高中数学-平面与平面平行的性质

合集下载

高中数学必杀1-4线面平行与面面平行的判定及性质

高中数学必杀1-4线面平行与面面平行的判定及性质

专题4 线面平行与面面平行的判定及性质一、直线与平面平行下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面【解析】由面面平行的定义可知选D.【例2】若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直【解析】A错误,a与α内的直线平行或异面.【例3】已知不重合的直线a ,b 和平面α,①若a ∥α,b ⊂α,则a ∥b ;②若a ∥α,b ∥α,则a ∥b ;③若a ∥b ,b ⊂α,则a ∥α;④若a ∥b ,a ∥α,则b ∥α或b ⊂α,上面命题中正确的是________(填序号).【解析】 ①中a 与b 可能异面;②中a 与b 可能相交、平行或异面;③中a 可能在平面α内,④正确.【例4】已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,α⊄n ,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且α⊄n ,β⊄n ,则n ∥α且n ∥β其中正确命题的个数是( )A .1B .2C .3D .4【解析】对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,故选B.【例5】已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题: ①n m n m //⇒⎩⎨⎧⊥⊥αα;①αα//n n m m ⇒⎩⎨⎧⊥⊥;①n m n m ⊥⇒⎩⎨⎧⊥αα//其中真命题的个数为( ) A .0 B .1 C .2 D .3【解析】若⎩⎨⎧⊥⊥ααn m ,则m ①n ,即命题①正确;若⎩⎨⎧⊥⊥n m m α,则n ①α或n ①α,即命题①不正确;若⎩⎨⎧⊥αα//n m ,则m ①n ,即命题①正确;综上可得,真命题共有2个.故选C .【例6】已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是( ) A .m ∥β且l 1∥α B .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2【解析】由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.【例7】在下列条件中,可判断平面α与β平行的是( ) A .α、β都平行于直线l B .α内存在不共线的三点到β的距离相等C .l 、m 是α内两条直线,且l ①β,m ①βD .l 、m 是两条异面直线,且l ①α,m ①α,l ①β,m ①β【解析】排除法,A 中α、β可以是相交平面;B 中三点可面平面两侧;C 中两直线可以不相交.故选D ,也可直接证明.【例8】经过平面外的两点作该平面的平行平面可以作( )A .0个B .1个C .0个或1个D .1个或2个【解析】这两点可以是在平面同侧或两侧.故选C .达标训练11.(2019•延安一模)已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是( )A .若//m α,//n α,则//m nB .若m α⊥,n α⊥,则//m nC .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥ 2.(2019•湖北期中)平面α与平面β平行的条件可以是( )A .α内有无数多条直线都与β平行B .直线a α⊂,b β⊂,且//a β,//b αC .直线//a α,//a β,且直线a 不在α内,也不在β内D .一个平面α内两条不平行的直线都平行于另一个平面β3.(2019•深圳二模)己知正方体1111ABCD A B C D -,P 为棱1CC 的动点,Q 为棱1AA 的中点,设直线m 为平面BDP 与平面11B D P 的交线,以下关系中正确的是( ) A .1//m D Q B .//m 平面11B D QC .1m B Q ⊥D .m ⊥平面11ABB A4.(2019•聊城二模)在长方体1111ABCD A B C D -中,F ,F ,G ,H 分别为棱11A B ,1BB ,1CC ,11C D 的中点,则下列结论中正确的是( )A .1//AD 平面EFGHB .1//BD GHC .//BD EFD .平面//EFGH 平面11A BCD5.(2019•汕头月考)如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列判断错误的是( ) A .1MN CC ⊥B .MN ⊥平面11ACC AC .//MN 平面ABCDD .11//MN A B6.(2019•大连一模)已知m ,n 为两条不重合直线,α,β为两个不重合平面,下列条件中,可以作为//αβ的充分条件的是( ) A .//m n ,m α⊂,n β⊂ B .//m n ,m α⊥,n β⊥ C .m n ⊥,//m α,//n βD .m n ⊥,m α⊥,n β⊥7.(2019•汕头一模)在正方体1111ABCD A B C D -中,点O 是四边形ABCD 的中心,关于直线1A O ,下列说法正确的是( )A .11//AO D C B .1AO BC ⊥C .1//A O 平面11B CDD .1A O ⊥平面11AB D8.(2019•青云月考)如图,四棱锥P ABCD -中,M ,N 分别为AC ,PC 上的点,且//MN 平面PAD ,则( ) A .//MN PD B .//MN PAC .//MN ADD .以上均有可能9.(2019•上饶一模)设m ,n 表示不同的直线,α,β表示不同的平面,且m ,n α⊂.则“//αβ”是“//m β且//n β”的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分又不必要条件10.(2018•沧州一模)如图,在下列四个正方体中,P ,R ,Q ,M ,N ,G ,H 为所在棱的中点,则在这四个正方体中,阴影平面与PRQ 所在平面平行的是( )A .B .C .D .11.(2017•洛南期末)已知平面//α平面β,直线m α⊂,直线n β⊂,下列结论中不正确的是( ) A .//m βB .//n αC .//m nD .m 与n 不相交12.(2018•杭州期中)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,M 、N 分别为线段PC 、PB 上一点,若:3:1PM MC =,且//AN 平面BDM ,则:PN NB =( )A .4:1B .3:1C .3:2D .2:113.(2018•厦门二模)如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别是11C D ,BC ,11A D 的中点,则下列命题正确的是( )A .//MN APB .1//MN BDC .//MN 平面11BBD DD .//MN 平面BDP14.(2018•辛集期中)在四棱锥P ABCD -中,底面ABCD 为菱形,60BAD ∠=︒,Q 为AD 的中点,点M 在线段PC 上,PM tPC =,//PA 平面MQB ,则实数t 的值为( ) A .15B .14 C .13D .1215.(2018•四川模拟)如图是某几何体的平面展开图,其中四边形ABCD 为正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,以下结论一定成立的是( ) A .直线//BE PFB .直线//EF 平面PBCC .平面BCE ⊥平面PAD D .直线PB 与DC 所成角为60︒16.(2017•万州期末)平面α与ABC ∆的两边AB ,AC 分别交于点D ,E ,且::AD DB AE EC =,如图,则BC 与α的位置关系是( )A .异面B .相交C .平行或相交D .平行17.(2018•桃城模拟)如图,各棱长均为1的正三棱柱111ABC A B C -,M ,N 分别为线段1A B ,1B C 上的动点,且//MN 平面11ACC A ,则这样的MN 有( )A .1条B .2条C .3条D .无数条18.(2018•雁江月考)已知P 为ABC ∆所在平面外一点,平面//α平面ABC ,且α交线段PA ,PB ,PC 于点A ',B ',C ',若:2:3PA AA ''=,则:A B C ABC S S '''=△△( )A .2:3B .2:5C .4:9D .4:2519.(2018•香坊四模)对于不重合的两个平面α和β,给定下列条件: ①存在直线l ,使得l α⊥,且l β⊥; ①存在平面γ,使得αγ⊥且βγ⊥; ①α内有不共线的三点到β的距离相等;①存在异面直线l ,m ,使得//l α,//l β,//m α,//m β. 其中,可以判定α与β平行的条件有( ) A .1个B .2个C .3个D .4个20.(2018•西城期末)在直三棱柱111ABC A B C -中,D 为1AA 中点,点P 在侧面11BCC B 上运动,当点P 满足条件 时,1//A P 平面BCD (答案不唯一,填一个满足题意的条件即可达标训练21.(2017•新课标①)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .2.(2011•浙江)若直线l 不平行于平面α,且l α⊂/,则( ) A .α内存在直线与l 异面 B .α内存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交 3.(2010•浙江)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥C .若//l α,m α⊂,则//l mD .若//l α,//m α,则//l m 4.(2010•江西)如图,M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出下列命题 ①过M 点有且只有一条直线与直线AB 、11B C 都相交; ①过M 点有且只有一条直线与直线AB 、11B C 都垂直; ①过M 点有且只有一个平面与直线AB 、11B C 都相交; ①过M 点有且只有一个平面与直线AB 、11B C 都平行. 其中真命题是( ) A .①①①B .①①①C .①①①D .①①①5.(2008•湖南)已知直线m 、n 和平面α、β满足m n ⊥,m α⊥,αβ⊥,则( ) A .n β⊥ B .//n β,或n β⊂ C .n α⊥D .//n α,或n α⊂6.(2007•北京)平面//α平面β的一个充分条件是( ) A .存在一条直线a ,//a α,//a β B .存在一条直线a ,a α⊂,//a βC .存在两条平行直线a ,b ,a α⊂,b β⊂,//a β,//b αD .存在两条异面直线a ,b ,a α⊂,b β⊂,//a β,//b α7.(2011•福建)如图,正方体1111ABCD A B C D -中,2AB =,点E 为AD 的中点,点F 在CD 上,若//EF 平面1AB C ,则线段EF 的长度等于 .。

高中数学-直线与平面平行、平面与平面平行的性质

高中数学-直线与平面平行、平面与平面平行的性质
返回
【证明】证法一:如图所示,分别取AA1,A1B1 的中点M,N,连接MN,NQ,MP.
∵P,Q分别是面AA1 D1D,面A1B1C1D1的中点,
∴MP∥AD, MP=
NQ=
1 2
A1D1.
1 2
AD,NQ∥A1D1,
∴MP∥NQ且MP=NQ.
∴四边形PQNM为平行四边形.
∴PQ∥MN.
∵MN AA1B1B,
∵CQ∥
∴CQ∥MN.
∵EF是△ABC的中位线,∴M是PC的中点,
则N是PQ的中点,即PQ被平面EFGH平分.
【点评】P,C,Q三点所确定的辅助平面是解决本题的 核心.有了面PCQ,就有了连接CD与面EFGH的桥梁, 线面平行的性质才能得以应用.
返回
如图2-3-4所示,已知ABCD是平行四边形,点P是平面 ABCD外一点,M是PC的中点,在DM上取一点G,过G 和AP作平面交平面BDM于GH.求证:AP∥GH.
.
∴AC∥MN∥AC,且AC= 13AC.
∴AC∥平面ABC.
同理,A′B′∥平面ABC.
又∵AC∩A′B′=A′,
∴平面A′B′C′∥平面ABC.
1
1
(2)同理A′B′= AB3 , B=C BC3 ,
∴△A′B′C′∽△ABC.
∴S△A′B′C′
S△ABC =1:9.
返回
1.如何理解线面平行的性质定理?
表示平面的平行四边形的外面,并且使它与平行四边形的一 边或平行四边形内的一条线段平行.
返回
2.如何理解两个平面平行的性质定理?
平面平行的性质是根据面面平行、线面平行、线线平行的 定义直接给出的;判定直线与直线平行,进而判定直线与 平面平行和平面与平面平行,或者反过来由后者判定前者, 是立体几何最基本又最常见的一类问题.证明线面平行往往 转化为证明面面平行.

人教A版高中数学必修二课件第五讲直线与平面、平面与平面平行的性质.pptx

人教A版高中数学必修二课件第五讲直线与平面、平面与平面平行的性质.pptx
a

思考:教室内的日光灯管所在的直线与地 面平行,如何在地面上作一条直线与灯管 所在的直线平行?
Aa B

思考:教室内的日光灯管所在的直线与地 面平行,如何在地面上作一条直线与灯管 所在的直线平行?
Aa B

思考:教室内的日光灯管所在的直线与地 面平行,如何在地面上作一条直线与灯管 所在的直线平行?
∴a与b无公共点. 又∵ a , b ,
解决问题
已知:直线a∥平面, a , b.
求证:a∥b.

a

b
证明: b, b , 又a //
∴a与b无公共点. 又∵ a , b , 即a与b共面.
解决问题
已知:直线a∥平面, a , b.
BC 面BC' 面BC' 面A'C' B'C'
BC//B'C'
EF//B'C'
BC//EF
D'
A'
P E
D
F B'
C' C
EF、BE、CF共面. A
B
则EF、BE、CF为应画的线.
直线与平面平行的性质定理的运用: 例1 如图所示的一块木料中, 棱BC平行于面A'C'.
⑴要经过面内的一点P和棱BC将木料锯开,应怎

a

b
讲授新课
直线与平面平行的性质定理
一条直线与一个平面平行,则过这条直线 的任一个平面与此平面的交线和该直线平行.
符号语言:

a

b
讲授新课
直线与平面平行的性质定理

专题2:平面与平面平行的判定与性质基础知识与典型例题2020-21学年高中数学平行和垂直证明常见题型

专题2:平面与平面平行的判定与性质基础知识与典型例题2020-21学年高中数学平行和垂直证明常见题型

专题2:平面与平面平行的判定与性质平面与平面的位置关系:平行——没有公共点:符号α∥β相交——有一条公共直线: 符号α∩β=a1.平面与平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

简记为:线面平行,则面面平行.符号:,,a ba b Aa bαααβββ⊂⊂⎫⎪=⇒⎬⎪⎭1.如图所示,四棱锥P ABCD-中,底面ABCD为平行四边形,E、F分别为PD、PA的中点,AC、BD交于点O.(1)求证:平面//PBC平面EFO;2.如图,正方体1111ABCD A B C D-中,E,F,P,Q分别是BC,11C D,1AD,BD的中点.(1)求证:平面PQB //平面11CB D ;3.如图,在棱长为2的正方体1111ABCD A B C D 中,E ,F 分别为11A D ,11B C 的中点.(1)求证:平面1//AB E 平面1BD F ;4.如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)平面EF A 1∥平面BCHG .(2)5.如图,三棱锥P ABC -中,,,PC AC BC 两两垂直,1BC PC ==,2AC =,,,E F G 分别是,,AB AC AP 的中点.(1)证明:平面//GEF 面PCB ;6.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,点M ,N ,Q 分别在PA ,BD ,PD 上(不与端点重合),且:::PM MA BN ND PQ QD ==.求证:平面//MNQ 平面PBC .7.如图所示,在正三棱柱ABC-A 1B 1C 1中,E ,F ,G 是侧面对角线上的点,且BE=CF=AG ,平面与平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。

高中数学知识点总结(第八章 立体几何 第四节 直线、平面平行的判定与性质)

高中数学知识点总结(第八章 立体几何 第四节 直线、平面平行的判定与性质)

第四节 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言 判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)∵l ∥a ,a ⊂α, l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理文字语言 图形语言符号语言 判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β, b ∥β, a ∩b =P ,a ⊂α, b ⊂α, ∴α∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β.二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一直线与平面平行的判定与性质考法(一)直线与平面平行的判定[典例]如图,在直三棱柱ABC­A1B1C1中,点M,N分别为线段A1B,AC1的中点.求证:MN∥平面BB1C1C.[证明]如图,连接A1C.在直三棱柱ABC­A1B1C1中,侧面AA1C1C为平行四边形.又因为N为线段AC1的中点,所以A1C与AC1相交于点N,即A1C经过点N,且N为线段A1C的中点.因为M为线段A1B的中点,所以MN∥BC.又因为MN⊄平面BB1C1C,BC⊂平面BB1C1C,所以MN∥平面BB1C1C.考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A ∵若m ⊄α,n ⊂α,且m ∥n ,由线面平行的判定定理知m ∥α,但若m ⊄α,n ⊂α,且m ∥α,则m 与n 有可能异面,∴“m ∥n ”是“m ∥α”的充分不必要条件.2.如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB =2,CD =3,M 为PC 上一点,且PM =2MC .求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和P A作平面P AHG交平面BMD于GH.求证:P A∥GH.证明:如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥MO.又MO⊂平面BMD,P A⊄平面BMD,∴P A∥平面BMD.∵平面P AHG∩平面BMD=GH,P A⊂平面P AHG,∴P A∥GH.考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.变结论在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF 的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点, 所以DE ∥GN .又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 中点,所以MN 为△ABD 的中位线, 所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG , 所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( ) A .平行 B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB 得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD ­A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选C 由题图,显然①是正确的,②是错误的; 对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面). ∴③是正确的;对于④,∵水是定量的(定体积V ), ∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CD AB ,∴AB =P A ×CD PC =5×12=52.答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P ­ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.10.(2019·南昌摸底调研)如图,在四棱锥P ­ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P ­ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点, ∴MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB , ∴MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∠BAC =60°,∴CN ∥AB . ∵CN ⊄平面P AB ,AB ⊂平面P AB , ∴CN ∥平面P AB . 又CN ∩MN =N , ∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离.∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P ­ABM 的体积V =V M ­P AB =V C ­P AB =V P ­ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P ­ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)求证:MN ∥平面P AB ; (2)求四面体N ­BCM 的体积. 解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N ­BCM 的体积V N ­BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E ­ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE . ∵CB =CD ,∴CO ⊥BD . 又∵EC ⊥BD ,EC ∩CO =C ,∴BD⊥平面OEC,∴BD⊥EO.又∵O为BD中点.∴OE为BD的中垂线,∴BE=DE.(2)取BA的中点N,连接DN,MN.∵M为AE的中点,∴MN∥BE.∵△ABD为等边三角形,N为AB的中点,∴DN⊥AB.∵∠DCB=120°,DC=BC,∴∠OBC=30°,∴∠CBN=90°,即BC⊥AB,∴DN∥BC.∵DN∩MN=N,BC∩BE=B,∴平面MND∥平面BEC.又∵DM⊂平面MND,∴DM∥平面BEC.。

8.5.3 平面与平面平行课件ppt

8.5.3 平面与平面平行课件ppt
∴PM∥AB1.
又AB1∥C1D,∴PM∥C1D.
又PM⊄平面C1BD,C1D⊂平面C1BD,
∴PM∥平面C1BD.
同理MN∥平面C1BD.
又PM∩MN=M,
∴平面PMN∥平面C1BD.
探究二
面面平行性质定理的应用
例2如图,已知平面α∥平面β,点P是平面α,β外的一点(不在α与β之间),直线
PB,PD分别与α,β相交于点A,B和C,D.
D.平面α内有无数个点到平面β的距离相等且不为0,那么这两个平面平行
或相交
答案 CD
解析 如图①,在平面α内作α,β交线的无数条平行线,可知A,B错误;
对C,由题意可知AB∥β,BC∥β,AB∩BC=B,由面面平行的判定定理可知
α∥β,C正确;
对D,参考选项C的解析,假设α内有一个点位于点A处,而其余点均位于直线
所以PQ∥平面CBE.
(方法二)如图②,连接AC,则Q∈AC,且Q是AC的中点.
因为P是AE的中点,所以PQ∥EC.
因为PQ⊄平面CBE,EC⊂平面CBE,
所以PQ∥平面CBE.
方法点睛 (1)线线、线面、面面间的平行关系的判定和性质,常常是通过
线线关系、线面关系、面面关系的相互转化来表达的,因此在证明有关问

4
3
15
∴ = ,∴5 = ,∴CD= 4 ,
15 27
∴PD=PC+CD=3+ 4 = 4 .
反思感悟 证明线线平行的方法
(1)定义法:在同一个平面内没有公共点的两条直线平行.
(2)平行线的传递性:平行于同一条直线的两条直线平行.

(3)线面平行的性质定理: ⊂
⇒a∥b,应用时题目条件中需有线面平行.

高中数学课件:直线、平面平行的判定与性质

高中数学课件:直线、平面平行的判定与性质

(2)连接FH,OH, ∵F,H分别是PC,CD的中点,∴FH∥PD. ∵PD⊂平面PAD,FH⊄平面PAD,∴FH∥平面PAD. 又∵O是AC的中点,H是CD的中点,∴OH∥AD, 又∵AD⊂平面PAD,OH⊄平面PAD, ∴OH∥平面PAD. 又FH∩OH=H,∴平面OHF∥平面PAD. 又∵GH⊂平面OHF,∴GH∥平面PAD.
的角为 60°,转化为三角形的一个角有关的问题 还缺少所需要用的三角形,可连接 AD,取 AD 的中 差什么 点 M,连接 ME,MF,得三角形 MEF,利用平行 找什么 关系可找到 ME 与 MF 所成的角,然后利用余弦定 理求解即可
[解题方略] 证明面面平行的常用方法
(1)面面平行的定义,即证两个平面没有公共点(不常用); (2)面面平行的判定定理:如果一个平面内有两条相交直线 都平行于另一个平面,那么这两个平面平行(主要方法); (3)利用垂直于同一条直线的两个平面平行(客观题常用); (4)如果两个平面同时平行于第三个平面,那么这两个平面 平行(客观题常用); (5)利用“线线平行”“线面平行”“面面平行”的相互转 化进行证明.
所以四边形BDC1D1为平行四边形, 所以BD1∥C1D. BD1⊄平面AC1D,C1D⊂平面AC1D, 所以BD1∥平面AC1D, 又因为A1B∩BD1=B, 所以平面A1BD1∥平面AC1D.
2.如图,四棱锥P-ABCD中,AD∥BC,AB=BC

1 2
AD,E,F,H分别为线段AD,PC,CD的
考法(二) 直线与平面平行性质定理的应用 [例2] 如图所示,四边形ABCD是平行四 边形,点P是平面ABCD外一点,M是PC的中 点,在DM上取一点G,过G和AP作平面交平面 BDM于GH. 求证:AP∥GH.

高中数学课件两个平面平行的判定与性质ppt课件.优秀文档PPT

高中数学课件两个平面平行的判定与性质ppt课件.优秀文档PPT
(2)重学生学习体验。 (1)判定两个平面平行的主要途径有那些.
定义
如果两个平面有公共点,它们就相交于一条过该公共点的直线,就称这两个平面相交.
提问:能否加上某些条件,从而由“线线平行”推出“面面平行”。
形式:讲述、提问、讨论
返回
过程分析 ——设计思路
问题: (1)若两条直线平行,则分别经过这两条直线的
(2)平面 BC CB内的直 BC 和 线 BC有什么关系?为
(3)若AA12,直A线 A和平A面 B所 C 成 NhomakorabeaC
3
的角6是 0,则两个平A行 B和 C平面A 2
B
ABC的距离是多少?
4C
1
A
B
课时小结
a
1.两个平面平行的性质
(1)一个结论 / /,a a/ /
面面平行
线面平行
(2)性质定理a/,/ba//b
②一条直线和两个平行平面相交,则此直线和两个平
面成等角;
③一条直线和两个平面成等角,则此两个平面平行;
④夹在两个平行平面间的两条线段长相等,那么这两
条线段平行.
A1 B2 C3 D4
巩固与拓展
3且.一不个为平零面,则上这不两同个的平三面点到另一个平面的距离( B相等)
A. 平行
B. 相交
C. 平行或重合
9.5.2两个平面平行的判定和性质
珲春一中 崔星
复习与引入
1.两个平面的位置关系
两个平面的位置关系只有两种 (1)两个平面平行——没有公共点 (2)两个平面相交——有一条公共直线.
l
符号表示 //
l
2.两个平面平行的判定
(1)判定定理:如果一
个平面内有两条相交直线

高中数学高考总复习---直线、平面平行的判定和性质知识讲解及考点梳理

高中数学高考总复习---直线、平面平行的判定和性质知识讲解及考点梳理
类型一、直线与平面平行的判定
例 1、【高清课堂:直线、平面平行的判定与性质例 1】 如图所示,已知 P、Q 是单位正方体 ABCD-A1B1C1D1 的面 A1B1BA 和面 ABCD 的中心。 证明:PQ//平面 BCC1B1
【证明】方法一:如图,取 B1B 中点 E,BC 中点 F,连接 PE、QF、EF, 因为在三角形 A1B1B 中,P、E 分别是 A1B 和 B1B 的中点,
举一反三: 【变式】(2015 春 澄城县期末)如图所示的多面体中,ABCD 是菱形,BDEF 是矩形, ED⊥面 ABCD,连结 AC,AC∩BD=O, (Ⅰ)求证:面 BCF∥面 AED; (Ⅱ)求证:AO 是四棱锥 A﹣BDEF 的高.
【证明】(Ⅰ)在矩形 BDEF 中,FB∥ED, ∵FB 不包含于平面 AED,ED 平面 AED, ∴FB∥平面 AED, 同理,BC∥平面 AED, 又 FB∩BC=B, ∴平面 FBC∥平面 EDA. (Ⅱ)解:∵ABCD 是菱形,∴AC⊥BD, ∵ED⊥面 ABCD,AC 面 ABCD,
2
如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
2、 符号语言: 3、 面面平行的另一性质: 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.
符号语言:

要点诠释:
平面与平面平行的判定与性质,同直线与平面平行的判定与性质一样,体现了转化与化
归的思想。三种平行关系如图:
性质过程的转化实施,关键是作辅助平面,通过作辅助平面得到交线,就可把面面平行 化为线面平行并进而化为线线平行,注意作平面时要有确定平面的依据。 【典型例题】

考点四、平面与平面平行的性质 4、 平行平面的性质定理:
如果两个平行平面同时与第三个平面相交,那么它们的交线平行.

高中数学8-5-3平面与平面平行第2课时平面与平面平行的性质新人教A版必修第二册

高中数学8-5-3平面与平面平行第2课时平面与平面平行的性质新人教A版必修第二册

(1) BD / / 平面EFG;
(2) AC / / 平面EFG.
(1) F ,G分别是BC, CD的中点, FG / / BD,
BD 平面EFG, FG 平面EFG,
BD / / 平面EFG
D
(2) E, F分别是AB, BC的中点, EF / / AC, AC 平面EFG, EF 平面EFG,
(4)正确
(5)正确
2. 平面与平面 平行的充分条件可以是( D )
A. 内有无穷多条直线都与 平行 B. 直线a / / , a / / , 且直线a不在内, 也不在内 C. 直线a , 直线b , 且a // , b / / D. 内的任何一条直线都与 平行
a
A错误
B错误
C错误
a b
3. 如图, 在正方体ABCD A1B1C1D1中, M, N , E, F分别是棱A1B1, A1D1, B1C1, C1D1的中点,求证:平面AMN / / 平面DBEF
连接B1D1,由已知得MN / / B1D1, EF / / B1D1, MN / / EF , MN 平面BDFE, EF 平面BDFE, MN / / 平面BDFE.
1.判断下列命题是否正确.若正确,则说明理由;若错误,则举出反例.
(1)已知平面与 和直线m, n, 若m , n , m / / , n / / , 则 / / .
(2) 若一个平面内两条不平行的直线都平行于另一平面 , 则 / / .
(3) 平行于同一条直线的两个平面平行.
(2)显然正确;
位置关系, 并说明理由.
解:c / / , c / / a, 理由如下:
// , 又c ,c //
/ / , a, b, a / / b,

高中数学 2.2.2平面与平面平行的判定与性质 精品导学案

高中数学 2.2.2平面与平面平行的判定与性质 精品导学案
第二章 2.2. 2 平面与平面平行的判定与性质
【学习目标】 1.能借助于长方体模型讨论直线与平面、平面与平面的平行问题; 2.理解和掌握两个平面平行的判定定理及其运用; 3.掌握两个平面平行的性质定理; 4.灵活运用面面平行的判定定理和性质定理,掌握“线线、线面、面面”平行的转化. 【学习重点】 平面与平面平行的判定与性质 【知识链接】 1:直线与平面平行的判定定理是 平面外 一条直线与此平面内的一条直线平行 ,则该直线与此平面平行. 2:两个平面的位置关系有 两 种,分别为_平行_和_相交_. 【基础知识】 1.两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. (简记:线面平行,面面平行) 反思:⑴定理的实质是什么?
我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。多年 来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学 校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。反思本学期的工作,还存 在不少问题。很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确, 是继续努力的方向。另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏 等各类问题摆在我们面前。缺乏专业人员的引领,各方面的工作开展得还不够规范。相信随着课程改革的 深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地 展开。 “校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台 阶。
求证:平面 AMN ∥平面 EFDB .
N D F
C
A
M
B E
D C
A

高中数学《平面的基本性质》教案

高中数学《平面的基本性质》教案

高中数学《平面的基本性质》教案章节一:平面的概念1.1 教学目标让学生理解平面的基本概念,包括平面的定义和表示方法。

让学生掌握平面的性质,如平面的无限延展性和平面的包含关系。

1.2 教学内容平面定义:平面是无限延展的、无厚度的二维空间。

平面表示方法:用希腊字母“π”表示平面。

平面性质:平面的无限延展性,平面内任意两点可以确定一条直线。

1.3 教学步骤引入平面的概念,引导学生思考日常生活中的平面例子。

讲解平面的定义和表示方法,通过图形和实例进行说明。

引导学生理解平面的性质,通过实际操作和几何证明来加深理解。

章节二:平面的基本性质2.1 教学目标让学生掌握平面的基本性质,包括平面的连续性、平行的性质和平面的包含关系。

2.2 教学内容平面连续性:平面上的任意两点都可以用一条直线连接。

平面平行性质:同一平面内,不相交的两条直线称为平行线。

平面包含关系:一条直线可以包含在平面内,也可以不包含在平面内。

2.3 教学步骤回顾平面的概念和表示方法,引导学生思考平面的性质。

讲解平面的连续性,通过图形和实例进行说明。

讲解平面的平行性质,通过实际操作和几何证明来加深理解。

讲解平面的包含关系,通过实际操作和几何证明来加深理解。

章节三:平面的画法3.1 教学目标让学生掌握平面的画法,包括平面在坐标系中的表示和平面的方程。

3.2 教学内容平面在坐标系中的表示:平面可以用方程表示,如Ax + By + C = 0。

平面方程的求法:通过已知的平面上的点和平面的法向量来求解平面方程。

3.3 教学步骤引导学生回顾平面的概念和性质,引出平面的画法。

讲解平面在坐标系中的表示方法,通过图形和实例进行说明。

讲解平面方程的求法,通过实际操作和几何证明来加深理解。

章节四:平面与直线的关系4.1 教学目标让学生掌握平面与直线的关系,包括平面与直线的相交和平行。

4.2 教学内容平面与直线的相交:平面与直线相交时,交点称为直线在平面上的投影。

平面与直线的平行:平面与直线平行时,直线上的任意点都不在平面内。

高中数学人教A版必修二教师用书19-20 第8章 8.5.3 平面与平面平行

高中数学人教A版必修二教师用书19-20 第8章 8.5.3 平面与平面平行

8.5.3平面与平面平行学习目标核心素养1.掌握空间平面与平面平行的判定定理和性质定理,并能应用这两个定理解决问题.( 重点)2.平面与平面平行的判定定理和性质定理的应用.( 难点)1.通过平面与平面平行的判定定理和性质定理的学习,培养直观想象的核心素养.2.借助平行关系的综合问题,提升逻辑推理的核心素养.1.平面与平面平行的判定( 1)文字语言:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.( 2)符号语言:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.( 3)图形语言:如图所示.2.平面与平面平行的性质定理( 1)文字语言:两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行.( 2)符号语言:α∥β,α∩γ=a,β∩γ=b⇒a∥b.( 3)图形语言:如图所示.( 4)作用:证明两直线平行.思考:如果两个平面平行,那么这两个平面内的所有直线都相互平行吗?[提示]不一定.它们可能异面.1.已知平面α内的两条直线a,b,a∥β,b∥β,若要得出平面α∥平面β, 则直线a,b的位置关系是( )A.相交B.平行C.异面D.垂直A[根据面面平行的判定定理可知a,b相交.]2.平面α与圆台的上、下底面分别相交于直线m,n,则m,n的位置关系是( )A.平行B.相交C.异面D.平行或异面A[因为圆台的上、下底面互相平行,所以由平面与平面平行的性质定理可知m∥n.]3.已知平面α∥平面β,直线l∥α,则( )A. l∥βB. l⊂βC. l∥β或l⊂βD. l, β相交C[假设l与β相交,又α∥β,则l与α相交,与l∥α矛盾,则假设不成立,则l∥β或l⊂β.]4.已知长方体ABCD-A′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面A′B′C′D′=E′F′,则EF与E′F′的位置关系是( ) A.平行B.相交C.异面D.不确定A[由面面平行的性质定理易得.]平面与平面平行的判定【例11111A1B1、B1C1、C1D1、D1A1的中点.求证:( 1)E、F、B、D四点共面;( 2)平面MAN∥平面EFDB.[思路探究]( 1)欲证E、F、B、D四点共面,需证BD∥EF即可.( 2)要证平面MAN∥平面EFDB,只需证MN∥平面EFDB,AN∥平面BDFE即可.[详解]( 1)连接B1D1,∵E、F分别是边B1C1、C1D1的中点,∴EF∥B1D1.而BD∥B1D1,∴BD∥EF.∴E、F、B、D四点共面.( 2)易知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN⊄平面EFDB,BD⊂平面EFDB.∴MN∥平面EFDB.连接MF.∵M、F分别是A1B1、C1D1的中点,∴MF∥A1D1,MF=A1D1.∴MF∥AD且MF=AD.∴四边形ADFM是平行四边形,∴AM∥DF.又AM⊄平面BDFE,DF⊄平面BDFE,∴AM∥平面BDFE.又∵AM∩MN=M,∴平面MAN∥平面EFDB.平面与平面平行的判定方法:( 1)定义法:两个平面没有公共点.( 2)判定定理:一个平面内的两条相交直线分别平行于另一个平面.( 3)转化为线线平行:平面α内的两条相交直线与平面β内的两条相交直线分别平行,则α∥β.( 4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.1.如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形.点M,N,Q分别在P A,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.[证明]∵PM∶MA=BN∶ND=PQ∶QD,∴MQ∥AD,NQ∥BP.又∵BP⊂平面PBC,NQ⊄平面PBC,∴NQ∥平面PBC.∵四边形ABCD为平行四边形.∴BC∥AD,∴MQ∥BC.又∵BC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC.又∵MQ∩NQ=Q,∴平面MNQ∥平面PBC.平面与平面平行的性质[探究问题]1.平面与平面平行性质定理的条件有哪些?[提示]必须具备三个条件:①平面α和平面β平行,即α∥β;②平面γ和α相交,即α∩γ=a;③平面γ和β相交,即β∩γ=b.以上三个条件缺一不可.2.线线、线面、面面平行之间有什么联系?[提示]联系如下:【例2】如图,已知平面α∥平面β,P∉α且P∉β,过点P的直线m与α、β分别交于A、C,过点P的直线n与α、β分别交于B、D,且P A=6,AC=9,PD=8,求BD的长.[详解]因为AC∩BD=P,所以经过直线AC与BD可确定平面PCD,因为α∥β,α∩平面PCD =AB ,β∩平面PCD =CD ,所以AB ∥CD .所以P A AC =PBBD ,即69=8-BD BD .所以BD =245.1. 将本例改为:已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC = .15 [由题可知DE DF =ABAC ⇒AC =DF DE ·AB =52×6=15.]2.将本例改为:若点P 在平面α,β之间( 如图所示),其他条件不变,试求BD 的长.[详解] 与本例同理,可证AB ∥CD . 所以P A PC =PB PD ,即63=BD -88,所以BD =24.3.将本例改为:已知三个平面α、β、γ满足α∥β∥γ,直线a 与这三个平面依次交于点A、B、C,直线b与这三个平面依次交于点E、F、G. 求证:ABBC=EFFG.[证明]连接AG交β于H,连BH、FH、AE、CG.因为β∥γ,平面ACG∩β=BH,平面ACG∩γ=CG,所以BH∥CG.同理AE∥HF,所以ABBC =AHHG=EFFG.应用平面与平面平行性质定理的基本步骤:平行关系的综合应用【例3】如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M 是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH∥平面P AD.[证明]如图所示,连接AC交BD于点O,连接MO.∵ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥MO,而AP⊄平面BDM,OM⊂平面BDM,∴P A∥平面BMD,又∵P A⊂平面P AHG,平面P AHG∩平面BMD=GH,∴P A∥GH.又P A⊂平面P AD,GH⊄平面P AD,∴GH∥平面P AD.1.证明直线与直线平行的方法( 1)平面几何中证明直线平行的方法.如同位角相等,两直线平行;三角形中位线的性质;平面内垂直于同一直线的两条直线互相平行等.( 2)基本事实4.( 3)线面平行的性质定理.( 4)面面平行的性质定理.2. 证明直线与平面平行的方法:( 1)线面平行的判定定理.( 2)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.2.如图,三棱锥A-BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥平面EFGH.[证明]由于四边形EFGH是平行四边形,∴EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又∵EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.1.三种平行关系的转化.2.常用的面面平行的其他几个性质( 1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.( 2)夹在两个平行平面之间的平行线段长度相等.( 3)经过平面外一点有且只有一个平面与已知平面平行.( 4)两条直线被三个平行平面所截,截得的对应线段成比例.( 5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.1.判断正误( 1)α内有无数多条直线与β平行,则α∥β.( )( 2)直线a∥α,a∥β.则α∥β.( )( 3)直线a⊂α,直线b⊂β,且a∥β,b∥α,则α∥β.( )( 3)α内的任何直线都与β平行,则α∥β.( )[答案]( 1)×( 2)×( 3)×( 4)√2.a∥α,b∥β,α∥β,则a与b位置关系是( )A.平行B.异面C.相交D.平行或异面或相交D[如图①②③所示,a与b的关系分别是平行、异面或相交.]①②③3.若平面α∥平面β,直线a⊂α,点M∈β,过点M的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.有且只有一条与a平行的直线D[由于α∥β,a⊂α,M∈β,过M有且只有一条直线与a平行,故D项正确.] 4.用一个平面去截三棱柱ABC-A1B1C1,交A1C1,B1C1,BC,AC分别于点E,F,G,H.若A1A>A1C1,则截面的形状可以为.( 填序号)①一般的平行四边形;②矩形;③菱形;④正方形;⑤梯形.②⑤[当FG∥B1B时,四边形EFGH为矩形;当FG不与B1B平行时,四边形EFGH为梯形.]5.如图,在四面体ABCD中,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD .求证:BC=2EF.[证明]因为平面EFG∥平面BCD,平面ABD∩平面EFG=EG,平面ABD∩平面BCD=BD,所以EG∥BD,又G为AD的中点,故E为AB的中点,同理可得,F为AC的中点,所以BC=2EF.11。

高中数学直线、平面平行的判定与性质

高中数学直线、平面平行的判定与性质

例2 如图所示,正方体ABCD-A1B1C1D1中,M,N分别为A1B1,A1D1 的中点,E,F分别为B1C1,C1D1的中点.
(1)求证:四边形BDFE为梯形; (2)求证:平面AMN∥平面EFDB.
解题导引
1 (1)在△B1D1C1中得EF∥B1D1且EF= 2 B1D1 在正方体中得 1 BD������ B1D1 EF∥BD且EF= BD 四边形BDFE为梯形 2
证明 证法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接 MN. ∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD. 又AP=DQ,∴PE=QB, 又PM∥AB∥QN, ∴ = = = ,∴ = , 又AB=DC, ∴PM������ QN,∴四边形PMNQ为平行四边形, ∴PQ∥MN. 又MN⊂平面BCE,PQ⊄平面BCE, ∴PQ∥平面BCE.§8Leabharlann 4直线、平面平行的判定与性质
知识清单
考点 直线、平面平行的判定与性质
1.判定直线与直线平行的方法
(1)平行公理:a∥b,b∥c⇒① a∥c ; (2)线面平行的性质定理:a∥β,a⊂α,α∩β=b⇒② a∥b ;
(3)面面平行的性质定理:α∥β,γ∩α=a,γ∩β=b⇒③ a∥b ;
(4)垂直于同一个平面的两条直线④ 平行 ; (5)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交 线平行.
∴ = ,
∴MQ∥AD,又AD∥BC, ∴MQ∥BC,∴MQ∥平面BCE,又PM∩MQ=M,
∴平面PMQ∥平面BCE,
又PQ⊂平面PMQ,∴PQ∥平面BCE.
方法 2 判定或证明面面平行的方法
1.利用面面平行的定义(此法一般伴随反证法证明). 2.利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于 另一个平面,那么这两个平面平行. 3.证明两个平面都垂直于同一条直线. 4.证明两个平面同时平行于第三个平面.

高中数学人教版必修2教案:第2章 2.2.3 直线与平面平行的性质+2.2.4 平面与平面平行的性质含答案

高中数学人教版必修2教案:第2章 2.2.3 直线与平面平行的性质+2.2.4 平面与平面平行的性质含答案

2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质1.理解直线与平面、平面与平面平行的性质定理的含义.(重点)2.能用三种语言准确描述直线与平面、平面与平面平行的性质定理.(重点) 3.能用直线与平面、平面与平面平行的性质定理证明一些空间平行关系的简单命题.(难点)[基础·初探]教材整理1直线与平面平行的性质定理阅读教材P58~P59“例3”以上的内容,完成下列问题.自然语言一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言a∥α,a⊂β,α∩β=b⇒a∥b图形语言作用证明两直线平行判断(正确的打“√”,错误的打“×”)(1)一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行.()(2)一条直线和一个平面平行,它就和这个平面内的任何直线无公共点.()(3)过直线外一点,有且仅有一个平面和已知直线平行.()(4)如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.()【解析】由线面平行的性质定理知(1)(4)正确;由直线与平面平行的定义知(2)正确;因为经过一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面,故(3)错.【答案】(1)√(2)√(3)×(4)√教材整理2平面与平面平行的性质定理阅读教材P60“思考”以下至P61“练习”以上的内容,完成下列问题.自然语言如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号语言α∥β,α∩γ=a,β∩γ=b⇒a∥b图形语言作用证明两直线平行已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是()A.平行B.相交C.异面D.不确定【解析】由面面平行的性质定理可知a∥b.【答案】 A[小组合作型]线面平行性质定理的应用面为平行四边形,求证:AB∥平面EFGH.图2-2-15【精彩点拨】要证明AB∥平面EFGH,只需证AB平行于平面EFGH内的某一条直线,由于EFGH是平行四边形,可利用其对边平行的特点,达到证题的目的.【自主解答】∵四边形EFGH为平行四边形,∴EF∥HG.∵HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.∵EF⊂平面ABC,平面ABC∩平面ABD=AB,∴EF∥AB.∵AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.运用线面平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与平面相交的交线,然后确定线线平行.应认真领悟线线平行与线面平行的相互转化关系.[再练一题]1.如图2-2-16,在三棱柱ABC-A1B1C1中,过AA1作一平面交平面BCC1B1于EE1.求证:AA1∥EE1.图2-2-16【证明】在三棱柱ABC-A1B1C1中,AA1∥BB1,∵AA1⊄平面BCC1B1,BB1⊂平面BCC1B1,∴AA1∥平面BCC1B1.∵AA1⊂平面AEE1A1,平面AEE1A1∩平面BCC1B1=EE1,∴AA1∥EE1.面面平行性质定理的应用α与β之间),直线PB,PD分别与α,β相交于点A,B和C,D.图2-2-17(1)求证:AC∥BD;(2)已知P A=4,AB=5,PC=3,求PD的长.【精彩点拨】(1)利用面面平行的性质定理直接证明即可.(2)利用平行线分线段成比例定理可求得PD.【自主解答】(1)证明:∵PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)由(1)得AC∥BD,∴P AAB=PCCD,∴45=3CD,∴CD=154,∴PD =PC +CD =274.1.利用面面平行的性质定理判定两直线平行的步骤:(1)先找两个平面,使这两个平面分别经过这两条直线中的一条;(2)判定这两个平面平行;(3)再找一个平面,使这两条直线都在这个平面上;(4)由性质定理得出线线平行.2.应用面面平行的性质定理时,往往需要“作”或“找”辅助平面,但辅助平面不可乱作,要想办法与其他已知量联系起来.[再练一题]2.如图2-2-18,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.图2-2-18【证明】 因为平面AB 1M ∥平面BC 1N ,平面ACC 1A 1∩平面AB 1M =AM ,平面BC 1N ∩平面ACC 1A 1=C 1N ,所以C 1N ∥AM ,又AC ∥A 1C 1,所以四边形ANC 1M 为平行四边形, 所以AN ∥C 1M 且AN =C 1M , 又C 1M =12A 1C 1,A 1C 1=AC ,所以AN =12AC ,所以N 为AC 的中点.[探究共研型]平行关系的综合应用探究1 【提示】 应着力寻找过已知直线的平面与已知平面的交线,有时为了得到交线还需作出辅助平面,而且证明与平行有关的问题时,要与公理4等结合起来使用,扩大应用的范畴.探究2面面平行的判定定理与性质定理各有什么作用?【提示】两个平面平行的判定定理与性质定理的作用,关键都集中在“平行”二字上.判定定理解决了“在什么样的条件下两个平面平行”;性质定理揭示了“两个平面平行之后它们具有什么样的性质”.前者给出了判定两个平面平行的一种方法;后者给出了判定两条直线平行的一种方法.探究3你能总结一下线线平行与线面平行、面面平行之间的转化关系吗?【提示】三种平行关系可以任意转化,其相互转化关系如图所示:如图2-2-19,在正方体ABCD-A1B1C1D1中,点N在BD上,点M在B1C上,且CM=DN.求证:MN∥平面AA1B1B.图2-2-19【精彩点拨】用判定定理证明较困难,可通过证明过MN的平面与平面AA1B1B平行,得到MN∥平面AA1B1B.【自主解答】如图,作MP∥BB1交BC于点P,连接NP,∵MP∥BB1,∴CMMB1=CPPB.∵BD=B1C,DN=CM,∴B1M=BN,∴CMMB1=DNNB,∴CPPB=DNNB,∴NP∥CD∥AB.∵NP⊄平面AA1B1B,AB⊂平面AA1B1B,∴NP∥平面AA1B1B.∵MP∥BB1,MP⊄平面AA1B1B,BB1⊂平面AA1B1B,∴MP∥平面AA1B1B.又∵MP⊂平面MNP,NP⊂平面MNP,MP∩NP=P,∴平面MNP∥平面AA1B1B.∵MN⊂平面MNP,∴MN∥平面AA1B1B.1.三种平行关系的转化要灵活应用线线平行、线面平行和面面平行的相互联系、相互转化.在解决立体几何中的平行问题时,一般都要用到平行关系的转化.转化思想是解决这类问题的最有效的方法.2.面面平行的性质定理的几个推论(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两平行平面间的平行线段相等.(3)经过平面外的一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.[再练一题]3.如图2-2-20,在四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E,E1分别是棱AD,AA1上的点.设F是棱AB的中点,证明:直线EE1∥平面FCC1.图2-2-20【证明】因为F为AB的中点,所以AB=2AF.又因为AB=2CD,所以CD=AF.因为AB∥CD,所以CD∥AF,所以AFCD为平行四边形.所以FC∥AD.又FC⊄平面ADD1A1,AD⊂平面ADD1A1,所以FC∥平面ADD1A1.因为CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,所以CC1∥平面ADD1A1,又FC∩CC1=C,所以平面ADD1A1∥平面FCC1.又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.1.正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,CD,B1C1的中点,则正确命题是()图2-2-21A.AE⊥CGB.AE与CG是异面直线C.四边形AEC1F是正方形D.AE∥平面BC1F【解析】由正方体的几何特征知,AE与平面BCC1B1不垂直,则AE⊥CG 不成立;由于EG∥A1C1∥AC,故A,E,G,C四点共面,所以AE与CG是异面直线错误;在四边形AEC1F中,AE=EC1=C1F=AF,但AF与AE不垂直,故四边形AEC1F是正方形错误;由于AE∥C1F,由线面平行的判定定理,可得AE∥平面BC1F.故选D.【答案】 D2.如图2-2-22,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN ∥平面P AD,则()图2-2-22A.MN∥PDB.MN∥P AC.MN∥ADD.以上均有可能B[∵MN∥平面P AD,平面P AC∩平面P AD=P A,MN⊂平面P AC,∴MN ∥P A.]3.已知直线l∥平面α,l⊂平面β,α∩β=m,则直线l,m的位置关系是________.【解析】由直线与平面平行的性质定理知l∥m.【答案】平行4.过两平行平面α,β外的点P的两条直线AB与CD,它们分别交α于A,C两点,交β于B,D两点,若P A=6,AC=9,PB=8,则BD的长为________.【解析】两条直线AB与CD相交于P点,所以可以确定一个平面,此平面与两平行平面α,β的交线AC∥BD,所以P APB=ACBD,又P A=6,AC=9,PB=8,故BD=12.【答案】125.如图2-2-23,α∩β=CD,α∩γ=EF,β∩γ=AB,AB∥α.求证:CD∥EF.图2-2-23【证明】因为AB∥α,AB⊂β,α∩β=CD,所以AB∥CD.同理可证AB∥EF,所以CD∥EF.学业分层测评(十一)(建议用时:45分钟)[学业达标]一、选择题1.直线a∥平面α,α内有n条直线交于一点,那么这n条直线中与直线a 平行的()A.至少有一条B.至多有一条C.有且只有一条D.没有【解析】过a和平面内n条直线的交点只有一个平面β,所以平面α与平面β只有一条交线,且与直线a平行,这条交线可能不是这n条直线中的一条,也可能是.故选B.【答案】 B2.设a,b是两条直线,α,β是两个平面,若a∥α,a⊂β,α∩β=b,则α内与b相交的直线与a的位置关系是()A.平行B.相交C.异面D.平行或异面【解析】条件即为线面平行的性质定理,所以a∥b,又a与α无公共点,故选C.【答案】 C3.下列命题中不正确的是()A.两个平面α∥β,一条直线a平行于平面α,则a一定平行于平面βB.平面α∥平面β,则α内的任意一条直线都平行于平面βC.一个三角形有两条边所在的直线平行于一个平面,那么三角形所在平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或者是异面直线【解析】选项A中直线a可能与β平行,也可能在β内,故选项A不正确;三角形两边必相交,这两条相交直线平行于一个平面,那么三角形所在的平面与这个平面平行,所以选项C正确;依据平面与平面平行的性质定理可知,选项B,D也正确,故选A.【答案】 A4.如图2-2-24,在长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G,H,则GH与AB的位置关系是()图2-2-24A.平行B.相交C.异面D.平行或异面【解析】由长方体性质知:EF∥平面ABCD,∵EF⊂平面EFGH,平面EFGH∩平面ABCD=GH,∴EF∥GH,又∵EF∥AB,∴GH∥AB,∴选A.【答案】 A5.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当点A、B分别在平面α,β内运动时,动点C()A.不共面B.当且仅当点A、B分别在两条直线上移动时才共面C.当且仅当点A、B分别在两条给定的异面直线上移动时才共面D.无论点A,B如何移动都共面【解析】无论点A、B如何移动,其中点C到α、β的距离始终相等,故点C在到α、β距离相等且与两平面都平行的平面上.【答案】 D二、填空题6.如图2-2-25,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.图2-2-25【解析】因为EF∥平面AB1C,EF⊂平面ABCD,平面AB1C∩平面ABCD=AC,所以EF∥AC.又点E为AD的中点,点F在CD上,所以点F是CD的中点,所以EF=12AC= 2.【答案】 27.如图2-2-26所示,直线a∥平面α,A∉α,并且a和A位于平面α两侧,点B,C∈a,AB、AC分别交平面α于点E,F,若BC=4,CF=5,AF=3,则EF=________.图2-2-26【解析】EF可看成直线a与点A确定的平面与平面α的交线,∵a∥α,由线面平行的性质定理知,BC∥EF,由条件知AC=AF+CF=3+5=8.又EFBC=AFAC,∴EF=AF×BCAC=3×48=32.【答案】3 2三、解答题8.如图2-2-27所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE为梯形.图2-2-27【证明】∵四边形ABCD是矩形,∴BC∥AD.∵AD⊂平面APD,BC⊄平面APD,∴BC∥平面APD.又平面BCFE∩平面APD=EF,∴BC∥EF,∴AD∥EF.又E,F是△APD边上的点,∴EF≠AD,∴EF≠BC.∴四边形BCFE是梯形.9.如图2-2-28,S是平行四边形ABCD所在平面外一点,M,N分别是SA,BD上的点,且AMSM=DNNB,求证:MN∥平面SBC.图2-2-28【证明】在AB上取一点P,使APBP=AMSM,连接MP,NP,则MP∥SB.∵SB⊂平面SBC,MP⊄平面SBC,∴MP∥平面SBC.又AMSM=DNNB,∴APBP=DNNB,∴NP∥AD.∵AD∥BC,∴NP∥BC.又BC⊂平面SBC,NP⊄平面SBC,∴NP∥平面SBC.又MP∩NP=P,∴平面MNP∥平面SBC,而MN⊂平面MNP,∴MN∥平面SBC.[能力提升]10.对于直线m、n和平面α,下列命题中正确的是()A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥αB.如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交C.如果m⊂α,n∥α,m、n共面,那么m∥nD.如果m∥α,n∥α,m、n共面,那么m∥n【解析】对于A,如图(1)所示,此时n与α相交,故A不正确;对于B,如图(2)所示,此时m,n是异面直线,而n与α平行,故B不正确;对于D,如图(3)所示,m与n相交,故D不正确.故选C.图(1)图(2)图(3)【答案】 C11.如图2-2-29,三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2,当点M在何位置时,BM∥平面AEF.图2-2-29【解】如图,取EC的中点P,AC的中点Q,连接PQ,PB,BQ,则PQ ∥AE.因为EC=2FB=2,所以PE=BF.所以四边形BFEP为平行四边形,所以PB ∥EF.又AE,EF⊂平面AEF,PQ,PB⊄平面AEF,所以PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,所以平面PBQ∥平面AEF.又BQ⊂平面PBQ,所以BQ∥平面AEF.故点Q即为所求的点M,即点M为AC的中点时,BM∥平面AEF.。

平面与平面平行-高中数学知识点讲解

平面与平面平行-高中数学知识点讲解

平面与平面平行
1.平面与平面平行
【知识点的认识】
两个平面平行的判定:
(1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(2)垂直于同一直线的两个平面平行.即a⊥α,且a⊥β,则α∥β.
(3)平行于同一个平面的两个平面平行.即α∥γ,β∥γ,则α∥β.
平面与平面平行的性质:
性质定理 1:两个平面平行,在一个平面内的任意一条直线平行于另外一个平面.
性质定理 2:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
性质定理 3:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.
1/ 1。

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

l n
☺ 简称:线线垂直,线面垂直.
复习定理
空间中的垂直
2.直线与平面垂直性质
判定:如果一条直线和一个平面垂直,则称这条直线和这 个平面内任意一条直线都垂直.
l m
l
m
☺ 简称:线面垂直,线线垂直.
复习定理
空间中的垂直
3.平面与平面垂直判定
判定:如果一个平面经过另一个平面的一条垂线,则这两个 平面互相垂直.
(1)求证:BC1∥平面 CA1D; (2)求证:平面 CA1D⊥平面 AA1B1B. 证明:(1)连结AC1交A1C于E,连结DE.
∵AA1C1C为矩形,则E为AC1的中点. 又D是AB的中点,
∴在△ABC1中,DE∥BC1.
E
又DE⊂平面CA1D,
BC1⊄平面CA1D,
∴BC1∥平面CA1D.
证明:(2)∵AC=BC, D为AB的中点, ∴在△ABC中,AB⊥CD.
空间中的平行与垂直 定理总结
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.
①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,
则α∥β;
③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,
m⊥α,则m⊥γ.
正确的命题是( C)
A.①③
B.②③
C.①④
D.②④
解析 ②中平面α与β可能相交,③中m与n可以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

γ
a
b
α
βБайду номын сангаас
举例
例1 求证: 夹在两个平行平面间的
平行线段相等.(证明略)
A
D
B
C
例2如图, // , AB // CD,且A,C ,
B,D.
求证:AB CD.
AC
证 明 :因 为AB // CD, B D 所 以 过AB,CD可 作 平 面, 且 平 面与 平 面和分 别 相 交 于AC和BD. 因 为 // , 所 以BD // AC . 因 此 , 四 边 形ABCD是 平 行 四 边 形. 所 以, AB CD
小结
1. 复习平面与平面平行的概念 及判定 2. 学习并掌握平面与平面平行 的性质
作业
课本第61页练习 习题2.2 A组7题,8题
平面与平面 平行的性质
引入
1、什么叫两平面平行?
2、两平面平行的判定定理? 一个平面内的两条相交直线与另一个平面 平行,则这两个平面平行.
3、推论: 如果一个平面内的两条相交直线分别
平行于另一个平面内的两条直线,那么这 两个平面平行.
平面与平面平行的性质
若 // ,且 a,则与 的位置关系如何?
(A)1种 (B) 2种 (√C)3种 (D)4种
举例
例2 如图,设AB、CD为夹在两个平行
平面 之间的线段,且直线AB、CD为异面直
线,M、P 分别为AB、CD 的中点,
求证:直线MP // 平面 .
A
C
NP
M
D
B
证 明: 连 接BC, 设 其 中 点 为N, 连 接MN,NP,MP 在BCD中 ,NP//BD, NP//平 面 在BCA中 ,NM//AC, NM// 平 面 平 面 // 平 面 NM // 平 面 NM与NP相 交 于 点N 平 面PNM // 平 面 直 线MP // 平 面
设 b,则直线a、b的位置 关系如何?为什么?
平面与平面平行性质
性质定理 如果两个平行平面同时和 第三个平面相交, 那么它们 的交线平 行.
αa
β
b
γ
练习 (1)设 // ,A,过点A作直线
l // ,则l与的位置关系如何?为什 么?
αA l
β
(2) 若平面α、β都与平面γ相交,且交 线平行,则α∥β吗?
归纳
两个平面平行的其它性质
性质:夹在两个平行平面间的平行 线段相等.
性质:经过平面外一点有且只有一 个平面和已知平面平行.
练习
1. 经过平面外两点可作该平面的平行平 面的个数为( )
(A) 0 (B) 1 (√C) 0或1 (D) 1或2
2. 平面M∥平面N,直线a M,直线b N, 下面四种情形: (1)a ∥ b (2)a ⊥ b (3)a与b异面 (4)a与b相交 其中可能出现的情形有 ( )
相关文档
最新文档