2015-2016学年黑龙江省哈尔滨六中高一上学期期末数学试卷和解析
黑龙江省哈六中高一数学上学期期末考试试题
哈尔滨市第六中学2014—2015学年度上学期期末考试高一数学试题考试时间:120分钟 满分:150分一、选择题:(本大题共12小题,每小题5分,共60分)1.已知集合}1,)21(|{},1,log |{2>==>==x y y B x x y y A x,则A =B I ( )A . ⎭⎬⎫⎩⎨⎧<<210|y y B. {}10|<<y y C. ⎭⎬⎫⎩⎨⎧<<121|y y D. Φ2.设()2log log ,2log ,3log 3232===c b a ,则 ( )A.a b c <<B. b c a <<C. a c b <<D.b a c <<3.在ABC ∆中,60C =o,3AB =,2BC =,则A 等于( )A.135oB.105oC. 45oD. 75o4.化简22cos 5sin 5sin 40cos 40-=o oo o( ) A. 1 B.2 C. 12D.1-5.定义在R 上的函数()f x 满足()()0f x f x +-=,当0m >时,()()f x m f x ->,则不等式2(2)()0f x f x -++<的解集为( )A. (2,1)-B. (,2)(1,)-∞-⋃+∞C. (1,2)-D. (,1)(2,)-∞-⋃+∞6.将函数)42sin(3π-=x y 的图象经过( )变换,可以得到函数x y 2sin 3=的图象A. 沿x 轴向右平移8π个单位 B. 沿x 轴向左平移8π个单位 C. 沿x 轴向右平移4π个单位 D. 沿x 轴向左平移4π个单位7.已知tan 222α=-,且满足42ππα<<,则⎪⎭⎫⎝⎛+--απαα4sin 21sin 2cos 22值( )A .2B .-2C .223+-D .223-8.已知函数()()⎪⎭⎫ ⎝⎛<>>∈+=200sin πϕωϕω,,,A R x x A x f 的图象(部分)如图所示,则()x f 的解析式是 ( )A .()2sin()()6f x x x R ππ=+∈ B.()2sin(2)()6f x x x R ππ=+∈C.()2sin()()3f x x x R ππ=+∈ D.()2sin(2)()3f x x x R ππ=+∈9.)(x f 是R 上的偶函数,当0≥x 时,有(2)()f x f x +=-,且当[0,2)x ∈时,2()log (1)f x x =+,则)()2012()2011(=+-f fA. 21log 3+B. 21log 3-+C.-1D.1[来源:学 10.函数)0(cos sin 3)(>+=ωωωx x x f 与直线2=y 的两个相邻的交点距离等于π,则)(x f 的单调递增区间是( )(A )Z k k k ∈+-],125,12[ππππ (B )Z k k k ∈+-],12,125[ππππ(C )Z k k k ∈+-],6,3[ππππ (D )Z k k k ∈++],32,6[ππππ11.已知函数()sin()(,0)4f x x x R πωω=+∈>的最小正周期为π,将()y f x =的图象向左平移ϕ个单位长度,所得图象关于y 轴对称,则ϕ的一个值是( )A.2π B. 38π C.4π D.8π12.设()f x 是定义在R 上的偶函数,且(2)(2)f x f x +=-,当[2,0)x ∈-时,2())12xf x =-,若函数()()log (2)a g x f x x =-+(0a >且1a ≠)在区间(2,6)-内恰有4个零点,则实数a 的取值范围是( )A.1(,1)4 B. (1,4) C.(1,8) D. (8,)+∞二、填空题:(本大题共4小题,每小题5分,共20分)13.关于x 的方程2cos sin 0x x a +-=有实数解,则实数a 的取值范围是__________ 14.已知方程220x ax a -+=的两个根均大于1,则实数a 的取值范围为_____________ 15.已知函数()2sin(2)6f x x π=+,在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若3,()1a f A ==,则b c +的最大值为____________16.关于函数()4sin(2)()3f x x x R π=-∈,有以下命题:(1)4()3y f x π=+是偶函数;(2)要得到()4sin 2g x x =-的图象,只需将()f x 的图象向右平移3π个单位;(3)()y f x =的图象关于直线12x π=-对称;(4)()y f x =在[0,]π内的增区间为511[0,],[,]1212πππ, 其中正确命题的序号为______________三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明,证明过程或解题步骤)17.(本题满分10分)设函数2()log ()x x f x a b =-,且(1)1f =,2(2)log 12f =.(1)求a b ,的值; (2)当[12]x ∈,时,求()f x 的最大值.18.(本题满分12分)已知2sin ()cos(2)tan()(),sin()tan(3)f παπαπααπααπ-⋅-⋅-+=+⋅-+ (1)化简()f α;(2)若1(),8f α=且,42ππα<<求cos sin αα-的值;(3)求满足1()4f α≥的α的取值集合.19.(本题满分12分)已知βαtan ,tan 是一元二次方程02532=-+x x 的两根,且),2(),2,0(ππβπα∈∈, (1)求)cos(βα-的值;(2)求βα+的值.20.(本题满分12分)已知函数()4cos sin()16f x x x π=+-(1)求()f x 在区间[,]64ππ-上的最大值和最小值及此时的x 值;(2)求()f x 的单调增区间;(3)若1()2f α=,求sin(4)6πα-21.(本题满分12分)已知在ABC ∆中,,,a b c 分别是角,,A B C 的对边,,且满足1cos (3cos )2A A A ⋅-=(1)求角A 的大小; (2)若22,23ABC a S ∆==,b c 的长。
黑龙江省哈尔滨六中2015-2016学年高二上学期学业水平测试数学试卷(理科) 含解析
2015—2016学年黑龙江省哈尔滨六中高二(上)学业水平测试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1个B.2个C.4个D.8个2.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.a(c2+1)>b(c2+1)D.a|c|>b|c|3.设m,n是两条不同直线,α,β是两个不同的平面,下列命题正确的是()A.m∥α,n∥β且α∥β,则m∥n B.m⊥α,n⊥β且α⊥β,则m⊥nC.m⊥α,n⊂β,m⊥n,则α⊥β D.m⊂α,n⊂α,m∥β,n∥β,则α∥β4.函数f(x)=(x2﹣2x﹣3)的单调减区间是()A.(3,+∞) B.(1,+∞) C.(﹣∞,1)D.(﹣∞,﹣1)5.化简=()A.1 B.2 C.D.﹣16.已知非零向量,满足||=||,(﹣)⊥,则向量与的夹角大小为() A.30°B.60°C.120°D.150°7.在等比数列中{a n}中,若a3a5a7a9a11=243,则的值为()A.9 B.1 C.2 D.38.高一年级某班63人,要选一名学生做代表,每名学生当选是等可能的,若“选出代表是女生”的概率是“选出代表是男生”的概率的,这个班的女生人数为()A.20 B.25 C.30 D.359.若实数x、y满足=1,则x2+2y2有()A.最大值3+2 B.最小值3+2C.最大值6 D.最小值610.某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.711.已知直线3x+2y﹣3=0与6x+my+7=0互相平行,则它们之间的距离是()A.4 B. C.D.12.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.B.C.2000cm3D.4000cm3二、填空题:本大题共4小题,每小题5分,共20分.将答案写在答题卡上相应的位置13.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于.14.已知S n是等差数列{a n}的前n项和,S3=6,a n+a n=16,若S n=50,则n的值为.﹣215.已知变量x、y满足,则z=2x+y的最大值.16.过圆x2+y2﹣2x+4y﹣4=0内一点M(3,0)作圆的割线l,使它被该圆截得的线段最短,则直线l的方程是.三、解答题:本大题共6小题,共52分.解答时应写出必要的文字说明、证明过程或演算步骤17.等差数列{a n}的前n项和为S n,已知a2=1,S10=45(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b n=,求数列{b n}的前n项和T n.。
黑龙江省哈尔滨六中2015-2016学年高一数学上学期11月月考试卷(含解析)
2015-2016学年黑龙江省哈尔滨六中高一(上)11月月考数学试卷一、选择题:(每题5分,共12题)1.(中三角函数的奇偶性及周期)下列函数中是奇函数,且最小正周期是π的函数是()A.y=tan2x B.y=|sinx| C.D.2.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数 D.f(x)的值域为[﹣1,+∞)3.下列函数中值域是(0,+∞)的函数是()A.B.C.D.4.已知函数f(x)在[0,+∞)上是减函数,g(x)=﹣f(|x|),若g(lgx)<g(1),则x 的取值范围是()A.B.(0,10)C.(10,+∞)D.5.化简的结果是()A.﹣1 B.1 C.0 D.6.若锐角α终边上一点的坐标为(2sin3,﹣2cos3),则α的值为()A.π﹣3 B.3 C.D.7.已知,且﹣180°<α<﹣90°,则cos(30°﹣α)的值为()A.B.C.D.8.函数f(x)=(x≠0)是奇函数,则实数k等于()A.1 B.0 C.1或﹣1 D.0或19.已知函数f(x)=2cos(ωx+φ)(ω>0)的图象关于直线x=对称,f()=0,则ω的最小值为()A.2 B.4 C.6 D.810.函数的值域是()A.B.[﹣1,1] C.D.11.已知函数f(x)的定义域为(﹣∞,0)∪(0,+∞),f(x)是奇函数,且当x>0时,f(x)=x2﹣x+a,若函数g(x)=f(x)﹣x的零点恰有两个,则实数a的取值范围是()A.a<0 B.a≤0 C.a≤1 D.a≤0或a=112.已知函数f(x)=,其中e为自然对数的底数,若关于x的方程f(f(x))=0有且只有一个实数解,则a实数的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1) C.(0,1)D.(0,1)∪(1,+∞)二、填空题:(每题5分)13.函数在[﹣1,+∞)上是减函数,则实数a的取值范围是.14.若tanα=3,则sin2α+2cos2α= .15.设函数在区间(1,2)内有零点,则实数a的取值范围是.16.函数f(x)=|sin+cos|+|sin﹣cos|﹣在区间[﹣π,π]上的零点分别是.三、解答题:17.设函数,(1)求f(x)的周期;(2)当x∈[﹣π,π]时,求f(x)单调递增区间;(3)当x∈[0,2π]时,求f(x)的最大值和最小值.18.已知集合,集合B={x||x﹣m|≤2},若A∩B≠∅,求m的取值范围.19.已知(1)求sinθcosθ的值.(2)求sin3θ﹣cos3θ的值.(3)当﹣π<θ<0时,求tanθ的值.20.已知函数f(x)=4x﹣a•2x+1﹣6,x∈[0,1],(1)若函数有零点,求a的取值范围;(2)若不等式f(x)+3a+6≥0恒成立,求a的取值范围.21.已知a>0,函数f(x)=﹣2asin(2x+)+2a+b,当x∈[0,]时,﹣5≤f(x)≤1.(1)求常数a,b的值;(2)设g(x)=f(x+)且lg[g(x)]>0,求g(x)的单调区间.22.已知函数在x∈[2,8]时取得最大值2,最小值,求a.2015-2016学年黑龙江省哈尔滨六中高一(上)11月月考数学试卷参考答案与试题解析一、选择题:(每题5分,共12题)1.(中三角函数的奇偶性及周期)下列函数中是奇函数,且最小正周期是π的函数是()A.y=tan2x B.y=|sinx| C.D.【考点】三角函数的周期性及其求法;函数奇偶性的判断.【专题】计算题.【分析】先判断函数的奇偶性,再求函数的周期,然后确定选项.【解答】解:四个选项中为奇函数的是A和D,其中y=tan2x的最小正周期为.而y=|sin2x|的最小正周期是π是偶函数,的最小正周期是π是偶函数,而,最小正周期为π,故选D.【点评】本题考查三角函数的周期性及其求法,函数奇偶性的判断,考查计算能力,是基础题.2.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数 D.f(x)的值域为[﹣1,+∞)【考点】余弦函数的单调性.【专题】函数的性质及应用.【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D【点评】本题考查分段函数的性质,涉及三角函数的性质,属基础题.3.下列函数中值域是(0,+∞)的函数是()A.B.C.D.【考点】函数的值域.【专题】函数的性质及应用.【分析】利用基本函数的值域即可求出各函数的值域,从而可求得答案.【解答】解:∵≠0,∴≠1,的值域为(0,1)∪(1,+∞),故排除A;y=的值域为[0,+∞),故排除B;∵2x>0,∴2x+1>1,所以的值域为(1,+∞),故排除C;=2x﹣2,其值域为(0,+∞),故选D.【点评】本题考查的是函数值域的求解问题.在解答的过程当中充分考查了各类函数的性质特征.值得同学们体会和反思.4.已知函数f(x)在[0,+∞)上是减函数,g(x)=﹣f(|x|),若g(lgx)<g(1),则x 的取值范围是()A.B.(0,10)C.(10,+∞)D.【考点】奇偶性与单调性的综合;其他不等式的解法.【专题】函数的性质及应用.【分析】据题意知g(x)=﹣f(|x|)为偶函数且在为(0,+∞)单调递增,结合条件g(lgx)<g(1),由偶函数的性质可得|lgx|<1,解不等式可求.【解答】解:根据题意知g(x)=﹣f(|x|)为偶函数,且在(0,+∞)上单调递增,又因为g(lgx)<g(1),所以|lgx|<1,∴﹣1<lgx<1,解得<x<10.故选A.【点评】本题主要考查了偶函数单调性性质的应用,熟记一些常用的结论可以简化基本运算.5.化简的结果是()A.﹣1 B.1 C.0 D.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【专题】计算题;规律型;函数思想;三角函数的求值.【分析】利用诱导公式化简求解即可.【解答】解:===1.故选:B.【点评】本题考查诱导公式以及同角三角函数的基本关系式的应用,考查计算能力.6.若锐角α终边上一点的坐标为(2sin3,﹣2cos3),则α的值为()A.π﹣3 B.3 C.D.【考点】任意角的三角函数的定义.【专题】计算题.【分析】由任意角的三角函数的定义可得 tanα==tan( 3﹣),又∈(0,),可得α的值.【解答】解:∵锐角α终边上一点的坐标为(2sin3,﹣2cos3),由任意角的三角函数的定义可得 tanα==﹣cot3=tan( 3﹣),又∈(0,),∴α=.故选C.【点评】本题主要考查任意角的三角函数的定义,诱导公式的应用,根据三角函数的值求角,属于中档题.7.已知,且﹣180°<α<﹣90°,则cos(30°﹣α)的值为()A.B.C.D.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【专题】计算题;整体思想;三角函数的求值.【分析】由cos(60°+α)的值及α的范围,判断出sin(60°+α)的正负,进而求出sin (60°+α)的值,原式变形后利用诱导公式化简即可求出值.【解答】解:∵cos(60°+α)=,﹣180°<α<﹣90°,即﹣120°<α+60°<﹣30°,∴sin(60°+α)<0,即sin(60°+α)=﹣=﹣,则原式=cos[90°﹣(60°+α)]=sin(60°+α)=﹣,故选:A.【点评】此题考查了运用诱导公式化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式及基本关系是解本题的关键.8.函数f(x)=(x≠0)是奇函数,则实数k等于()A.1 B.0 C.1或﹣1 D.0或1【考点】函数单调性的判断与证明.【专题】计算题;函数的性质及应用.【分析】根据奇函数的定义可知f(﹣x)+f(x)=0,建立等量关系后,通过化简整理即可求得k.【解答】解:∵函数f(x)在定义上为奇函数∴f(﹣x)+f(x)=0,即f(﹣x)+f(x)=+==0,即(1﹣k2)(2x+2﹣x)=0解得k=±1,故选C.【点评】本题主要考查了函数奇偶性的应用,提高学生分析、解决问题的能力,属于基础题.9.已知函数f(x)=2cos(ωx+φ)(ω>0)的图象关于直线x=对称,f()=0,则ω的最小值为()A.2 B.4 C.6 D.8【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;余弦函数的对称性.【专题】计算题.【分析】直接利用函数的对称轴方程,结合f()=0,求出ω的表达式,然后求出ω的最小值.【解答】解:由题设函数f(x)=2cos(ωx+φ)(ω>0)的图象关于直线x=对称所以,k1∈Zf()=0,可得,k2∈Z,于是,当k2﹣k1=0时,ω最小可以取2.故选A.【点评】本题考查三角函数的对称性,三角函数值的求法,考查函数解析式的求法,计算能力.10.函数的值域是()A.B.[﹣1,1] C.D.【考点】两角和与差的余弦函数;两角和与差的正弦函数.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用三角恒等变换化简函数的解析式,再根据余弦函数的定义域和值域求得函数的值域.【解答】解:函数=2(cosx﹣sinx)﹣(cosx﹣sinx)=cosx﹣sinx=cos(x+).由x∈[0,π],求得x+∈[,],∴cos(x+)∈[﹣1,],故选:A.【点评】本题主要考查三角恒等变换,余弦函数的定义域和值域,属于基础题.11.已知函数f(x)的定义域为(﹣∞,0)∪(0,+∞),f(x)是奇函数,且当x>0时,f(x)=x2﹣x+a,若函数g(x)=f(x)﹣x的零点恰有两个,则实数a的取值范围是()A.a<0 B.a≤0 C.a≤1 D.a≤0或a=1【考点】函数的零点.【专题】函数的性质及应用.【分析】要使函数g(x)=f(x)﹣x的零点恰有两个,则根据函数是奇函数,则只需要当x >0时,函数g(x)=f(x)﹣x的零点恰有一个即可.【解答】解:因为f(x)是奇函数,所以g(x)=f(x)﹣x也是奇函数,所以要使函数g(x)=f(x)﹣x的零点恰有两个,则只需要当x>0时,函数g(x)=f(x)﹣x的零点恰有一个即可.由g(x)=f(x)﹣x=0得,g(x)=x2﹣x+a﹣x=x2﹣2x+a=0,若△=0,即4﹣4a=0,解得a=1.若△>0,要使当x>0时,函数g(x)只有一个零点,则g(0)=a≤0,所以此时,解得a≤0.综上a≤0或a=1.故选D.【点评】本题主要考查函数零点的应用,利用二次函数的图象和性质是解决本题的关键.12.已知函数f(x)=,其中e为自然对数的底数,若关于x的方程f(f(x))=0有且只有一个实数解,则a实数的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1) C.(0,1)D.(0,1)∪(1,+∞)【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】若a=0则方程f(f(x))=0有无数个实根,不满足条件,若a≠0,若f(f(x))=0,可得当x≤0时,a•e x=1无解,进而得到实数a的取值范围.【解答】解:若a=0则方程f(f(x))=0有无数个实根,不满足条件,若a≠0,若f(f(x))=0,则f(x)=1,∵x>0时,f()=1,关于x的方程f(f(x))=0有且只有一个实数解,故当x≤0时,a•e x=1无解,即在x≤0时无解,故,故a∈(﹣∞,0)∪(0,1),故选:B【点评】本题考查的知识点是根的存在性及根的个数判断,其中分析出当x≤0时,a•e x=1无解,是解答的关键.二、填空题:(每题5分)13.函数在[﹣1,+∞)上是减函数,则实数a的取值范围是(﹣8,﹣6] .【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】由题意可得,解此不等式组求得实数a的取值范围.【解答】解:∵函数在[﹣1,+∞)上是减函数,∴,解得﹣8<a≤﹣6,故实数a的取值范围是(﹣8,﹣6],故答案为(﹣8,﹣6].【点评】本题主要考查对数函数的单调性和特殊点,对数函数的定义域,二次函数的性质,属于中档题.14.若tanα=3,则sin2α+2cos2α= .【考点】三角函数的化简求值.【专题】计算题;函数思想;三角函数的求值.【分析】利用“1”的代换,化简所求的表达式为正切函数的形式,然后求解即可.【解答】解:tanα=3,则sin2α+2cos2α===.故答案为:.【点评】本题考查三角函数化简求值,同角三角函数的基本关系式的应用,考查计算能力.15.设函数在区间(1,2)内有零点,则实数a的取值范围是(log32,1).【考点】函数零点的判定定理.【专题】计算题.【分析】根据零点存在定理,若函数在区间(1,2)内有零点,则f(1)•f(2)<0,结合对数的运算性质,我们可以构造一个关于a的不等式,解不等式即可得到答案.【解答】解:∵单调函数在区间(1,2)内有零点,∴f(1)•f(2)<0又∵=1﹣a=log32﹣a则(1﹣a)•(log32﹣a)<0解得log32<a<1故答案为:(log32,1)【点评】本题考查的知识点是函数零点的判定定理,其中根据零点判定定理构造关于a的不等式,是解答本题的关键.16.函数f(x)=|sin+cos|+|sin﹣cos|﹣在区间[﹣π,π]上的零点分别是或﹣或﹣或.【考点】余弦函数的图象;三角函数的周期性及其求法.【专题】函数的性质及应用;三角函数的求值;三角函数的图像与性质.【分析】令f(x)=|sin+cos|+|sin﹣cos|﹣=0,可解得:|cosx|=,由x∈[﹣π,π]即可解得在区间[﹣π,π]上的零点.【解答】解:令f(x)=|sin+cos|+|sin﹣cos|﹣=0可得: +=两边平方,得:2+2|cosx|=3,可解得:|cosx|=,即cosx=∵x∈[﹣π,π]∴x=或﹣或﹣或故答案为:或﹣或﹣或.【点评】本题主要考察了三角函数的图象与性质,函数的性质及应用,属于基本知识的考查.三、解答题:17.设函数,(1)求f(x)的周期;(2)当x∈[﹣π,π]时,求f(x)单调递增区间;(3)当x∈[0,2π]时,求f(x)的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的单调性;三角函数的最值.【专题】转化思想;综合法;三角函数的图像与性质.【分析】(1)由条件利用诱导公式,余弦函数的周期性,求得f(x)的周期.(2)由条件利用余弦函数的单调性求得函数f(x)的增区间.(3)由条件利用余弦函数的定义域和值域,求得f(x)的最大值和最小值.【解答】解:(1)∵函数=2cos(﹣),故它的周期为=4π.(2)令 2kπ﹣π≤﹣≤2kπ,求得4kπ﹣≤x≤4kπ+,故函数的增区间为[4kπ﹣,4kπ+],k∈Z.根据 x∈[﹣π,π],可得函数的增区间为[﹣π,].(3)当x∈[0,2π]时,﹣∈[﹣,],∴cos(﹣)∈[﹣,1],故当﹣=时,函数f(x)取得最小值为﹣1,当﹣=0时,函数f(x)取得最大值为2.【点评】本题主要考查诱导公式,余弦函数的周期性和单调性,余弦函数的定义域和值域,属于基础题.18.已知集合,集合B={x||x﹣m|≤2},若A∩B≠∅,求m的取值范围.【考点】交集及其运算.【专题】计算题;集合.【分析】求出A中不等式的解集确定出A,求出B中不等式的解集表示出B,根据A与B的交集不为空集,确定出m的范围即可.【解答】解:由A中不等式变形得:1+≤0,即≤0,解得:﹣1<x≤2,即A=(﹣1,2],由B中不等式解得:﹣2≤x﹣m≤2,即m﹣2≤x≤m+2,∴B=[m﹣2,m+2],∵A∩B≠∅,∴1<m﹣2≤2或﹣1<m+2≤2,解得:3<m≤4或﹣3<m≤0.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.19.已知(1)求sinθcosθ的值.(2)求sin3θ﹣cos3θ的值.(3)当﹣π<θ<0时,求tanθ的值.【考点】三角函数的化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(1)将已知等式两边平方,利用同角三角函数基本关系式即可得解.(2)利用同角三角函数基本关系式及立方差公式即可得解.(3)把已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,求出sinθ+cosθ的值,与已知等式联立求出sinθ与cosθ的值,即可确定出tanθ的值.【解答】解:(1)∵,∴两边平方可得:1﹣2sinθcosθ=,解得:sinθcosθ=.(2)sin3θ﹣cos3θ=(sinθ﹣cosθ)(sin2θ+sinθcosθ+cos2θ)=(﹣)×(1+)=﹣.(3)∵sinθcosθ=,①.∴由﹣π<θ<0,可得:﹣π<θ<,∵(sinθ+cosθ)2=1+2sinθcosθ=,∴sinθ+cosθ=﹣②,联立①②,解得:sinθ=﹣,cosθ=﹣,则tanθ==.【点评】此题考查了同角三角函数基本关系的运用,考查了计算能力和转化思想,熟练掌握基本关系是解本题的关键.20.已知函数f(x)=4x﹣a•2x+1﹣6,x∈[0,1],(1)若函数有零点,求a的取值范围;(2)若不等式f(x)+3a+6≥0恒成立,求a的取值范围.【考点】函数恒成立问题;函数的零点.【专题】函数思想;综合法;函数的性质及应用.【分析】(1)令t=2x,求出t的范围,令h(t)=t2﹣2at﹣6=(t﹣a)2﹣a2﹣6(1≤t≤2),求出方程h(t)=0的根在[0,1]即可;(2)问题转化为 t2﹣2at+3a≥0恒成立.令g(t)=t2﹣2at+3a,t∈[1,2].通过讨论a的范围,得到函数的单调性,求出函数的最小值大于等于0即可.【解答】解:(1)∵f(x)=4x﹣a•2x+1﹣6(0≤x≤1)∴f(x)=(2x)2﹣2a•2x﹣6(0≤x≤1)…(2分)令t=2x,∵0≤x≤1,∴1≤t≤2;令h(t)=t2﹣2at﹣6=(t﹣a)2﹣a2﹣6(1≤t≤2)…(4分),令h(t)=0,解得:t=a±,若函数h(t)在[1,2]有零点,则1≤a﹣≤2或1≤a+≤2,解得:﹣≤a≤﹣,(8分)(2)∵f(x)+3a+6≥0恒成立,即t2﹣2at+3a≥0恒成立.令g(t)=t2﹣2at+3a,t∈[1,2].对称轴t=a,a≤1时:g(t)在[1,2]递增,∴只需g(1)=1+a≥0即可,解得:a≥﹣1,1<a<2时:g(t)在[1,a)递减,在(a,2]递增,∴只需g(a)=3a﹣a2≥0即可,解得:0≤a≤3,a≥2时:g(t)在[1,2]递减,∴只需g(2)=4﹣a≥0即可,解得:a≤4,综上,﹣1≤a≤4.【点评】本题考查了函数恒成立问题,考查二次函数的性质,是一道中档题.21.已知a>0,函数f(x)=﹣2asin(2x+)+2a+b,当x∈[0,]时,﹣5≤f(x)≤1.(1)求常数a,b的值;(2)设g(x)=f(x+)且lg[g(x)]>0,求g(x)的单调区间.【考点】三角函数的最值;正弦函数的单调性.【专题】综合题;转化思想.【分析】(1)由三角函数的性质求出用参数表示的函数的最值,由于函数的值域已知,故此两区间相等,故左端点与左端点相等,右端点与右端点相等,由此得到参数的方程,解出参数值即可.(2)本题要求出在定义域中的单调区间,故要先求出其定义域,再由单调性求出其单调区间,由(1),f(x)=﹣4sin(2x+)﹣1,代入即可求得g(x)的表达式,又由lgg(x)>0,可求得函数的定义域,再由g(x)的单调性求出其在定义域内的单调区间.【解答】解:(1)∵x∈[0,],∴2x+∈[,],∴sin(2x+)∈[﹣,1],∴﹣2asin(2x+)∈[﹣2a,a],∴f(x)∈[b,3a+b],又﹣5≤f(x)≤1.∴,解得.(2)f(x)=﹣4sin(2x+)﹣1,g(x)=f(x+)=﹣4sin(2x+)﹣1=4sin(2x+)﹣1,又由lg[g(x)]>0,得g(x)>1,∴4sin(2x+)﹣1>1,∴sin(2x+)>,∴+2kπ<2x+<π+2kπ,k∈Z,由+2kπ<2x+≤2kπ+,得kπ<x≤kπ+,k∈Z.由+2kπ≤2x+<π+2kπ得+kπ≤x<+kπ,k∈Z.∴函数g(x)的单调递增区间为(kπ, +kπ](k∈Z),单调递减区间为[+kπ, +kπ)(k∈Z)【点评】本题考点是三角函数的最值,考查利用三角函数的最值建立方程求参数,求三角函数的最值一般需要先研究三角函数的单调性,由单调性求最值,本题求最值采用了求复合函数最值常用的方法,由内而外,逐层求解,题后要注意体会求最值的这一技巧,由于省略了讨论函数单调性的过程,使得解题过程大大简化.22.已知函数在x∈[2,8]时取得最大值2,最小值,求a.【考点】函数的最值及其几何意义.【专题】分类讨论;换元法;函数的性质及应用.【分析】利用换元思想,将问题转化为二次函数在指定区间上的最值问题,结合配方法求出结果,注意分类讨论.【解答】解:由题意知,函数=(log a x+1)(log a x+2)=log a2x+3log a x+2=(log a x+)2﹣.令t=log a x,则y=(t+)2﹣.当f(x)取最小值﹣时,t=log a x=﹣.又∵x∈[2,8],∴a∈(0,1).∵f(x)是关于t的二次函数,∴函数f(x)的最大值必在x=2或x=8时取得.若(log a2+)2﹣=2,则a=,此时f(x)取得最小值时,x==∉[2,8],舍去.若(log a8+)2﹣=2,则a=,此时f(x)取得最小值时,x==2∈[2,8],符合题意,∴a=.【点评】本题考查对数函数与二次函数复合构成的函数的最值的求法,对数函数为内层时,一般采用换元法转化为二次函数来求解,注意中间量的取值范围.。
黑龙江省哈尔滨六中高一(上)期末数学试卷
黑龙江省哈尔滨六中高一(上)期末数学试卷一、选择题(本大题共12个小题,每个小题5分)1.(5分)已知集合A={1,2,3,4,5},B={x|x2﹣3x<0},则A∩B为()A.{1,2,3} B.{2,3} C.{1,2} D.(0,3))2.(5分)已知角α在第三象限,且sinα=﹣,则tanα=()A.B.C.D.3.(5分)的值为()A.B.C.1 D.﹣14.(5分)已知△ABC的三边a,b,c满足a2+b2=c2+ab,则△ABC的内角C 为()A.150°B.120°C.60°D.30°5.(5分)设函数f(x)=,则f(2)+f(﹣log23)的值为()A.4 B.C.5 D.66.(5分)若sin()=,sin(2)的值为()A.B.C.D.7.(5分)已知f(x)=sin2x+2cosx,则f(x)的最大值为()A.﹣1 B.0 C.1 D.28.(5分)已知函数f(x)=cos2x﹣,则下列说法正确的是()A.f(x)是周期为的奇函数B.f(x)是周期为的偶函数C.f(x)是周期为π的奇函数D.f(x)是周期为π的偶函数9.(5分)已知f(x)是定义在R上的偶函数,且满足f(x+6)=f(x),当x∈(0,3)时,f(x)=x2,则f(64)=()A.﹣4 B.4 C.﹣98 D.9810.(5分)函数的图象如图所示,为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象()A.向右平移π个单位长度B.向左平移π个单位长度C.向右平移个单位长度D.向左平移个单位长度11.(5分)奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[f(x)﹣f(﹣x)]>0的解集为()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(1,+∞)12.(5分)将函数f(x)=2sin(x+2φ)(|φ|<)的图象向左平移个单位长度之后,所得图象关于直线x=对称,且f(0)>0,则φ=()A.B.C.D.二、填空题(本大题共4个小题,每个小题5分)13.(5分)已知f(x)=x+log a x的图象过点(2,3),则实数a= .14.(5分)已知sin,且α∈(0,),则tan的值为.15.(5分)已知f(x)=x2﹣ax+2a,且在(1,+∞)内有两个不同的零点,则实数a的取值范围是.16.(5分)已知△ABC中,内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,sinB=sinC,则边c= .三、解答题(本大题共6个小题,共70分)17.(10分)已知函数f(x)=2x﹣sin2x﹣.(I)求函数f(x)的最小正周期及对称轴方程;(II)求函数f(x)的单调区间.18.(12分)若0,0,sin()=,cos()=.(I)求sinα的值;(II)求cos()的值.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,若(2a﹣c)cosB=bcosC.(I)求角B的大小;(II)若b=2,求△ABC周长的最大值.20.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的最小正周期为π,函数的图象关于点()中心对称,且过点().(I)求函数f(x)的解析式;(II)若方程2f(x)﹣a+1=0在x∈[0,]上有解,求实数a的取值范围.21.(12分)在△ABC中,边a,b,c所对的角分别为A,B,C,且a>c,若△ABC的面积为2,sin(A﹣B)+sinC=sinA,b=3.(Ⅰ)求cosB的值;(Ⅱ)求边a,c的值.22.(12分)设函数f(x)=a2x+ma﹣2x(a>0,a≠1)是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若f(1)=,且g(x)=f(x)﹣2kf()+2a﹣2x在[0,1]上的最小值为2,求实数k的取值范围.参考答案与试题解析一、选择题(本大题共12个小题,每个小题5分)1.(5分)已知集合A={1,2,3,4,5},B={x|x2﹣3x<0},则A∩B为()A.{1,2,3} B.{2,3} C.{1,2} D.(0,3))【解答】解:∵集合A={1,2,3,4,5},B={x|x2﹣3x<0}={x|0<x<3},∴A∩B={1,2}.故选:C.2.(5分)已知角α在第三象限,且sinα=﹣,则tanα=()A. B.C.D.【解答】解:∵角α在第三象限,且sinα=﹣,∴cosα=﹣.∴.故选:C.3.(5分)的值为()A. B.C.1 D.﹣1【解答】解:==.故选:B.4.(5分)已知△ABC的三边a,b,c满足a2+b2=c2+ab,则△ABC的内角C 为()A.150°B.120°C.60° D.30°【解答】解:△ABC中,a2+b2=c2+ab,∴a2+b2﹣c2=ab,∴cosC===,C∈(0°,180°),∴C=60°.故选:C.5.(5分)设函数f(x)=,则f(2)+f(﹣log23)的值为()A.4 B.C.5 D.6【解答】解:∵函数f(x)=,∴f(2)=log22=1,f(﹣log23)==3,∴f(2)+f(﹣log23)=1+3=4.故选:A.6.(5分)若sin()=,sin(2)的值为()A.B.C.D.【解答】解:∵sin()=,∴sin(2)=cos[﹣(2)]=cos()=cos2()=.故选:A.7.(5分)已知f(x)=sin2x+2cosx,则f(x)的最大值为()A.﹣1 B.0 C.1 D.2【解答】解:f(x)=sin2x+2cosx,=1﹣cos2x+2cosx,=﹣(cosx﹣1)2+2,当cosx=1时,f(x)max=2,故选:D8.(5分)已知函数f(x)=cos2x﹣,则下列说法正确的是()A.f(x)是周期为的奇函数B.f(x)是周期为的偶函数C.f(x)是周期为π的奇函数D.f(x)是周期为π的偶函数【解答】解:函数f(x)=cos2x﹣=(2cos2x﹣1)=cos2x,∴f(x)是最小正周期为T==π的偶函数.故选:D.9.(5分)已知f(x)是定义在R上的偶函数,且满足f(x+6)=f(x),当x ∈(0,3)时,f(x)=x2,则f(64)=()A.﹣4 B.4 C.﹣98 D.98【解答】解:由(x)是定义在R上的偶函数,且满足f(x+6)=f(x),∴f(x)是以6为周期的周期函数,又∵又当x∈(0,3)时,f(x)=x2,∴f(64)=f(6×11﹣2)=f(﹣2)=f(2)=22=4.故选:B.10.(5分)函数的图象如图所示,为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象()A.向右平移π个单位长度B.向左平移π个单位长度C.向右平移个单位长度 D.向左平移个单位长度【解答】解:根据函数的图象,可得A=1,=﹣,∴ω=3,再根据五点法作图可得3×+φ=π,∴φ=,f(x)=sin(3x+).为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象向左平移个单位长度,故选:D.11.(5分)奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[f(x)﹣f(﹣x)]>0的解集为()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(1,+∞)【解答】解:若奇函数f(x)在(0,+∞)上为增函数,则函数f(x)在(﹣∞,0)上也为增函数,又∵f(1)=0,∴f(﹣1)=0,则当x∈(﹣∞,﹣1)∪(0,1)上时,f(x)<0,f(x)﹣f(﹣x)<0;当x∈(﹣1,0)∪(1,+∞)上时,f(x)>0,f(x)﹣f(﹣x)>0,则不等式x[(f(x)﹣f(﹣x)]>0的解集为(1,+∞)∪(﹣∞,﹣1),故选:C.12.(5分)将函数f(x)=2sin(x+2φ)(|φ|<)的图象向左平移个单位长度之后,所得图象关于直线x=对称,且f(0)>0,则φ=()A.B.C.D.【解答】解:将函数f(x)=2sin(x+2φ)(|φ|<)的图象向左平移个单位长度之后,可得y=2sin(x++2φ)的图象,根据所得图象关于直线x=对称,可得++2φ=kπ+,即φ=﹣,k∈Z.根据且f(0)=2sin2φ>0,则φ=,故选:B.二、填空题(本大题共4个小题,每个小题5分)13.(5分)已知f(x)=x+log a x的图象过点(2,3),则实数a= 2 .【解答】解:∵已知f(x)=x+log a x的图象过点(2,3),故有2+log a2=3,求得a=2,故答案为:2.14.(5分)已知sin,且α∈(0,),则tan的值为2 .【解答】解:由sin,得,∴sin()=1,∵α∈(0,),∴∈(),则=,即,∴tanα=tan.∴tan=1+1=2.故答案为:2.15.(5分)已知f(x)=x2﹣ax+2a,且在(1,+∞)内有两个不同的零点,则实数a的取值范围是(8,+∞).【解答】解:∵二次函数f(x)=x2﹣ax+2a在(1,+∞)内有两个零点,∴,即,解得8<a.故答案为:(8,+∞).16.(5分)已知△ABC中,内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,sinB=sinC,则边c= 3 .【解答】解:△ABC中,a=2,cosC=﹣,sinB=sinC,∴b=c,∴c2=a2+b2﹣2abcosC=22+c2﹣2×2×c×(﹣),化简得5c2﹣3c﹣36=0,解得c=3或c=﹣(不合题意,舍去),∴c=3.故选:3.三、解答题(本大题共6个小题,共70分)17.(10分)已知函数f(x)=2x﹣sin2x﹣.(I)求函数f(x)的最小正周期及对称轴方程;(II)求函数f(x)的单调区间.【解答】解:(Ⅰ)函数f(x)=2x﹣sin2x﹣=(1+cos2x)﹣sin2x﹣=﹣sin2x+cos2x=﹣2sin(2x﹣);﹣﹣﹣﹣(3分)∴f(x)的最小正周期为π,﹣﹣﹣﹣(4分)对称轴方程为x=+,k∈Z;﹣﹣﹣﹣(6分)(Ⅱ)令+2kπ≤2x﹣≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,∴f(x)的单调递增区间为[+kπ,+kπ](k∈Z);﹣﹣﹣﹣(8分)令﹣+2kπ≤2x﹣≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴f(x)的单调递减区间为[﹣+kπ,+kπ](k∈Z).﹣﹣﹣﹣(10分)18.(12分)若0,0,sin()=,cos()=.(I)求sinα的值;(II)求cos()的值.【解答】解:(Ⅰ)∵0,∴,又sin()=,∴cos()=,∴sinα=sin[﹣()]=sin cos()﹣cos sin()=;(Ⅱ)∵0,∴,又cos()=,∴sin()=.∴cos()=cos[()+()]=cos()cos()﹣sin()sin()=.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,若(2a﹣c)cosB=bcosC.(I)求角B的大小;(II)若b=2,求△ABC周长的最大值.【解答】(本题满分为12分)解:(Ⅰ)∵由(2a﹣c)cosB=bcosC,可得:(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB=sinBcosC+cosBsinC,可得:2sinAcosB=sin(B+C)=sinA,∵A∈(0,π),sinA>0,∴可得:cosB=,∴由B=,B∈(0,π),B=.﹣﹣﹣﹣(4分)(Ⅱ)∵2R==,a=sinA,c=sinC,﹣﹣﹣﹣(6分)∴可得三角形周长:a+b+c=sinA+sinC+2=sinA+sin(﹣A)+2=4sin(A+)+2,﹣﹣﹣﹣(9分)∵0<A<,<A+<,可得:sin(A+)∈(,1].﹣﹣﹣﹣(11分)∴周长的最大值为6.﹣﹣﹣﹣(12分)20.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的最小正周期为π,函数的图象关于点()中心对称,且过点().(I)求函数f(x)的解析式;(II)若方程2f(x)﹣a+1=0在x∈[0,]上有解,求实数a的取值范围.【解答】解:(Ⅰ)函数f(x)=Asin(ωx+φ)的最小正周期为T==π,由ω>0,得ω=2;由函数f(x)的图象关于点()中心对称,∴2×+φ=kπ,φ=﹣+kπ,k∈Z;又|φ|<,∴φ=﹣;又f(x)过点(),∴Asin(2×﹣)=1,解得A=2,∴函数f(x)=2sin(2x﹣);(II)方程2f(x)﹣a+1=0,∴a=4sin(2x﹣)+1;又x∈[0,],∴2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣,1],∴4sin(2x﹣)+1∈[﹣1,5],∴实数a的取值范围是[﹣1,5].21.(12分)在△ABC中,边a,b,c所对的角分别为A,B,C,且a>c,若△ABC的面积为2,sin(A﹣B)+sinC=sinA,b=3.(Ⅰ)求cosB的值;(Ⅱ)求边a,c的值.【解答】解:(Ⅰ)由sin(A﹣B)+sinC=sinA,得sinAcosB﹣cosAsinB+sin (A+B)=sinA即2sinAcosB=sinA,∵sinA≠0,∴cosB=.sinB=(Ⅱ)由余弦定理得:b2=a2+c2﹣2ac•cosB=a2+c2﹣ac⇒a2+c2﹣ac=9…①又∵s △ABC=ac•sinB=2,∴ac=6…②由①②解得,∵a>c,∴a=3,c=2.22.(12分)设函数f(x)=a2x+ma﹣2x(a>0,a≠1)是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若f(1)=,且g(x)=f(x)﹣2kf()+2a﹣2x在[0,1]上的最小值为2,求实数k的取值范围.【解答】解:(Ⅰ)由题意可得f(0)=0,1+m=0,解得m=﹣1,则f(x)=a2x﹣a﹣2x,f(﹣x)=a﹣2x﹣a2x=﹣f(x),可得f(x)为奇函数,则m=﹣1成立;(Ⅱ)由f(x)=a2x﹣a﹣2x,f(1)=,可得a2﹣a﹣2=,解得a=2,则f(x)=22x﹣2﹣2x,设y=g(x)=22x+2﹣2x﹣2k(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2k(2x﹣2﹣x)+2,设t=2x﹣2﹣x,y=t2﹣2kt+2x∈[0,1],可得t∈[0,],当k<0时,y min=2成立;当0≤k≤时,y min=2﹣k2=2,解得k=0成立;当k≥时,ymin=﹣3k+=2,解得k=不成立,舍去.综上所述,实数k的取值范围是(﹣∞,0].。
黑龙江省哈尔滨六中2015-2016学年高一下学期期末数学试卷 Word版含解析
2015-2016学年黑龙江省哈尔滨六中高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.原点到直线x+y﹣2=0的距离为()A.B.0 C.2 D.12.在△ABC中,角A,B,C的对边为a,b,c,若b=,∠B=,cosA=,则边a 等于()A.1 B.C.3 D.53.圆心为(1,2)且过原点的圆的方程是()A.(x﹣1)2+(y﹣2)2=5 B.(x+1)2+(y+2)2=5 C.(x﹣1)2+(y﹣2)2=3 D.(x+1)2+(y+2)2=34.若实数x,y满足,则z=x﹣2y的最大值为()A.﹣2 B.0 C.2 D.45.若直线ax﹣by=1(a>0,b>0)过点(1,﹣1),则+的最小值为()A.3 B.4 C.5 D.86.椭圆的长轴长与短轴长之和等于其焦距的倍,且一个焦点的坐标为(,0),则椭圆的标准方程为()A. +y2=1 B. +x2=1 C. +=1 D. +=17.已知数列{a n}是由正数组成的等比数列,S n为其前n项和.已知a2a4=16,S3=7,则S5=()A.15 B.17 C.31 D.338.设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.9.已知数列{a n}是等差数列,其前n项和为S n,若首项a1>0且﹣1<<0,有下列四个命题:P1:d<0;P2:a1+a12<0;P 3:数列{a n }的前7项和最大; P 4:使S n >0的最大n 值为12; 其中正确的命题为( )A .P 1,P 2B .P 1,P 4C .P 2,P 3D .P 3,P 410.已知点P (x ,y )满足条件:,若z=x +3y 的最大值为8,则k 的值为( )A .﹣6B .6C .8D .不确定11.已知正实数a ,b 满足a +2b=1,则+的最小值为( )A .1+2B .1+C .4D .212.设点P 是椭圆+=1(a >b >0)与圆x 2+y 2=3b 2的一个交点,F 1,F 2分别是椭圆的左、右焦点,且|PF 1|=3|PF 2|,则椭圆的离心率为( )A .B .C .D .二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置. 13.已知过点A (﹣2,m )和(m ,10)的直线与直线2x ﹣y ﹣1=0平行,则m 的值为______.14.已知点P (1,1)是直线l 被椭圆+=1所截得的线段的中点,则直线l 的方程为______.15.在△ABC 中,角A ,B ,C 的所对边分别为a ,b ,c ,若a 2﹣b 2=c 2,则的值为______.16.已知P 是直线3x +4y +8=0上的动点,PA ,PB 是圆x 2+y 2﹣2x ﹣2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为______.三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.17.过点P (1,1)作直线l ,分别交x ,y 正半轴于A ,B 两点. (1)若直线l 与直线x ﹣3y +1=0垂直,求直线l 的方程;(2)若直线l 在y 轴上的截距是直线l 在x 轴上截距的2倍,求直线l 的方程.18.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =(n +1)log 2a n+1.证明:++…++<1.19.已知A (0,2),圆C :(x ﹣a )2+y 2=1.(1)当a=1时,求直线2x ﹣y ﹣1=0被圆C 截得的弦长;(2)若圆C 上存在点M ,满足条件|MA |=3,求实数a 的取值范围.20.已知三角形△ABC中,角A,B,C所对边分别为a,b,c,且2acosC=2b﹣c.(1)求角A的大小;(2)若b+c=2,求a的取值范围.21.已知椭圆+=1(a>b>0)的离心率为,且短轴长为2.(1)求椭圆的方程;(2)若直线l:y=x+与椭圆交于A,B两点,O为坐标原点,求△AOB的面积.22.设椭圆C: +=1的左、右焦点分别为F1,F2,直线y=x﹣1过椭圆的右焦点F2且与椭圆交于P,Q两点,若△F1PQ的周长为4.(1)求椭圆C的方程;(2)过点M(2,0)的直线l与椭圆C交于不同两点E,F,求•取值范围.2015-2016学年黑龙江省哈尔滨六中高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.原点到直线x+y﹣2=0的距离为()A.B.0 C.2 D.1【考点】点到直线的距离公式.【分析】根据点到直线的距离公式,结合题中数据加以计算,即可求出原点到该直线的距离.【解答】解:∵原点O(0,0),直线x+y﹣2=0,∴原点到直线l的距离为d==1,故选:D2.在△ABC中,角A,B,C的对边为a,b,c,若b=,∠B=,cosA=,则边a 等于()A.1 B.C.3 D.5【考点】正弦定理.【分析】cosA=,A∈(0,π),可得sinA=,再利用正弦定理即可得出.【解答】解:在△ABC中,∵cosA=,A∈(0,π),∴sinA==.由正弦定理可得:a===3.故选:C.3.圆心为(1,2)且过原点的圆的方程是()A.(x﹣1)2+(y﹣2)2=5 B.(x+1)2+(y+2)2=5 C.(x﹣1)2+(y﹣2)2=3 D.(x+1)2+(y+2)2=3【考点】圆的标准方程.【分析】由题意结合两点间的距离公式求出圆的半径,代入圆的标准方程得答案.【解答】解:由题意可得圆的半径r=,又圆心为(1,2),可得圆的标准方程为(x﹣1)2+(y﹣2)2=5.故选:A.4.若实数x,y满足,则z=x﹣2y的最大值为()A.﹣2 B.0 C.2 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z=x﹣2y得y=x﹣,作出不等式组对应的平面区域如图(阴影部分)平移直线y=x﹣,由图象可知当直线,过点A时,直线的截距最小,此时z最大,由,得,即A(2,0),代入目标函数z=x﹣2y,得z=2,∴目标函数z=x﹣2y的最大值是2,故选:C.5.若直线ax﹣by=1(a>0,b>0)过点(1,﹣1),则+的最小值为()A.3 B.4 C.5 D.8【考点】基本不等式.【分析】由题意可得a与b的关系式为:a+b=1.利用“1”的代换,结合基本不等式,可求+的最小值.【解答】解:由题意可得:直线ax﹣by=1(a>0,b>0)过点(1,﹣1),所以a+b=1.所以+=(a+b)(+)=2++≥2+2=4,当且仅当a=b=时取等号.∴+的最小值为4故选:B.6.椭圆的长轴长与短轴长之和等于其焦距的倍,且一个焦点的坐标为(,0),则椭圆的标准方程为()A. +y2=1 B. +x2=1 C. +=1 D. +=1【考点】椭圆的简单性质.【分析】利用条件得出c=,a+b=3,根据a2=b2+c2,求出a,b,即可求出椭圆的标准方程.【解答】解:由题意,c=,a+b=3,∵a2=b2+c2,∴a=2,b=1,∴椭圆的标准方程为+y2=1,故选:A.7.已知数列{a n}是由正数组成的等比数列,S n为其前n项和.已知a2a4=16,S3=7,则S5=()A.15 B.17 C.31 D.33【考点】等比数列的前n项和.【分析】利用等比数列的通项公式、求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0.∵a2a4=16,S3=7,∴q≠1,=16,a1(1+q+q2)=7,解得a1=1,q=2,则S5==31,故选:C.8.设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.9.已知数列{a n}是等差数列,其前n项和为S n,若首项a1>0且﹣1<<0,有下列四个命题:P1:d<0;P2:a1+a12<0;P3:数列{a n}的前7项和最大;P4:使S n>0的最大n值为12;其中正确的命题为()A.P1,P2B.P1,P4C.P2,P3D.P3,P4【考点】等差数列的性质.【分析】数列{a n}是等差数列,其前n项和为S n,首项a1>0,且﹣1<<0,则d<0.∴a6>0,a7<0,且a6+a7>0.再利用等差数列的通项公式、求和公式及其性质即可得出.【解答】解:数列{a n}是等差数列,其前n项和为S n,首项a1>0,且﹣1<<0,则d<0.∴a6>0,a7<0,且a6+a7>0.则P1:d<0,正确;P2:a1+a12=a6+a7>0,因此不正确;P3:数列{a n}的前6项和最大,因此不正确;P4:S12=>0,=13a7<0.因此正确.综上可得:正确的命题为P1,P4.故选:B.10.已知点P(x,y)满足条件:,若z=x+3y的最大值为8,则k的值为()A.﹣6 B.6 C.8 D.不确定【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件:作出可行域如图,联立,解得A(,),化目标函数z=x+3y为y=﹣+,由图可知,当直线y=﹣+,过A(,),时,直线在y轴上的截距最大,z有最大值为=8,解得k=6.故选:B.11.已知正实数a,b满足a+2b=1,则+的最小值为()A.1+2B.1+C.4 D.2【考点】基本不等式.【分析】由正实数a,b满足a+2b=1,代入+=+=1++,再利用基本不等式的性质即可得出.【解答】解:∵正实数a,b满足a+2b=1,则+=+=1++≥1+2=1+2,当且仅当a=b=﹣1时取等号.故选:A.12.设点P是椭圆+=1(a>b>0)与圆x2+y2=3b2的一个交点,F1,F2分别是椭圆的左、右焦点,且|PF1|=3|PF2|,则椭圆的离心率为()A.B.C.D.【考点】椭圆的简单性质;余弦定理.【分析】先由椭圆的定义和已知求出两个焦半径的长,利用余弦定理得关于a、c的等式,然后求得离心率.【解答】解:依据椭圆的定义:|PF1|+|PF2|=2a,又∵|PF1|=3|PF2|,∴|PF1|=a,|PF2|=a,∵圆x2+y2=3b2的半径r=b,∴三角形F1PF2中有余弦定理可得:,,可得7a2=8c2,得e=.故选D.二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置.13.已知过点A(﹣2,m)和(m,10)的直线与直线2x﹣y﹣1=0平行,则m的值为2.【考点】直线的一般式方程与直线的平行关系.【分析】由于过点A(﹣2,m)和(m,10)的直线与直线2x﹣y﹣1=0平行,可知其斜率相等,利用斜率计算公式即可得出.【解答】解:由直线2x﹣y﹣1=0化为y=2x﹣1,可知其斜率为2.∵过A(﹣2,m),B(m,10)两点的直线与直线2x﹣y+1=0平行,∴k AB=2,∴=2,解得m=2.故答案为:214.已知点P(1,1)是直线l被椭圆+=1所截得的线段的中点,则直线l的方程为x+2y﹣3=0.【考点】椭圆的简单性质.【分析】设出A和B点坐标,由中点坐标公式及利用“点差法”可求出直线l的斜率k,再由由点斜式可得l的方程.【解答】解:设l与椭圆的交点为A(x1,y1),B(x2,y2),由中点坐标公式可知:=1,=1,则:,k AB==﹣=﹣,直线l的方程为y﹣1=﹣(x﹣1),即x+2y﹣3=0,故答案为:x+2y﹣3=0.15.在△ABC中,角A,B,C的所对边分别为a,b,c,若a2﹣b2=c2,则的值为.【考点】余弦定理;正弦定理.【分析】利用余弦定理化简即可得出.【解答】解:∵a2﹣b2=c2,∴===.故答案为:.16.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2﹣2x﹣2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.【考点】直线和圆的方程的应用.【分析】由圆的方程为求得圆心C(1,1)、半径r为:1,由“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,最后将四边形转化为两个直角三角形面积求解.【解答】解:∵圆的方程为:x2+y2﹣2x﹣2y+1=0∴圆心C(1,1)、半径r为:1根据题意,若四边形面积最小当圆心与点P的距离最小时,距离为圆心到直线的距离时,切线长PA,PB最小圆心到直线的距离为d=3∴|PA|=|PB|=∴故答案为:三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.17.过点P(1,1)作直线l,分别交x,y正半轴于A,B两点.(1)若直线l与直线x﹣3y+1=0垂直,求直线l的方程;(2)若直线l在y轴上的截距是直线l在x轴上截距的2倍,求直线l的方程.【考点】待定系数法求直线方程.【分析】(1)利用相互垂直的直线斜率之间的关系、点斜式即可得出.(2)对直线l分类讨论:经过原点时直接得出;不经过原点时,设直线l:y﹣1=k(x﹣1)(k<0),可得y轴上的截距为:y=1﹣k,x轴上的截距为:.由题意可得,解得k即可得出.【解答】解:(1)设直线l的斜率为k,∵直线l与直线x﹣3y+1=0垂直,∴k=﹣1,解得k=﹣3.∴直线方程为y﹣1=﹣3(x﹣1),化为3x+y﹣4=0.(2)经过原点的直线:y=x也满足条件.直线l不经过原点时,设直线l:y﹣1=k(x﹣1)(k<0);y轴上的截距为:y=1﹣k,x轴上的截距为:.∵,解得k=﹣2;∴直线方程为:2x+y﹣3=0.综上可得:直线方程为:2x+y﹣3=0或y=x.18.设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=(n+1)log2a n+1.证明: ++…++<1.【考点】数列与不等式的综合;等比数列的通项公式.【分析】(1)通过联立S3=7=a1+a2+a3与a1+3,3a2,a3+4构成等差数列,可求出公比q,进而代入S3=7可求出首项,进而整理即得结论;(2)通过(1)裂项可知=﹣,进而并项相加、放缩即得结论.【解答】(1)解:∵数列{a n}是等比数列,S3=7=a1+a2+a3,又∵a1+3,3a2,a3+4构成等差数列,∴6a2=a1+3+a3+4=a1+a3+(a1+a2+a3),即5a2=2a1+2a3,记数列{a n}的公比为q,则5a1q=2a1+2a1q2,∴2q2﹣5q+2=0,即(2q﹣1)(q﹣2)=0,解得:q=2或q=(舍),又∴S3=7=a1(1+2+4),即a1=1,∴数列{a n}的通项公式a n=2n﹣1;(2)证明:由(1)可知b n=(n+1)log2a n+1=n(n+1),∵==﹣,∴.19.已知A(0,2),圆C:(x﹣a)2+y2=1.(1)当a=1时,求直线2x﹣y﹣1=0被圆C截得的弦长;(2)若圆C上存在点M,满足条件|MA|=3,求实数a的取值范围.【考点】直线与圆的位置关系.【分析】(1)当a=1时,求出圆心到直线的距离,利用勾股定理求直线2x﹣y﹣1=0被圆C 截得的弦长;(2)若圆C上存在点M,满足条件|MA|=3,得出点M的轨迹是圆,则两个圆有公共点,即可求实数a的取值范围.【解答】解:(1)当a=1时,圆的圆心坐标为(1,0),半径为1,圆心到直线的距离d=,∴直线2x﹣y﹣1=0被圆C截得的弦长=2=;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)|MA|=3⇐x2+(y﹣2)2=9,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以点M的轨迹是圆,则两个圆有公共点,﹣﹣﹣﹣﹣﹣﹣﹣所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.已知三角形△ABC中,角A,B,C所对边分别为a,b,c,且2acosC=2b﹣c.(1)求角A的大小;(2)若b+c=2,求a的取值范围.【考点】正弦定理.【分析】(1)利用余弦定理即可得出.(2)利用正弦定理及其和差化积即可得出.【解答】解:(1)∵2acosC=2b﹣c,∴2a×=2b﹣c,化为:b2+c2﹣a2=bc.∴cosA==,又A∈(0,π).∴.(2)∵,∴,∴,sinB+sinC=sinB+sin=sinB+cosB+sinB==sin.∴,∵,∴a∈[1,2).21.已知椭圆+=1(a>b>0)的离心率为,且短轴长为2.(1)求椭圆的方程;(2)若直线l:y=x+与椭圆交于A,B两点,O为坐标原点,求△AOB的面积.【考点】椭圆的简单性质.【分析】(1)由b=1,及a2=b2+c2,即可求得a和c的值,求得椭圆方程;(2)将直线方程代入椭圆方程,消去y,根据韦达定理求得x1+x2及x1•x2,根据弦长公式及点到直线的距离公式,代入三角形面积公式即可求得△AOB的面积.【解答】解:(1)短轴长2b=2,b=1,…又a2=b2+c2,所以,所以椭圆的方程为…(2)设直线l的方程为,A(x1,y1),B(x2,y2),∴,消去y得,,由韦达定理可知:,由弦长公式可知:丨AB丨=•=•=…根据点到直线的距离公式:d==1,S△AOB=×d×丨AB丨=×1×=,∴…22.设椭圆C: +=1的左、右焦点分别为F1,F2,直线y=x﹣1过椭圆的右焦点F2且与椭圆交于P,Q两点,若△F1PQ的周长为4.(1)求椭圆C的方程;(2)过点M(2,0)的直线l与椭圆C交于不同两点E,F,求•取值范围.【考点】椭圆的简单性质.【分析】(1)由直线y=x﹣1,令x﹣1=0,解得x,可得F2(1,0).由△F1PQ的周长为4,可得4=4a,解得a,可得b2=a2﹣c2=1.即可得出.(2)由题意直线l的斜率存在,y=k(x﹣2),设E(x1,y1),F(x2,y2),直线方程与椭圆方程联立化为(1+2k2)x2﹣8k2x+8k2﹣2=0,△>0,再利用数量积运算性质、根与系数的关系即可得出.【解答】解:(1)由直线y=x﹣1,令x﹣1=0,解得x=1,∴F2(1,0).∵△F1PQ的周长为4,∴4=4a,解得a=,∴b2=a2﹣c2=1.∴椭圆C的方程为:=1.(2)由题意直线l的斜率存在,y=k(x﹣2),设E(x1,y1),F(x2,y2),,化为(1+2k2)x2﹣8k2x+8k2﹣2=0,△>0,解得,∴x1+x2=,x1x2=.∵•=(x1﹣2)(x2﹣2)+y1y2=(1+k2)[x1x2﹣2(x1+x2)+4]=(1+k2)==+1,∵,∴∈.∴.2016年9月14日。
哈六中高一数学期末试题及答案
哈尔滨市第六中学2015-2016学年度上学期期末考试高一数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合}6,5,4,3,2,1{=U ,}3,2,1{=A ,}6,5,2{=B ,则)(B C A U 等于( )(A )}2{ (B )}3,2{ (C )}3{ (D )}3,1{2.α是第四象限角,34tan -=α,则αsin 等于( ) (A )54 (B )54- (C )53 (D )53- 3.设⎪⎩⎪⎨⎧<-=->+=)0(,1)0(,1)0(,1)(x x x x x x f ,则=)]0([f f ( )(A)1 (B)0 (C)2 (D)1-4.如果31sin(=-)απ,那么=+)απ2cos(等于( ) (A )31- (B )31 (C ) 322 (D ) 322- 5.函数xx e e x f 1)(2-=的图像关于( ) (A )原点对称 (B )y 轴对称 (C )x 轴对称 (D )关于1=x 对称 6.已知函数x y ωtan =在⎪⎭⎫ ⎝⎛-4,4ππ内是增函数,则( ) (A )20≤<ω (B )02<≤-ω (C )2≥ω (D )2-≤ω7.设18log ,12log ,6log 642===c b a ,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )a b c >>8.︒-︒20sin 155sin 22的值为( ) (A )12 (B ) 12- (C ) 1- (D ) 1 9.已知函数)cos()(ϕω+=x A x f ,R x ∈(其中πϕπω<<->>,0,0A ),其部分图象如图所示,则ϕω,的值为( ) (A)43,4πϕπω== (B) 4,4πϕπω-== (C) 4,2πϕπω== (D) 4,2πϕπω-==10. 若函数)(x f 的零点与82ln )(-+=x x x g 的零点之差的绝对值不超过5.0, 则)(x f 可以是( )(A)63)(-=x x f (B)2)4()(-=x x f (C) 1)(2-=-x ex f (D))25ln()(-=x x f 11.使奇函数)2cos()2sin(3)(θθ+++=x x x f 在]4,0[π上为增函数的θ值为( ) (A)3π- (B)6π- (C)65π (D)32π 12.已知函数⎩⎨⎧>≤≤=)1(log )10(sin )(2018x x x x x f π,若c b a ,,互不相等,且)()()(c f b f a f ==,则c b a ++的取值范围是( ) (A))2018,2( (B) )2019,2( (C) )2018,3( (D) )2019,3(二、填空题(本题共4个小题,每小题5分)13.=︒660cos .14.已知方程05)2(2=-+-+a x a x 的两个根均大于2,则实数a 的取值范围是 .15.设()f x 是以2为周期的奇函数,且2()35f -=,若sin 5α=,则(4cos 2)f α的值等于 , 16. 已知函数(1)y f x =+是定义域为R 的偶函数,且()f x 在[1,)+∞上单调递减,则不等式(21)(2)f x f x ->+的解集为 .三、解答题(本题共6个小题,共70分)17.(本小题满分10分) 已知集合{}{}42,20,01sin 22>=<<>-=-x x x B x x x A π (1)求集合A 和B ;(2)求B A .18.(本小题满分12分)已知若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-= 求(1)求αcos 的值;19.(本小题满分12分) 已知函数2cos sin 34cos 4)(2++-=x x a x x f ,若)(x f 的图象关于点)0,12(π对称. (1)求实数a ,并求出)(x f 的单调减区间;(2)求)(x f 的最小正周期,并求)(x f 在]6,4[ππ-上的值域.20.(本小题满分12分)已知函数3)ln(2ln )(2+-=ex a x x f ,],[21e e x -∈(1)当1=a 时,求函数()f x 的值域;(2)若4ln )(+-≤x a x f 恒成立,求实数a 的取值范围.21.(本小题满分12分) 设函数1cos 2)32cos()(2+++-=a x x x f π,且]6,0[π∈x 时,)(x f 的最小值为2. (1)求实数a 的值;(2)当]2,2[ππ-∈x 时,方程2123)(+=x f 有两个不同的零点βα,,求βα+的值.22.(本小题满分12分)已知函数()223x x f x m =⋅+⋅,m R ∈.(1)当9m =-时,求满足(1)()f x f x +>的实数x 的范围;(2)若9()()2x f x ≤对任意的x R ∈恒成立,求实数m 的范围.高一数学答案∴322)4sin(=+απ------4分 分 ∴36)24sin(=-βπ------10分∴935)24sin()4sin()24cos()4cos()]24()4cos[()2cos(=-++-+=--+=+βπαπβπαπβπαπβα------12分 19、(1)∵0)12(=πf ∴1=a ------2分 ∴)62sin(4)(π-=x x f ------4分 ∴单调递减区间为)](65,3[Z k k k ∈++ππππ------6分π=------8分 ∵]6,4[ππ-∈x ∴]6,32[62πππ-∈-x ------10分 ∴]2,4[)(-∈x f ------12分 1ln 2ln )(2+-=x x x ------1分 令]2,1[ln -∈=x t ------2分∴12+-=t t y ∴]4,0[∈y ------4分(2)∵4ln )(+-≤x a x f ∴012ln ln 2≤---a x a x 恒成立 令]2,1[ln -∈=x t ∴0122≤---a at t 恒成立------5分 设122---=a at t y ------∴当1212≤≤a a 即时,034max ≤+-=a y ∴143≤≤a ------8分 当1212>>a a 即时,0max ≤-=a y ∴1>a --------11分 综上所述,43≥a ------12分 21、(1)a x x f +++=2)32sin(3)(π------2分 ∵]6,0[π∈x ∴]32,3[32πππ∈+x ------4分 ∴]1,23[)2sin(∈+πx ∴227)(min =+=a x f ∴23-=a ------6分2123+ ∴21)32sin(∈+πx ------8分 ∵]2,2[ππ-∈x ∴]34,32[32πππ-∈+x ------10分 6532ππβ=+ ∴4,12πβπα=-= ∴6πβα=+------12分 )()1(x f x >+ ∴2232--<x x ∴1)32(2<-x ∴2>x ------6分 x )29( ∴x x m )23(2)23(2-≤--------8分 令0)23(>=x t ∴t t m 22-≤ 1-= ∴1-≤m ------12分。
2015-2016年黑龙江省哈尔滨六中高一上学期期末数学试卷与答案Word版
2015-2016学年黑龙江省哈尔滨六中高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5.00分)设集合U={1,2,3,4,5,6},A={1,2,3},B={2,5,6},则A∩(∁U B)等于()A.{2}B.{2,3}C.{3}D.{1,3}2.(5.00分)α是第四象限角,,则s inα等于()A.B.C.D.3.(5.00分)设,则f[f(0)]=()A.1 B.0 C.2 D.﹣14.(5.00分)已知,则的值为()A.B.C.D.5.(5.00分)函数的图象关于()A.原点对称B.y轴对称C.x轴对称D.关于x=1对称6.(5.00分)已知函数y=tanωx在内是增函数,则()A.0<ω≤2 B.﹣2≤ω<0 C.ω≥2 D.ω≤﹣27.(5.00分)设a=log26,b=log412,c=log618,则()A.b>c>a B.a>c>b C.a>b>c D.c>b>a8.(5.00分)的值为()A.B.C.﹣1 D.19.(5.00分)已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,﹣π<ϕ<π),其部分图象如图所示,则ω,ϕ的值为()A.B.C.D.10.(5.00分)若函数f(x)的零点与g(x)=lnx+2x﹣8的零点之差的绝对值不超过0.5,则f(x)可以是()A.f(x)=3x﹣6 B.f(x)=(x﹣4)2C.f(x)=e x﹣1﹣1 D.f(x)=ln(x ﹣)11.(5.00分)使奇函数在上为增函数的θ值为()A.B.C. D.12.(5.00分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(2,2018)B.(2,2019)C.(3,2018)D.(3,2019)二、填空题(本题共4个小题,每小题5分)13.(5.00分)cos660°=.14.(5.00分)已知方程x2+(a﹣2)x+5﹣a=0的两个根均大于2,则实数a的取值范围是.15.(5.00分)设f(x)是以2为周期的奇函数,且f(﹣)=3,若sinα=,则f(4cos2α)的值等于.16.(5.00分)已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x﹣1)>f(x+2)的解集为.三、解答题(本题共6个小题,共70分)17.(10.00分)已知集合(1)求集合A和B;(2)求A∩B.18.(12.00分)已知若0,﹣<β<0,cos(+α)=,cos(﹣)=求(1)求cosα的值;(2)求的值.19.(12.00分)已知函数f(x)=﹣4cos2x+4asinxcosx+2,若f(x)的图象关于点(,0)对称.(1)求实数a,并求出f(x)的单调减区间;(2)求f(x)的最小正周期,并求f(x)在[﹣,]上的值域.20.(12.00分)已知函数f(x)=ln2x﹣2aln(ex)+3,x∈[e﹣1,e2](1)当a=1时,求函数f(x)的值域;(2)若f(x)≤﹣alnx+4恒成立,求实数a的取值范围.21.(12.00分)设函数f(x)=cos(2x﹣)+2cos2x+a+1,且x∈[0,]时,f(x)的最小值为2.(1)求实数a的值;(2)当x∈[﹣,]时,方程f(x)=+有两个不同的零点α,β,求α+β的值.22.(12.00分)已知函数f(x)=m•2x+2•3x,m∈R.(1)当m=﹣9时,求满足f(x+1)>f(x)的实数x的范围;(2)若对任意的x∈R恒成立,求实数m的范围.2015-2016学年黑龙江省哈尔滨六中高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5.00分)设集合U={1,2,3,4,5,6},A={1,2,3},B={2,5,6},则A∩(∁U B)等于()A.{2}B.{2,3}C.{3}D.{1,3}【解答】解:集合U={1,2,3,4,5,6},A={1,2,3},B={2,5,6},∴∁U B={1,3,4},A∩(∁U B)={1,3}.故选:D.2.(5.00分)α是第四象限角,,则si nα等于()A.B.C.D.【解答】解:∵α是第四象限角,,∴cosα===,∴sinα=﹣=﹣=﹣.故选:B.3.(5.00分)设,则f[f(0)]=()A.1 B.0 C.2 D.﹣1【解答】解:∵,∴f(0)=1﹣0=1,f[f(0)]=f(1)=1+1=2.故选:C.4.(5.00分)已知,则的值为()A.B.C.D.【解答】解:∵=sinα,∴=﹣sinα=,故选:B.5.(5.00分)函数的图象关于()A.原点对称B.y轴对称C.x轴对称D.关于x=1对称【解答】解:=e x﹣e﹣x,∴f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),∵函数的定义域为R,∴f(x)为奇函数,∴f(x)的图象关于原点对称,故选:A.6.(5.00分)已知函数y=tanωx在内是增函数,则()A.0<ω≤2 B.﹣2≤ω<0 C.ω≥2 D.ω≤﹣2【解答】解:根据函数y=tanωx在内是增函数,可得ω≤,求得ω≤2,再结合ω>0,故选:A.7.(5.00分)设a=log26,b=log412,c=log618,则()A.b>c>a B.a>c>b C.a>b>c D.c>b>a【解答】解:a=log26>log24=2,b=log412=log43+log44=1+log43<2,c=log618=log63+log66=1+log63<2,又log43>log63,∴a>b>c.故选:C.8.(5.00分)的值为()A.B.C.﹣1 D.1【解答】解:===1,故选:D.9.(5.00分)已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,﹣π<ϕ<π),其部分图象如图所示,则ω,ϕ的值为()A.B.C.D.【解答】解:(1)由图知,A=1.f(x)的最小正周期T=4×2=8,所以由T=,得ω=.又f(1)=sin(+ϕ)=1且,﹣π<ϕ<π,所以,+ϕ=,解得ϕ=.故选:A.10.(5.00分)若函数f(x)的零点与g(x)=lnx+2x﹣8的零点之差的绝对值不超过0.5,则f(x)可以是()A.f(x)=3x﹣6 B.f(x)=(x﹣4)2C.f(x)=e x﹣1﹣1 D.f(x)=ln(x ﹣)【解答】解:由于g(x)=lnx+2x﹣8为(0,+∞)上的增函数,且g(3)=ln3﹣2<0,g(4)=ln4>0,故函数g(x)的零点在区间(3,4)内.由于函数y=ln(x﹣)的零点为x=3.5,故函数g(x)的零点与函数y=ln(x﹣)的零点差的绝对值不超过0.5,故f(x)可以是ln(x﹣),故选:D.11.(5.00分)使奇函数在上为增函数的θ值为()A.B.C. D.【解答】解:==.∵函数f(x)为奇函数,∴,则,取k=0,得,此时f(x)=2sin2x,满足在上为增函数.故选:B.12.(5.00分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(2,2018)B.(2,2019)C.(3,2018)D.(3,2019)【解答】解:作函数的图象如图,不妨设a<b<c,则结合图象可知,a+b=1,0<log2018c<1,故1<c<2018,故2<a+b+c<2019,故选:B.二、填空题(本题共4个小题,每小题5分)13.(5.00分)cos660°=.【解答】解:cos660°=cos(720°﹣60°)=cos(﹣60°)=cos60°=,故答案为:.14.(5.00分)已知方程x2+(a﹣2)x+5﹣a=0的两个根均大于2,则实数a的取值范围是(﹣5,﹣4] .【解答】解:设f(x)=x2+(a﹣2)x+5﹣a,则由方程x2+(a﹣2)x+5﹣a=0的两个根均大于2,可得,求得﹣5<a≤﹣4,故答案为:(﹣5,﹣4].15.(5.00分)设f(x)是以2为周期的奇函数,且f(﹣)=3,若sinα=,则f(4cos2α)的值等于﹣3.【解答】解:cos2α=1﹣2sin2α=,∴4cos2α=.∴f(4cos2α)=f()=f(﹣2)=f()=﹣f(﹣)=﹣3.故答案为﹣3.16.(5.00分)已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x﹣1)>f(x+2)的解集为(,3).【解答】解:∵函数y=f(x+1)是定义域为R的偶函数,∴y=f(x+1)关于y轴对称,∴y=f(x)向左平移1个单位得到y=f(x+1),∴y=f(x)关于直线x=1对称,∵f(x)在[1,+∞)上单调递减,且f(2x﹣1)>f(x+2),∴f(x)在(﹣∞,1]上单调递增,∴|2x﹣1﹣1|<|x+2﹣1|,即(2x﹣2)2<(x+1)2,整理得:3x2﹣10x+3<0,即(3x﹣1)(x﹣3)<0,解得:<x<3,则不等式f(2x﹣1)>f(x+2)的解集为(,3).故答案为:(,3)三、解答题(本题共6个小题,共70分)17.(10.00分)已知集合(1)求集合A和B;(2)求A∩B.【解答】解:(1)2sinx﹣1>0,0<x<2π,∴<x<,∴A=(,),∵>4=22,∴x2﹣x>2,∴x<﹣1或x>2,∴B=(﹣∞,﹣1)∪(2,+∞),(2)由(1)可知,A∩B=(2,).18.(12.00分)已知若0,﹣<β<0,cos(+α)=,cos(﹣)=求(1)求cosα的值;(2)求的值.【解答】解:(1)∵,∴.∵,∴,∴.(2)∵,∴.∵,∴,∴.19.(12.00分)已知函数f(x)=﹣4cos2x+4asinxcosx+2,若f(x)的图象关于点(,0)对称.(1)求实数a,并求出f(x)的单调减区间;(2)求f(x)的最小正周期,并求f(x)在[﹣,]上的值域.【解答】解:(1)∵函数f(x)=﹣4cos2x+4asinxcosx+2=2asin2x﹣2cos2x,∵f(x)的图象关于点(,0)对称.∴a﹣=0,解得:a=1,∴函数f(x)=2sin2x﹣2cos2x=4sin(2x﹣),由2x﹣∈[+2kπ,+2kπ],k∈Z得:x∈[+kπ,+kπ],k∈Z,故f(x)的单调减区间为[+kπ,+kπ],k∈Z;(2)由(1)中函数解析式可得ω=2,故T=π,当x∈[﹣,]时,2x﹣∈[﹣,],当2x﹣=﹣,即x=﹣时,函数取最小值﹣4,当2x﹣=,即x=时,函数取最大值2,故f(x)在[﹣,]上的值域为[﹣4,2].20.(12.00分)已知函数f(x)=ln2x﹣2aln(ex)+3,x∈[e﹣1,e2](1)当a=1时,求函数f(x)的值域;(2)若f(x)≤﹣alnx+4恒成立,求实数a的取值范围.【解答】解:(1)当a=1时,y=f(x)=ln2x﹣2lnx+1,令t=lnx∈[﹣1,2],∴y=t2﹣2t+1=(t﹣1)2,当t=1时,取得最小值0;t=﹣1时,取得最大值4.∴f(x)的值域为[0,4];(2)∵f(x)≤﹣alnx+4,∴ln2x﹣alnx﹣2a﹣1≤0恒成立,令t=lnx∈[﹣1,2],∴t2﹣at﹣2a﹣1≤0恒成立,设y=t2﹣at﹣2a﹣1,∴当时,y max=﹣4a+3≤0,∴,当时,y max=﹣a≤0,∴a>1,综上所述,.21.(12.00分)设函数f(x)=cos(2x﹣)+2cos2x+a+1,且x∈[0,]时,f(x)的最小值为2.(1)求实数a的值;(2)当x∈[﹣,]时,方程f(x)=+有两个不同的零点α,β,求α+β的值.【解答】解:(1)由三角函数公式化简可得f(x)=cos(2x﹣)+2cos2x+a+1=cos2x+sin2x+1+cos2x+a+1=cos2x+sin2x+2+a=sin(2x+)+2+a,当x∈[0,]时,2x+∈[,],∴当2x+=或时,f(x)的最小值×+2+a=2,解得a=﹣;(2)由(1)可得f(x)=sin(2x+)+,∵x∈[﹣,],∴2x+∈[,],由f(x)=sin(2x+)+=+可得sin(2x+)=,∴2x+=或2x+=,解得x=﹣或x=,∴α+β=﹣+=.22.(12.00分)已知函数f(x)=m•2x+2•3x,m∈R.(1)当m=﹣9时,求满足f(x+1)>f(x)的实数x的范围;(2)若对任意的x∈R恒成立,求实数m的范围.【解答】解:(1)当m=﹣9时,f(x)=﹣9•2x+2•3x,f(x+1)>f(x),即为2•3x+1﹣9•2x+1>2•3x﹣9•2x,化简可得,2x﹣2<3x﹣2,即为()x﹣2>1=()0,即有x﹣2>0,解得,x>2;(2)由恒成立,即为m•2x+2•3x ≤()x,可得,令,即有m≤t2﹣2t的最小值,由(t2﹣2t)min=﹣1,赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< .x.2.时,都有f(x...1.)<f(x.....2.).,那么就说f(x)在这个区间上是增函数....x1x2y=f(X)xyf(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法yxo函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x ...).,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.可得m ≤﹣1,即实数m 的范围是(﹣∞,﹣1].。
黑龙江省哈尔滨第六中学2014-2015学年高一上学期期末考试数学试题
黑龙江省哈尔滨第六中学2014-2015学年高一上学期期末考试数学试题5.定义在R 上的函数()f x 满足()()0f x f x +-=,当0m >时,()()f x m f x ->,则不等式2(2)()0f x f x -++<的解集为( )A. (2,1)-B. (,2)(1,)-∞-⋃+∞C. (1,2)-D.(,1)(2,)-∞-⋃+∞6.将函数)42sin(3π-=x y 的图象经过( )变换,可以得到函数x y 2sin 3=的图象A. 沿x 轴向右平移8π个单位 B. 沿x 轴向左平移8π个单位 C. 沿x 轴向右平移4π个单位 D. 沿x 轴向左平移4π个单位7.已知tan 222α=-,且满足42ππα<<,则⎪⎭⎫⎝⎛+--απαα4sin 21sin 2cos 22值( )A .2B .-2C .223+-D .223-8.已知函数()()⎪⎭⎫ ⎝⎛<>>∈+=200sin πϕωϕω,,,A R x x A x f 的图象(部分)如图所示,则()x f 的解析式是 ( )A .()2sin()()6f x x x R ππ=+∈ B.()2sin(2)()6f x x x R ππ=+∈C.()2sin()()3f x x x R ππ=+∈ D.()2sin(2)()3f x x x R ππ=+∈9.)(x f 是R 上的偶函数,当0≥x 时,有(2)()f x f x +=-,且当[0,2)x ∈时,2()log (1)f x x =+,则)()2012()2011(=+-f fA. 21log 3+B. 21log 3-+C.-1D.1 10.函数)0(cos sin 3)(>+=ωωωx x x f 与直线2=y 的两个相邻的交点距离等于π,则)(x f 的单调递增区间是( )(A )Z k k k ∈+-],125,12[ππππ (B )Z k k k ∈+-],12,125[ππππ(C )Z k k k ∈+-],6,3[ππππ (D )Z k k k ∈++],32,6[ππππ11.已知函数()sin()(,0)4f x x x R πωω=+∈>的最小正周期为π,将()y f x =的图象向左平移ϕ个单位长度,所得图象关于y 轴对称,则ϕ的一个值是( )A.2π B. 38π C.4π D.8π12.设()f x 是定义在R 上的偶函数,且(2)(2)f x f x +=-,当[2,0)x ∈-时,()12xf x =-,若函数()()log (2)a g x f x x =-+(0a >且1a ≠)在区间(2,6)-内恰有4个零点,则实数a 的取值范围是( )A.1(,1)4 B. (1,4) C.(1,8) D. (8,)+∞二、填空题:(本大题共4小题,每小题5分,共20分)13.关于x 的方程2cos sin 0x x a +-=有实数解,则实数a 的取值范围是__________ 14.已知方程220x ax a -+=的两个根均大于1,则实数a 的取值范围为_____________ 15.已知函数()2sin(2)6f x x π=+,在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若()1a f A ==,则b c +的最大值为____________16.关于函数()4sin(2)()3f x x x R π=-∈,有以下命题:(1)4()3y f x π=+是偶函数;(2)要得到()4sin 2g x x =-的图象,只需将()f x 的图象向右平移3π个单位;(3)()y f x =的图象关于直线12x π=-对称;(4)()y f x =在[0,]π内的增区间为511[0,],[,]1212πππ, 其中正确命题的序号为______________三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明,证明过程或解题步骤)17.(本题满分10分)设函数2()log ()x xf x a b =-,且(1)1f =,2(2)log 12f =.(1)求a b ,的值;(2)当[12]x ∈,时,求()f x 的最大值.18.(本题满分12分)已知2sin ()cos(2)tan()(),sin()tan(3)f παπαπααπααπ-⋅-⋅-+=+⋅-+ (1)化简()f α;(2)若1(),8f α=且,42ππα<<求cos sin αα-的值;(3)求满足1()4f α≥的α的取值集合.19.(本题满分12分)已知βαtan ,tan 是一元二次方程02532=-+x x 的两根,且),2(),2,0(ππβπα∈∈, (1)求)cos(βα-的值;(2)求βα+的值.20.(本题满分12分)已知函数()4cos sin()16f x x x π=+-(1)求()f x 在区间[,]64ππ-上的最大值和最小值及此时的x 值;(2)求()f x 的单调增区间; (3)若1()2f α=,求sin(4)6πα-21.(本题满分12分)已知在ABC ∆中,,,a b c 分别是角,,A B C 的对边,,且满足1cos (3cos )2A A A ⋅-=(1)求角A 的大小; (2)若22,23ABC a S ∆==,b c 的长。
黑龙江省哈尔滨第六中学2015届高三上学期期末考试数学(文)试卷word版含答案
A .y =B .y x =C .2y x =±D .y x =± 4.已知直线01)2(:,02)2(:21=-+-=--+ay x a l y a x l ,则“1-=a ”是“21l l ⊥的( )。
A .充分不必要条件B.必要不充分条件 C .充要条件D.既不充分也不必要条件5.直角坐标系中坐标原点O 关于直线l :2tan 10x a y +-=的对称点为A (1,1),则tan 2a 的值为( )。
A .43- B .43 C .1 D .456.已知点D 为等腰直角三角形ABC 斜边AB 的中点,则下列等式中不恒..成立的是( )。
A .||||CB CA CD +=B .AB AC AC ⋅=2 C .BA BC BC ⋅=2D .0)()(=-⋅+CB CA CB CA7.若n S 是等比数列}{n a 的前n 项和,7,3342==S a a a ,则数列}{n a 的公比q 的值为( )。
A .12B .12-或13C .12或13-D .138. 把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为( )。
A .8π=x B .4π-=x C .2π-=x D .4π=x9.某几何体的三视图如图所示,则该几何体的表面积为( )。
A .3+.8+.6+ D .11+10.已知点)2,1(P 和圆C :02222=++++k y kx y x ,过P 作C 的切线有两条,则k 的取值范围是( )A. R k ∈ B. 332<k C.0k <<k <<11. 过抛物线)0(22>=p px y 的焦点F 且倾斜角为 60的直线l 与抛物线在第一、四象限分别交于B A ,两点,则BF AF的值等于( )。
.A 5 .B 4 .C 3 .D 212.已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )。
黑龙江省哈尔滨市第六中学2015-2016学年高一数学下学期期末考试试题
哈尔滨市第六中学2015-2016学年度下学期期末考试高一数学试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.原点到直线023=-+y x 的距离为( )A.21B.0C. 2D.1 2.在△ABC 中,角C B A ,,的对边为,,a b c ,若1010cos ,4,5==∠=A B b π,则边a 等于( )A. 1B.35C.3D.5 3.圆心为(1,2)且过原点的圆的方程是( )A. 5)2()1(22=-+-y x B.5)2()1(22=+++y x C.3)2()1(22=-+-y x D.3)2()1(22=+++y x4.若实数y x ,满足⎪⎩⎪⎨⎧≥≥-≤--00302y y x y x ,则y x z 2-=的最大值为( )A. 2-B.0C. 2D.4 5.若直线1=-by ax )0,0(>>b a 过点)1,1(-,则ba 11+的最小值为( ) A. 3 B.4 C. 5 D.8 6.椭圆的长轴长与短轴轴长之和等于其焦距的3倍,且一个焦点的坐标为(3,0),则椭圆的标准方程为( )A. 1422=+y xB.1422=+x y C.15822=+x y D.15822=+y x 7.已知数列}{n a 是由正数组成的等比数列,n S 为其前n 项和.已知7,16342==S a a ,则=5S ( )A.15B.17C.31D.338.已知21,F F 分别是椭圆1:2222=+by a x E 的左,右焦点,P 为直线a x 23=上的一点,21PF F ∆是底角为︒30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .459.已知数列}{n a 是等差数列,其前n 项和为n S ,若首项01>a 且0167<<-a a ,有下列四个命题:0:1<d P ;0:1212<+a a P ;:3P 数列}{n a 的前7项和最大;:4P 使0>n S 的最大n 值为12;其中正确的命题为( ) A. 21,P P B.41,P P C.32,P P D.43,P P10.已知点),(y x P 满足条件:⎪⎩⎪⎨⎧≤-+≥-≥020k y x y x x ,若y x z 3+=的最大值为8,则k 的值为( ) A. 6- B.6 C.8 D.不确定11.已知正实数b a ,满足12=+b a ,则baa +1的最小值为( ) A.221+ B.21+ C.4 D.2212.设点P 是椭圆)0(12222>>=+b a by a x 与圆2223b y x =+在第一象限的交点,21,F F 分别是椭圆的左、右焦点,且||3||21PF PF =,则椭圆的离心率为( )A.410 B. 53C.47D.414 二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置.13.已知过点),2(m A -和)10,(m 的直线与直线012=--y x 平行,则m 的值为______14. 已知点)1,1(P 是直线l 被椭圆12422=+y x 所截得的线段的中点,则直线l 的方程为_______15.在△ABC 中,角C B A ,,的所对边分别为,,a b c ,若22221c b a =-,则c Ba cos 2的值为______16.已知P 是直线0843=++y x 上的动点,PB PA ,是圆C :012222=+--+y x y x 的两条切线,切点坐标为B A ,,则四边形PACB 面积的最小值为_________三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)过点)1,1(P 作直线l ,分别交y x ,正半轴于B A ,两点.(1)若直线l 与直线013=+-y x 垂直,求直线l 的方程;(2)若直线l 在y 轴上的截距是直线l 在x 轴上截距的2倍,求直线l 的方程.18.(本小题满分12分)设}{n a 是公比大于1的等比数列,n S 为数列}{n a 的前n 项和.已知,73=S 且31+a ,4,332+a a 构成等差数列。
黑龙江省哈尔滨市第六中学2015-2016学年高二上学期期末考试数学试题及答案(理)
哈尔滨市第六中学2015-2016学年度上学期期末考试高二理科数学一.选择题(共12题,每题5分) 1.复数iiz +=1(其中i 为虚数单位)的虚部是( ) A .21-B .i 21C .21 D .i 21-2. 已知121:≥-x p , 1:<-a x q .若q 是p 的必要不充分条件,则实数a 的取值范围是( )A .(2,3]B .[2,3]C .(2,3)D .(,3]-∞3. 某单位业务人员、管理人员、后勤服务人员人数之比依次为15:3:2.为了了解该单位职员的某种情况,采用分层抽样方法抽出一个容量为n 的样本,样本中业务人员人数为30,则此样本的容量n 为( )A.20B.30 C .40 D .80 4.已知直线⊥l 平面α,直线⊂m 平面β,给出下列命题:①l ⇒⊥βα∥m ;②α∥m l ⊥=β; ③α⇒⊥m l ∥β④l ∥βα⊥⇒m ; 其中正确命题的序号是( )A .①②③B .②③④C .①③D .②④ 5. 下列说法正确的是( )A. 命题“若sin sin x y =,则x y =”的逆否命题为真命题B.“1x =-”是“2560x x --=”的必要不充分条件C. 命题“2,10x R x x ∃∈++<”的否定是“2,10x R x x ∀∈++<”D. 命题“若21x =,则1x =”的否命题为“若12≠x ,则1x ≠”6.设随机变量δ服从正态分布()7,3N ,若()()22-<=+>a p a p δδ,则a =( ) A .1B .2C .3D .47.如右图,已知K 为如图所示的程序框图输出结果,二项式nK x x ⎪⎭⎫ ⎝⎛+1的展开式中含有非零常数项,则正整数n 的最小值为( )A .4B .5C .6D .78.先后掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为y x ,,设事件A 为“y x +为偶数”,事件B 为“y x ,中有偶数,且y x ≠”,则概率()A B P =( )A .12B .13C .14D .259.已知()821x +展开式的二项式系数的最大值为a ,系数的最大值为b ,则ab=( ) A .1285 B .2567 C .5125 D .128710.有5盆菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花不同的摆放种数是( )A .1 2B .24C .36D .4811. 甲、乙两名运动员的5次测试成绩如右图所示. 设21,s s 分别表示甲、乙两名运动员测试成绩的标准差, 21,x x 分别表示甲、乙两名运动员测试成绩的平均数,则有( )A.21x x =,21s s < B. 21x x =,21s s > C.21x x >,21s s > D.21x x =,21s s =12.已知三棱锥ABC S -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,34=SA ,2=AB ,4=AC ,︒=∠60BAC ,则球O 的表面积为( )A .4πB .12πC .16πD .64π二.填空题(共4题,每题5分)13.袋中有大小相同的红色、白色球各一个,每次任取一个,有放回地摸3次,3次摸到的红球比白球多1次的概率为________________. 14. 设n 为正整数,n n f 131211)(++++= ,经计算得25)8(,2)4(,23)2(>>=f f f ,3)16(>f ,27)32(>f ,……观察上述结果,对任意正整数n ,可推测出一般结论是________. 15. 向面积为S 的ABC ∆内任投一点P ,则PBC ∆的面积小于3S的概率为 . 16.如图,在直三棱柱111C B A ABC -中,5,4,3===AB BC AC ,点D 是线段AB 上的一点,且︒=∠901CDB ,CD AA =1,则点1A 到平面CD B 1的距离为_______.三.解答题(共6题,共70分) 17. (本小题满分10分)某个体服装店经营某种服装,在某周内获纯利润y (元)与该周每天销售这种服装件数x 之间有如下一组数据:已知77211280,3487ii i i i xx y ====∑∑.(1)求,x y ; (2)求纯利润ˆy与每天销售件数x 之间的回归方程. (参考公式:x b y a xn xyx n yx b ni ini ii -=--=∑∑==,1221)18.(本小题满分12分)我国新修订的《环境空气质量标准》指出空气质量指数在0-50为优秀,各类人群可正常活动.环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为(]5,15,(]15,25,(]25,35,(]35,45,由此得到本的空气质量指数频率分布直方图,如图.(1) 求a 的值;(2) 根据样本数据,试估计这一年度的空气质量指数的平均值;(3) 如果空气质量指数不超过15,就认定空气质量为“特优等级”,则从这一年的监测数据中19.(本小题满分12分)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (1) 证明:1AC AB =;(2)若1AC AB ⊥,o 160CBB ∠=,AB BC =,求二面角111A A B C --的余弦值.20.(本小题满分12分)某校的学生记者团由理科组和文科组构成,具体数据如下表所示:空气质量指数0.0320.020 0.018O 5 15 25 35 45 a学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率;(Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望E ξ.21.(本小题满分12分)如图是某几何体的直观图与三视图的侧视图、俯视图. 在直观图中,AE BN =2,M 是ND 的中点. 侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)在答题纸上的虚线框内画出该几何体的正视图,并标上数据; (2)求证:EM ∥平面ABC ;(3)试问在边BC 上是否存在点G ,使GN ⊥平面NED . 若存在,确定点G 的位置;若不存在, 请说明理由.22.(本小题满分12分)设直线)1(:+=x k y l 与椭圆)0(3222>=+a a y x 相交于B A ,两个不同的点,与x 轴相交于点C ,记O 为坐标原点.(1)证明:222313kk a +>; (2)若2=, 求△OAB 的面积取得最大值时的椭圆方程.高二理科数学答案一.选择题CACDD CBBAB BD 二.填空题 13.83 14.()222+≥n f n 15.95 16.3 三.解答题17.(1)86.797559,6≈==y x (2)75.4419==b 36.5114719≈=a 18.(1) 解:由题意,得()0.020.0320.018101a +++⨯=, ……………1分解得0.03a =. ……………2分 (2)解:50个样本中空气质量指数的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯= ……………3分由样本估计总体,可估计这一年度空气质量指数的平均值约为24.6. …………4分 (3)解:利用样本估计总体,该年度空气质量指数在(]5,15内为“特优等级”,且指数达到“特优等级”的概率为0.2,则⎪⎭⎫ ⎝⎛51,3~B ξ ………5分ξ的取值为0,1,2,3, ………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭, ()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()3331135125P C ξ⎛⎫=== ⎪⎝⎭. …………10分 ∴ξ的分布列为:……11分∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ………12分 (或者13355E ξ=⨯=) 19. (Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C 1BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO⊥又 1B O CO =,故1AC AB = ……… 4分 (Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以CO AO=又因为BC AB =,所以BOA BOC ∆≅∆. 故OB OA ⊥,从而OB OA ,,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系xyz O -. 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又BC AB =,则A ⎛ ⎝,()1,0,0B,1B ⎛⎫ ⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭1AB ⎛= ⎝,111,0,,A B AB ⎛== ⎝111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭设(),,n x y z =是平面的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00111B A n AB n,即00y x =⎪=⎪⎩所以可取(1,3,n = 设m 是平面的法向量,则⎪⎩⎪⎨⎧=⋅=⋅01111C B m B A ,同理可取(1,m =则71cos =>=⋅<,所以二面角111A A B C --的余弦值为17. 12分20. 解:(Ⅰ) 33106P =(4分) (Ⅱ) 由题意得0,1,2,3ξ=,于是ξ的分布列为(只写出正确分布列表格的扣4分) ξ的数学期望为123()106E ξ=(12分) 21.(1)正视图如图所示.(注:不标中间实线扣1分)………………2分(2)证明:俯视图和侧视图,得︒=∠90CAB ,3=DC ,2==AB CA ,2=EA ,1=BN ,⊥EA 平面ABC ,NB DC EA ////.取BC 的中点F ,连接FM 、EM ,则EA DC FM ////,且()221=+=DC BN FM …4分 ∴FM 平行且等于EA , ∴四边形EAFM 是平行四边形, ∴EM AF //,又AF ⊆平面ABC ,∴EM ⊆平面ABC .…………………………7分(3)解,以A 为原点,以A C的方向为x 轴的正方向,的方向为y 轴正方向,的方向为z 轴的正方向建立如图所示的空间直角坐标系,则有A (0,0,0),E (0,0,2),B (0,2,0),D (-2,0,3),N (0,2,1),C(-2,0,0).设ND =(-2,-2,2),NE =(0,-2,1),CB =(2,2,0),CN =(2,2,1).假设在BC 边上存在点G 满足题意,(2,2,0),[0,1],(2,2,1)(2,2,0)(22,22,1).04410,,,882003[0,1].4CG CB GN CN CG GN NE GN NED GN ND λλλλλλλλλλλ==∈=-=-=--⎧⋅=-++=⎧⎪⊥∴⎨⎨-++=⋅=⎩⎪⎩=∈设则平面即解之得∴边BC 上存在点D ,满足CB CG 43=时,GN ⊥平面NED ………………12分22. (I )解:依题意,直线l 显然不平行于坐标轴,故.11)1(-=+=y kx x k y 可化为 将x a y x y k x 消去代入,311222=+-=,得.012)31(222=-+-+a y k y k① 由直线l 与椭圆相交于两个不同的点3)31(,0)1)(31(4422222>+>---=∆a k a kk 整理得,即.313222kk a +>… 5分 (II )解:设).,(),,(2211y x B y x A 由①,得221312k ky y +=+因为212,2y y -==得,代入上式,得.31222kky +-=……………8分 于是,△OAB 的面积 ||23||||21221y y y OC S =-⋅=23||32||331||32=≤+=k k k k其中,上式取等号的条件是.33,132±==k k 即由.33,312222±=+-=y k k y 可得 将33,3333,3322=-=-==y k y k 及这两组值分别代入①,均可解出.52=a 所以,△OAB 的面积取得最大值的椭圆方程是.5322=+y x ………12分。
(全优试卷)黑龙江省哈尔滨市高一数学上学期期末考试试题
哈尔滨市第六中学2015-2016学年度上学期期末考试高一数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合}6,5,4,3,2,1{=U ,}3,2,1{=A ,}6,5,2{=B ,则)(B C A U 等于( ) (A )}2{ (B )}3,2{ (C )}3{ (D )}3,1{2.α是第四象限角,34tan -=α,则αsin 等于( ) (A )54 (B )54- (C )53(D )53-3.设⎪⎩⎪⎨⎧<-=->+=)0(,1)0(,1)0(,1)(x x x x x x f ,则=)]0([f f ( )(A)1 (B)0 (C)2 (D)1- 4.如果31sin(=-)απ,那么=+)απ2cos(等于( ) (A )31-(B )31 (C ) 322 (D ) 322-5.函数xx ee xf 1)(2-=的图像关于( ) (A )原点对称 (B )y 轴对称 (C )x 轴对称 (D )关于1=x 对称6.已知函数x y ωtan =在⎪⎭⎫⎝⎛-4,4ππ内是增函数,则( ) (A )20≤<ω (B )02<≤-ω (C )2≥ω (D )2-≤ω7.设18log ,12log ,6log 642===c b a ,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )a b c >>8.︒-︒20sin 155sin 22的值为( )(A )12 (B ) 12- (C ) 1- (D ) 19.已知函数)cos()(ϕω+=x A x f ,R x ∈(其中πϕπω<<->>,0,0A ),其部分图象如图所示,则ϕω,的值为( ) (A)43,4πϕπω==(B) 4,4πϕπω-== (C) 4,2πϕπω==(D) 4,2πϕπω-==10. 若函数)(x f 的零点与82ln )(-+=x x x g 的零点之差的绝对值不超过5.0, 则)(x f 可以是( )(A)63)(-=x x f (B)2)4()(-=x x f (C) 1)(2-=-x ex f(D))25ln()(-=x x f11.使奇函数)2cos()2sin(3)(θθ+++=x x x f 在]4,0[π上为增函数的θ值为( )(A)3π-(B)6π- (C)65π (D)32π12.已知函数⎩⎨⎧>≤≤=)1(log )10(sin )(2018x x x x x f π,若c b a ,,互不相等,且)()()(c f b f a f ==,则c b a ++的取值范围是( )(A))2018,2( (B) )2019,2( (C) )2018,3( (D))2019,3(二、填空题(本题共4个小题,每小题5分)13.=︒660cos .14.已知方程05)2(2=-+-+a x a x 的两个根均大于2,则实数a 的取值范围是 .15.设()f x 是以2为周期的奇函数,且2()35f -=,若sin α=,则(4cos 2)f α的值等于 ,16. 已知函数(1)y f x =+是定义域为R 的偶函数,且()f x 在[1,)+∞上单调递减,则不等式(21)(2)f x f x ->+的解集为 . 三、解答题(本题共6个小题,共70分)17.(本小题满分10分)已知集合{}{}42,20,01sin 22>=<<>-=-xx x B x x x A π(1)求集合A 和B ; (2)求B A .18.(本小题满分12分)已知若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=求(1)求αcos 的值;19.(本小题满分12分)已知函数2cos sin 34cos 4)(2++-=x x a x x f ,若)(x f 的图象关于点)0,12(π对称.(1)求实数a ,并求出)(x f 的单调减区间; (2)求)(x f 的最小正周期,并求)(x f 在]6,4[ππ-上的值域.20.(本小题满分12分)已知函数3)ln(2ln )(2+-=ex a x x f ,],[21e e x -∈ (1)当1=a 时,求函数()f x 的值域;(2)若4ln )(+-≤x a x f 恒成立,求实数a 的取值范围.21.(本小题满分12分)设函数1cos 2)32cos()(2+++-=a x x x f π,且]6,0[π∈x 时,)(x f 的最小值为2.(1)求实数a 的值; (2)当]2,2[ππ-∈x 时,方程2123)(+=x f 有两个不同的零点βα,,求βα+的值.22.(本小题满分12分)已知函数()223xxf x m =⋅+⋅,m R ∈.(1)当9m =-时,求满足(1)()f x f x +>的实数x 的范围; (2)若9()()2xf x ≤对任意的x R ∈恒成立,求实数m 的范围.高一数学答案)3,31(-}2>------6分分∵31)4c o s (=+απ ∴34sin(∴6424sin )4sin(4cos )4cos()44cos(cos +=+++=-+=παππαππαπα------6分(2)∵02<<-βπ ∴2244πβππ<-<------8分 ∵33)24cos(=-βπ∴36)24sin(=-βπ------10分∴935)24sin()4sin()24cos()4cos()]24()4cos[()2cos(=-++-+=--+=+βπαπβπαπβπαπβα------12分19、(1)∵0)12(=πf ∴1=a ------2分 ∴)62sin(4)(π-=x x f ------4分∴单调递减区间为)](65,3[Z k k k ∈++ππππ------6分(2)ππ==22T ------8分 ∵]6,4[ππ-∈x ∴]6,32[62πππ-∈-x ------10分 ∴]2,4[)(-∈x f ------12分20、(1)1ln 2ln )(2+-==x x x f y ------1分 令]2,1[ln -∈=x t ------2分∴122+-=t t y ∴]4,0[∈y ------4分(2)∵4ln )(+-≤x a x f ∴012ln ln 2≤---a x a x 恒成立 令]2,1[ln -∈=x t ∴0122≤---a at t 恒成立------5分 设122---=a at t y ------ ∴当1212≤≤a a 即时,034max ≤+-=a y ∴143≤≤a ------8分当1212>>a a 即时,0max ≤-=a y ∴1>a --------11分 综上所述,43≥a ------12分21、(1)a x x f +++=2)32sin(3)(π------2分 ∵]6,0[π∈x ∴]32,3[32πππ∈+x ------4分∴]1,23[)32sin(∈+πx ∴227)(min =+=a x f ∴23-=a ------6分(2)∵2123)(+=x f ∴21)32sin(∈+πx ------8分 ∵]2,2[ππ-∈x ∴]34,2[2πππ-∈+x ------10分6532ππβ=+ ∴4,12πβπα=-= ∴6πβα=+------12分)()1(x f x >+ ∴2232--<x x ∴1)32(2<-x ∴2>x ------6分(2)∵x x f )29()(≤ ∴x x m )23(2)23(2-≤--------8分 令0)23(>=x t ∴t t m 22-≤∵1)2(min 2-=-t t ∴1-≤m ------12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年黑龙江省哈尔滨六中高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5.00分)设集合U={1,2,3,4,5,6},A={1,2,3},B={2,5,6},则A∩(∁U B)等于()A.{2}B.{2,3}C.{3}D.{1,3}2.(5.00分)α是第四象限角,,则sinα等于()A.B.C.D.3.(5.00分)设,则f[f(0)]=()A.1 B.0 C.2 D.﹣14.(5.00分)已知,则的值为()A.B.C.D.5.(5.00分)函数的图象关于()A.原点对称B.y轴对称C.x轴对称D.关于x=1对称6.(5.00分)已知函数y=tanωx在内是增函数,则()A.0<ω≤2 B.﹣2≤ω<0 C.ω≥2 D.ω≤﹣27.(5.00分)设a=log26,b=log412,c=log618,则()A.b>c>a B.a>c>b C.a>b>c D.c>b>a8.(5.00分)的值为()A.B.C.﹣1 D.19.(5.00分)已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,﹣π<ϕ<π),其部分图象如图所示,则ω,ϕ的值为()A.B.C.D.10.(5.00分)若函数f(x)的零点与g(x)=lnx+2x﹣8的零点之差的绝对值不超过0.5,则f(x)可以是()A.f(x)=3x﹣6 B.f(x)=(x﹣4)2C.f(x)=e x﹣1﹣1 D.f(x)=ln(x ﹣)11.(5.00分)使奇函数在上为增函数的θ值为()A.B.C. D.12.(5.00分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(2,2018)B.(2,2019)C.(3,2018)D.(3,2019)二、填空题(本题共4个小题,每小题5分)13.(5.00分)cos660°=.14.(5.00分)已知方程x2+(a﹣2)x+5﹣a=0的两个根均大于2,则实数a的取值范围是.15.(5.00分)设f(x)是以2为周期的奇函数,且f(﹣)=3,若sinα=,则f(4cos2α)的值等于.16.(5.00分)已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x﹣1)>f(x+2)的解集为.三、解答题(本题共6个小题,共70分)17.(10.00分)已知集合(1)求集合A和B;(2)求A∩B.18.(12.00分)已知若0,﹣<β<0,cos(+α)=,cos(﹣)=求(1)求cosα的值;(2)求的值.19.(12.00分)已知函数f(x)=﹣4cos2x+4asinxcosx+2,若f(x)的图象关于点(,0)对称.(1)求实数a,并求出f(x)的单调减区间;(2)求f(x)的最小正周期,并求f(x)在[﹣,]上的值域.20.(12.00分)已知函数f(x)=ln2x﹣2aln(ex)+3,x∈[e﹣1,e2](1)当a=1时,求函数f(x)的值域;(2)若f(x)≤﹣alnx+4恒成立,求实数a的取值范围.21.(12.00分)设函数f(x)=cos(2x﹣)+2cos2x+a+1,且x∈[0,]时,f(x)的最小值为2.(1)求实数a的值;(2)当x∈[﹣,]时,方程f(x)=+有两个不同的零点α,β,求α+β的值.22.(12.00分)已知函数f(x)=m•2x+2•3x,m∈R.(1)当m=﹣9时,求满足f(x+1)>f(x)的实数x的范围;(2)若对任意的x∈R恒成立,求实数m的范围.2015-2016学年黑龙江省哈尔滨六中高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5.00分)设集合U={1,2,3,4,5,6},A={1,2,3},B={2,5,6},则A∩(∁U B)等于()A.{2}B.{2,3}C.{3}D.{1,3}【解答】解:集合U={1,2,3,4,5,6},A={1,2,3},B={2,5,6},∴∁U B={1,3,4},A∩(∁U B)={1,3}.故选:D.2.(5.00分)α是第四象限角,,则sinα等于()A.B.C.D.【解答】解:∵α是第四象限角,,∴cosα===,∴sinα=﹣=﹣=﹣.故选:B.3.(5.00分)设,则f[f(0)]=()A.1 B.0 C.2 D.﹣1【解答】解:∵,∴f(0)=1﹣0=1,f[f(0)]=f(1)=1+1=2.故选:C.4.(5.00分)已知,则的值为()A.B.C.D.【解答】解:∵=sinα,∴=﹣sinα=,故选:B.5.(5.00分)函数的图象关于()A.原点对称B.y轴对称C.x轴对称D.关于x=1对称【解答】解:=e x﹣e﹣x,∴f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),∵函数的定义域为R,∴f(x)为奇函数,∴f(x)的图象关于原点对称,故选:A.6.(5.00分)已知函数y=tanωx在内是增函数,则()A.0<ω≤2 B.﹣2≤ω<0 C.ω≥2 D.ω≤﹣2【解答】解:根据函数y=tanωx在内是增函数,可得ω≤,求得ω≤2,再结合ω>0,故选:A.7.(5.00分)设a=log26,b=log412,c=log618,则()A.b>c>a B.a>c>b C.a>b>c D.c>b>a【解答】解:a=log26>log24=2,b=log412=log43+log44=1+log43<2,c=log618=log63+log66=1+log63<2,又log43>log63,∴a>b>c.故选:C.8.(5.00分)的值为()A.B.C.﹣1 D.1【解答】解:===1,故选:D.9.(5.00分)已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,﹣π<ϕ<π),其部分图象如图所示,则ω,ϕ的值为()A.B.C.D.【解答】解:(1)由图知,A=1.f(x)的最小正周期T=4×2=8,所以由T=,得ω=.又f(1)=sin(+ϕ)=1且,﹣π<ϕ<π,所以,+ϕ=,解得ϕ=.故选:A.10.(5.00分)若函数f(x)的零点与g(x)=lnx+2x﹣8的零点之差的绝对值不超过0.5,则f(x)可以是()A.f(x)=3x﹣6 B.f(x)=(x﹣4)2C.f(x)=e x﹣1﹣1 D.f(x)=ln(x ﹣)【解答】解:由于g(x)=lnx+2x﹣8为(0,+∞)上的增函数,且g(3)=ln3﹣2<0,g(4)=ln4>0,故函数g(x)的零点在区间(3,4)内.由于函数y=ln(x﹣)的零点为x=3.5,故函数g(x)的零点与函数y=ln(x﹣)的零点差的绝对值不超过0.5,故f(x)可以是ln(x﹣),故选:D.11.(5.00分)使奇函数在上为增函数的θ值为()A.B.C. D.【解答】解:==.∵函数f(x)为奇函数,∴,则,取k=0,得,此时f(x)=2sin2x,满足在上为增函数.故选:B.12.(5.00分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(2,2018)B.(2,2019)C.(3,2018)D.(3,2019)【解答】解:作函数的图象如图,不妨设a<b<c,则结合图象可知,a+b=1,0<log2018c<1,故1<c<2018,故2<a+b+c<2019,故选:B.二、填空题(本题共4个小题,每小题5分)13.(5.00分)cos660°=.【解答】解:cos660°=cos(720°﹣60°)=cos(﹣60°)=cos60°=,故答案为:.14.(5.00分)已知方程x2+(a﹣2)x+5﹣a=0的两个根均大于2,则实数a的取值范围是(﹣5,﹣4] .【解答】解:设f(x)=x2+(a﹣2)x+5﹣a,则由方程x2+(a﹣2)x+5﹣a=0的两个根均大于2,可得,求得﹣5<a≤﹣4,故答案为:(﹣5,﹣4].15.(5.00分)设f(x)是以2为周期的奇函数,且f(﹣)=3,若sinα=,则f(4cos2α)的值等于﹣3.【解答】解:cos2α=1﹣2sin2α=,∴4cos2α=.∴f(4cos2α)=f()=f(﹣2)=f()=﹣f(﹣)=﹣3.故答案为﹣3.16.(5.00分)已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x﹣1)>f(x+2)的解集为(,3).【解答】解:∵函数y=f(x+1)是定义域为R的偶函数,∴y=f(x+1)关于y轴对称,∴y=f(x)向左平移1个单位得到y=f(x+1),∴y=f(x)关于直线x=1对称,∵f(x)在[1,+∞)上单调递减,且f(2x﹣1)>f(x+2),∴f(x)在(﹣∞,1]上单调递增,∴|2x﹣1﹣1|<|x+2﹣1|,即(2x﹣2)2<(x+1)2,整理得:3x2﹣10x+3<0,即(3x﹣1)(x﹣3)<0,解得:<x<3,则不等式f(2x﹣1)>f(x+2)的解集为(,3).故答案为:(,3)三、解答题(本题共6个小题,共70分)17.(10.00分)已知集合(1)求集合A和B;(2)求A∩B.【解答】解:(1)2sinx﹣1>0,0<x<2π,∴<x<,∴A=(,),∵>4=22,∴x2﹣x>2,∴x<﹣1或x>2,∴B=(﹣∞,﹣1)∪(2,+∞),(2)由(1)可知,A∩B=(2,).18.(12.00分)已知若0,﹣<β<0,cos(+α)=,cos(﹣)=求(1)求cosα的值;(2)求的值.【解答】解:(1)∵,∴.∵,∴,∴.(2)∵,∴.∵,∴,∴.19.(12.00分)已知函数f(x)=﹣4cos2x+4asinxcosx+2,若f(x)的图象关于点(,0)对称.(1)求实数a,并求出f(x)的单调减区间;(2)求f(x)的最小正周期,并求f(x)在[﹣,]上的值域.【解答】解:(1)∵函数f(x)=﹣4cos2x+4asinxcosx+2=2asin2x﹣2cos2x,∵f(x)的图象关于点(,0)对称.∴a﹣=0,解得:a=1,∴函数f(x)=2sin2x﹣2cos2x=4sin(2x﹣),由2x﹣∈[+2kπ,+2kπ],k∈Z得:x∈[+kπ,+kπ],k∈Z,故f(x)的单调减区间为[+kπ,+kπ],k∈Z;(2)由(1)中函数解析式可得ω=2,故T=π,当x∈[﹣,]时,2x﹣∈[﹣,],当2x﹣=﹣,即x=﹣时,函数取最小值﹣4,当2x﹣=,即x=时,函数取最大值2,故f(x)在[﹣,]上的值域为[﹣4,2].20.(12.00分)已知函数f(x)=ln2x﹣2aln(ex)+3,x∈[e﹣1,e2](1)当a=1时,求函数f(x)的值域;(2)若f(x)≤﹣alnx+4恒成立,求实数a的取值范围.【解答】解:(1)当a=1时,y=f(x)=ln2x﹣2lnx+1,令t=lnx∈[﹣1,2],∴y=t2﹣2t+1=(t﹣1)2,当t=1时,取得最小值0;t=﹣1时,取得最大值4.∴f(x)的值域为[0,4];(2)∵f(x)≤﹣alnx+4,∴ln2x﹣alnx﹣2a﹣1≤0恒成立,令t=lnx∈[﹣1,2],∴t2﹣at﹣2a﹣1≤0恒成立,设y=t2﹣at﹣2a﹣1,∴当时,y max=﹣4a+3≤0,∴,当时,y max=﹣a≤0,∴a>1,综上所述,.21.(12.00分)设函数f(x)=cos(2x﹣)+2cos2x+a+1,且x∈[0,]时,f(x)的最小值为2.(1)求实数a的值;(2)当x∈[﹣,]时,方程f(x)=+有两个不同的零点α,β,求α+β的值.【解答】解:(1)由三角函数公式化简可得f(x)=cos(2x﹣)+2cos2x+a+1=cos2x+sin2x+1+cos2x+a+1=cos2x+sin2x+2+a=sin(2x+)+2+a,当x∈[0,]时,2x+∈[,],∴当2x+=或时,f(x)的最小值×+2+a=2,解得a=﹣;(2)由(1)可得f(x)=sin(2x+)+,∵x∈[﹣,],∴2x+∈[,],由f(x)=sin(2x+)+=+可得sin(2x+)=,∴2x+=或2x+=,解得x=﹣或x=,∴α+β=﹣+=.22.(12.00分)已知函数f(x)=m•2x+2•3x,m∈R.(1)当m=﹣9时,求满足f(x+1)>f(x)的实数x的范围;(2)若对任意的x∈R恒成立,求实数m的范围.【解答】解:(1)当m=﹣9时,f(x)=﹣9•2x+2•3x,f(x+1)>f(x),即为2•3x+1﹣9•2x+1>2•3x﹣9•2x,化简可得,2x﹣2<3x﹣2,即为()x﹣2>1=()0,即有x﹣2>0,解得,x>2;(2)由恒成立,即为m•2x+2•3x≤()x,可得,令,即有m≤t2﹣2t的最小值,由(t2﹣2t)min=﹣1,可得m≤﹣1,即实数m的范围是(﹣∞,﹣1].。