【9A文】直线与圆的方程典型例题

合集下载

直线与圆的方程试题及答案 中职学校

直线与圆的方程试题及答案 中职学校

直线与圆的方程试题及答案试题一给定直线的方程为 x + y = 2 和圆的方程为 x^2 + y^2 = 4,求直线与圆的交点坐标。

解答:首先,化简直线的方程可以得到 y = 2 - x。

将直线的方程 y = 2 - x 求根代入圆的方程中,即:x^2 + (2 - x)^2 = 4将上式展开求解,得到 x^2 - 4x + 4 + 4x - 4 = 0化简后得到 x^2 = 4通过求根公式,可以得到 x = 2 或 x = -2。

将 x 的值代入直线的方程 y = 2 - x 中,得到对应的 y 值。

当 x = 2 时,y = 2 - 2 = 0;当 x = -2 时,y = 2 - (-2) = 4。

因此,直线与圆的交点坐标为 (2, 0) 和 (-2, 4)。

试题二给定圆的方程为 (x - 3)^2 + (y + 4)^2 = 9 和直线的斜率为 -2,求直线与圆的交点坐标。

解答:首先,求出直线的方程为 y = -2x + c。

由圆的方程可知,圆心坐标为 (3, -4),半径为 3。

直线与圆相交时,直线上的点到圆心的距离等于半径。

将直线的方程 y = -2x + c 代入圆的方程 (x - 3)^2 + (y + 4)^2 = 9 中,得到:(x - 3)^2 + ((-2x + c) + 4)^2 = 9展开后,化简上式,得到:5x^2 + 10cx + c^2 - 36x + 48c - 72 = 0因为直线与圆相交,所以上式必有实数解。

根据二次方程的性质,上式的判别式必大于等于零。

即:(10c - 36)^2 - 4 * 5 * (c^2 + 48c - 72) >= 0通过求解不等式,可以得到c ∈ (-∞, 20)。

取 c = 10,将 c 的值代入直线的方程 y = -2x + c 中,得到直线的方程为 y = -2x + 10。

将直线的方程 y = -2x + 10 代入圆的方程 (x - 3)^2 + (y + 4)^2 = 9 中,求解 x 的值。

直线方程与圆的方程应用举例

直线方程与圆的方程应用举例

例9 某施工单位圆拱时,需要制作如图所示的木模,设圆拱高为 1m,跨度为6m,中间需要等距离的安装5根支撑柱子,求经过点 E的柱子长度(精确到0.01m)x
解: 以点D为坐标原点,过AG的直线为x轴,建立直角坐标系,则点E的坐标 为(1,0),圆心o’在y轴上
练1 赵州桥圆拱的跨度是37.4m,圆拱高约为7.2m,适当选取坐标系求出 其圆拱所在圆的方程
例8 从点M(2,2)射出一条光线,经过x轴反射后过点N(-8,3),求反射点P的坐标 练1 从点M(2,-3)射出一条光线,经过x轴反射后过点N(-5,-4),求反射点P的坐标 练2 光线从点M(-2,3)射到点P(1,0),然后被x轴反射,求反射光线所在直线的方程 练3 光线从点M(3,2)射到点P(2,0),然后被x轴反射,求反射光线所在直线的方程
练2 某地要建造一座跨度为8m,拱高为2m的圆拱桥。每隔1m需要一根 支柱支撑,求第二根支柱的长度(精确到0.01m)

直线方程与圆的方程的应用举例典型例题点拨

直线方程与圆的方程的应用举例典型例题点拨

直线方程与圆的方程的应用举例典型例题点拨
例1、从()2,2M 射出一条光线,经过x 轴反射后过点
()8,3-N (如图)
.求反射点P 的坐标. 解:已知反射点P 在x 轴上,故可设点P 的坐标为(),0x .由
于入射角等于反射角,即∠=∠NPQ QPN .设直线PM 的倾斜角
为α,则直线NP 的倾斜角为πα-.所以
()tan tan απα==--=-PM NP K K .即:203028---=---x x
,解得2=-x ,故反射点P 的坐标为()2,0-.
例2、某施工单位砌圆拱时,需要制作如图所示的木模.设圆拱高为1m ,跨度为6m ,中间需要等距离的安装5根支撑柱子,求E 点的柱子长度(精确到
0.1m ).
解:以点D 为坐标原点,过AG 的直线为x 轴,建立直角坐标系,则点E 的坐标为()1,0, 圆心C 在y 轴. 设半径为r ,则222+=CD DG CG ,即()2
2213-+=r r ,解得5=r .
所以圆心为()0,4-,圆的方程为:()22425++=x y .将1=x 代入方
程求y 的值(负值舍去),得()40.9=-≈y m .
答:过点E 的柱子长度约为0.9m .
注:解决直线与圆的实际应用题的步骤为:
(1)审题:从题目中抽象出几何模型,明确已知和未知;
(2)建系:建立适当的直角坐标系,用坐标和方程表示几何模型中的基本元素;
(3)求解:利用直线与圆的有关知识求出未知;
(4)还原:将运算结果还原到实际问题中去. 【我的疑惑】。

直线与圆的方程练习题

直线与圆的方程练习题

直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。

下面将以几道习题为例,来进行练习。

1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。

解析:由题目可知,直线L经过点A(3,4),斜率为2。

我们可以运用直线的点斜式来求解。

直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。

代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。

解析:圆的方程可以通过圆心和半径来确定。

我们可以利用圆的标准方程来求解。

圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。

代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。

解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。

我们可以通过消元法来求解。

将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。

首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。

直线与圆的方程经典例题

直线与圆的方程经典例题

一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0 ,故直线倾斜角α的范围是0180α< ≤.2.直线的斜率:倾斜角不是90的直线其倾斜角α的正切叫这条直线的斜率k ,即tan k α=. 注:①每一条直线都有倾斜角,但不一定有斜率.②当 90=α时,直线l 垂直于x 轴,它的斜率k 不存在.③过两点111(,)P x y 、222(,)P x y 12()x x ≠的直线斜率公式2121tan y y k x x α-==-二、直线方程的五种形式及适用条件直线的方程注:⑴确定直线方程需要有两个互相独立的条件,通常用待定系数法;⑵确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.⑶直线是平面几何的基本图形,它与方程中的二元一次方程A x +B y +C=0(A 2+B 2≠0)是一一对应的.直线的方程例1. 过点),2(a M -和)4,(a N 的直线的斜率等于1, 则a 的值为( ) (A)1 (B)4 (C)1或3 (D)1或4 例2. 若,62ππα⎡⎫∈⎪⎢⎣⎭, 则直线2x cos α+3y +1=0的倾斜角的取值范围( ) (A),62ππ⎡⎫⎪⎢⎣⎭(B) 5,6ππ⎡⎫⎪⎢⎣⎭(C) (0,6π) (D)5,26ππ⎛⎤ ⎥⎝⎦例3. 直线123y x =-+的倾斜角是( ). (A )1arctan()3- (B )1arctan 3 (C )1πarctan()3+- (D )1arctan()3π--例4. 连接(4,1)A 和(2,4)B -两点的直线斜率为____,与y 轴的交点P 的坐标为____. 例5. 以点)1,5()3,1(-和为端点的线段的中垂线的方程是 .例6. 将直线0632=--y x绕着它与y 轴的交点逆时针旋转45的角后,在x 轴上的截距是( )(A)54(B) 52 (C) 25(D)45 例7. 将一张画了直角坐标系且两轴的长度单位相同的纸折叠一次,使点(2,0)与点(-2,4)重合,若点(7,3)与点(m ,n )重合,则m +n 的值为( ) (A)4 (B)-4 (C)10 (D)-10 例8. 与直线:2350x y ++= 平行且过点(1,4)A -的直线' 的方程是__________。

直线与圆的方程典型例题

直线与圆的方程典型例题

解析几何中,直 线与圆方程的应 用可以帮助我们 研究几何图形的 性质和特征
解析几何中,直 线与圆方程的应 用可以用于解决 实际生活中的问 题,如测量、绘 图和计算等
实际生活中的应用
交通路径规划:利用直线与圆的方程,可以计算出最短或最安全的行驶路 径。
建筑设计:在建筑设计时,可以利用直线与圆的方程来计算出最佳的设计 方案,以满足建筑的功能和美观要求。
范围。
直线的一般式 方程:通过已 知直线的一般 式方程,推导 出直线的斜截 式方程,并说 明其应用范围。
圆的方程的变形与拓展
圆的一般方程:x²+y²+Dx+Ey+F=0
圆的标准方程:x²+y²+Dx+Ey+F=0
圆的一般方程的变形:通过移项、合并同类项等操作,将一般方程转化为标准方程或参数方 程
圆的参数方程:通过引入参数t,将圆的方程转化为参数方程,方便进行参数化处理和求解相 关问题
直线与圆相离的 条件:圆心到直 线的距离大于圆 的半径
直线与圆交点求解的变形与拓展
变形:将直线方程代入圆方程,得到一元二次方程,解得交点坐标 拓展:利用韦达定理,求出交点坐标之间的关系,进而得到弦长、面积等几何量Leabharlann 感谢观看汇报人:XX
直线与圆的交点求解
联立方程法:通过 将直线方程与圆方 程联立,消元求解 交点坐标
几何法:利用圆心 到直线的距离等于 半径,判断交点个 数,并求解交点坐 标
参数方程法:利用 参数方程表示直线 和圆的方程,通过 消参法求解交点坐 标
代数法:通过代入 法求解交点坐标
03
直线与圆方程的应 用
几何图形中的应用
点斜式方程:知道直线上的一点 (x1, y1)和直线的斜率k,则直线 方程为y-y1=k(x-x1)

直线和圆的方程典型例题

直线和圆的方程典型例题

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . 上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

直线与圆的方程综合题、典型题[1]

直线与圆的方程综合题、典型题[1]

直线与圆的方程综合题、典型题、高考题1、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)不能.由(1)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 2、已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。

解析:圆C 化成标准方程为2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M 的坐标为(a由于CM ⊥l ,∴k CM ⋅k l = -1 ∴k CM =112-=-+a b , 即a +b +1=0,得b = -a -1 ① 直线l 的方程为y -b =x -a , 即x -y +b -a =0CM=23+-a b∵以AB 为直径的圆M 过原点,∴OM MB MA ==2)3(92222+--=-=a b CMCB MB ,222b a OM += ∴2222)3(9b a a b +=+-- ②把①代入②得 0322=--a a ,∴123-==a a 或 当25,23-==b a 时此时直线l 的方程为x -y -4=0; 当0,1=-=b a 时此时直线l 的方程为x -y +1=0故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0评析:此题用0OA OB =,联立方程组,根与系数关系代入得到关于b 的方程比较简单3、已知点A(-2,-1)和B(2,3),圆C :x 2+y 2= m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围.解:∵过点A 、B 的直线方程为在l :x -y +1 = 0, 作OP 垂直AB 于点P ,连结OB.由图象得:|m|<OP 或|m|>OB 时,线段AB 与圆x 2+y 2= m 2无交点.(I )当|m|<OP 时,由点到直线的距离公式得:22|m |2|1||m |<⇒<,即22m 22<<-. (II )当m >OB 时,||||m m 即 13m 13m >-<或. ∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2= m 2与线段AB 无交点.4、.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围. 解: ⑴设(),P x y 为轨迹上任一点,则0y =≠ (4分)化简得:2114y x =+ 为求。

直线和圆的方程的典型例题

直线和圆的方程的典型例题

问题,利用数形结合法求最值.
[例5]已知直线l:y=k(x-a)及圆O:x2+y2=r2(a>r>0),直线l与圆O
相交于A、B两点,求当k变动时,弦AB的中点的轨迹方程.
【解法一】设轨迹上任一点为M(x,y),A(x1,y1),B(x2,y2).
由得(1+k2)x2-2ak2x+a2k2-r2=0,
(4+2sinθ)2=60+32sinθ+24cosθ=60+40sin(θ+).(其中tan=), 当sin(θ+)=-1时, (|AP|2+|BP|2)min=20, 此时60+24cosθ+32sinθ=20,即3cosθ+4sinθ=-5. 由得
∴P点的坐标为(). 【解法二】设P点的坐标为(x,y). ∵A(-1,0)、B(1,0), ∴|AP|2+|BP|2=(x+1)2+y2+(x-1)2+y2=2(x2+y2)+2=2|OP|2+2. 要使|AP|2+|BP|2取得最小值,需使|OP|2最小. 又点P为圆C:(x-3)2+(y-4)2=4上的点, ∴(|OP|)min=|OC|-r(r为半径). 由(x-3)2+(y-4)2=4知:C(3,4),r=2. ∴|OC|-r=-2=5-2=3, 即(|OP|)min=3,∴(|AP|2+|BP|2)min=2×32+2=20. 此时,OC:y=x 由得 或 (舍) ∴点P的坐标为(). 【点评】解法一是利用了圆的参数方程的形式设出了点P的坐标, 使所求的式子转化为三角函数式,利用三角函数法求最值;解法二设出 的是P点的普通坐标(x,y),使要求的式子转化为求圆上的点到坐标满足(x-)2+y2=.

直线与圆的关系典型例题

直线与圆的关系典型例题

高中数学必修2直线与圆的位置关系(典例)已知圆C:(x-a)2+(y-b)2=r2(r>0),直线L:Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。

判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。

例1、判断直线L:(1+m)x+(1-m)y+2m-1=0与圆O:x2+y2=9的位置关系。

法一:直线L:m(x-y+2)+x+y-1=0恒过点,∵点P在圆O内,∴直线L与圆O相交。

法二:圆心O到直线L的距离为当d<3时,(2m-1)2<9(2m2+2),∴14m2+4m+17>0∴m∈R所以直线L与直线O相交。

法三:联立方程,消去y得2(1+m2)x2+(4m2+2m-2)x-5m2+14m-8=0∴△=56m4-96m3+92m2-120m+68=4(m-1)2(14m2+4m+17)当m≠1时,△>0,直线与圆相交;当m=1时,直线L:,此时直线L与圆O相交综上得直线L与圆O恒相交。

[评]法二和法三是判断直线与圆位置关系的方法,但计算量偏大;而法一是先观察直线的特点再结合图,避免了大量计算,因此体现了数形结合的优点。

例2、求圆x2+y2=1上的点到直线3x+4y=25的距离的最大最小值法一:设P(cosα,sinα)为圆上一点,则点P到直线的距离为=∴当时,dmin=4.法二:如图,直线L过圆心,且与直线3x+4y=25垂直于点M,此时,l 与圆有两个交点A、B,∵原点到直线3x+4y=25的距离|OM|=5,∴圆上的点到直线3x+4y=25的距离的最大值为:|AM|=|OM|+r=5+1=6最小值为:|BM|=|OM|-r=5-1=4[评]法二是几何做法,充分体现了它计算量小的优势。

2.切线问题:例3:(1)已知点P(x0,y)是圆C:x2+y2=r2上一点,求过点P的圆C的切线方程;(x0x+yy=r2)法一:∵点P(x,y)是圆C:x2+y2=r2上一点,∴当x≠0且y≠0时,∴切线方程为当P为(0,r)时,切线方程为y=r,满足方程(1);当P为(0,-r)时,切线方程为t=-r,满足方程(1);当P为(r,0)时,切线方程为x=r,满足方程(1);当P为(-r,0)时,切线方程为x=-r,满足方程(1);综上,所求切线方程为x0x+yy=r2法二:设M(x,y)为所求切线上除P点外的任一点,则由图知|OM|2=|OP|2+|PM|2,即x2+y2=r2+(x-x0)2+(y-y)2∴x0x+yy=r2且P(x,y)满足上面的方程。

直线和圆的方程测试题

直线和圆的方程测试题

直线和圆的方程测试题题目一:直线的方程1. 给定两个点A(2, 3)和B(4, 1),求过这两个点的直线方程。

解析:首先计算两点的斜率k\[k = \frac{y_2-y_1}{x_2-x_1} = \frac{1-3}{4-2} = -1\]进一步,我们可以使用点斜式方程:\[y-y_1 = k(x-x_1)\]\[y-3 = -1(x-2)\]\[y-3 = -x+2\]\[x+y = 5\]所以,过点A(2, 3)和B(4, 1)的直线方程为 \(x+y = 5\)。

题目二:圆的方程2. 以点C(5, 3)为圆心,半径为r = 2的圆,求圆的方程。

解析:对于以点C(x, y)为圆心,半径为r的圆,圆的方程可以表示为:\[(x-x_0)^2 + (y-y_0)^2 = r^2\]将圆心C(5, 3)和半径r=2代入,得到:\[(x-5)^2 + (y-3)^2 = 4\]所以,以点C(5, 3)为圆心,半径为r = 2的圆的方程为 \((x-5)^2 + (y-3)^2 = 4\)。

题目三:直线和圆的交点3. 已知直线方程为 \(3x-y = 2\),以点D(1, 0)为圆心,半径为r = 1的圆。

求直线和圆的交点坐标。

解析:我们可以使用联立方程的方法来求解直线和圆的交点。

首先,将直线方程转换为一般式方程:\[3x-y-2 = 0\]然后,将直线方程带入圆的方程:\[(x-1)^2 + (y-0)^2 = 1\]通过联立这两个方程,我们可以得到交点的坐标。

将直线方程改写为 \(y = 3x-2\),然后代入圆的方程:\[(x-1)^2 + (3x-2-0)^2 = 1\]展开并整理方程,得到二次方程:\[10x^2 - 22x + 11 = 0\]解这个二次方程,可以得到两个解x1和x2:\[x_1 = \frac{11}{10}, \quad x_2 = 1\]将x值代入直线方程,可以得到对应的y值:\[y_1 = 3\left(\frac{11}{10}\right)-2 = \frac{13}{10}, \quad y_2 = 3(1)-2 = 1\]所以,直线 \(3x-y = 2\) 和圆 \((x-1)^2 + (y-0)^2 = 1\) 的交点坐标为\(\left(\frac{11}{10}, \frac{13}{10}\right)\) 和 (1, 1)。

直线与圆的方程典型例题

直线与圆的方程典型例题

直线与圆的方程典型例题
1. 由点)3,2(P 发出的光线射到直线1-=+y x 上,反射后过)1,1(Q 点,求
反射光线所在直线的一般方程?
2. 已知点(a,2)到直线l: x-y+1=0的距离为2,求a 的值
3. 预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行
4. 求半径为4,与圆相切,且和直线相切的圆的方程
5.已知圆1:221=++y x M )( ,圆9:221-=+y x N )(,动圆P 与圆M 外切与圆N 内切,圆心P 的轨迹为曲线C,求C 的方程。

042422=---+y x y x 0=y
6. 求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长
7. 若直线m x y +=与曲线24x y -=
有且只有一个公共点,求实数m 的取值范围
8. 已知圆,为圆上任一点.求的最大、最小值
9. 已知圆与直线相交于、两点,为原点,且,求实数的值.
1)2(222=++y x O :
),(y x P 1
2--x y 0622=+-++m y x y x 032=-+y x P Q O OQ OP ⊥m。

直线与圆的方程典型例题

直线与圆的方程典型例题

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

直线与圆的方程典型例题

直线与圆的方程典型例题
得的劣弧所对的圆心角为AOB.
3
例10、求两圆x2y2xy20和x2y25的公共弦长
类型四:直线与圆的位置关系
例11、已知直线3x y 2 3
0和圆x2
y2
4,判断此直线与已知圆的位置关系.
例12、若直线y
x
m与曲线y
4
x2
有且只有一个公共点,求实数
m的取值范围.
解:∵曲线y
4
x2
表示半圆x2
y2
4( y
5
或圆心是(5 ,15),半径为5
5.
∴所求圆的方程为
(x 1)2
( y 3)2
5或( x 5)2
( y
15)2
125.
说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.
例4、 设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3 :1,在满足条件

设圆心O1到直线3x
4y
11
3
3
4
3
11
3.
0的距离为d,则d
32
42
2
如图, 在圆心O1同侧,与直线3x
4 y
11
0平行且距离为
1的直线l1与圆有两个交点,这两
个交点符合题意.
又r d 3 2 1.
∴与直线3x4 y110平行的圆的切线的两个切点中有一个切点也符合题意.
∴符合题意的点共有3个.
解法二: 符合题意的点是平行于直线3x4 y110,且与之距离为1的直线和圆的交点.设
0的距离为
2的点共有(
).
(A)1个

直线与圆的方程综合题、典型题

直线与圆的方程综合题、典型题

直线与圆的方程综合题、典型题例题:已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,. (2)不能.例题:已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。

解析:故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0例题:已知点A(-2,-1)和B(2,3),圆C :x 2+y 2 = m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围. 解:∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2 = m 2与线段AB 无交点.题:已知圆4)4()3(:22=-+-y x C ,直线1l 过定点)0,1(A 。

(1)若1l 与圆相切,求1l 的方程;(2)若1l 与圆相交于Q 、P 丙点,线段PQ 的中点为M ,又1l 与022:2=++y x l 的交点为N ,判断AN AM ∙是否为定值,若是,则求出定值;若不是,请说明理由。

解:(1)直线方程是1=x ,0343=--y x (2) 故AN AM ⋅是定值,且为6。

例题:已知 C 过点)1,1(P ,且与 M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称. (Ⅰ)求 C 的方程;(Ⅱ)设Q 为 C 上的一个动点,求PQ MQ ⋅的最小值;(Ⅲ)过点P 作两条相异直线分别与 C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:(Ⅰ)222x y +=(Ⅱ)PQ MQ ⋅ 的最小值为4-(Ⅲ)直线AB 和OP 一定平行例题:已知过点)0,1(-A 的动直线l 与圆C :4)3(22=-+y x 相交于P 、Q 两点,M 是PQ 中点,l 与直线m :063=++y x 相交于N .(1)求证:当l 与m 垂直时,l 必过圆心C ; (2)当32=PQ 时,求直线l 的方程;(3)探索⋅是否与直线l 的倾斜角有关,若无关,请求出其值;若有关,请说明理由.解析:(1)∴当l 与m 垂直时,l 必过圆心C (2)直线l 的方程为1-=x 或0434=+-y x(3)⋅与直线l 的斜率无关,且5-=⋅.第17题例题:已知以点P 为圆心的圆经过点()1,0A -和()3,4B ,线段AB 的垂直平分线交圆P 于点C 和D,且||CD =.(1)求直线CD 的方程;⑵求圆P 的方程;⑶设点Q 在圆P 上,试问使△QAB 的面积等于8的点Q 共有几个?证明你的结论.解:⑴()21y x -=--即x+y-3=0 ⑵圆P 的方程为()()223640x y ++-= 或()()225240x y -++= ⑶ 两个点Q 使 △QAB 的面积为8例题:在平面直角坐标系xOy 中,平行于x 轴且过点A ()2的入射光线l 1被直线l:3y x =反射,反射光线l 2交y 轴于B 点.圆C 过点A 且与l 1、l 2相切. (1)求l 2所在的直线的方程和圆C 的方程;(2)设P 、Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最小值及此时点P 的坐标.解析.40y --=.圆C的方程为22((1)9x y -++=.(Ⅱ)1),2P最小值33B C '-=. 例题:设圆1C 的方程为2224)23()2(m m y x =--++,直线l 的方程为2++=m x y .(1)求1C 关于l 对称的圆2C 的方程;(2)当m 变化且0≠m 时,求证:2C 的圆心在一条定直线上,并求2C 所表示的一系列圆的公切线方程. 解:(1)2224)1()12(m m y m x =--+--(2)圆心在定直线x -2y +1=0上。

直线与圆的方程典型例题

直线与圆的方程典型例题

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢? 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

直线与圆的位置关系例题

直线与圆的位置关系例题

直线与圆的位置关系例题例题一:给定直线的方程为:y = 2x + 3,圆的方程为:(x - 1)^2 + (y - 2)^2 = 9,判断该直线与圆的位置关系。

解答一:首先,我们可以观察到圆的圆心坐标为(1, 2),半径为3。

我们可以计算直线在x轴上的截距为3/2,也就是说直线与x轴的交点为(0, 3/2)。

接下来,我们可以将直线代入圆的方程来判断它们的位置关系:(0 - 1)^2 + (3/2 - 2)^2 = 91 + (−1/2)^2 = 91 + 1/4 = 95/4 = 9由于等式左边不等于右边,因此直线和圆没有交点,它们是相离的。

例题二:给定直线的方程为:x + y = 4,圆的方程为:(x - 2)^2 + (y - 2)^2 = 4,判断该直线与圆的位置关系。

解答二:首先,我们观察到圆的圆心坐标为(2, 2),半径为2。

然后,我们可以令x = 0,来计算直线与y轴的截距,即直线与y轴的交点为(0, 4)。

接下来,我们将直线代入圆的方程来判断它们的位置关系:(0 - 2)^2 + (4 - 2)^2 = 44 + 4 = 4由于等式左边等于右边,因此直线和圆有交点,它们是相交的。

例题三:给定直线的方程为:y = -3x + 2,圆的方程为:(x - 1)^2 + (y + 1)^2 = 4,判断该直线与圆的位置关系。

解答三:首先,我们观察到圆的圆心坐标为(1, -1),半径为2。

然后,我们可以计算直线在x轴上的截距为2/3,也就是说直线与x轴的交点为(0, 2/3)。

接下来,我们将直线代入圆的方程来判断它们的位置关系:(0 - 1)^2 + (2/3 + 1)^2 = 41 + (5/3)^2 = 41 + 25/9 = 49/9 + 25/9 = 434/9 = 4.由于等式左边不等于右边,因此直线和圆没有交点,它们是相离的。

例题四:给定直线的方程为:x - 2y = 6,圆的方程为:(x - 3)^2 + (y + 1)^2 = 9,判断该直线与圆的位置关系。

1 第二章 直线和圆的方程 典型例题讲解(解析版)

1 第二章 直线和圆的方程 典型例题讲解(解析版)

第二章直线和圆的方程典型例题讲解目录一、基本概念回归二、重点例题(高频考点)高频考点一:直线的倾斜角和斜率高频考点二:两条直线的位置关系(平行,垂直)高频考点三:直线的方程高频考点四:直线过定点问题高频考点五:点到直线的距离高频考点六:对称问题高频考点七:根据对称性求最值高频考点八:圆的方程高频考点九:与圆有关的最值问题高频考点十:轨迹方程高频考点十一:直线与圆相交的弦长问题高频考点十二:过定点的直线和圆相交的判定与最短弦长问题高频考点十三:两圆相交的公共弦所在直线的方程及弦长高频考点十四:直线与圆的综合问题.3.(2022·全国·高三专题练习)相交,则实数a的取值范围是(A.32 43a-≤≤由斜率公式可知,直线AP的斜率为APk直线AQ的斜率为2240(3)3 AQk--==---,若l与线段PQ相交,只需要32APa k≥=故实数a的取值范围是43a≤-或32a≥如图,(2,4),(5,2)B C -,则AB k 故答案为:15,63⎡⎤-⎢⎥⎣⎦5.(2022·全国·高三专题练习)的线段总有公共点,求直线l 的倾斜角【答案】30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢;1-≤所以PA PB k k k ≤⇒≤1k -≤≤所以0tan 1α≤≤或1tan α-≤由于tan y x =在0,2π⎡⎫⎪⎢⎣⎭及2π⎛ ⎝3.(2022·全国·高二单元测试)最小时的点P 的坐标为______.【答案】()1,0由对称性可知1AC A C =,所以,1AC BC AB A C ++=+=+≥所以,AC BC MC BC MB当且仅当点C为线段BM与y轴的交点时,等号成立,+的最小值为10.故AC BC故答案为:10.而132321022nmm n⎧=-⎪⎪+⎨-⎪⨯-+=⎪⎩,解得12mn=⎧⎨=-⎩,故()11,2A-,故直线1:A B x=故当PA PB+取最小值时,P的横坐标为故答案为:()1,3.高频考点八:圆的方程4.(2022·全国·高三专题练习)阿波罗尼斯是古希腊著名的数学家,对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点的距离之比()0,1MQ MPλλλ=>≠,那么点是阿波罗尼斯圆,其方程为22x y +则2MP MB +的最小值为_______.【答案】10【详解】设(),0Q a ,(),M x y ,所以C 222428360x y x y的圆心为(12,14 +---=由直角三角形斜边中线等于斜边一半可得:则(),0A c -、(),0B c ,设满足条件的点为点整理可得(2222c x y λλ+-因为直线10kx y -+=的斜率存在,所以,点所以,弦AB 的中点坐标所满足的等式为故答案为:(220x y y x +-=≠高频考点十一:直线与圆相交的弦长问题1.(2022·湖南衡阳·高二期末)直线3.(2022·全国·高三专题练习)圆222440x x y y -+--=与圆共弦长为___________.【答案】310##310(1)若14AB =,求直线AB 的一般方程;(2)若CD 的中点为E ,求ABE △面积的取值范围【答案】(1)10x y -+=或10x y +-=(2)35,42⎛⎤ ⎥ ⎝⎦(1)由题可知,2o r =,∵14AB =:1AB y kx =+.因为ME CD ME AB ⊥⇒,则E 22211211k k d k k +-==++.所以ABE △的面积12S AB d =⋅=令214t k =+>,则22452t S t -=(1)求圆C的标准方程;(2)直线n交圆C于的M,N两点(点M,N异于A 求证:直线n过一个定点,并求出该定点坐标.当直线n 斜率存在时,设直线n :y kx t =+,M ()2121124422AM AN kx t kx t k k k x x x x +-+-⋅=⋅=⇒-。

直线与圆方程例题(总结版)

直线与圆方程例题(总结版)

直线与圆方程例题(总结版)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII【考试大纲要求】1.理解直线的斜率的概念,掌握两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线的方程.2.掌握两条直线平行与垂直的条件和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系.4.了解解析几何的基本思想,了解坐标法.5.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 6.掌握直线与圆的位置关系的判断方法,能利用直线和圆的位置关系解决相关问题.直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程.【基础知识归纳】 1.直线方程(1)直线的倾斜角 直线倾斜角的取值范围是:0180α︒︒≤<. (2)直线的斜率)90(tan ︒≠=ααk .倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,斜率的取值范围是(-∞,+∞).(3)直线的方向向量设F 1(x 1,y 1)、F 2(x 2,y 2)是直线上不同的两点,则向量21F F =(x 2-x 1,y 2-y 1)称为直线的方向向量向量121x x -21F F =(1,1212x x y y --)=(1,k )也是该直线的方向向量,k 是直线的斜率.特别地,垂直于x 轴的直线的一个方向向量为a =(0,1) .说明:直线的倾斜角、斜率、方向向量都是刻划、描述直线的倾斜程度的.每一条直线都有倾斜角和方向向量,但不是每一条直线都有斜率,要注意三者之间的内在联系.(4)直线方程的五种形式点斜式:)(00x x k y y -=-,(斜率存在) 斜截式:b kx y += (斜率存在) 两点式:121121x x x x y y y y --=--,(不垂直坐标轴) 截距式:1=+bya x (不垂直坐标轴,不过原点)一般式:0=++C By Ax .引申:过直线1111:0l A x B y C ++=, 2222:0l A x B y C ++=交点的直线系方程为:111222()0A x B y C A x B y C λ+++++=(λ∈R )(除l 2外). 2.两条直线的位置关系(1)直线与直线的位置关系存在斜率的两直线111:l y k x b =+;222:l y k x b =+.有: ①12l l ⇔12k k =且12b b ≠; ②12l l ⊥⇔121k k ⋅=-; ③1l 与2l 相交⇔12k k ≠; 0④1l 与2l 重合⇔12k k = 且12b b =. 一般式的直线1111:0l A x B y C ++=,2222:0l A x B y C ++=.有①12l l ⇔12210A B A B -=;且12210B C C B -≠; ②12l l ⊥⇔12120A A B B +=; ③1l 与2l 相交⇔12210A B A B -≠;④1l 与2l 重合⇔12210A B A B -=;且12210B C C B -=(2)点与直线的位置关系若点00(,)P x y 在直线0=++C By Ax 上,则有000Ax By C ++=;若点00(,)P x y 不在直0=++C By Ax 上,则有000Ax By C ++≠,此时点00(,)P x y 到直线0=++C By Ax 的距离为2200BA CBy Ax d +++=.平行直线10Ax By C ++=与20Ax By C ++=之间的距离为 2221BA C C d +-=.(3)两条直线的交点直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的公共点的坐标是方程1112220A x B y C A x B y C ++=⎧⎨++=⎩ 的解 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解. 重合⇔方程组有无数解.3.曲线与方程 4. 圆的方程(1)圆的定义 (2)圆的方程标准式:222()()x a y b r -+-=,其中r 为圆的半径,(,)a b 为圆心. 一般式:220x y Dx Ey F ++++=(2240D E F +->).其中圆心为,22D E ⎛⎫-- ⎪⎝⎭参数方程:cos sin x r y r αα=⎧⎨=⎩,cos (sin x a r y b r ααα=+⎧⎨=+⎩是参数). 消去θ可得普通方程5. 点与圆的位置关系判断点(,)P x y 与圆2()x a -+22()y b r -=的位置关系代入方程看符号. 6.直线与圆的位置关系 直线与圆的位置关系有:相离、相切和相交.有两种判断方法: (1)代数法:(判别式法)0,0,0∆>∆=∆<时分别相离、相交、相切. (2)几何法:圆心到直线的距离 ,,d r d r d r >=<时相离、相交、相切.7.弦长求法(1)几何法:弦心距d ,圆半径r ,弦长l ,则2222l d r ⎛⎫+= ⎪⎝⎭ .(2)解析法:用韦达定理,弦长公式. 8.圆与圆的位置关系题型1:直线的倾斜角1.(07·上海)直线014=-+y x 的倾斜角=θ . 答案:4arctan π-解析: 直线014=-+y x 可化为14-=x y ,∴),( ππθθ2,4tan ∈-==k∴4arctan π-=θ.题型2 :直线的斜率2.(08·安徽卷)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( )A .[3,3] B .(3,3) C .33⎡⎢⎣⎦ D .33⎛ ⎝⎭ 答案:C解析:记圆心为(2,0)D ,记上、下两切点分别记为B C 、,则30BAD CAD ︒∠==∠,∴l 的斜率00tan150,tan 30,k ⎡⎤∈⎣⎦ 即3333k ⎡∈-⎢⎣⎦.题型3 直线的方程3.(07·浙江)直线210x y -+=关于直线1x =对称的直线方程是 ( ) A.210x y +-= B.210x y +-= C.230x y +-= D.230x y +-=答案:D解析:(利用相关点法)设所求直线上任一点(x,y),则它关于1x =对称点为(2-x, y)在直线210x y -+=上,即0122=+--y x ,化简得答案D.题型4:直线与直线的位置关系4.(06·福建)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于 ( )A .2B .1C .0D .1- 答案 D解析:两条直线2y ax =-和(2)1y a x =++互相垂直,则(2)1a a +=-,∴ a=-1,选D.题型5:点与直线的位置关系5.(06·湖南)圆224x y x +--4100y -=上的点到直线014=-+y x 的最大距离与最小距离的差是 ( )A .36 B. 18 C. 26 D. 25 答案C解析:圆0104422=---+y x y x 的圆心为(2,2),半径为32,圆心到直线014=-+y x=>32,圆上的点到直线的最大距离与最小距离的差是2R =62,选C. 题型6:圆的方程6. (06·重庆)以点(2,-1)为圆心且与直线3450x y -+=相切的圆的方程为 ( )A .22(2)(1)3x y -++=B .22(2)(1)3x y ++-=C .22(2)(1)9x y -++=D .22(2)(1)3x y ++-= 答案 C 解析 2234r =-(-)++3,故选C.10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学圆的方程典型例题类型一:圆的方程例1求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC , ∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 例4、设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x解法二:同解法一,得52ba d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得: 01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢? 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-kk解得43=k所以()4243+-=x y即01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ①0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径2,2=,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。

所以,所求的直线l 的方程是34130x y +-=或3x =.2、过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为解:设直线方程为kx y =,即0=-y kx .∵圆方程可化为25)1()2(22=++-y x ,∴圆心为(2,-1),半径为210.依题意有2101122=++k k ,解得3-=k 或31=k ,∴直线方程为x y 3-=或x y 31=. 3、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 .解:∵圆1)1(22=+-y x 的圆心为(1,0),半径为1,∴1125522=++a ,解得8=a 或18-=a .类型三:弦长、弧问题例8、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .例10、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例11、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系.例12、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.解:∵曲线24x y -=表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范围是22<≤-m 或22=m .例13圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.练习1:直线1=+y x 与圆)0(0222>=-+a ay y x 没有公共点,则a 的取值范围是 解:依题意有a a >-21,解得1212-<<--a .∵0>a ,∴120-<<a .练习2:若直线2+=kx y 与圆1)3()2(22=-+-y x 有两个不同的交点,则k 的取值范围是 . 解:依题意有11122<+-k k ,解得340<<k ,∴k 的取值范围是)34,0(.3、 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有().(A )1个(B )2个(C )3个(D )4个分析:把034222=-+++y x y x 化为()()82122=+++y x ,圆心为()21--,,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .4、 过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()42122=++-y x C :有公共点,如图所示.分析:观察动画演示,分析思路. 解:设直线l 的方程为()34+=+x k y即043=-+-k y kx根据r d ≤有214322≤+-++kk k整理得0432=-k k解得340≤≤k .类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?例14、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例15:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

相关文档
最新文档