c 两两的夹角相等,且||||1,||3a b c ===,则||a b c ++=( )A .2B .5C .2或5D4.在菱形ABCD 中,M 、N 分别是BC 、CD 的中点,若2AB =,3DAB π∠=,则DM AN ⋅=( )A .0B .32C .4D .1325.如图,点C 在半径为2的AB 上运动,3AOB π∠=若OC mOA nOB =+,则m n +的最大值为( )A .1BC D6.已知向量,a b 满足||1,||2,1a b a b ==⋅=,则a b -与b 夹角为( ) A .23π B .34π C .2π D .4π7.已知()1,2a =-,()1,3b =,,则2a b -在a b +方向上的投影为( )A .1B .5C D8.在ABC 中,23AB AC ==,,且3AB AC ⋅=,则AC AB R λλ-∈()取最小值时λ的值为( )A .34-B .34C .32D .9.在ABC 中,点D 是线段BC 上靠近点C 的三等分点,点E 在线段AD 上,:3:5AE ED =,则EB EC +=( )A .1324AB AC +B .3142AB AC +C .1243AB AC +D .3342AB AC +10.已知点(2,4)M ,若过点(4,0)N 的直线l 交圆于C :22(6)9x y -+=于A ,B 两点,则||MA MB +的最大值为( )A .12B .C .10D .11.以下四个命题中正确的是( ) A .若1123OP OA OB =-,则P A B ,,三点共线B .若{}a b c ,,为空间的一个基底,则{}a b b c c a +++,,构成空间的另一个基底 C .()a b c a b c ⋅⋅=⋅⋅D .ABC 为直角三角形的充要条件是0AB AC ⋅=12.已知向量a 、b 满足a b b +=,且2a =,则b 在a 方向上的投影是( ) A .2 B .2-C .1D .1-13.在△ABC 中,已知AB =3,AC =5,△ABC 的外接圆圆心为O ,则AO BC ⋅= A .4 B .8C .10D .1614.已知向量a 与向量b 不共线,()1,1b =,对任意t R ∈,恒有2a tb a b -≥-,则( ) A .a b ⊥ B .()2a a b ⊥- C .()2b a b ⊥-D .()()22a b a b +⊥-15.如图所示,矩形ABCD 的对角线相交于点O ,点E 在线段OB 上且13OE OB =,若AE AB AD λμ=+(λ,μ∈R ),则λμ-=( )A .13B .13-C .1D .23二、多选题16.已知平面向量OA 、OB 、OC 为三个单位向量,且0OA OB ⋅=,若OC xOA yOB =+(,x y R ∈),则x y +的取值可能为( )A .B .1C D17.下列说法中错误的是( )A .已知(1,3)a =-,(1,3)b =-,则a 与b 可以作为平面内所有向量的一组基底B .若a 与b 共线,则a 在b 方向上的投影为||aC .若两非零向量a ,b 满足||||a b a b +=-,则a b ⊥D .平面直角坐标系中,(1,1)A ,(4,2)B ,(5,0)C ,则ABC 为锐角三角形18.设a ,b 是两个非零向量,下列四个命题为真命题的是( ) A .若a b a b ==-,则a 和b 的夹角为3π B .若a b a b ==+,则a 和b 的夹角为2π3C .若a b a b +=+,则a 和b 方向相同D .若0a b ⋅<,则a 和b 的夹角为钝角19.在ABC 中,有如下四个命题正确的有( ) A .若0AC AB ⋅>,则ABC 为锐角三角形B .若BA BC AC +=,则ABC 的形状为直角三角形C .ABC 内一点G 满足0GA GB GC ++=,则G 是ABC 的重心D .若PA PB PB PC PC PA ⋅=⋅=⋅,则点P 必为ABC 的外心20.已知向量,a b 是两个非零向量,在下列条件中,一定能使,a b 共线的是( ) A .234a b e -=且22a b e +=-B .存在相异实数,λμ,使0a b λμ-=C .0xa yb +=(其中实数x ,y 满足0x y +=)D .已知梯形ABCD ,其中,AB a CD b ==第II 卷(非选择题)三、填空题21.已知在ABC 中,3,1,,,23AB AC BAC BD DC AE ED π==∠===,则CE BC ⋅=___________.22.在ABC 中,点D 满足34BD BC =,当E 点在线段AD 上移动时,若AE AB AC λμ=+,则()221t λμ=-+的最小值是________.23.在ABC 中,点D 是边BC 的中点,点G 在AD 上,且是ABC 的重心,则用向量AB 、AC 表示BG 为___________.24.已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________.25.如图,在菱形ABCD 中,2AB =,60BAD ∠=︒.已知13BE BC =,DF FC =,12EG EF =,则AG EF ⋅=______.四、解答题26.已知4a =,3b =,()()23243a b a b -⋅-=. (1)求a 与b 的夹角θ;(2)求a b +;(3)若()()a b a b λ-⊥+,求实数λ的值.27.已知O ,A ,B 是不共线的三点,且(,)OP mOA nOB m n R =+∈ (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.28.如图,已知D ,E ,F 分别为ABC 的三边BC ,AC ,AB 的中点,求证:0AD BE CF ++=.29.已知向量()3,4OA =-,()6,3OB =-,()5,3OC m m =---. (1)若点A ,B ,C 能够成三角形,求实数m 应满足的条件; (2)若ABC 为直角三角形,且A ∠为直角,求实数m 的值.30.设ABC 的内角A ,B ,C 的对边长a ,b ,c 成等比数列,()2cos 2sin 12A C B π⎛⎫--+= ⎪⎝⎭,延长BC 至D使3BD =.(1)求B 的大小; (2)求AC CD ⋅的取值范围.任务二:中立模式(中档)1-40题一、单选题1.设a 、b 、c 为非零不共线向量,若()()1a tc t b a c t R -+-≥-∈,则( ) A .()()a b a c +⊥- B .()()a b b c +⊥+ C .()()a b a c -⊥- D .()()a cbc -⊥+2.在平面直角坐标系xOy 中,已知点()()0211A N -,,,.若动点M 满足MA MO=,则OM ON ⋅的取值范围是( )A .[]22-,B .[]44-,C .[]46,-D .[]26-,3.已知ABCD 是边长为2的正方形,P 为平面ABCD 内一点,则()PA PB PC +⋅的最小值是( ) A .2- B .52-C .3-D .4-4.已知点O 为正ABC 所在平面上一点,且满足(1)0OA OB OC λλ+++=,若OAC 的面积与OAB 的面积比值为1:4,则λ的值为( ) A .12 B .13C .2D .35.已知直线l :()20ax y a R -+=∈与圆M :22430x y y +-+=的交点为A ,B ,点C 是圆M 上一动点,设点()0,1P -,则PA PB PC ++的最大值为( ) A .9 B .10C .11D .126.已知平面向量,,a b c 满足24b a a b ==⋅=,()()3c a c b -⋅+=-,则c a -的最小值为( )A1 B 1 C2 D 27.已知向量a ,b ,c 为平面向量,21a b a b ==⋅=,且c 使得2c a -与-c b 所成夹角为60,则c 的最大值为( )A1 B C .1 D 18.非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形9.在ABC 中,BC CA CA AB ⋅=⋅,||2BA BC +=,且32B ππ≤≤,则BA BC ⋅的取值范围是( )A .(1]-∞,B .[01],C .203⎡⎤⎢⎥⎣⎦,D .223⎡⎤-⎢⎥⎣⎦,10.已知ABC 的三个内角分别为A ,B ,C ,动点P 满足sin sin AB AC OP OA AB B AC C λ⎛⎫⎪=++ ⎪⎝⎭,(0,)λ∈+∞,则动点P 的轨迹一定经过ABC 的( ) A .重心 B .垂心 C .内心 D .外心11.已知平面向量,a b 满足||1a =,||2b =,||7a b -=,若对于任意实数k ,不等式||1ka tb +>恒成立,则实数t 的取值范围是( )A .(,)-∞⋃+∞B .3(,(,)3-∞+∞C .)+∞D .)+∞12.已知A 、B 、C 是平面上不共线的三点,O 为△ABC 的外心,动点P 满足(1)(1)(12)()3OA OB OCOP λλλλ-+-++=∈R ,则点P 的轨迹一定过△ABC 的( )A .内心B .垂心C .重心D .AC 边的中点13.平面内ABC 及一点O 满足 ,AO AB AO AC CO CA CO CBABAC CA CB⋅⋅⋅⋅==,则点O 是ABC 的( ) A .重心 B .内心 C .外心 D .垂心14.设点G 是ABC ∆的重心,且满足2sin 3sin 2sin 0B AB A GA C GC ⋅+⋅+⋅=,则cos C ( ) A .34B .23C .13D .91615.若直线MN 过△ABC 的重心G ,且AM mAB =,AN nAC =,其中0m >,0n >,则2m n +的最小值是(). A 1B 1+C .2D .16.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫ ⎪+ ⎪⎝⎭=+,m R ∈,则点P 的轨迹一定通过ABC 的( ) A .重心 B .内心 C .外心 D .垂心17.在ABC ∆中,角A 、B 、C的对边分别为a 、b 、c ,若2b =,(()cos 24sin 1A B C ++=,点P 是ABC ∆的重心,且APa =( )A .B .C .D .18.在ABC 中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边AB ,AC 交于M ,N ,若,AM xAB AN y AC ==,则4x y +的最小值是( )A .52B .73C .94D .1419.已知圆O 的半径为2,A 为圆内一点,12OA =,B ,C 为圆O 上任意两点,则AC BC ⋅的取值范围是( ) A .1,68⎡⎤-⎢⎥⎣⎦B .[1,6]-C .1,108⎡⎤-⎢⎥⎣⎦D .[]1,1020.已知2=a ,3b =,4a b -=,若对任意实数t ,21ka tb +>(0k >)恒成立,则k 的取值范围是( )A .⎫+∞⎪⎭B .⎛⎝C .)+∞D .(二、多选题21.数学家欧拉于1765年在其著作《三角形中的几何学》首次指出:ABC 的外心O ,重心G ,垂心H ,依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为欧拉线. 若4AB =,2AC =,则下列各式正确的是( )A .20GO GH +=B .4AG BC ⋅= C .6AO BC ⋅=-D .OH OA OB OC =++22.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,重心为G ,垂心为H ,M 为BC 中点,且AB =4,AC =2,则下列各式正确的有( ) A .4AG BC ⋅= B .6AO BC ⋅=-C .OH OA OB OC =++D .42AB AC OM HM +=+23.在ABC 中,2A π=,2AB AC ==,下述四个结论中正确的是( )A .若G 为ABC 的重心,则1331AG AB AC =+ B .若P 为BC 边上的一个动点,则()AP AB AC ⋅+为定值2C .若M ,N 为BC 边上的两个动点,且MN =AM AN ⋅的最小值为32D .已知P 为ABC 内一点,若1BP =,且AP AB AC λμ=+,则λ的最大值为224.已知P 为ABC 所在平面内一点,且4AB BC ==,60ABC ∠=︒,D 是边AC 的三等分点靠近点C ,AE EB =,BD 与CE 交于点O ,则( )A .2132DE AC AB =-+B .BOCSC .32OA OB OC ++=D .()PA PB PC +⋅的最小值为-625.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,点P 是其所在平面内一点,( ) A .若202020210PA PB PC ++=,则点P 在ABC 的中位线上 B .若3AP AB AC =+,则P 为ABC 的重心 C .若222a b c +>,则ABC 为锐角三角形 D .若cos cos c B b C =,则ABC 是等腰三角形26.下列说法中错误的为( )A .已知()1,2a →=,()1,1b →=且a →与a b λ→→+夹角为锐角,则5,3λ⎛⎫∈-+∞ ⎪⎝⎭B .点O 为ABC 的内心,且20OC OC OA OB OB →→→→→⎛⎫⎛⎫-⋅+-= ⎪ ⎪⎝⎭⎝⎭,则ABC 为等腰三角形;C .若a →与b →平行,a →在b →方向上的投影为a →D .若非零a →,b →满足a b a b →→→→==-则a →与a b →→+的夹角是60︒27.如图,ABCD 中,AB =1,AD =2,∠BAD =3π,E 为CD 的中点,AE 与DB 交于F ,则下列叙述中,一定正确的是( )A .BF 在AB 上的投影向量为(0,0) B .1233AF AB AD =+C .1AF AB ⋅=D .若12FAB α=∠,则tan α=28.已知O 是△ABC 所在平面内一点,则下列说法正确的是( ) A .若OA OB OB OC OC OA ⋅=⋅=⋅,则O 是△ABC 的重心B .若向量0OA OB OC ++=,且OA OB OC ==,则△ABC 是正三角形 C .若O 是△ABC 的外心,3AB =,5AC =,则OA BC ⋅的值为-8D .若240OA OB OC ++=,则::4:1:2OAB OBC OAC S S S =△△△第II 卷(非选择题)三、填空题29.如图,∠ABC 中,8AB =,7AC =,5BC =,G 为∠ABC 重心,P 为线段BG 上一点,则PA PC ⋅的最大值为___________.30.在ABC 中,下列命题中正确的有:___________ ∠AB AC BC -=;∠若0AC AB ⋅>,则ABC 为锐角三角形;∠O 是ABC 所在平面内一定点,动点P 满足()OP OA AB AC λ=++,[)0,λ∈+∞,则动点P 一定过ABC 的重心;∠O 是ABC 内一定点,且20OA OC OB ++=,则13AOCABCS S=△△; ∠若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=⋅,则ABC 为等边三角形.31.已知向量a ,b 是平面内的两个非零向量,则当a b a b ++-取最大值时,a 与b 夹角为________.32.点D 为ABC 所在平面内一点,1233AD AB AC =+,AC AB AB AC AD AC AB+=+,若ABC 的面积为1,则BC 的最小值是________.33.∠若()3,4OA =-,()6,3OB =-,()5,3OC m m =--,ABC ∠为锐角,则实数m 的取值范围是34m >-∠点O 在ABC 所在的平面内,若OA OB OB OC OA OC ⋅=⋅=⋅,则点O 为ABC 的垂心 ∠点O 在ABC 所在的平面内,若230OA OB OC ++=,ADC S △,ABCS 分别表示AOC △,ABC 的面积,则:1:6AOC ABC S S =△△∠点O 在ABC 所在的平面内,满足AO AB AO AC ABAC⋅⋅=且CO CA CO CB CACB⋅⋅=,则点O 是ABC 的外心.以上命题为假命题的序号是___________.34.如图,两块斜边长相等的直角三角板拼在一起,若||1AC =,则AD AE ⋅=________.35.已知向量a ,b 满足2a b -=,12ab +=,则a b b ++的最大值是________.36.已知平面向量a ,b 的夹角为45°,1a =且()2c a b R λλ=-+∈,则c c a +-的最小值是___________.四、解答题37.平面直角坐标系xOy 中,已知向量()61AB =,∠()BC x y =,∠()23CD =--,,且AD BC ∠ (1)若已知M (1,1),N (y +1∠2∠∠y∠[0∠2],则求出MN BC ⋅的范围; (2)若AC BD ⊥,求四边形ABCD 的面积.38.在ABC 中,角,,A B C 所对边分别为,,a b c ,3b =,6c =,sin2sin C B =,且AD 为BC 边上的中线,E 点在BC 上,满足//()AB AC AE ABAC+.(1)求cos C 及线段BC 的长; (2)求ADE 的面积.39.已知向量a 与b 的夹角为π6,且3a =,2b =.(1)若向量a b +与a b λ+共线,求实数λ的值;(2)若向量a b +与a b λ+的夹角为锐角,求实数λ的取值范围.40.在等边ABC中,2=,点Q为AC的中点,BQ交AM于点N.CM MB(1)证明:点N为BQ的中点;(2)若6⋅=-,求ABC的面积.NA NM任务三:邪恶模式(困难)1-30题一、单选题1.如图,在等腰△ABC 中,已知o1,120,,AB AC A E F ==∠=分别是边,AB AC 的点,且,AE AB AF AC ==λμ,其中(),0,1λμ∈且21λμ+=,若线段,EF BC 的中点分别为,M N ,则MN 的最小值是( )A BC D2.在ABC 中,()sin sin sin A B B C -+=,点D 在边BC 上,且2CD BD =,设sin sin ABDk BAD∠=∠,则当k 取最大值时,sin ACD ∠=( )A .14BC D .(363.已知12,e e 为单位向量,且1222e e +≤,若非零向量a 满足12a e a e ⋅≤⋅,则()122a e e a⋅+的最大值是( )A B C D4.如图,在平面四边形ABCD 中,AB BC ⊥,60BCD ∠=,150ADC ∠=,3BE EC =,CD BE 若点F 为边AD 上的动点,则EF BF ⋅的最小值为( )A .1B .1516C .3132D .25.在ABC 中,已知9AB AC ⋅=,cos b c A =⋅,ABC 的面积为6,若P 为线段AB 上的点(点P 不与点A ,点B 重合),且CA CBCP x y CACB=⋅+⋅,则1132x y ++的最小值为( ).A .9B .34C .914D .126.在ABC ∆中,已知9AB AC ⋅=,sin cos sin B A C =⋅,6ABC S ∆=,P 为线段AB 上的一点,且CA CBCP x y CACB=⋅+⋅,则11x y +的最小值为( )A B C D7.已知O 是ABC ∆所在平面上的一点,若aPA bPB cPCPO a b c++=++(其中P 是ABC ∆所在平面内任意一点),则O 点是ABC ∆的( ) A .外心 B .内心C .重心D .垂心8.已知向量a ,b ,c 满足4a =,a 在b 方向上的投影为2,()3c c a ⋅-=-,则||b c -的最小值为( )A 1B 1C .2D .29.已知ABC 的内角分别为,,A B C ,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1210.如图,在等腰梯形ABCD 中,2AB =,4CD =,BC =E ,F 分别为AD ,BC 的中点.如果对于常数λ,在等腰梯形ABCD 的四条边上,有且只有8个不同的点P 使得PE PF λ⋅=成立,那么λ的取值范围是( )A .59,420⎛⎫-- ⎪⎝⎭B .911,204⎛⎫- ⎪⎝⎭C .91,204⎛⎫-- ⎪⎝⎭D .511,44⎛⎫- ⎪⎝⎭11.已知平面向量a ,b ,c (a 与b 不共线),满足2a b c -==,1c a c b -=-=,设(),c a b λμλμ=+∈R ,则λμ+的取值范围为( ) A .[)2,2,3⎛⎤-∞+∞ ⎥⎝⎦B .2,23⎡⎤⎢⎥⎣⎦C .[)2,+∞D .(],2-∞12.已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1F ,2F ,过点1F 且斜率为247-的直线与双曲线在第二象限的交点为A ,若1212()0F F F A F A +⋅=,则双曲线C 的渐近线方程是( )A .43y x =±B .34yx C .y = D .y x =13.半径为2的圆O 上有三点A 、B 、C 满足0OA AB AC ++=,点P 是圆内一点,则PA PO PB PC ⋅+⋅的取值范围为( )A .[414)-,B .[0)4,C .[414],D .[416],14.已如平面向量a 、b 、c ,满足33a =,2b =,2c =,2b c ⋅=,则()()()()222a b a c a b a c ⎡⎤-⋅---⋅-⎣⎦的最大值为( )A .B .192C .48D .15.平面上的两个向量OA 和OB ,||cos OA α=,||sin OB α=,0,2απ⎡∈⎤⎢⎥⎣⎦,0OA OB ⋅=若向量OC OA OBλμ=+(,)R λμ∈,且22221(21)cos (21)sin 4λαμα-+-=,则||OC 的最大值为( ) A .32B .34C .35D .37二、多选题16.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .212AO AB AB ⋅=B .OA OB OA OC OB OC ⋅=⋅=⋅C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则113λμ+=D .AH 与cos cos AB AC AB BAC C+共线17.如图,直角ABC 的斜边BC 长为2,30C ∠=︒,且点B ,C 分别在x 轴正半轴和y 轴正半轴上滑动,点A 在线段BC 的右上方则( )A .||OA OC +有最大值也有最小值B .OA OC ⋅有最大值无最小值 C .||OA BC +有最小值无最大值D .OA BC ⋅无最大值也无最小值18.在OAB 中,4O OC A =,2O OD B =,AD 、BC 的交点为M ,过M 作动直线l 分别交线段AC 、BD 于E 、F 两点,若OE OA λ=,(),0OB OF μλμ=>,则λμ+的不可能取到的值为( )A B C D 19.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz )的logo 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是ABC 内的一点,BOC 、AOC △、AOB 的面积分别为A S 、B S 、C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC 内的一点,BAC ∠、ABC ∠、ACB ∠是ABC 的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则( )A .O 为ABC 的垂心B .AOB ACB π∠=-∠C .sin :sin :sin ::OA OB OC BAC ABC ACB ∠∠∠=D .tan tan tan 0BAC OA ABC OB ACB OC ∠⋅+∠⋅+∠⋅=20.对于△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .OA OB OA OC OB OC ⋅=⋅=⋅B .212AO AB AB ⋅=C .向量AH 与cos cos ABACAB B AC C +共线D .过点G 的直线l 分别与AB 、AC 交于E 、F 两点,若AE AB λ=,AF AC μ=,则113λμ+=21.已知平面向量,,a b c →→→满足2a →=,1b →=,0a b →→⋅=,对任意的实数t ,均有c t b →→-的最小值为a c →→-,则下列说法正确的是( )A .b a →→+与b a →→-夹角的余弦值为35 B .c →的最小值为2C .a b c c a →→→→→+-+-的最小值为2D .若2c a -=时,这样的c →有3个第II 卷(非选择题)三、填空题22.已知平面向量,,a b c 满足:12,0,12a b a b c a ==⋅=+=,当-a c 与b c -所成角θ最大时,则sin θ=______23.已知ABC 中,1AB =,t R ∈,且()1AC t AC AB t +-的最小值为,则3BA BC ⋅=__________.24.在平面内,若有||1,2a a b b =⋅==,()(2)0c a c a b -⋅--=,则c b ⋅的最大值为________.25.已知OA ,OB 是非零不共线的向量,设111r OC OA OB r r =+++,定义点集||||KA KC KB KC M K KA KB ⎧⎫⋅⋅⎪⎪==⎨⎬⎪⎪⎩⎭,当1K ,2K M ∈时,若对于任意的2r ≥,不等式12||K K c AB ≤恒成立,则实数c 的最小值为______.26.如图,在∠ABC 中,BD DE EC →→→==,2AF FB →→=,2AM MD →→=,直线FM 交AE 于点G ,直线MC 交AE 于点N ,若∠MNG 是边长为1的等边三角形,则MA MC →→⋅=___________.27.如图,在△ABC 中,2C π=,AC =1BC =.若O 为△ABC 内部的点且满足0OAOB OC OA OB OC ++=,则::OA OB OC =________.28.在三角形ABC 中,ABC 的三个内角,,A B C 的对边分别是,,a b c ,则下列给出的五个命题:①若(,2)a λ=,(3,1)b =-,且a 与b 夹角为锐角,则2,3λ⎛⎫∈-∞ ⎪⎝⎭; ②若cos cos a A b B =,则ABC 为等腰三角形;③点O 是三角形ABC 所在平面内一点,且满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是三角形ABC 的重心; ④()tan tan ,tan a A B C =+,()1,1b =,若0a b ⋅>,则ABC 为锐角三角形; ⑤若O 为ABC 的外心,()2212AO BC b c ⋅=-. 其中正确的命题是:_______________________.(填写正确结论的编号)四、解答题29.已知O 为ABC 的外心,求证.sin sin sin 0OA BOC OB AOC OC AOB ∠+∠+∠=.30.在△ABC 中,重心为G ,垂心为H ,外心为I .(1)若△ABC 三个顶点的坐标为(),0A a ,()0,B b ,()0,0C ,证明:G ,H ,I 三点共线; (2)对于任斜三角形ABC ,G ,H ,I 三点是否都共线,并说明理由.。

杏坛孔门新平面几何一百题

杏坛孔门新平面几何一百题

杏坛孔门新平面几何一百题平面几何是几何学的一个分支,研究平面上的点、线、角、面积等概念以及它们之间的关系。

下面我将为你列举一些关于平面几何的题目,一共有一百道,希望能够满足你的需求。

1. 证明平行线的性质及其判定方法。

2. 证明垂直线的性质及其判定方法。

3. 证明等腰三角形的性质及其判定方法。

4. 证明等边三角形的性质及其判定方法。

5. 证明直角三角形的性质及其判定方法。

6. 证明相似三角形的性质及其判定方法。

7. 证明正方形的性质及其判定方法。

8. 证明矩形的性质及其判定方法。

9. 证明菱形的性质及其判定方法。

10. 证明平行四边形的性质及其判定方法。

11. 证明梯形的性质及其判定方法。

12. 证明圆的性质及其判定方法。

13. 证明圆内接四边形的性质及其判定方法。

14. 证明圆内切四边形的性质及其判定方法。

15. 证明圆外接四边形的性质及其判定方法。

16. 证明圆外切四边形的性质及其判定方法。

17. 证明圆锥的性质及其判定方法。

18. 证明圆台的性质及其判定方法。

19. 证明圆球的性质及其判定方法。

20. 证明圆柱的性质及其判定方法。

21. 证明圆锥的体积公式。

22. 证明圆台的体积公式。

23. 证明圆柱的体积公式。

24. 证明圆球的体积公式。

25. 证明圆锥的表面积公式。

26. 证明圆台的表面积公式。

27. 证明圆柱的表面积公式。

28. 证明圆球的表面积公式。

29. 证明正多边形的内角和公式。

30. 证明正多边形的外角和公式。

31. 证明正多边形的边长与半径的关系。

32. 证明正多边形的面积公式。

33. 证明正多边形的周长公式。

34. 证明正多边形的内切圆半径公式。

35. 证明正多边形的外接圆半径公式。

36. 证明正多边形的内接圆面积公式。

37. 证明正多边形的外接圆面积公式。

38. 证明正多边形的对角线数目公式。

39. 证明正多边形的射影长公式。

40. 证明正多边形的对称轴数目公式。

41. 证明正多边形的中心对称轴数目公式。

2022年 千百炼高中数学100个热点问第96炼 平面几何配套精选

2022年 千百炼高中数学100个热点问第96炼 平面几何配套精选

第96炼平面几何一、根底知识:1、相似三角形的判定与性质〔1〕相似三角形的判定①三个角:假设两个三角形对应角都相等,那么这两个三角形相似注:由三角形内角和为可知,三角形只需两个内角对应相等即可②两边及一夹角:假设两个三角形的两条边对应成比例,且所夹的角相等,那么这两个三角形相似③三边:假设两个三角形三边对应成比例,那么这两个三角形相似④〔直角三角形〕假设两个直角三角形有两组对应边成比例,那么这两个直角三角形相似〔2〕相似三角形性质:假设两个三角形相似,这它们的对应角相等,对应边成比例即相似比〔主要表达出“对应〞两字〕,例如:假设,那么有:2、平行线分线段成比例:如图:,且直线与平行线交于,那么以下线段成比例:〔1〕〔上比下〕〔2〕〔上比全〕〔3〕〔下比全〕3、常见线段比例模型:〔1〕“A〞字形:在中,平行的直线交三角形另两边于,即形成一个“A〞字,在“A〞字形中,可得 ,进而有以下线段成比例:①②③〔2〕“8〞字形:,连结相交于,即形成一个“8〞字,在“8〞字形中,有:,从而4、圆的几何性质:〔1〕与角相关的性质①直径所对的圆周角是直角②弦切角与其夹的弧所对的圆周角相等④圆内接四边形,其外角等于内对角〔2〕与线段相关的性质:①等弧所对的弦长相等②过圆心作圆上一条弦的垂线,那么直线垂直平分该弦③假设一条直线与圆相切,那么圆心与切点的连线与该直线垂直5、与圆相关的定理〔1〕切割线定理:设是的切线,为割线,那么有:〔2〕相交弦定理:设是圆内的两条弦,且相交于,那么有〔3〕切线长定理:过圆外一点可作圆的两条切线,且这两条切线的长度相等6、射影定理:在直角三角形中,,为斜边上的高〔双垂直特点〕,那么以下等式成立:注:射影定理结合勾股定理,以及等面积法。

在直角三角形中的边这五条线段中,可做到两条边的长度,即可求出所有边的长度7、平面几何中线段长度的求法:〔1〕观察所求线段是否是某个定理的一局部,从而凑齐该定理的其他条件即可求出该线段〔2〕考虑所求线段是否与其它线段存在比例关系〔3〕可将此线段放入三角形中,考虑是否能通过正余弦定理解决〔4〕假设不易找到题目中各线段与所求线段的联系,可考虑将所求线段设为,通过方程进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2:如图,四边形内接于圆,与圆相切于点,,为的中点,,,,则 .
思路:由与圆相切可想到切割线定理:即,因为是直径,且为的中点, 所以垂直平分,且和为对称的直角三角形。所以,,所以。在中,由切 线可知,且,所以由射影定理可知,则,进而 答案:
例3:如图,与圆相切于,为圆的割线,并且不过圆心,已知,,,则 圆的半径等于__________.
思路:由图可知若要求得,可想到切割线定理模型,只需求得即可。由 割线与切线可想到切割线定理,从而可计算出,考虑计算,可将其放入 中计算,已知的边有,需要求解,在中,通过边的关系可判定,进而, 由角平分线可知,所以。从而可用余弦定理计算出,即可算出 解:切圆于点 由可得: 在中,
平分 在中,由余弦定理可得: 由切割线定理可得: 答案:
(2)由(1)可知是的垂直平分线,又因为是的弦 在上 连结,则由是切线可得 设的半径为,则
可得: 均为等边三角形
,从而
5、答案:4
解析:由切割线定理可知:,从而,由是中点可得,再由切线长相等可得
6、解析:(1)证明:四点共圆
(2)证明:设中点为,连结
在直线上 为中点,且不是的直径 即 ,由(1)得 为等边三角形
线,所以弦切角,因为,所以,从而,进而可证,由相交弦定理可
知:,所以,所以,代入可得:
答案:
例7:如图,已知 和 是圆的两条弦,过点 作圆的切线与 的延长线相交于 ,过点 作 的平行线与圆交于点 ,与 相交于点 , ,
, ,则线段 的长为_________ 思路:由是切线且是割线可想到切割线定理,所以①,分别计算各线段 长度。由 , , 可使用相交弦定理得:,再由可得:,所以,同时,代入①可得: 答案:
1、(2015,天津)如图,在圆中,是弦的三等分点,弦分别经过点,
若,则线段的长为( )
A.
B. C.
D.
2、(2015,广东)如图,已知是圆的直径,,是圆的切线,切点为, 过圆心作的平行线,分别交于点和点,则______
3、(2014,重庆)过圆外一点作圆的切线(为切点),再作割线依次 交圆于,若,则________
有: ,从而
4、圆的几何性质: (1)与角相关的性质 ① 直径所对的圆周角是直角 ② 弦切角与其夹的弧所对的圆周角相等 ③ 同弧(或等弧)所对的圆周角是圆心角的一半 ④ 圆内接四边形,其外角等于内对角 (2)与线段相关的性质: ① 等弧所对的弦长相等 ② 过圆心作圆上一条弦的垂线,则直线垂直平分该弦 ③ 若一条直线与圆相切,则圆心与切点的连线与该直线垂直
A. ①②
B. ③④
C. ①②③
D. ①②④
9、如图,在中,,点是的中点,于,的延长线交的外接圆于点 ,则 的长为__________
10、如图, 是圆 的直径,点 在圆 上,延长 到 使 ,过 作圆 的切线交 于 .若 , ,则
.
习题答案:
1、答案:A 解析:由三等分,不妨设,则由切割线定理可得:,解得,再由切割线 定理可得:,所以
7、(2014,新课标II)如图,是外一点,是切线,为切点,割线与相交于点,是的中点,的 延长线交于点,证明: (1) (2)
8、(2014,天津)如图所示:是圆的内接三角形,的平分线交圆于
点,交于点,过点的圆的切线与的延长线交于点,在上述条件下,给
出以下四个结论:
① 平分;②;③;
④,则所有正确结论的序号是( )
5、与圆相关的定理 (1)切割线定理:设是的切线,为割线,则有: (2)相交弦定理:设是圆内的两条弦,且相交于,则有 (3)切线长定理:过圆外一点可作圆的两条切线,且这两条切线的长 度相等
6、射影定理:已知在直角三角形中,,为斜边上的高(双垂直特 点),则以下等式成立:
注:射影定理结合勾股定理,以及等面积法。在直角三角形中的边这五 条线段中,可做到已知两条边的长度,即可求出所有边的长度 7、平面几何中线段长度的求法: (1)观察所求线段是否是某个定理的一部分,从而凑齐该定理的其他 条件即可求出该线段 (2)考虑所求线段是否与其它线段存在比例关系
例10:如图,是圆的两条平行弦,∥交于点,交圆于点,过点的切线交 延长线于点,若,则的长为__________ 思路:由切割线定理可得 从而,由两组平行关系可得四边形为平行四边形,从而,由可得:,若 设为,则,可想到相交弦定理,①,所以只需用表示出即可得到关于的 方程。因为与圆相切,所以,结合可得:,所以有,即,结合比例可 知:,由相交弦定理可得: ,代入①可得:,解得: 答案: 三、历年好题精选
例8:如图,已知与相切,为切点,过点的割线交于两点,弦,相交于 点,点为上一点,且,若,,,则 . 思路:由与相切可想到切割线定理,即,只需求出即可。从题目条件中 很难直接求出这两个量,考虑寻找题目中的相似三角形。由可得:,所
以①。由切割线定理可知②。因为,所以,进而,所以,则,代入,可 得,所以,由①可算得,所以,。则 答案: 例9:如图,切圆于点,割线经过圆心,若,平分交圆于点,连结交圆 于点,则的长等于__________
7、证明:(1)连结 是中点,且 ,且
(2)由切割线定理可得: 由相交弦定理可得: 8、答案:D 解析:①因为为切线,所以,由平分可得,又因为,所以,即平分,① 正确 ② 由切割线定理即可得到,②正确 ③ 涉及的相似三角形为:,则有,则有,结论③与之不符,③错误 ④ 涉及的相似三角形为:,由即可判定,所以,即,④正确
综上所述,正确的为①②④
9、答案: 解析:连结,可得: ,由可知
所以由射影定理可知: 10、答案: 解:连结 为圆的切线
为的中位线 是直径 在中,根据射影定理可得:
因为 为等腰三角形
2、答案:8
解析:连结,由可得,因为且圆于,所以;另一方面,由是直径可得,所以的平行线,且由是 中点可得为的一条中位线,所以,则在中,由双垂直()可用射影定理,从而
3、答案:4 解析:设,则由切割线定理可得:,解得:,,因为是切线,所以,再 利用公共角可得:,所以,即 4、解析:(1)证明:是等腰三角形,且 是的平分线 为的切线 ,
第96炼 平面几何
一、基础知识: 1、相似三角形的判定与性质 (1)相似三角形的判定 ① 三个角:若两个三角形对应角都相等,则这两个三角形相似 注:由三角形内角和为可知,三角形只需两个内角对应相等即可 ② 两边及一夹角:若两个三角形的两条边对应成比例,且所夹的角相 等,则这两个三角形相似 ③ 三边:若两个三角形三边对应成比例,则这两个三角形相似 ④(直角三角形)若两个直角三角形有两组对应边成比例,则这两个直 角三角形相似 (2)相似三角形性质:若两个三角形相似,这它们的对应角相等,对 应边成比例即相似比(主要体现出“对应”两字),例如:若,则有:
(3)可将此线段放入三角形中,考虑是否能通过正余弦定理解决 (4)若不易找到题目中各线段与所求线段的联系,可考虑将所求线段 设为,通过方程进行求解。 二、典型例题:
例1:如图,已知切于点,割线与弦相交于点,且,若,则的长为
___________ 思路:由是切线,是割线联想到切割线定理,所以有:,解得,从而, 求可联想到相交弦定理:,即,其中,,代入可得: 答案:
例5:如图,为外接圆的切线,平分,交圆于,共线.若,则圆的半径


思路:由可知为圆的直径,由弦切角性质可得,且在圆中(对同弧),
由平分可得,进而,在中,可知:
,所以由可得:,在中,,可得,从而 答案:
例6:如图,内接于⊙,过中点作平行于的直线,交于点,交⊙于、,
交⊙在点切线于点,若,则的长为

思路:由为切线可想到切割线定理,所以,,只需求出即可。因为为切
4、(2015,新课标II)如图,为等腰三角形内一点,与的底边交于两 点,与底边上的高交于点,且与分别相切于两点 (1)证明: (2)若等于的半径,且,求四边形的面积
5、(2014,湖北)如图,为外一点,过点作的两条切线,切点分别为,过的中点作割线交于 两点,若,则_______
6、(2014,新课标全国卷I)如图,四边形是的内接四边形,的延长线与的延长线交于点,且 (1)证明: (2)设不是的直径,的中点为,且,
2、平行线分线段成比例:如图:已知,且直线与平行线交于,则以下 线段成比例: (1) (上比下) (2)(上比全) (3)(下比全) 3、常见线段比例模型:
(1)“A”字形:在中,平行的直线交三角形另两边于,即形成一 个“A”字,在“A”字形中,可得,进而有以下线段成比例: ① ② ③ (2)“8”字形:已知,连结相交于,即形成一个“8”字,在“8”字形中,
思路:由与圆相切于可知,可得,从而,在中,可由,,可得:,从 而,观察圆内的弦,延长交圆于,从而有,与半径进行联系可得:,代 入数值可得 答案:
例4:如图,是半圆的直径延长线上一点,切半圆于点切半圆于点,所以考虑连结圆心与切点,可得:,在中具有
双垂直的特点,所以只需已知两条边即可求出,由切割线定理可 得:,,所以 ,即,从而,由射影定理可得: 答案:B
相关文档
最新文档