从材料力学基础建立的杆系结构单元

合集下载

第5章 杆单元和梁单元

第5章 杆单元和梁单元

1 u2 E (2) A(2) (2) 2 u3 l
1 1 u2 1 1 1 u 2 R2 3
u1 在这里,把表达成整体位移矢量 u 2 的函数,如下: u 3
5.1 杆件系统的有限元分析方法
(1) (1) (1)
F3 10N
,进行相应的单元应力计算。得到的结果如下:
0 u1 4 u2 2.5 10 m u 7.5 10 4 m 3
(2) ( x) 5 103 (1) 0.05MPa (2) = 0.1MPa
第五章 杆单元和梁单元
第5章 杆单元和梁单元
本章主要介绍利用杆单元及梁单元进行结构静力学的有限 元分析原理。首先介绍了杆单元的分析方法,详细给出了采用 杆单元进行有限元分析的整个过程;紧接着介绍了平面梁单元 ,以一个平面悬臂梁力学模型为分析实例,分别采用材料力学 、弹性力学解析计算以及有限元法进行了分析与求解,以加深 读者对有限元法的理解。
E (2) A(2) (2) u2 1 u2 l 0 F3 (2) (2) E A u3 2 u3 l (2)
5.1.1 一维杆单元
u2 由最小势能原理,势能函数对未知位移 求变分,满足 u3 的条件是 ,得如下方程式 0, 0
P 1 , u1
E e , Ae , l e
1
图 5-2 杆单元
P2 , u2
2
对于两个节点的杆单元,存在如下节点力和节点位移的关 系式 u P 1 e 1 (5.1) k
P2
u2
其中, k e 称为单元刚度矩阵
5.1.1 一维杆单元

第五章杆系结构的有限元法

第五章杆系结构的有限元法

第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。

其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。

杆系结构中的每个杆件都是一个明显的单元。

杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。

显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。

杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。

因此,本章将采用这种方法进行单元分析。

至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。

5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。

3. 外载荷均为作用于节点的集中力。

由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。

5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。

两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。

图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。

由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。

有限元法(杆系)

有限元法(杆系)

Fjy
FFji Fj
s in cos s in
s in
0 0
0 0 0
0
cos s in
或 F(e) T F (e) (1)
Fiy
i
Fi i
Fix
拉压杆单元
0 Fi e
0 0 0
0 Fj 0
F jy
j
j
uiy ui
uix
u jy
y
Fj
F jx uj
u jx
2)
叠加形成总刚度矩阵,求位移
2sin2
0
sin2 EA sin cos
l
0
0
sin2
sin cos
0 2 cos2 1 sin cos
cos2 0 1
sin cos cos2
sin2 sin cos
sin2 sin cos
0 0 0 0
sin cos cos2 sin cos cos2
• 用单元节点位移表示单元内部位移
第 i 个单元中的位移用所包含的结点位移来表示:
u(x)
ui
ui1 ui Li
(x
xi )
(1- 1)
其中 u i 为第 i 结点的位移, xi 为第 i 结点的坐标。
第 i 个单元的应变为 i ,应力为 i ,内力为 N i :
i
du dx
ui1 ui Li
x
在局部坐标下,轴向力与轴向位移的关系:
(e)
Fi
1 0 1 0ui e
0
Fj
0
EA
0
0
l 1 0
0
0
0 1 0
0 0 0

弹塑性力学复习重点

弹塑性力学复习重点

1.弹性力学的研究内容、研究对象和研究任务?基本假设?弹性力学与材料力学和结构力学的区别?弹性力学解的唯一性定理?答:弹性力学的研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移;弹性力学主要研究对象为,非杆状的结构(如板、壳、挡土墙、堤坝、地基等实体结构)以及杆状构建的进一步精确分析;弹性力学的研究任务是分析各种结构物或构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。

弹性力学的基本假设有5个,分别是连续性假设、完全弹性体假设、物体均匀假设、物体各向同性假设以及微小位移和变形假设。

材料力学‐‐研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题。

求得是一种近似解。

结构力学‐‐在材料力学基础上研究杆系结构(如 桁架、刚架等)。

弹性力学‐‐研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。

弹性力学解的解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而处于平衡时,体内各点的应力分量、应变分量的解释唯一的。

2.应力状态、应力分量、应力张量、应力张量的三个不变量的物理意义是什么? 体积改变和形状改变定理是什么?偏应力第二不变量J2的物理含义是什么? 答:应力状态:物体内同一点各方位上的应力情况。

应力分量:为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解,即为应力分量。

过M 点分别于三个坐标轴相垂直的微面上的应力状况,共有9个分量,统称为一点的应力分量。

应力张量:描述一点的应力状态的张量(数学表示)。

把应力分量作为一个整体用矩阵表示为一个整体称为应力张量应力张量的三个不变量J 1、J 2、J 3:物理意义:当坐标改变时,每一应力分量都将改变,但这三个量不变。

应力张量是二阶对称张量,因此它存在三个不变量,分别用J 1、J 2、J 3表示。

J 1 应力张量的主元之和 在弹性体内任一点,任何三个垂直方向上的正应力之和为一个常数。

ANSYS第6例 杆系结构的静力学分析实例悬臂梁2

ANSYS第6例 杆系结构的静力学分析实例悬臂梁2

第6例 杆系结构的静力学分析实例—悬臂梁[本例提示] 介绍了利用ANSYS 对杆系结构进行静力学分析的方法、步骤和过程。

6.1 问题描述及解析解图6-1所示为一工字悬臂梁,分析其在集中力P 作用下自由端的变形。

已知梁的材料为10号热轧工字钢,其横截面面积A =14.345 cm 2,截面高度H =100 mm ,惯性矩I xx =245 cm 4。

梁的长度L =1 m ,集中力P =10000 N 。

钢的弹性模量E =2×1011 N/m 2,泊松比μ=0.3。

根据材料力学的知识,该梁自由端的挠度为 38113xx 310803.61024510231100003--⨯=⨯⨯⨯⨯⨯==EI PL f m (6-1) 6.2 分析步骤6.2.1 过滤界面拾取菜单Main Menu →Preferences 。

弹出的图6-2所示的对话框,选中“Structural ”项,单击“Ok ” 按钮。

图 6-1 悬臂梁图 6-2 过滤界面对话框52 ANSYS 在机械工程中的应用25例图 6-3 单元类型对话框 6.2.2 创建单元类型拾取菜单Main Menu →Preprocessor →Element Type →Add/Edit/Delete 。

弹出的图6-3所示的对话框,单击“Add ”按钮;弹出的图6-4所示的对话框,在左侧列表中选“Structural Beam ”,在右侧列表中选“2D elastic 3”, 单击“Ok ” 按钮;返回到图6-3所示的对话框,单击图6-3所示的对话框的“Close ”按钮。

6.2.3 定义实常数拾取菜单Main Menu →Preprocessor →Real Constants →Add/Edit/Delete 。

在弹出的“Real Constants ”对话框中单击“Add ”按钮,再单击随后弹出的对话框的“Ok ” 按钮,弹出图6-5所示的对话框,在“AREA ”、“IZZ ”、“HEIGHT ”文本框中分别输入、245e-8、0.1,单击“Ok ” 按钮。

弹性力学简介及其求解方法

弹性力学简介及其求解方法

弹性力学简介及其求解方法2010-08-27弹性力学简介及其求解方法弹性力学又称弹性理论,是固体力学的一个分支,是研究弹性体由于外力作用或温度改变等原因而发生的应力、应变和位移。

确定弹性体的各质点应力、应变和位移的目的就是确定构件设计中的强度和刚度指标,以此用来解决实际工程结构中的强度、刚度和稳定性问题。

材料力学、结构力学三门学科所研究的内容和目的相同,但是研究对象和研究方法不同。

材料力学研究对象是杆状构件,结构力学是在材料力学基础上研究由多杆构成的杆系结构的强度和刚度问题。

而对于一般弹性实体结构,如板与壳结构、挡土墙与堤坝、地基以及其他三维实体结构来说,相应的强度和刚度问题要用弹性理论的方法来解决。

在研究方法上,弹性力学和材料力学都从静力学、几何关系、物理方程三方面着手来进行分析,但不同点是材料力学常借助于直观和实验现象做一些假设。

在具体问题计算时材料力学与结构力学都利用解决单一变量的常微分方程,在数学上求解容易。

弹性力学需解决的是满足边界条件的高阶多变量偏微分方程,在数学上求解困难,一般弹性体问题很难得到解析解。

所以,与材料力学相比,弹性力学的研究对象更加广泛,研究方法更加严密,能解决更加复杂的实际问题,因此需要用较多的数学工具。

弹性力学问题可以归结为边值问题:在弹性体内必须满足基本方程,即平衡微分方程、几何方程和物理方程;在应力边界上应满足应力边界条件;在位移边界上应满足位移边界条件;在混合边界上应满足相应的应力边界和位移边界条件。

满足基本方程的解答叫做弹性力学解;既满足基本方程,又满足边界条件的解答叫做弹性力学问题的解。

在求解弹性力学问题时,通常已知的是物体的形状、尺寸、约束情况和外载荷以及材料的物理常数。

需要求解的是应力、应变和位移,它们都是物体内点的坐标的函数。

对于空间问题,一共有15个未知函数:3个位移分量、6个应变分量和6个应力分量。

可利用的独立方程也有15个,即3个平衡微分方程、6个几何方程和6个物理方程。

结构力学概念部分

结构力学概念部分

第一章绪论1.结构按其几何特征分为三类(1)杆件结构(2)板壳结构(3)实体结构2.本课程讨论的范围是杆件结构理论力学研究的刚体的机械运动的基本规律和刚体的力学分析,材料力学研究的是单根杆件的强度、刚度和稳定性问题,结构力学研究杆件体系的强度、刚度和稳定性问题3.结构力学的任务:(1)结构的组成规律、合理性是以及结构计算简图的合理选择(2)结构内力和变形的计算方法,以便进行结构强度和刚度的验算(3)结构的稳定性以及在动力何在作用下结构的反应4.计算简图选择原则是:计算简图:用一个能反映其基本受力和变形性能的简化的计算图形来代替实际结构。

这种代替实际结构的简化计算图形称为结构的计算简图(1)计算简图应能反映实际结构的主要受力和变形性能(2)保留主要因素,略去次要因素,使计算简图便于计算5.结构与基础间连接的简化活动铰支座,固定铰支座,固定支座,定向支座6.材料性质的简化材料一般假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的7.结构承受的荷载可分为体积力和表面力两大类。

体积力指的是结构的重力或惯性力等,表面力指的是由其他物体通过接触面传给结构的作用力8.杆件的分类梁:受弯为主拱:在竖向荷载作用下有水平推力且截面以受压为主刚架:由梁和柱等直杆组成的结构,杆件间的结点多为刚结点,主要内力为弯矩桁架:由两端为铰的直杆组成,当荷载作用于结点时,各杆只受轴力9.静定结构与超静定结构凡用静力平衡条件可以确定全部支座反力和内力结构称为静定结构凡不能用静力平衡条件确定全部支座反力和内力的结构成为超静定结构10.荷载的分类按时间:恒荷载,活荷载按性质:静力荷载,动力荷载第二章结构的几何组成分析1.根据杆件体系的形状和位置,杆件体系可以分为两类:几何不变体系,几何可变体系2.把杆件体系中的一部分杆件或结点勘察是具有自由度的运动对象,而将另一部分杆件或连接勘察是对这些刚片或结点的运动起限制作用的约束3.自由度:描述几何体系运动时,所需要改变的坐标数目4.约束:使体系减少自由度的装置或连接分为两大类:支座约束和刚片间的连接约束5.约束代换和瞬铰一个简单铰相当于两个约束,两根链杆也相当于两个约束,约束是可以代换的瞬铰:如果连接两个刚片的两个链杆不在刚片上相交,则两链杆的交点处,形成一虚铰,虚铰的位置是变化的,6.在杆件体系中能限制体系自由度的约束,称为必要约束对限制体系自由度不起作用的约束,称为多余约束7.几何不变无多余约束体系的组成规则三个:(1)一刚片和一个点用不共线的两个链杆连接(2)两刚片用一个铰和一根不通过此铰的链杆或三个全不平行也不交于一点的三根链杆连接(3)三刚片用不在同一直线上的三个铰两两相连第三章静定梁1.截面法:计算杆件指定截面的内力的基本方法2.内力图是表示杆件上个截面内力沿杆长度变化规律的图形3.弯矩图的纵坐标一律画在杆件受拉纤维一侧,剪力图和轴力图可画在杆件任一侧,但需注明正负号4.在分布荷载和无荷载段,内力图为连续图形,而在荷载的不连续点,内力图也出现不连续的变化5.控制截面是指荷载的不连续点,如分布荷载的起点和终点、集中力作用点和集中力偶作用点6.弯矩图叠加是指弯矩纵坐标(竖标)的叠加,而不是指图形的简单拼合7.解题方法(1)简支斜梁计算支座反力和内力的方法是隔离体平衡和截面法(2)在竖向荷载作用下,简支斜梁的支座反力和相应的平梁的支座反力是相同的(3)在竖向均布荷载作用下,简支斜梁的弯矩图和相应的平梁的弯矩图是相同的(4)在竖向荷载作用下,斜梁有轴力,斜梁的剪力和轴力是相应平梁的两个投影8.静定多跨梁的组成特点是:可以在铰处分解为以单跨梁为单元的基本部分和附属部分。

第2章 弹性力学的基本知识

第2章 弹性力学的基本知识

(2)均匀性假设:假定物体内各点处材料均相同。
(3)各向同性假设:假定物体内各点处各个方向上的物理性质相同。
(4)完全弹性假设:胡可定律
(5)几何假设——小变形假设: 变形产生的位移与物体的尺 寸相比 ,是微小的。
关于外力、应力、应变和位移的定义
1.外力
体力 (定义)分布在物体体积内的力,如重力、惯性力等。 分为体积力(体力)和表面力(面力)两类。 有限元分析也使用集中力这一概念。
以通过一点的沿坐标正向微分线段的 正应变ε和 切(剪)应变 γ 来表示。 正应变εx ,εy , εz 以伸长为正。
切应变γxy , γyz ,γzx 以直角减小为正, 用弧度表示。 正应变和切应变都是无因次的量 应变列阵 x y z xy yz zx
Tຫໍສະໝຸດ 4. 位移材力研究方法
也考虑这几方面的条件,但不是十分严格的:常常引用近 似的计算假设(如平面 截面假设)来简化问题,并在许多 方面进行了近似的处理。 因此材料力学建立的是近似理论,得出的是近似的解答。 从其精度来看,材力解法只能 适用于杆件形状的结构。
★ 弹塑性力学研究问题的基本方法
在受力物体 内任取一点 (单元体)为 研究对象。
写成矩阵形式:
ε=
σ
ε=φσ 显然: φ=D-1
三、平衡方程
弹性体中任一点满足平衡方程, 在给定边界上满 足应力边界条件。
弹力的研究方法
在体积V内 由微分体的平衡条件,建立平衡微分方程; 由微分线段上应变与位移的几何关系,建立几何方程; 由应力与形变之间的物理关系,建立物理方程; 在边界 S 面上
x
二、物理方程
若弹性体只有单向拉伸或压缩时,根据材料 力学胡克定律:

《有限元理论与数值方法》第三讲-杆、梁结构有限元分析

《有限元理论与数值方法》第三讲-杆、梁结构有限元分析
杆件结构可分为桁杆和梁两类。 由杆件组成的结构体系称为杆系。由桁杆组成的杆系称为桁架; 由梁组成的杆系称为刚架。若杆系和作用力均位于同一平面内,则称 为平面桁架或平面刚架,否则称为空间桁架或空间刚架。
Finite Element Theory and Numerical Method
一、杆、梁的物理力学模型
拉压杆单元如图3-6所示,已知等直杆件杆长为 l 横截面面积为 A 材料弹性模量为 E 所受轴向分布载荷集度为 p(x) 杆端位移分别为 u1 u2
杆端力分别记为 F1 F2
1、建立位移场
F1, u1 xa
1
a p(x)
2 F2 , u2
x
设局部坐标系下杆中任意点a的坐标为 xa
因为只有两个边界条件 u1
形函数具有如下性质: 1)本端为1,它端为0 2)单元内任意一点总和为1
N1(0) 1
N1(1) 0
N2 (0) 0 N2 (1) 1
N1() N2 () 1
2、应变分析
du dx
dN dx
ue
dN1 dx
B为应变矩阵或者几何矩阵。
dN2 dx
u
e
1 l
1 l
ue
[B1
B2 ]ue Bue
图示所示桁架 l 2m
EA 1.2106 kN
试求1-2杆和1-4杆单元的局部坐标单元 刚度矩阵
1-2杆:抗拉刚度 EA / l 6106 kN/m
F1 10N 3
1
F2 20N 4
2
ke1
EA l
1 1
1
1
6
105
1 1
1
1
kN
/
m
1-4杆:抗拉刚度 EA /( 2l) 4.24264 105 kN/m

有限元第三章杆系结构单元分析

有限元第三章杆系结构单元分析
u N ui ui T N δe
对应的虚应变为:
B δe
根据虚位移原理虚功方程,有:
W外 FdeT δ e
l 0
q(
x)
N

δ
edx


W变
l
0 Adx
l δ eT BT EAB δ edx 0
将上式整理得:
(3-23)
Fde
dx
(3-5)
虚曲率
k d 2 v
dx2
(3-6)
若又设单元任一截面实际的水平和竖向位移为 u (x)、v (x),
则由材料力学可得与位移对应的截面内力为
FN

EA du dx
(3-7)
M

EI
d 2v dx2
(3-8)
式中EA,EI分别为单元的抗拉(压)、抗弯曲刚度。
有限单元法
在图3-3和上述矩阵说明的情况下,将虚位移原理用于单元, 则单元的虚功方程为
类型单元刚度矩阵相同。
Y
x
y
局部坐标


X
○○

整体坐标
P
大家要熟悉知道单元编号,节点编号,位移编号,以及整体 坐标和局部坐标。
有限单元法
2 1
3
4ቤተ መጻሕፍቲ ባይዱ
5
6
图2.1 弯曲杆件系统
1
有限单元法
2
3
4
5
图2.2 截面连续变化杆件系统
结点编号
单元编号
5 (8 9 10) 6
4
3
(2 3 4)
3
1
1 (0 0 0)
设平面杆系结构用结点分成等直杆(单元)集合,其 中某单元e隔离体如图3-3所示,如果建立了单元e的虚位移 原理虚功方程,则整个杆系结构的虚功方程可由对各杆求 和获得。为用矩阵形式写出杆件及杆系结构虚位移原理的 虚功方程,以便于今后推导使用,特引入一下矩阵(向 量):

有限元法课程教学大纲

有限元法课程教学大纲

有限元分析与数值模拟教学大纲一、课程基本信息课程中文名称:有限元分析与数值模拟课程英文译名:finite element analysis and numerical simulation课程编码:课程类型:专业方向课,选修总学时:32理论学时:16 实验学时:0 上机学时:16学分数:2适用专业:机械类各专业先修课程:《理论力学》、《材料力学》、《结构力学》、《弹性力学》开课院系:机械工程学院力学教研室二、课程的性质和任务有限元分析与数值模拟是一门理论性和应用性均较强的主干学科课程。

它的主要任务是让学生在材料力学和弹性力学等课程的基础上进一步学习并基本掌握工程结构的内力分析和位移分析的有限元分析方法,培养其运用计算机软件解决工程实际问题的能力,为后继课程学习及毕业后从事有关的工程技术工作打好必要的基础。

三、课程教学基本要求学生按大纲学完有限元与程序设计后,应对课程基本内容有系统的理解,掌握其中基本概念、基本理论和基本方法。

具体达到下列要求:1.有限元法的理论基础:理解弹性力学的基本方程;理解变形体系虚位移原理与最小总势能原理。

2.有限元法的基本概念:理解有限元位移法的基本思想;理解有限元位移法的分析过程。

3.杆系结构的单元分析:掌握用最小总势能原理或虚位移原理建立单元刚度方程的一般形式;理解单元刚度矩阵和单元等效结点荷载矩阵的积分形式;掌握拉压杆单元、扭转杆单元和纯弯曲单元等简单单元的单元分析;理解平面刚架单元和空间刚架单元等复杂单元的单元分析。

4.杆系结构的整体分析:理解坐标变换的概念及其方法;掌握集成整体原始刚度方程的直接刚度法;掌握边界条件的处理方法;理解单元内力与应力的计算方法。

5.平面问题有限元分析:理解平面应力问题与平面应变问题的概念;掌握常应变三角形单元的单元分析;掌握矩形双线性单元的单元分析;掌握四结点任意四边形等参数单元的单元分析;理解八结点任意曲边四边形等参数单元的单元分析。

材料力学第1章材料力学基本概念

材料力学第1章材料力学基本概念


两种状态
(1) 承载力极限状态—强度、稳定性 (2) 正常使用极限状态—刚度
1.1.2.3 材料力学的任务

可靠性与经济性
可靠性要求 构件截面尺寸增大 经济性要求 构件截面尺寸减小

材料力学的任务
为解决构件设计中可靠性与经济性的 这一对矛盾提供理论依据 保证可靠的前提下,尽可能经济

F dF s lim A 0 A dA
应力s 的方向就是内力F 的方向

应力的分量

应力沿截面法线方向的分量,称为法向应力(normal stress)或正应力,用 表 示

应力平行于截面的分量,称为切向应力、切应力( shear stress)或 剪应力,用 表 示

应力的单位 基本单位:N/m2=Pa 常用单位:kN/m2=kPa 帕 千帕

杆系结构
1.1.2 材料力学的任务

结构与构件的概念
结构:能承受作用并具有适当刚度的由各连接部件有 机组合而成的系统 结构构件:结构在物理上可以区分出的部件

结构构件:屋盖、楼板、梁、柱、基础 非结构构件:门、窗、隔墙
1.1.2.1 结构的功能要求
安全性 各能 整发 偶 种够 体生 然 结构功 作 承 稳 保 事 良好的工作性能 能要求 用受 定持 件 不裂 不挠 发生火灾时,在规定时 耐久性 宽缝 大度 间内可保持足够承载力 发生撞击、爆炸时,整体稳定性 结构在规定的工作环境中、预定时期 内,材料性能的劣化不致导致结构出 现不可接受的失效概率 适用性
研究基本变形杆件之 强度条件 刚度条件 稳定性条件
1.2.1 基本假定

连续性假定
材料宏观上无间隙,连续分布于所占据的空间 物理量是空间位置的连续函数

有限单元法 第2章 杆系结构的有限元法分析

有限单元法 第2章 杆系结构的有限元法分析

义 & 可以进一步求得单元刚度矩阵为 )
( & # 0# ( $’ $ % 8 . ! 1 # $ ’ 0# # 同时 & 我们可以根据式 $ % 求出等 效 结 点 荷 载 矩 阵 ’ 这 里 要 指 出 的 是 ) 分 布 荷 载 ! .$
! # !! !
! # $! !
! 第 ! 章 ! 杆系结构的有限元法分析 # #! ! """""""""""""""""""""""""""""""""""""""""""
不适定的 " 第九步 # 求解方程组 " 计算结构的整体结点位移列阵 ## 并 进一步 计算各 单元 的应力 分量及主应力 $ 主向 " 第十步 # 求单元内力 # 对计算成果进行整理 $ 分析 # 用表格 $ 图线标示出所需的位移 及应力 " 大型商业软件 % 如 )* + , + 等 & 一般都具有强大的后处理功能 # 能够 由计算 机自 动绘制彩色云图 # 制作图线 $ 表格乃至动画显示 "
矩阵 ’ $ %进行应力 ( 应变分析 ’ 根据材料力学中应变的定义 & 有 ) ! # # $’ 2 + 2 $ ( ( ( ( $’ $’ $’ . 0 ! ! . " 3 3 .% ". . ! ! ! !! "# ’ ’ 2 # 2 #

材料力学结构力学弹性力学异同点

材料力学结构力学弹性力学异同点

材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。

材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。

包括两大部分:一部分是材料的力学性能的研究,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。

杆件按受力和变形可分为拉杆、压杆、受弯曲的梁和受扭转的轴等几大类。

杆中的内力有轴力、剪力、弯矩和扭矩杆的变形可分为伸长、缩短、挠曲和扭转。

在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类:线弹性问题。

在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。

对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。

几何非线性问题。

若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。

这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。

物理非线性问题。

在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。

在几何非线性问题和物理非线性问题中,叠加原理失效。

解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷结构力学它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。

结构力学研究的内容包括结构的组成规则,结构在各种效应作用下的响应,这些效应包括外力、温度效应、施工误差、支座变形等。

主要是内力一一轴力、剪力、弯矩、扭矩的计算,位移一一线位移、角位移计算,以及结构在动力荷载作用下的动力响应一一自振周期、振型的计算。

一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。

[工学]第四章杆单元和梁单元_2023年学习资料

[工学]第四章杆单元和梁单元_2023年学习资料

4.2.1平面悬臂梁问题的解析分析-受载荷作用后梁产生变形,在xy平面内梁的轴线将变成一条-曲线,即挠曲线 根据材料力学有关假设,梁弯曲的挠曲线的近-似微分方程为-d2v-M-4.21-dx-El-由这两个公式可得 曲线的微分方程为-Ew”=M=-WL-x-积分得-EIv'=-Wx-Wx+C-4.22-Elv-x2+Cx D-6
4,1杆件系统的有限元分析方法-EDA四-0-T-1四-EDAD-E2A②E2A2-R-10-12-n-u F-72-可记作-Π =。6K6-1-prδ -4.12-上式的即为整体刚度矩阵。即根据最小势能原理,由各单元 刚度矩阵求出的整体刚度矩阵。下式是由整体刚度矩阵表达的系-统方程:-E0A-EA-EDAE2A2-4.13 1②-u3.-/2
4.2.1平面悬臂梁问题的解析分析-作为对照,先用经典材料力学法和弹性力学法对平面悬臂-梁进行分析求解。平面悬臂梁的材料力学求解:-一端受载荷作用的悬臂梁如图4-6(a所示,选取坐标系如-图4-6b,任意横截面 的弯矩为-M=-WL-x-4.20-R-a结构示意图-b力学模型-图4-4平面悬臂梁力学模型
4,1杆件系统的有限元分析方法-8引入边界条件Treatment of boundary conditio s-为获取许可位移场,需引入边界条件-BCu:u=0-4.14-由于山,=0,可划去它所对应的行和列,这样 于许可位移-场的系统总势能为-E2A2-1四-12-3
41杆件系统的有限元分析方法-9建立系统弹性方程-由最小势能原理,势能函数对未知位移-求变分,满足-mi的 件是-如-0,得如下方程式-U2,l3-0u2-O-ED A-E2A-E2A2-R2-1四-12-4.15 72-10求解节点位移-由上式方程可以直接求解得到-注意到R,是内-力,不做功。在求解过程中,可以视为0。 就是

对于梁单元

对于梁单元

杆系结构单元主要有铰接杆单元和梁单元两种类型, 它们都只有2个 节点i、j。
约定:单元坐标系的原点置于节点i;节点i到j的杆轴(形心轴)方 向为单元坐标系中x轴的正向。 y轴、z轴都与x轴垂直,并符合右手螺旋 法则(图5-3)
y
i· z
· x (图5-3)
j
对于梁单元, y轴和z轴分别为横截面上的两个惯性主轴。
(5) 等价节点力 对于梁上作用的集中力或集中力矩,在划分单元时可将其作用点取
为结点,按结构的节点载荷处理。
这里考虑的是把单元上的横向分布载荷转化为等价节点力问题。当 梁单元上作用有横向分布荷载qy(x)时(图5-8),
y
qy(x)
x
i
l
j
图5-8
v(x)
i y qy (x)dx
qy(x)
ix
dx l
4
j 3
x
1
e
2
3
4
(2)位移模式和形函数 ① 位移模式 由于平面铰接杆单元只有轴向力。位移模式同式(5-3)、(5-4)。
② 形函数
[N] [Ni
N
j
]
1 [( l
x
j
x)
0 ( xi x)
0]
(5-13)
(3)应变矩阵
应变矩阵 [B]为
[B]{}e
[B] [Bi
B
j
几种横向分布荷载等价节点力
表1
荷载分布
q
i
j
q
i
j
q
i
j
Qi
Mi
Qj
Mj
ql/2 ql2/12 ql/2 - ql2/12
3ql/20 ql2/30 7ql/20 - ql2/20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
te Element Method 24
有限元分析的基本步骤
① 离散连续体Discretize the continuum (前处理 preprocessing)划分单元 ②选择插值函数 Select interpolation functions 定义节点 Assign nodes 选择插值函数Choose the interpolation function
18
19
•等截面直杆在自重作用下的有限元法解答
•1、离散化 •2 把外载荷集中到节点上 •把第i 单元和第i+1 单元重量的一半 •集中到第i+1 结点上
20
•3、假设线单元上的位移为线性函数 •用单元节点位移表示单元内部位移 •第 i 个单元中的位移用所包含的结点位移来表示,
21
22
23
有限元如何实现?
分段近似 近似函数 联接简单函数
在小段区域内定义 (element)
利用每个单元内假设的近似函数来分片地表示全求解域 上待求的未知场函数
有限元法的基本思路
将连续系统分割成有限个分区或单元,对每个单元提出一 个近似解,再将所有单元按标准方法组合成一个与原有系 统近似的系统。
未知场函数(导数)在各结点上数值——自由度
Chapter 1 About Finite Element Method 25
有限元分析的基本步骤
⑤引入边界条件 Impose the boundary conditions 修改系统方程 ⑥解方程 Solve the system equations 得到未知问题的节点值 ⑦后处理 Make additional computations if desired 例如节点位移 → 应变与应力
Chapter 1 About Finite Element Method 26
27
杆系有限元
杆 系 结 构
杆系结构:梁、拱、框架、桁架等,它们常可离 散成杆元和梁元。
○ ○ ○ ○ ○ ○ ○ ○ ○
梁 拱
框架
桁架
○ ○ ○ ○ ○
•有限单元法的概念
•通过材料力学求解和有限元求解进行比较
•例:等截面直杆在自重作用下的拉伸图(a) •单位杆长重量为q,杆长为L,截面面积为A,弹性 模数为E
③单元分析Find element properties 平衡方程,应力应变描述Equilibrium, expression of strains, stresses ④ 组合集成单元Assemble the element properties 获得整体系统方程to obtain the system equations The expression of the behaviour of the system
相关文档
最新文档