2.2.4平面与平面平行的性质+++++++++++++++

合集下载

2.2.4平面与平面平行的性质定理

2.2.4平面与平面平行的性质定理
这个结论可做定理用
平面与平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行
符号语言:
/ /
a,
b
a//b
定理的作用: 面面平行→线面平行
几个重要结论
1、若两个平面互相平行,则其中一个平面 中的直线必平行于另一个平面;
2、平行于同一平面的两平面平行; 3、过平面外一点有且只有一个平面与这个
• 2.2.4平面与平面平行的性质
【探究新知】
探究1. 如果两个平面平行,那么一个平面内的直线果两个平面平行,那么一个平面内的直线 与另一个平面平行.
探究2. 如果两个平面平行,两个平面内的直线有什么位置关系?
借助长方体模型探究 结论:如果两个平面平行,那么两个平面内的直线要么是 异面直线,要么是平行直线.
平面平行; 4、夹在两平行平面间的平行线段相等。
例题分析
例1、求证:夹在两个平行平面间的两条平行 线段相等.
已知:如图,AB∥CD,
D
A∈α ,D∈α,
αA
B∈β ,C∈β, α∥β
求证:AB=CD
C
βB
练习:
1、 如图:a∥α,A是α另一侧的点,B、C、D 是α上的点 ,线段AB、AC、AD交于E、F、G 点,若BD=4,CF=4,AF=5,求EG.
M
G
D
C
H
O
A
B
B C Da
α E FG
A
补充作业:
1、已知α∥β,AB交α、β于A、B,CD交
α、β于C、D,AB∩CD=S,AS=8,BS=9,
S
CD=34,求SC。
AC
α
S
AC
α
βD

2.2.4平面与平面平行的性质2

2.2.4平面与平面平行的性质2
(1):平面和平面的位置关系有哪些?
L
α∥β
α∩β= L
(2):平面和平面平行的判定定理是什么?
一个平面内的两条相 交直线与另一个平面平 行,则这两个平面平行。 如果一个平面内有 两条相交直线分别平行 于另一个平面内的两条 直线,那么这两 b
α
d
如果两个平 行平面同时与第三 个平面相交,那么 它们的交线平行。
是α上的点 ,线段AB、AC、AD交于E、F、G
点,若BD=4,CF=4,AF=5,求EG.
B C D
a
α
E
F
G
A
10
小结
面面平行判定定理: 线面平行
另一个平面,那么这两个平面平行。
面面平行 如果一个平面内有两条相交直线分别平行于
推论:
如果一个平面内有两条相交直线分别平行于
另一个平面内的两条直线,那么这两个平面平行
求证:MN∥平面PBC。
N D C
E
A B
M
7
已知ABCD是平行四边形,点P是平面 ABCD外一点,M是PC的中点,在DM上取一 点G,画出过G和AP的平面。
P
M
G
D
C
H
A
O
B
8
练习: 点P在平面VAC内,画出过点P作一个截面 平行于直线VB和AC。 V
F P G B H A
9
E
C
如图:a∥α,A是α另一侧的点,B、C、D
面面平行性质定理: 面面平行
线面平行 如果两个平行平面同时与第三个平面相交, 那么它们的交线平行。
11
课外作业: 1、已知α∥β,AB交α、β于A、B,CD交 α、β于C、D,AB∩CD=S,AS=8,BS=9,

2.2.4面面平行的性质

2.2.4面面平行的性质
D1 A1 B1 C1
D
A B
C
问题3:若两个平面平行,则一个平面内的直 线a与另一个平面内的直线有什么位置关系?
a

b
异面、平行

已知: 平面,, , // , a
b求证:a // b 证明: a
b
{b
/
a
a, b没有公共点 a, b都在平面内
a // b
二、平面和平面平行的性质定理 如果两个平行平面同时和第三个平面相 交,那么它们的交线平行.
// 即: a a // b b
简记:面面平行 线线平行
例1. 求证: 夹在两个平行平面间的两条平行线段相等. 已知:平面//平面 ,AB和DC为夹在 、 D A 间的平行线段。求证:AB=DC.
证明:连接BC,取BC的中点E, 分别连接ME、NE, 则ME∥AC,∴ ME∥平面α, 又 NE∥BD, ∴ NE∥β, M 又ME∩NE=E,∴平面MEN∥ 平面α, ∵ MN平面MEN,∴MN∥α.
B A C
E
N D
例3 在正方体ABCD-A′B′C′D′中, 点M在CD′上,试判断直线B′M与平面 A′BD的位置关系,并说明理由.
C′ D′ M D C A A′ B B′
直线与直线平行
直线与平面平行
平面与平面平行
1、若两个平面互相平行,则其中一个平面 中的直线必平行于另一个平面; 2、平行于同一平面的两平面平行; 3、过平面外一点有且只有一个平面与这个
平面平行; 4、夹在两平行平面间的平行线段相等。
作业: P61练习:(做在书上) P63习题2.2B组:4(做在书上) P63习题2.2B组:3.

人教A版数学必修二2.2.4 平面与平面平行的性质 教学设计

人教A版数学必修二2.2.4 平面与平面平行的性质 教学设计

《2.2.4 平面与平面平行的性质》教学设计一、教学内容分析:本节教材选自人教A版数学必修二第二章2.2.4,本节内容在立体几何学习中具有重要的意义与地位。

本节课是在前面已学直线与平面平行的判定及性质、平面与平面平行的判定,结合有关的实物模型,通过直观感知、推理证明出平面与平面平行的性质定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,对以后的学习作用重大。

二、学生学习情况分析:任教的学生在年级属中上程度,学习兴趣较高,但学习立体几何所具备的语言表达、逻辑推理及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想:本节课的设计遵循从具体到抽象的原则,借助实物模型,通过直观感知,推理证明,归纳出平面与平面平行的性质定理,让学生在观察分析、自主探究、合作交流的过程中,揭示平面与平面平行的性质定理,领会数学的思想方法,养成积极主动、勇于探究、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标:通过直观感知,推理证明,理解并掌握平面与平面平行的性质定理,掌握平面与平面平行、相交的画法并能准确使用数学符号语言、文字语言表述性质定理。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的效率。

五、教学重点与难点:重点是性质定理的引入与理解,难点是性质定理的应用及立体几何空间感、空间观念的形成与逻辑思维能力的培养。

六、教学过程设计:(一)知识准备,引入提问:两平面平行的判定定理解决了两平面平行的条件;反之,在两平面平行的条件下,会得到什么结论呢?本节我们利用长方体模型共同探讨这个问题.问题1如何判断平面和平面平行?如果两个平面平行,那么一个平面内的直线与另一个平面有什么位置关系?生答有两种方法,一是用定义法,须判断两个平面没有公共点;二是用平面和平面平行的判定定理,须判断一个平面内有两条相交直线都和另一个平面平行.如果两个平面平行,那么一个平面内的直线与另一个平面平行.问题2 如果两个平面平行,除了上述性质,两个平面内的直线还有别的性质吗?【设计意图:通过提问,学生复习面面平行的判定定理,引入本节课课题。

2.2.4平面与平面平行的性质

2.2.4平面与平面平行的性质

平面与平面平行的性质定理
展馆上下两层所在的平面与侧墙 所在的平面分别相交,它们的交线的位置关系 如何? (平行)
(1)文字语言:如果两个平行平面同时 和第三个平面相交,那么它们的交线平行. (2)符号语言:α ∥β ,α a∥b. (3)图形语言:如图所示. γ =a,β γ =b
【质疑探究】 (1)如何理解平面与平面平行的性质 定理?需要注意什么? (①该性质定理可以简述为:“面面平行,则线线平 行”,必须注意这里的“线线”是指同一平面与已 知两平行平面的交线.②关于两个平面平行的性质 还有如下的结论:两个平面平行,其中一个平面内 的直线必平行于另一个平面,即 “面面平行,则线面 平行”,此处的线是平面内的任一条直线)
跟踪训练 1 1:已知 a、b 表示直线,α 、β 、γ 表示平面,下列推理正确的是( (A)α β =a,b α )
a∥b (B)α β =a,a∥b b∥α 且 b∥β (C)a∥β ,b∥β ,a α ,b α α ∥β (D)α ∥β ,α γ =a,β γ =b a∥b
利用面面平行的性质定理证明线线 平行的技巧是什么? (利用面面平行的性质定理证明线线平行的关键 是把要证明的直线看作是平面的交线,所以构造 三个面是其应用中的主要工作:即二个平行面,一 个包含讨论直线的面,有时需要添加辅助面)
跟踪训练 2 1:已知如图所示,三棱柱 ABC A1B1C1 中, 点 D、D1 分别为 AC、A1C1 上的点.
(3)你能总结一下线线平行与线面平行、面面平 行之间的转化关系吗? (三种平行关系可以任意转化,其相互转化关系 如图所示:
)
如图所示,AB α ,CD β , 且α ∥β ,若 AC∥BD,求证:AC=BD.

数学必修2——2.2.3-2.2.4《直线与平面、平面与平面平行的性质》导学导练

数学必修2——2.2.3-2.2.4《直线与平面、平面与平面平行的性质》导学导练

高中数学必修2个人原创,版权所有,翻印必究,如需借用,QQ 索取密码 第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修二2.2.3《直线与平面平行的性质》2.2.4《平面与平面平行的性质》导学导练【知识要点】1、直线与平面平行的性质定理(重点)1)直线与平面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.2)符号语言描述:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα3)图形语言描述,如右图.2、平面与平面平行的性质(重点、难点)1)、两个平面平行的性质(1):如果两个平面平行,那么其中一个平面内的直线平行于另一个平面. 简言之,“面面平行,则线面平行.”2)、两个平面平行的的性质(2):如果两个平行平面同时和第三个平面相交,那么它们的交线平行.【范例析考点】考点一.线面平行性质的应用考点1:由“线面平行”证明“线线平行”例1、如图,已知异面直线AB 、CD 都与平面α平行,CA 、CB 、DB 、DA 分别交α于点E 、F 、G 、H .求证:四边形EFGH 是平行四边形.HGFEBADCα【针对练习】1.若直线a 不平行于平面α,则下列结论成立的是( )A .α内的所有直线都与直线a 异面B .α内不存在与a 平行的直线C .α内的直线都与a 相交D .直线a 与平面α有公共点2.直线a ∥平面α,P ∈α,过点P 平行于α的直线( )A .只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内 3.下列判断正确的是( )A .a ∥α,b α,则a ∥bB .a ∩α=P ,b α,则a 与b 不平行C .aα,则a ∥α D .a ∥α,b ∥α,则a ∥b4.直线和平面平行,那么这条直线和这个平面内的( )A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交 5、判断下列说法是否正确:①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何一条直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内。

面面平行的性质

面面平行的性质
B C Da
α E FG
A
练:A、B是不在直线l上的两点,则过点A、B 且与直线l平行的平面的个数是 ( D )
A.0个
B.1个
C.无数个 D.以上三种情况均有可能
小结与归纳
1、若两个平面互相平行,则其中一个 平面中的直线必平行于另一个平面;
2、平行于同一平面的两平面平行;
3、夹在两平行平面间的平行线段相等。
β
答:两条交线平行.
α
a
b
下面我们来证明这个结论
如图,平面α,β,γ满足α∥β,
α∩γ=a,β∩γ=b,
求证:a∥b
证明:∵α∩γ=a,
β∩γ=b
∴aα,bβ
a
α
∵α∥β ∴a,b没有公共点,
又∵ a,b同在平面γ内,
b
β
∴ a∥b
面面平行的性质定理: 如果两个平行平面同时和第三个平面相交,
那么它们的交线平行.
2.2.4 平面与平面 平行的性质
复习回顾:
平面与平面有几种位置关系?分别是什么?
(1)平行
(2)相交
α∥β
a
探究新知
探究1. 如果两个平面平行,那么一个平面 内的直线与另一个平面有什么位置关系?
a
异面直线
平行直线
探究2.如果两个平面平行,两个平面内的直 线有什么位置关系?
探究新知
探究3:当第三个平 面和两个平行平面 都相交时,两条交 线有什么关系?为 什么?
用符号语言表示性质定理:
/ /
a,
b
a//b
想一想:这个定理的作用是什么?
由平面与平面平行得出直线与直线平行
平行于同一个平面的两个平面平行.
已知:α∥γ,β∥γ 求证:α∥β

(人教A版)必修2课件:2-2-4 平面与平面平行的性质

(人教A版)必修2课件:2-2-4 平面与平面平行的性质
[例3] 已知三个平面α、β、γ满足α∥β∥γ,直线a与这
三个平面依次交于点A、B、C,直线b与这三个平面依次交 于点E、F、G.求证:BACB=FEGF.
第二章 2.2 2.2.4
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
[证明] 连接AG交β于H,连BH、FH、AE、CG.
∵平面ABCD∩平面A′B′BA=AB,
平面ABCD∩平面C′D′DC=CD,∴AB∥CD. 同理AD∥BC.
∴四边形ABCD是平行四边形.
第二章 2.2 2.2.4
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
规律总结:利用面面平行的性质定理证明线线平行的关 键是把要证明的直线看作是平面的交线,所以构造三个面是 其应用中的主要工作:即二个平行面,一个包含讨论直线的 面,有时需要添加辅助面.
第二章 2.2 2.2.4
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
如图,在四棱锥O-ABCD中,底面ABCD是菱形,M为
OA的中点,N为BC的中点.证明:直线MN∥平面OCD.
第二章 2.2 2.2.4
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
[证明] 证明一:如图(1),取OB的中点G,连接GN, GM.
第二章 2.2 2.2.4
高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
由①②得EB∥D1F③
∴E、B、F、D1四点共面,四边形BED1F是平面四边形.
又∵平面ADD1A1∥平面BCC1B1,
平面EBFD1∩平面ADD1A1=ED1, 平面EBFD1∩平面BCC1B1=BF,
∴ED1∥BF④
∵M为OA的中点,∴MG∥AB. ∵AB∥CD,∴MG∥CD.

新课标人教A版数学必修2全部课件:2.2.4平面与平面平行的性质

新课标人教A版数学必修2全部课件:2.2.4平面与平面平行的性质
另一个平面内的两条直线,那么这两个平面平行
面面平行性质定理: 面面平行
线面平行 如果两个平行平面同时与第三个平面相交, 那么它们的交线平行。
课外作业: 1、已知α∥β,AB交α、β于A、B,CD交 α、β于C、D,AB∩CD=S,AS=8,BS=9,
S
CD=34,求SC。
α
A
S
C
A
C
α
β
D
B
β
B
D
例3、已知ABCD是平行四边形,点P是平面ABCD
外一点,M是PC的中点,在DM上取一点G,
画出过G和AP的平面。
P
M
G
D
C
H
A
O
B
平面平行; 4、夹在两平行平面间的平行线段相等。
例题分析
例1、求证:夹在两个平行平面间的两条
平行线段相等
已知:如图,AB∥CD, A∈α ,D∈α, B∈β ,C∈β,
D
α
A
求证:AB=CD
β
B
C
例题分析
例1、如果一条直线与两个平行平面中的一个相交, 那么它与另一个也相交。
γ l l
A
α
.
A a α
.
β
β
B
.b
练习:
1、 如图:a∥α,A是α另一侧的点,B、C、D
是α上的点 ,线段AB、AC、AD交于E、F、G
点,若BD=4,CF=4,AF=5,求EG.
B C D
a
α
E
F
G
A
练习:
2、棱长为a的正方体AC1中,设M、N、E、F分别为 棱A1B1、A1D1、 C1D1、 B1C1的中点. (1)求证:E、F、B、D四点共面; (2)求证:面AMN∥面EFBD.

课件4:2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质

课件4:2.2.3  直线与平面平行的性质~2.2.4 平面与平面平行的性质
2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质
知识点一 直线与平面平行的性质 线面平行的性质定理 (1)文字语言:一条直线与一个平面平行,则过 这条直线的任一平面与此平面的交线与该直线 平行.
(2)图形语言:
(3)符号语言:
a∥α
a⊂β α∩β=b
⇒a∥b
(4)作用:线面平行⇒线线平行.
题型三 线面平行和面面平行的综合问题 例3 如图所示,平面α∥平面β,△ABC、△A′B′C′ 分别在α、β内,线段AA′、BB′、CC′共点于O,O在α、 β之间,若AB=2,AC=1,∠BAC=90°,OA∶OA′ =3∶2.求△A′B′C面和两平行平面α、β分 别相交于AB、A′B′, 由面面平行的性质定理可得AB∥A′B′. 同理相交直线 BB′、CC′确定的平面和平行平面α、β分别相交于BC、 B′C′,从而BC∥B′C′.同理易证AC∥A′C′. ∴∠BAC与∠B′A′C′的两边对应平行且方向相反, ∴∠BAC=∠B′A′C′.
练习
5.如图所示,P 是△ABC 所在平面外一 点,平面 α∥平面 ABC,α 分别交线段 PA、PB、PC 于 A′、B′、C′.若APA′A′=23, 求S△A′B′C′的值.
S△ABC
解 平面α∥平面ABC,平面PAB∩平面α=A′B′, 平面PAB∩平面ABC=AB, ∴A′B′∥AB.同理可证B′C′∥BC,A′C′∥AC. ∴∠B′A′C′=∠BAC,∠A′B′C′=∠ABC, ∠A′C′B′=∠ACB. ∴△A′B′C′∽△ABC. 又∵PA′∶A′A=2∶3,∴PA′∶PA=2∶5. ∴A′B′∶AB=2∶5.∴S△A′B′C′∶S△ABC=4∶25.
证明 如图所示,过点A作AE∥CD,且AE交平面β 于E,连接DE与BE. ∵AE∥CD, ∴由AE与CD可以确定一个平面γ, 则α∩γ=AC,β∩γ=DE. ∵α∥β,∴AC∥DE. 取AE的中点N,连接NP与MN,如图所示. ∵M与P分别为线段AB与CD的中点,

课件10:2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质

课件10:2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质

本课结束
更多精彩内容请登录:
∵NP⊄平面 AA1B1B,AB⊂平面 AA1B1B, ∴NP∥平面 AA1B1B. ∵MP∥BB1,MP⊄平面 AA1B1B,BB1⊂平面 AA1B1B, ∴MP∥平面 AA1B1B. 又∵MP⊂平面 MNP,NP⊂平面 MNP,MP∩NP=P, ∴平面 MNP∥平面 AA1B1B. ∵MN⊂平面 MNP,∴MN∥平面 AA1B1B.
[类题通法] 应用平面与平面平行性质定理的基本步骤
[针对训练] 2.给出下列说法: ①若平面 α∥平面 β,平面 β∥平面 γ,则平面 α∥平面 γ; ②若平面 α∥平面 β,直线 a 与 α 相交,则 a 与 β 相交; ③若平面 α∥平面 β,P∈α,PQ∥β,则 PQ⊂α; ④若直线 a∥平面 β,直线 b∥平面 α,且 α∥β,则 a∥b. 其中正确说法的序号是________.
文字语言 那么它们的交线__平__行___
符号语言 α∥β,α∩γ=a,β∩γ=b⇒__a_∥__b_
图形语言
三、综合迁移·深化思维 (1)若直线 a∥平面 α,则直线 a 平行于平面 α 内的任意一条直线,对吗? 提示:错误.若直线 a∥平面 α,则由线面平行的性质定理可知直线 a 与平面 α 内的一组直线平行. (2)若直线 a 与平面 α 不平行,则直线 a 就与平面 α 内的任一直线都不 平行,对吗? 提示:不对.若直线 a 与平面 α 不平行,则直线 a 与平面 α 相交或 a⊂α,当 a⊂α 时,α 内有直线与直线 a 平行.
(3)两个平面平行,那么,两个平面内的所有直线都相互平行吗? 提示:不一定.它们可能异面. (4)两个平面平行,其中一个平面内的直线必平行于另一个平面吗? 提示:一定平行.因为两个平面平行,则两个平面无公共点,则 其中一个平面内的直线必和另一个平面无公共点,因而它们平行.

课时作业23:2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质

课时作业23:2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质

2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质基础过关1.若一条直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段所在直线的位置关系是( ) A.平行 B.相交C.异面D.平行、相交或异面解析 画图可知两直线可平行、相交或异面,故选D. 答案 D2.如图所示,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G ,H ,则GH 与AB 的位置关系是( )A.平行B.相交C .异面D.平行和异面解析 ∵E ,F 分别是AA 1,BB 1的中点,∴EF ∥AB . 又AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH .又AB ⊂平面ABCD ,平面ABCD ∩平面EFGH =GH , ∴AB ∥GH . 答案 A3.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则下列命题中不正确的是( )①⎭⎬⎫a ∥c b ∥c ⇒a ∥b ;② ⎭⎬⎫a ∥γb ∥γ⇒a ∥b ;③⎭⎬⎫α∥c β∥c ⇒α∥β;④⎭⎬⎫α∥γβ∥γ⇒α∥β;⑤ ⎭⎬⎫α∥c a ∥c ⇒α∥a ;⑥⎭⎬⎫α∥γa ∥γ⇒a ∥α. A.④⑥B.②③⑥C.②③⑤⑥D.②③解析 由公理4及平行平面的传递性知①④正确.举反例知②③⑤⑥不正确.②中a ,b 可以相交,还可以异面;③中α,β可以相交;⑤中a 可以在α内;⑥中a 可以在α内. 答案 C4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱A 1B 1,B 1C 1的中点,P 是棱AD 上一点,AP =13,过点P ,E ,F 的平面与棱CD 交于Q ,则PQ = . 解析 易知EF ∥平面ABCD ,PQ =平面PEF ∩平面ABCD ,∴EF ∥PQ ,易知DP =DQ =23,故PQ =PD 2+DQ 2=2DP =223. 答案2235.如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于 .解析 因为EF ∥平面AB 1C ,且EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC .又因为E 为AD 的中点,所以EF 为△ACD 的中位线,所以EF = 12AC =12×22= 2. 答案26.如图所示,四面体ABCD 被一平面所截,截面EFGH 是一个矩形.求证:CD ∥平面EFGH . 证明 ∵截面EFGH 是矩形,∴EF∥GH.又GH⊂平面BCD,EF⊄平面BCD.∴EF∥平面BCD.而EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.7.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB =2CD,E,E1分别是棱AD,AA1上的点.设F是棱AB的中点,证明:直线EE1∥平面FCC1.证明因为F为AB的中点,所以AB=2AF,又因为AB=2CD,所以CD=AF,因为AB∥CD,所以CD∥AF,所以四边形AFCD为平行四边形,所以FC∥AD,又FC⊄平面ADD1A1,AD⊂平面ADD1A1,所以FC∥平面ADD1A1.因为CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,所以CC1∥平面ADD1A1,又FC∩CC1=C,所以平面ADD1A1∥平面FCC1.又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.能力提升8.设α∥β,A∈α,B∈β,C是AB的中点,当A,B分别在平面α,β内运动时,那么所有的动点C()A.不共面B.当且仅当A,B分别在两条直线上移动时才共面C.当且仅当A,B分别在两条给定的异面直线上移动时才共面D.不论A,B如何移动,都共面解析如图所示,A′,B′分别是A,B两点在α,β上运动后的两点,此时AB中点C变成A′B′中点C′.连接A′B,取A′B的中点E,连接CE,C′E,CC′,AA′,BB′.则CE∥AA′,从而易得CE∥α.同理C′E∥β.又∵α∥β,∴C′E∥α.∵C′E∩CE=E,∴平面CC′E∥平面α.∴CC′∥α.故不论A,B如何移动,所有的动点C都在过点C且与α,β平行的平面上.答案D9.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点解析∵l⊄α,∴l∥α或l与α相交.①若l∥α,则由线面平行的性质定理可知l∥a,l∥b,l∥c,…,∴a,b,c,…,这些交线都平行.②若l与α相交,不妨设l∩α=A,则A∈l,又由题意可知A∈a,A∈b,A∈c,…,∴这些交线交于同一点A.综上可知D正确.答案D10.在长方体ABCD-A1B1C1D1中,E为棱DD1上的点.当平面AB1C∥平面A1EC1时,点E的位置是.解析如图,连接B1D1,BD,设B1D1∩A1C1=M,BD∩AC=O,连接ME,B1O.∵平面AB1C∥平面A1EC1,平面AB1C∩平面BDD1B1=B1O,平面A1EC1∩平面BDD1B1=ME,∴B1O∥ME.又四边形B1MDO为平行四边形,则B1O∥MD.故E与D重合.答案与D重合11.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使α,β都平行于γ;②α内有不共线的三点到β的距离相等;③存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β.其中可以判断两个平面α与β平行的条件有个.解析若α与β相交,如图所示,可在α内找到A,B,C三个点到平面β的距离相等,所以排除②.容易证明①③都是正确的.答案212.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S △MNG ∶S △ADC .(1)证明 如图,连接BM ,BN ,BG 并分别延长交AC ,AD ,CD 于P ,F ,H .∵M ,N ,G 分别为△ABC ,△ABD ,△BCD 的重心, 则有BM MP =BN NF =BGGH =2.连接PF ,FH ,PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD . 同理MG ∥平面ACD .又MG ∩MN =M ,MG ,MN ⊂平面MNG , ∴平面MNG ∥平面ACD .(2)解 由(1)可知,MG PH =BG BH =23, ∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD ,∴△MNG ∽△ADC ,且相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.创新突破13.已知:如图,三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.若平面BC 1D ∥平面AB 1D 1,求ADDC 的值.解 如图,连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A 1ABB 1为平行四边形, 所以点O 为A 1B 的中点. 因为平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面AB 1D 1=D 1O ,平面A 1BC 1∩平面BC 1D =BC 1,所以BC 1∥D 1O , 所以D 1为线段A 1C 1的中点, 所以D 1C 1=12A 1C 1.因为平面BC 1D ∥平面AB 1D 1, 且平面AA 1C 1C ∩平面BDC 1=DC 1, 平面AA 1C 1C ∩平面AB 1D 1=AD 1, 所以AD 1∥DC 1.又因为AD ∥D 1C 1, 所以四边形ADC 1D 1是平行四边形, 所以AD =C 1D 1=12A 1C 1=12AC ,所以ADDC =1.。

直线与平面平行平面与平面平行的性质定理精品PPT课件

直线与平面平行平面与平面平行的性质定理精品PPT课件
2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质
问题提出
1.直线与平面平行的判定定理是什么?
定理 若平面外一条直线与此平面内的 一条直线平行,则该直线与此平面平行.
2.直线与平面平行的判定定理解决了直 线与平面平行的条件问题,反之,在直 线与平面平行的条件下,可以得到什么 结论呢?
γ相交于直线a、b,那么直线a、b的位 置关系如何?为什么?
γ
b β
α
a
已知平面,,, // , a, b
求证:a // b
证明
a
b
a
b
//
a, b没有公共点
a, b都在平面内
a // b
知识探究(二):平面与平面平行的性质定理
定理 如果两个平行
平面同时和第三个平 面相交,那么它们的 γ
β
γ
α
a
b
l
a
思考3:若 // ,l ,那么在平面β内
经过点P且与l 平行的直线存在吗?有几
条?
l
α
α
P
γ
β
β
思考4:若平面α、β都与平面γ平行, 则平面α与平面β的位置关系如何?
理论迁移
例1 求证:夹在两个平行平面间的平行 线段相等.
A
C
β
αB
D
两个平面平行的几条性质
性质2:两个平面平行,其中一个平面内的直线 必平行于另一个平面
()
问题提出
1.平面与平面平行的判定定理是什么?
定理 如果一个平面内的两条相交直线与 另一个平面平行,则这两个平面平行.
2.平面与平面平行的判定定理解决了平 面与平面平行的条件问题,反之,在平 面与平面平行的条件下,可以得到什么 结论呢?

高中数学人教版必修2教案:第2章 2.2.3 直线与平面平行的性质+2.2.4 平面与平面平行的性质含答案

高中数学人教版必修2教案:第2章 2.2.3 直线与平面平行的性质+2.2.4 平面与平面平行的性质含答案

2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质1.理解直线与平面、平面与平面平行的性质定理的含义.(重点)2.能用三种语言准确描述直线与平面、平面与平面平行的性质定理.(重点) 3.能用直线与平面、平面与平面平行的性质定理证明一些空间平行关系的简单命题.(难点)[基础·初探]教材整理1直线与平面平行的性质定理阅读教材P58~P59“例3”以上的内容,完成下列问题.自然语言一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言a∥α,a⊂β,α∩β=b⇒a∥b图形语言作用证明两直线平行判断(正确的打“√”,错误的打“×”)(1)一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行.()(2)一条直线和一个平面平行,它就和这个平面内的任何直线无公共点.()(3)过直线外一点,有且仅有一个平面和已知直线平行.()(4)如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.()【解析】由线面平行的性质定理知(1)(4)正确;由直线与平面平行的定义知(2)正确;因为经过一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面,故(3)错.【答案】(1)√(2)√(3)×(4)√教材整理2平面与平面平行的性质定理阅读教材P60“思考”以下至P61“练习”以上的内容,完成下列问题.自然语言如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号语言α∥β,α∩γ=a,β∩γ=b⇒a∥b图形语言作用证明两直线平行已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是()A.平行B.相交C.异面D.不确定【解析】由面面平行的性质定理可知a∥b.【答案】 A[小组合作型]线面平行性质定理的应用面为平行四边形,求证:AB∥平面EFGH.图2-2-15【精彩点拨】要证明AB∥平面EFGH,只需证AB平行于平面EFGH内的某一条直线,由于EFGH是平行四边形,可利用其对边平行的特点,达到证题的目的.【自主解答】∵四边形EFGH为平行四边形,∴EF∥HG.∵HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.∵EF⊂平面ABC,平面ABC∩平面ABD=AB,∴EF∥AB.∵AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.运用线面平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与平面相交的交线,然后确定线线平行.应认真领悟线线平行与线面平行的相互转化关系.[再练一题]1.如图2-2-16,在三棱柱ABC-A1B1C1中,过AA1作一平面交平面BCC1B1于EE1.求证:AA1∥EE1.图2-2-16【证明】在三棱柱ABC-A1B1C1中,AA1∥BB1,∵AA1⊄平面BCC1B1,BB1⊂平面BCC1B1,∴AA1∥平面BCC1B1.∵AA1⊂平面AEE1A1,平面AEE1A1∩平面BCC1B1=EE1,∴AA1∥EE1.面面平行性质定理的应用α与β之间),直线PB,PD分别与α,β相交于点A,B和C,D.图2-2-17(1)求证:AC∥BD;(2)已知P A=4,AB=5,PC=3,求PD的长.【精彩点拨】(1)利用面面平行的性质定理直接证明即可.(2)利用平行线分线段成比例定理可求得PD.【自主解答】(1)证明:∵PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)由(1)得AC∥BD,∴P AAB=PCCD,∴45=3CD,∴CD=154,∴PD =PC +CD =274.1.利用面面平行的性质定理判定两直线平行的步骤:(1)先找两个平面,使这两个平面分别经过这两条直线中的一条;(2)判定这两个平面平行;(3)再找一个平面,使这两条直线都在这个平面上;(4)由性质定理得出线线平行.2.应用面面平行的性质定理时,往往需要“作”或“找”辅助平面,但辅助平面不可乱作,要想办法与其他已知量联系起来.[再练一题]2.如图2-2-18,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.图2-2-18【证明】 因为平面AB 1M ∥平面BC 1N ,平面ACC 1A 1∩平面AB 1M =AM ,平面BC 1N ∩平面ACC 1A 1=C 1N ,所以C 1N ∥AM ,又AC ∥A 1C 1,所以四边形ANC 1M 为平行四边形, 所以AN ∥C 1M 且AN =C 1M , 又C 1M =12A 1C 1,A 1C 1=AC ,所以AN =12AC ,所以N 为AC 的中点.[探究共研型]平行关系的综合应用探究1 【提示】 应着力寻找过已知直线的平面与已知平面的交线,有时为了得到交线还需作出辅助平面,而且证明与平行有关的问题时,要与公理4等结合起来使用,扩大应用的范畴.探究2面面平行的判定定理与性质定理各有什么作用?【提示】两个平面平行的判定定理与性质定理的作用,关键都集中在“平行”二字上.判定定理解决了“在什么样的条件下两个平面平行”;性质定理揭示了“两个平面平行之后它们具有什么样的性质”.前者给出了判定两个平面平行的一种方法;后者给出了判定两条直线平行的一种方法.探究3你能总结一下线线平行与线面平行、面面平行之间的转化关系吗?【提示】三种平行关系可以任意转化,其相互转化关系如图所示:如图2-2-19,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN.求证:MN∥平面AA1B1B.图2-2-19【精彩点拨】用判定定理证明较困难,可通过证明过MN的平面与平面AA1B1B平行,得到MN∥平面AA1B1B.【自主解答】如图,作MP∥BB1交BC于点P,连接NP,∵MP∥BB1,∴CMMB1=CPPB.∵BD=B1C,DN=CM,∴B1M=BN,∴CMMB1=DNNB,∴CPPB=DNNB,∴NP∥CD∥AB.∵NP⊄平面AA1B1B,AB⊂平面AA1B1B,∴NP∥平面AA1B1B.∵MP∥BB1,MP⊄平面AA1B1B,BB1⊂平面AA1B1B,∴MP∥平面AA1B1B.又∵MP⊂平面MNP,NP⊂平面MNP,MP∩NP=P,∴平面MNP∥平面AA1B1B.∵MN⊂平面MNP,∴MN∥平面AA1B1B.1.三种平行关系的转化要灵活应用线线平行、线面平行和面面平行的相互联系、相互转化.在解决立体几何中的平行问题时,一般都要用到平行关系的转化.转化思想是解决这类问题的最有效的方法.2.面面平行的性质定理的几个推论(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两平行平面间的平行线段相等.(3)经过平面外的一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.[再练一题]3.如图2-2-20,在四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E,E1分别是棱AD,AA1上的点.设F是棱AB的中点,证明:直线EE1∥平面FCC1.图2-2-20【证明】因为F为AB的中点,所以AB=2AF.又因为AB=2CD,所以CD=AF.因为AB∥CD,所以CD∥AF,所以AFCD为平行四边形.所以FC∥AD.又FC⊄平面ADD1A1,AD⊂平面ADD1A1,所以FC∥平面ADD1A1.因为CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,所以CC1∥平面ADD1A1,又FC∩CC1=C,所以平面ADD1A1∥平面FCC1.又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.1.正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,CD,B1C1的中点,则正确命题是()图2-2-21A.AE⊥CGB.AE与CG是异面直线C.四边形AEC1F是正方形D.AE∥平面BC1F【解析】由正方体的几何特征知,AE与平面BCC1B1不垂直,则AE⊥CG 不成立;由于EG∥A1C1∥AC,故A,E,G,C四点共面,所以AE与CG是异面直线错误;在四边形AEC1F中,AE=EC1=C1F=AF,但AF与AE不垂直,故四边形AEC1F是正方形错误;由于AE∥C1F,由线面平行的判定定理,可得AE∥平面BC1F.故选D.【答案】 D2.如图2-2-22,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN ∥平面P AD,则()图2-2-22A.MN∥PDB.MN∥P AC.MN∥ADD.以上均有可能B[∵MN∥平面P AD,平面P AC∩平面P AD=P A,MN⊂平面P AC,∴MN ∥P A.]3.已知直线l∥平面α,l⊂平面β,α∩β=m,则直线l,m的位置关系是________.【解析】由直线与平面平行的性质定理知l∥m.【答案】平行4.过两平行平面α,β外的点P的两条直线AB与CD,它们分别交α于A,C两点,交β于B,D两点,若P A=6,AC=9,PB=8,则BD的长为________.【解析】两条直线AB与CD相交于P点,所以可以确定一个平面,此平面与两平行平面α,β的交线AC∥BD,所以P APB=ACBD,又P A=6,AC=9,PB=8,故BD=12.【答案】125.如图2-2-23,α∩β=CD,α∩γ=EF,β∩γ=AB,AB∥α.求证:CD∥EF.图2-2-23【证明】因为AB∥α,AB⊂β,α∩β=CD,所以AB∥CD.同理可证AB∥EF,所以CD∥EF.学业分层测评(十一)(建议用时:45分钟)[学业达标]一、选择题1.直线a∥平面α,α内有n条直线交于一点,那么这n条直线中与直线a 平行的()A.至少有一条B.至多有一条C.有且只有一条D.没有【解析】过a和平面内n条直线的交点只有一个平面β,所以平面α与平面β只有一条交线,且与直线a平行,这条交线可能不是这n条直线中的一条,也可能是.故选B.【答案】 B2.设a,b是两条直线,α,β是两个平面,若a∥α,a⊂β,α∩β=b,则α内与b相交的直线与a的位置关系是()A.平行B.相交C.异面D.平行或异面【解析】条件即为线面平行的性质定理,所以a∥b,又a与α无公共点,故选C.【答案】 C3.下列命题中不正确的是()A.两个平面α∥β,一条直线a平行于平面α,则a一定平行于平面βB.平面α∥平面β,则α内的任意一条直线都平行于平面βC.一个三角形有两条边所在的直线平行于一个平面,那么三角形所在平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或者是异面直线【解析】选项A中直线a可能与β平行,也可能在β内,故选项A不正确;三角形两边必相交,这两条相交直线平行于一个平面,那么三角形所在的平面与这个平面平行,所以选项C正确;依据平面与平面平行的性质定理可知,选项B,D也正确,故选A.【答案】 A4.如图2-2-24,在长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G,H,则GH与AB的位置关系是()图2-2-24A.平行B.相交C.异面D.平行或异面【解析】由长方体性质知:EF∥平面ABCD,∵EF⊂平面EFGH,平面EFGH∩平面ABCD=GH,∴EF∥GH,又∵EF∥AB,∴GH∥AB,∴选A.【答案】 A5.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当点A、B分别在平面α,β内运动时,动点C()A.不共面B.当且仅当点A、B分别在两条直线上移动时才共面C.当且仅当点A、B分别在两条给定的异面直线上移动时才共面D.无论点A,B如何移动都共面【解析】无论点A、B如何移动,其中点C到α、β的距离始终相等,故点C在到α、β距离相等且与两平面都平行的平面上.【答案】 D二、填空题6.如图2-2-25,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.图2-2-25【解析】因为EF∥平面AB1C,EF⊂平面ABCD,平面AB1C∩平面ABCD=AC,所以EF∥AC.又点E为AD的中点,点F在CD上,所以点F是CD的中点,所以EF=12AC= 2.【答案】 27.如图2-2-26所示,直线a∥平面α,A∉α,并且a和A位于平面α两侧,点B,C∈a,AB、AC分别交平面α于点E,F,若BC=4,CF=5,AF=3,则EF=________.图2-2-26【解析】EF可看成直线a与点A确定的平面与平面α的交线,∵a∥α,由线面平行的性质定理知,BC∥EF,由条件知AC=AF+CF=3+5=8.又EFBC=AFAC,∴EF=AF×BCAC=3×48=32.【答案】3 2三、解答题8.如图2-2-27所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE为梯形.图2-2-27【证明】∵四边形ABCD是矩形,∴BC∥AD.∵AD⊂平面APD,BC⊄平面APD,∴BC∥平面APD.又平面BCFE∩平面APD=EF,∴BC∥EF,∴AD∥EF.又E,F是△APD边上的点,∴EF≠AD,∴EF≠BC.∴四边形BCFE是梯形.9.如图2-2-28,S是平行四边形ABCD所在平面外一点,M,N分别是SA,BD上的点,且AMSM=DNNB,求证:MN∥平面SBC.图2-2-28【证明】在AB上取一点P,使APBP=AMSM,连接MP,NP,则MP∥SB.∵SB⊂平面SBC,MP⊄平面SBC,∴MP∥平面SBC.又AMSM=DNNB,∴APBP=DNNB,∴NP∥AD.∵AD∥BC,∴NP∥BC.又BC⊂平面SBC,NP⊄平面SBC,∴NP∥平面SBC.又MP∩NP=P,∴平面MNP∥平面SBC,而MN⊂平面MNP,∴MN∥平面SBC.[能力提升]10.对于直线m、n和平面α,下列命题中正确的是()A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥αB.如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交C.如果m⊂α,n∥α,m、n共面,那么m∥nD.如果m∥α,n∥α,m、n共面,那么m∥n【解析】对于A,如图(1)所示,此时n与α相交,故A不正确;对于B,如图(2)所示,此时m,n是异面直线,而n与α平行,故B不正确;对于D,如图(3)所示,m与n相交,故D不正确.故选C.图(1)图(2)图(3)【答案】 C11.如图2-2-29,三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2,当点M在何位置时,BM∥平面AEF.图2-2-29【解】如图,取EC的中点P,AC的中点Q,连接PQ,PB,BQ,则PQ ∥AE.因为EC=2FB=2,所以PE=BF.所以四边形BFEP为平行四边形,所以PB ∥EF.又AE,EF⊂平面AEF,PQ,PB⊄平面AEF,所以PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,所以平面PBQ∥平面AEF.又BQ⊂平面PBQ,所以BQ∥平面AEF.故点Q即为所求的点M,即点M为AC的中点时,BM∥平面AEF.。

高中数学步步高必修2习题部分Word版文档2.2.4

高中数学步步高必修2习题部分Word版文档2.2.4

2.2.4 平面与平面平行的性质一、选择题1.下列说法正确的是( )A .如果两个平面有三个公共点,那么它们重合B .过两条异面直线中的一条可以作无数个平面与另一条直线平行C .在两个平行平面中,一个平面内的任何直线都与另一个平面平行D .如果两个平面平行,那么分别在两个平面中的两条直线平行2. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶53.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b;②⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β;④⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α.A .④⑥B .②③⑥C .②③⑤⑥D .②③4.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面5.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( ) A .16B .24或245C .14D .20二、填空题6.分别在两个平行平面的两个三角形,(1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.7.过正方体ABCD -A 1B 1C 1D 1的三个顶点A 1、C 1、B 的平面与底面ABCD 所在平面的交线为l ,则l 与A 1C 1的位置关系是________.8. 已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =________.三、解答题9. 如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.10. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.四、探究与拓展11. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中, 点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存 在一点F ,使BF ∥平面AEC ?并证明你的结论.答案1.C 2.B 3.C 4.D 5.B 6.(1)相似 (2)全等 7.平行 8.15 9.证明 ∵平面AB 1M ∥平面BC 1N ,平面ACC 1A 1∩平面AB 1M =AM , 平面BC 1N ∩平面ACC 1A 1=C 1N , ∴C 1N ∥AM ,又AC ∥A 1C 1, ∴四边形ANC 1M 为平行四边形, ∴AN =C 1M =12A 1C 1=12AC ,∴N 为AC 的中点.10.解 相交直线AA ′,BB ′所在平面和两平行平面α、β分别相交于AB 、A ′B ′,由面面平行的性质定理可得AB ∥A ′B ′.同理相交直线BB ′、CC ′确定的平面和平行平面α、β分别相交于BC ,B ′C ′, 从而BC ∥B ′C ′.同理易证AC ∥A ′C ′.∴∠BAC 与∠B ′A ′C ′的两边对应平行且方向相反. ∴∠BAC =∠B ′A ′C ′.同理∠ABC =∠A ′B ′C ′,∠BCA =∠B ′C ′A ′. ∴△ABC 与△A ′B ′C ′的三内角分别相等,∴△ABC ∽△A ′B ′C ′,∵AB ∥A ′B ′,AA ′∩BB ′=O , ∴在平面ABA ′B ′中,△AOB ∽△A ′OB ′. ∴A ′B ′AB =OA ′OA =23.而S △ABC =12AB ·AC =12×2×1=1. ∴S △A ′B ′C ′S △ABC=(A ′B ′AB )2,∴S △A ′B ′C ′=49S △ABC =49×1=49.11.解 当F 是棱PC 的中点时,BF ∥平面AEC ,证明如下:取PE 的中点M ,连接FM ,则FM ∥CE ,①由EM =12PE =ED ,知E 是MD 的中点,设BD ∩AC =O ,则O 为BD 的中点,连接OE ,则BM ∥OE ,②由①②可知,平面BFM ∥平面AEC ,又BF ⊂平面BFM , ∴BF ∥平面AEC .。

高一数学必修二2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质导学案(解析版)

高一数学必修二2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质导学案(解析版)

2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质一、课标解读1、掌握直线与平面平行的性质定理及其应用;2、学生通过观察与类比,借助实物模型理解性质及应用。

3、进一步提高学生空间想象能力、思维能力;二、自学导引问题1:在直线与平面平行的条件下可以得到什么结论?并用文字语言表述之.问题2:上述定理通常称为直线与平面平行的性质定理,该定理用符号语言可怎样表述?问题3:直线与平面平行的性质定理可简述为“线面平行,则线线平行”,在实际应用中它有何功能作用?问题4:平面与平面平行的性质定理:问题5:符号语言表述:问题6:面与面平行的性质定理有何作用?三、合作探究探究1:如果直线a 与平面α平行,那么直线a 与平面α内的直线有哪些位置关系?探究2:若直线a 与平面α平行,那么在平面α内与直线a 平行的直线有多少条?这些直线的位置关系如何?探究3:如果直线a 与平面α平行,那么经过平面α内一点P 且与直线a 平行的直线怎样定位?探究4:如果α∥β,,,βα⊂⊂b a 则直线a 与直线b 的位置关系如何?四、典例精析例1 如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.已知:βαβα//,//,a a l =求证:l a //变式训练1 已知,,321l l l ===γβγαβα ,1l ∥2l .求证:3l ∥1l ,3l ∥2l例2.如图所示,三棱椎BCD A -被一平面所截,截面为平行四边形EFGH .求证:CD ∥平面EFGH变式训练2 在长方体1111ABCD A BC D -中,点重合)不与11,(B B BBP ∈M BA PA =1 N BC PC =1 ,求证:MN ∥平面AC例 3 已知N M CD AB ,,之间的线段,,是夹在两个平行平面βα分别为CD AB ,的中点.求证:MN ∥α变式训练3 如图所示,在正方体1111ABCD A BC D -中,P N M ,,分别为11111,,B A D B B A上的点,若311111==BA BM D B N B ,又PN ∥11D A ,求证:MN ∥平面11BCC B例4 如图所示,已知的分别是所在平面外一点,是平行四边形PC AB N M ABCD P ,,中点,平面l PBC PAD =平面 .(1) 求证:l ∥BC(2) MN 与平面PAD 是否平行?证明你的结论.五、自主反馈 1.平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面a =c ,若a ∥b ,则c 与a ,b的位置关系是( )A .c 与a ,b 都异面B .c 与a ,b 都相交C .c 至少与a ,b 中的一条相交D .c 与a ,b 都平行2.如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线的位置关系是( )A .都平行B .都相交C .一个相交,一个平行D .都异面 3.对于直线m 、n 和平面α,下面命题中的真命题是A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//nB .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //D .如果m n m ,//,//αα、n 共面,那么n m //4.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题①若m ⊂α,n ∥α,则m ∥n ;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β;其中真命题的个数是A .0B .1C .2D .35.A 、B 是不在直线l 上的两点,则过点A 、B 且与直线l 平行的平面的个数是 ( )A .0个B .1个C .无数个D .以上三种情况均有可能 6 用一个平面去截正方体,所得的截面可能是______________________________;7.三个平面两两相交,有三条交线,则这三条交线的位置关系为__________;8. 在△ABC 中,AB =5,AC =7,∠A =60°,G 是重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN ___________;9. P 是边长为8的正方形ABCD 所在平面外的一点,且PA =PB =PC =PD =8,M 、N 分别在PA 、BD 上,且53==ND BN MA PM ,则MN =_________; 答案2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质例1 证明:过b a 于交作平面αγb a a //,//∴α,于交平面作平面过c βδα βββ⊂⊄∴c b c b c a a ,,//,//,//又l a l b l b b //,//,,,//∴∴=⊂∴βααβ 又例2 略例3 证明:情形一:若ABCD CD AB 在同一平面内,则平面, BD AC BD AC //,//,,∴βαβα 的交线为,与BD MN CD AB N M //,,∴的中点,为又αα平面平面又//,MN BD ∴⊂P AE E CD AE A CD AB 中点,取于交作异面,过情形二:若α//, 连接AEDC CD AE CD AE ED BE PN MP 确定平面,,//,,,,∴ 且平面AC ED AEDC ,的交线为,与βα的中点分别为又CD AE N P ED AC ,,,//,//∴βααα//,//,//,//MP BE MP PN ED PN ∴∴∴同理可证 αα//,,//MN MPN MN MPN ∴⊂∴平面又平面例4 证明:(1)PAD AD PAD BC AD BC 平面平面⊂⊄,,// l PAD PBC PAD BC =∴平面平面,又平面 //l BC //∴(2)平行证明:取NE AE E PD ,,连接的中点AM NE AM NE =且可得,//是平行四边形可知四边形AMNEPAD MN AE MN 平面//,//∴∴变式训练1.略2.证明:M BA PA AA BB BA B A =11111,// 且中,在平面 1111,,CC PB MA PM CC AA AA PB MA PM =∴==∴又 ① N BC PC CC BB BCC B =11111,// 且中,在平面1CC PB NC PN =∴ ② 由①②得AC MN NC PN MA PM //,∴=AC MN AC AC AC MN 平面,平面平面//,∴⊂⊄3.证明:31,31,//11111111==A B P B D B N B D A PN 得由 ,//,3111BB PM BA BM ∴=又 11111,BCC B BB BCC B PM 平面平面又⊂⊄ 11111111//,////C B D A D A PN BCC B PM ,又平面∴ 111111//,C B PN BCC B C B ∴⊂平面1111//BCC B PN BCC B PN 平面,平面又∴⊄ 11//,BCC B PMN P PN PM 平面平面又∴= 11//,BCC B MN PMN MN 平面平面∴⊂ 自主反馈答案1.D2.A3.C4.A5.D6. 3,4,5,6边形7. 平行或交于一点 8.3392 9. 19。

平面与平面平行的判定及其性质

平面与平面平行的判定及其性质

这个结论可做定理用
定理 如果两个平行平面同时和 第三个平面相交,那么它们的交 线平行。
用符号语言表示性质定理: / / a//b a, b

想一想:这个定理的作用是什么? 答:可以由平面与平面平 行得出直线与直线平行
例题分析,巩固新知 例1. 求证:夹在两个平行平面间的平行线段相等. 讨论:解决这个问题的基本步骤是什么? 答:首先是画出图形,再结合图形将文字语言转化 为符号语言,最后分析并书写出证明过程。 如图,α//β ,AB//CD,且AÎ α, CÎ β ,DÎ . α,BÎ β 求证:AB=CD. 证明:因为AB//CD,所以过AB, CD可作平面γ ,且平面γ 与平 面α和β 分别相交于AC和BD. 因为 α//β ,所以 BD//AC.因此,四边形ABDC是平 行四边形. 所以 AB=CD.
变式:在正方体ABCD-A1B1C1D1中, 若 M、N、E、F分别是棱A1B1,A1D1, B1C1,C1D1的中点,求证:平面AMN// 平面EFDB。
D1
F
M
B1
N
A1
C1
E
线面平行
线线平行
面面平行
D A B C
第一步:在一个平面内找出两条相交直线; 第二步:证明两条相交直线分别平行于另一个平 面。 第三步:利用判定定理得出结论。
线面平行 线线平行
如果一条直线和一个平面平行,经过这条直 线的平面和这个平面相交,那么这条直线和交线 平行。
2.2.4《平面与平面 平行的性质》
Байду номын сангаас
复习提问、引入新课
复习:如何判断平面和平面平行? 答:有两种方法,一是用定义法,须 判断两个平面没有公共点;二是用 平面和平面平行的判定定理,须判 断一个平面内有两条相交直线都和 另一个平面平行.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.3.4
1.若两个平面互相平行,则其中一个 平面中的直线必平行于另一个平面; 2.夹在两平行平面间的平行线段相等。 3.过平面外一点有且只有一个平面 与这个平面平行; 4.平行于同一平面的两平面平行;
练习
1、 P是长方形ABCD所在平面外的 一点,AB、PD上两点M、N满足AM: MB=ND:NP.
练习.
m
已知: l,a / / , a / /
求证 a / /l
l
证明: 过直线a 作平面 、 , 使 m , n a // m , a // n
(直线和平面平行的性质定理 ) m // n (公理4) 又 m, n , 且 m // n
m // (直线和平面平行的判定定理 ) 又 m , l,
m // l (直线和平面平行的性质定理 )
a // l . (公理4)
平面与平面平行的判定定理 一个平面内的两条相交直线与另一个 平面平行,则这两个平面平行. 符号语言:
a ,b a b P / / . a / / , b / /
γ b
图形语言
a
面面平行→线面平行→线线平行
例1 求证:夹在两个平行平面间 的平行线段相等.
A β C
γ α B
D
例2 在正方体ABCD-A′B′C′D′中, 点M在CD′上,试判断直线B′M与平面 A′BD的位置关系,并说明理由.
C′ D′ M D C A A′ B B′
典例剖析
例3 正确的有
图像语言:
P
a b

判定定理的推论 如果一个平面内有两条相交直线分别 平行于另一个平面内的两条相交直线,那 么这两个平面平行.

P a a b c

c
d
讲授新课
思考:如果两个平面平行,能够推导出 那些结论?
1.两个平面平行,其中一 个平面内的直线与另一个 平面有什么位置关系? 2.两个平行平面内的直线有 什么位置关系? 3.当第三个平面和两个平行 平面都相交时,两条交线有 什么位置关系?为什么?
求证:MN∥平面PBC.
P
N
D E A M B C
练习
2.已知ABCD是平行四边形,点P是平面 ABCD外一点,M是PC的中点,在DM上取 一点G,画出过G和AP的平面。
P M D A G
H
O
C B
小结
直线与直线平行 直线与平面平行
平面与平面平行
考虑方向
思考1:若 // , l ,则直线l与平面 β的位置关系如何? l α
β
思考2:两个平行平面内的直线有什么位 置关系?
α
n
α
n
β
β
m
什么条件下,平面内的直线与 平 面的直线平行呢?
思考3:若 // ,平面α、β分别与平 面 相交于直线a、b,那么直线a、b的 位置关系如何?为什么?
β α
γ b
a
已知:平面 , , 满足 / / b 求证:a / / b
, a
β
γ b

a
平面与平面平行的性质定理 如果两个平行平面同时和第三个平面 相交,那么它们的交线平行.
符号语言
/ / β a a / /b b
相关文档
最新文档