圆柱的体积(1)

合集下载

圆柱体的体积

圆柱体的体积

圆柱体的体积圆柱体是一种常见的几何形状,它由两个平行且相等的圆底面以及连接两个底面的侧面组成。

计算圆柱体的体积是我们在数学中经常遇到的问题,下面将详细介绍如何求解圆柱体的体积。

1. 理解圆柱体的定义在开始计算圆柱体的体积之前,我们需要理解圆柱体的定义。

圆柱体的体积表示该几何体所占据的空间大小,通常用单位立方长度来表示,如立方米(m³)或立方厘米(cm³)。

圆柱体的体积公式为 V = πr²h,其中 V 表示圆柱体的体积,π 是一个常数,近似取值为3.14,r 表示圆底面的半径,h 表示圆柱体的高度。

2. 解析圆柱体的体积公式根据圆柱体的定义,我们可以通过解析公式来理解圆柱体的体积公式V = πr²h。

首先,通过平行面截割可以将圆柱体切割成一系列的无限小圆环形片元,每个片元的面积可表示为dA = 2πrh,其中 r 表示圆环的半径,h 表示圆环片元的高度。

然后,我们将所有的圆环片元叠加在一起,形成一个圆柱体。

由于圆环片元的面积趋近于0,我们可以将其近似看作是一个无限小的立体体积元素dV = 2πrhdh。

通过积分方法,我们可以将所有的体积元素相加,得到完整的圆柱体体积公式V = ∫2πrh dh,即V = πr²h。

3. 使用圆柱体的体积公式计算实例现在来看一个实例,假设圆柱体的底面半径 r = 5 cm,高度 h = 10 cm。

我们可以代入圆柱体的体积公式V = πr²h,计算出该圆柱体的体积。

V = π(5 cm)²(10 cm)≈ 3.14 × 25 cm² × 10 cm≈ 785 cm³因此,该圆柱体的体积约为785立方厘米。

4. 圆柱体体积的应用圆柱体的体积计算在现实生活中有着广泛的应用。

例如,工程师需要计算储罐或管道的容量时,可以将其简化为圆柱体,并通过体积计算得出结果。

此外,在建筑设计中,计算柱形支柱或圆柱形水池的体积也是常见的应用。

圆柱的体积(1)

圆柱的体积(1)

直柱体的体积 = 底面积×高
V =s h
3.一个圆柱的底面半径是4dm,体积是 251.2dm3,这个圆柱高多少分米?
长方体的体积= 底面积 × 高 圆柱的体积= 底面积 × 高
V
S
h
圆柱体积计算公式是:
h Vห้องสมุดไป่ตู้= πr²
1.一个圆柱的底面积是8.5cm2,高6cm, 它的体积是多少立方厘米?
2.李家庄挖了一口圆柱形水井,地面 以下的井深10m。地面直径为1m。挖出的 土有多少立方米?
圆柱的体积
圆柱的体积=底面积×高 V=Sh=πr2h
圆柱的体积(1)
什么是物体的体积?你会计算哪些物体的体积?
圆柱的体积怎么计算呢?
把圆柱的底面分成许多相等的扇形。
把圆柱切开,再像这样拼起来,得到 一个近似的长方体。
分成的扇形柱越多,拼成的立体图形就越 接近于长方体。
长方体的体积与圆柱的体积相等。

长方体的底面积等于圆柱的底面积。
长方体的高等于圆柱的高。

圆柱体的体积公式

圆柱体的体积公式

圆柱体的体积公式1、圆柱体体积=r2h=s的底部面积高度(h),先求底部面积,再乘以高度。

圆柱体体积公式是计算圆柱体体积的公式。

2、圆柱体是由两个大小相等且相互平行的圆(底面)和一个连接两个底面的曲面(侧面)包围的几何体。

延伸阅读方差的计算公式1.方差是每个数据与平均值之间的差值的平方和的平均值,即x代表样本的平均值,n代表样本的数量,xi代表个体,s 2代表方差。

2.方差是用概率论和统计方差来度量随机变量或一组数据时的离差程度。

在概率论中,方差用来衡量随机变量与其数学期望(即均值)之间的偏离程度。

统计中的方差(样本方差)是每个样本值之间的差值的平方值与所有样本值的平均值的平均值。

在很多实际问题中,研究方差,即偏离度,意义重大。

等差数列中项求和公式1.通式: an=a1 (n-1)d,an=am (n-m)d.2.算术级数的前n项和: sn=[n(a1 an)]/2,sn=na1 [n(n-1)d]/23、算术数列求和公式文本表达式:算术数列求和=(第一尾数)*项数/2;货号的公式是:等差数列的项数=[(尾数-第一个数)/容差] 1cpk计算公式1.过程能力指数。

2.过程能力指数是指过程能力满足产品质量标准要求的程度(规格范围等)。

).又称过程能力指数(process capability index),是指一个过程在一段时间内处于受控状态(稳态)的实际处理能力。

是过程固有的能力,或者说是过程保证质量的能力。

这里的工序是指操作者、机器、原材料、工艺方法、生产环境等五个基本质量要素组合在一起的过程,即产品质量的生产过程。

3.计算公式:cpk=min [(usl-mu)/3,(mu-lsl)/3]4.操作方法:过程能力指数运算有五种计算方法:直方图(两种绘制方法);散点图(线性回归和曲线回归)(5种);计算剩余标准差;帕累托图(自动检索和排序);波动图(单边控制规范,或双边控制规范)。

圆柱的体积的公式

圆柱的体积的公式

圆柱的体积的公式圆柱的体积是几何学中非常重要的概念之一、它是指在三维空间中由一个圆形的底面和一个平行于底面的圆面围成的立体的容积。

圆柱的体积公式为V=πr²h,其中V代表圆柱的体积,r是圆柱底面半径,h是圆柱的高度。

为了理解这个公式,我们可以将圆柱的体积分解成若干个小的立方体的体积之和。

以底面上的一个点为基准,我们可以在垂直于底面的方向上画无数条平行线,将圆柱分为许多个同样高度的薄片。

每个薄片的体积可以看作是一个矩形的面积乘以高度h。

考虑一下底面上的一个点到底面圆心的距离为r,薄片的宽度为Δx。

由于底面是一个圆,所以薄片的长度可以看作是底面周长的一部分,即2πr。

因此,每个薄片的面积可以表示为2πr×Δx。

如果我们将薄片的数量无限地增加,那么它们将组成一个体积为 V的圆柱。

在极限情况下,我们可以将垂直于底面的方向上的平行线视为一个连续的线,薄片的宽度Δx 无限趋近于零。

此时,每个薄片的体积可以表示为dV = 2πr × Δx,而整个圆柱的体积可以表示为V = ∫2πr dx。

考虑到 r 是关于 x 的函数,我们可以将上述积分重新表示为 V =∫2πr(x) dx。

但是,由于底面上的每个点都满足相同的条件,即 r(x)= r,我们可以将其简化为V = ∫2πr dx = 2πr ∫dx。

根据微积分的基本原理,我们知道在 x 的区间内积分区域的长度可以表示为 (上界 - 下界)。

因此,我们可以将上式进一步简化为 V =2πr(x) ∫dx = 2πr(x) (上界 - 下界)。

假设整个圆柱的高度为 h,我们可以将上界设置为 h,下界设置为 0。

因此,我们可以得到V = 2πr(x) (h - 0) = 2πrh。

然而,考虑到底面半径r是常数,我们可以进一步简化公式为V=πr²h,这就是圆柱的体积公式。

需要注意的是,该公式仅适用于完美的圆柱,也就是底面圆形与平行于底面的圆面完全对齐的情况。

圆柱体的体积公式

圆柱体的体积公式

小学数学图形计算公式1、体积公式:1)、圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h 。

2)、长方体的体积公式:体积=长×宽×高。

(底面积乘以高S底·h) 如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc。

3)、正方体的体积公式:体积=棱长×棱长×棱长。

(底面积乘以高S底·h) 如果用a表示正方体的棱长,则正方体的体积公式为V=a·a·a=a^3。

4)、锥体的体积=底面面积×高÷3 。

圆锥=S底×hx3分之一 。

2、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd=2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积小学应用题计算公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、和差问题的公式:(和+差)÷2=大数、(和-差)÷2=小数11、和倍问题:和÷(倍数-1)=小数、小数×倍数=大数、(或者和-小数=大数)12、差倍问题:差÷(倍数-1)=小数、小数×倍数=大数、(或小数+差=大数)13、植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数14、盈亏问题:(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数15、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间17、流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷218、浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量19、利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)单位换算1、长度:1千米=1000米、1米=10分米、1分米=10厘米、1米=100厘米、1厘米=10毫米2、面积:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米1平方分米=100平方厘米、1平方厘米=100平方毫米、3、体(容)积:1立方米=1000立方分米、1立方分米=1000立方厘米、1立方分米=1升1立方厘米=1毫升、1立方米=1000升、4、重量:1吨=1000 千克、1千克=1000克、1千克=1公斤5、人民币:1元=10角、1角=10分、1元=100分6、时间:1世纪=100年 1年=12月、大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月、平年2月28天, 闰年2月29天、1时=3600秒平年全年365天, 闰年全年366天、1日=24小时 1时=60分、1分=60秒。

圆柱的公式体积

圆柱的公式体积

圆柱的公式体积
圆柱是一种常见的立体图形,它由一个圆形底面和两个平行的圆形面组成,形状类似于水杯或桶。

圆柱的体积是指在三维空间中,圆柱所占用的空间大小,通常用立方米或立方厘米来表示。

圆柱的体积公式为:V = πr²h,其中V表示圆柱的体积,π表示圆周率,r表示圆柱底面半径,h表示圆柱的高。

该公式的推导过程可以通过积分方法或代数方法得出。

在代数方法中,我们可以将圆柱分解成无数个薄片,每一层的面积为圆的面积,高度为薄片的厚度dx,从而得出圆柱的体积公式。

圆柱的体积公式为我们计算圆柱的体积提供了便利。

例如,在设计水塔或水管等工程中,我们需要计算圆柱的体积来确定其容量大小。

同样,在生产或贸易中,我们需要计算圆柱容器中物品的体积,以便确定物品的数量和质量。

圆柱的体积公式也可以应用于解决数学问题。

例如,我们可以通过圆柱的体积公式计算出一个圆柱的体积为100立方厘米,底面半径为2厘米,求圆柱的高度。

将数据代入公式中,得到h = 100/(π×2²) ≈ 7.96厘米。

除了圆柱,其他的立体图形也有自己的体积公式,如长方体、球体、锥体等。

通过了解不同立体图形的体积公式,我们可以更好地理解
和应用数学知识。

圆柱的体积公式是数学中一个基本的公式,它在实际生活和工作中有广泛的应用。

通过学习和掌握这个公式,我们可以更好地理解立体图形的性质和计算方法,更好地应用数学知识。

《圆柱的体积》教学案例(精选14篇)

《圆柱的体积》教学案例(精选14篇)

《圆柱的体积》教学案例(精选14篇)《圆柱的体积》教学案例篇1一、创设情景、感知圆柱体积的概念。

老师拿出一个装了半杯水的烧杯,拿出一个圆柱形的物体,预备投入烧杯中。

师:同学们想一想会发生什么状况?(老师将圆柱形的物体投入水中。

)请认真观看后,说一说你有什么发觉?生:水面上升一些。

生:圆柱形的物体挤掉了原来水占有的空间。

生:圆柱体占有肯定空间。

师:我们通常把这个空间叫体积。

生:我发觉上升的水的体积和圆柱的体积是相等的。

师:同学们发觉得都很精彩,谁来说一说什么叫圆柱的体积。

生:圆柱所占空间的大小就叫圆柱的体积。

二、比较大小、创设求圆柱体积的情景。

老师又拿出一个圆柱。

(底面略小而高长一些,体积相差不多)师:这两个圆柱的体积,哪个比较大一些?生:第一个比较大,由于它高一些。

生:其次个比较大,由于它粗一些。

生:他们都是猜的。

第一个圆柱它虽然高一些,但底面积小一些;其次个圆柱虽然底面大一些,它是的高少了一些。

无法精确地比较它们的大小。

师:有什么方法能比较它们的大小呢?(小组争论)生:预备半杯水,将第一具圆柱浸没水中,作好标志,再把其次个圆柱浸没水中,作个标志,哪个水面上升的高一些,哪个圆柱的体积就比较大。

师:这个方法好。

假如要精确地知道哪个圆柱的体积大,大多少,你有什么好方法?(小组争论)生:要学会计算圆柱的体积后就好解决了。

三、大胆猜想,感知圆柱体积公式。

师:你觉得圆柱体积的大小和什么有关?生:和圆柱的高有关,一个圆柱它的高增加,它的体积也会变大些。

生:和圆柱的底面大小有关,一个圆柱它的底面增加,它的体积也会变大些。

师:非常好!大胆地推想一下圆柱的体积应如何计算?(小组争论)生:我猜想用圆柱的底面积乘以它的高就可以求出体积。

师:你同意他的猜想吗?说说你的理由。

生:我们小组觉得他的想法很有道理,由于圆柱体可以看作是有许多个相同的圆叠加起来的。

生:我们小组也觉得的有道理,由于以前长方体和正方体的体积公式也是底面积乘以高。

圆柱形体积的数学公式

圆柱形体积的数学公式

圆柱形体积的数学公式
圆柱的体积可以用数学公式来表示,公式为V = πr^2h,其中V代表圆柱的体积,π是一个数学常数,约等于3.14159,r是圆柱的底面半径,h代表圆柱的高度。

这个公式可以从几何学的角度来理解,圆柱的体积可以看作是底面积乘以高度,而圆柱的底面积就是圆的面积,即πr^2,再乘以高度h即可得到圆柱的体积。

这个公式在工程、建筑、物理等领域经常被使用,用来计算圆柱形物体的体积。

当然,在实际问题中,也可以根据具体情况,通过这个公式进行推导和计算,以得到所需的结果。

希望这个回答能够满足你的需求,如果还有其他问题,也欢迎继续提问。

《圆柱的体积》教案

《圆柱的体积》教案

《圆柱的体积》教案《圆柱的体积》教案(精选9篇)作为一名优秀的教育工作者,时常需要编写教案,借助教案可以更好地组织教学活动。

那要怎么写好教案呢?以下是店铺为大家整理的《圆柱的体积》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《圆柱的体积》教案篇1设计说明1.创设问题情境,激发学习兴趣。

兴趣是最好的老师。

新课伊始,为学生创设“圆柱形橡皮泥的体积你会求吗?”的问题情境,引导学生经过思考、讨论、交流,找到解决的方法。

这样的设计不仅自然渗透了圆柱(新问题)和长方体(已知)的知识联系,还让学生体会到可以有许多方法去解决生活中的实际问题,激发了学生的学习兴趣和探究新知的欲望。

2.实践操作,促进知识迁移。

知识和经验的积累来源于大量的实践活动。

动手操作不但能使学生获得感性的体验,更能加深学生对知识的理解。

本设计为学生创设动手操作的情境,使学生通过动手拼摆,充分感知图形之间的关系,深刻理解圆柱的体积公式的合理性,充分认识到图形转化过程中形变而质不变的辩证关系,使学生在把旧知迁移、发展、转化、构建为新知的同时,动手操作、观察及归纳能力也得到极大的提高。

课前准备教师准备圆柱的体积公式演示教具多媒体课件学生准备圆柱的体积公式演示学具教学过程第1课时圆柱的体积(1)⊙创设情境,导入新课1.出示一块圆柱形橡皮泥。

师:同学们,我们以前学过长方体和正方体体积的计算方法,现在我想知道这块圆柱形橡皮泥的体积是多少,你有好的办法吗?2.学生小组讨论交流并汇报。

预设生1:可以把这块橡皮泥捏成长方体,利用长方体的体积公式来解决。

生2:可以把它放到量杯中,计算上升的水的体积。

3.引入新课。

解决生活中的问题有很多方法,需要我们去发现、去探究。

这节课我们就共同去探究圆柱体积的计算方法。

设计意图:通过创设问题情境,引发学生思考,进一步体会“转化”思想。

⊙新知探究1.利用知识的迁移,猜想圆柱体积的计算方法。

(1)提出猜想。

师:在刚才的问题中同学们提出可以将圆柱形橡皮泥捏成长方体,这时会有什么变化?(形状变了,体积没变)师:我们已经掌握了长方体、正方体的体积计算方法,大家猜一猜:圆柱体积可能等于底面积×高吗?(2)学生讨论、交流。

圆柱体的体积公式

圆柱体的体积公式

圆柱体的体积公式Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT小学数学图形计算公式1、体积公式:1)、圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h 。

2)、长方体的体积公式:体积=长×宽×高。

(底面积乘以高 S底·h)如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc。

3)、正方体的体积公式:体积=棱长×棱长×棱长。

(底面积乘以高 S底·h) 如果用a表示正方体的棱长,则正方体的体积公式为V=a·a·a=a^3。

4)、锥体的体积=底面面积×高÷3 。

圆锥=S底×hx3分之一。

2、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S== a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积小学应用题计算公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、和差问题的公式:(和+差)÷2=大数、(和-差)÷2=小数11、和倍问题:和÷(倍数-1)=小数、小数×倍数=大数、(或者和-小数=大数)12、差倍问题:差÷(倍数-1)=小数、小数×倍数=大数、(或小数+差=大数)13、植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数14、盈亏问题:(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数15、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间17、流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷218、浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量19、利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)单位换算1、长度:1千米=1000米、1米=10分米、1分米=10厘米、1米=100厘米、1厘米=10毫米2、面积:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米1平方分米=100平方厘米、1平方厘米=100平方毫米、3、体(容)积:1立方米=1000立方分米、1立方分米=1000立方厘米、1立方分米=1升1立方厘米=1毫升、1立方米=1000升、4、重量:1吨=1000 千克、1千克=1000克、1千克=1公斤5、人民币:1元=10角、1角=10分、1元=100分6、时间:1世纪=100年 1年=12月、大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月、平年2月28天, 闰年2月29天、1时=3600秒平年全年365天, 闰年全年366天、1日=24小时 1时=60分、1分=60秒。

第7课时 圆柱的体积(1)

第7课时 圆柱的体积(1)

第7课时圆柱的体积(3)教学内容教科书P26例7,完成教科书P29“练习五”中第14、15题。

教学目标1.用已学的圆柱的体积知识解决实际问题,掌握解决问题的策略,培养应用意识。

2.经历探究不规则物体体积的转化和计算过程,让学生在动手操作中体会转化的数学思想,体验“等积变形”的转化过程。

3.通过实践,在合作中建立协作精神,增强学生“用数学”的意识。

教学重点利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

教学难点体会转化的思想。

教学准备课件,瓶体是圆柱形的矿泉水瓶,瓶里装有适量清水。

教学过程一、复习旧知,引出问题1.复习旧知,圆柱体积公式连一连。

上一节课我们认识了圆柱的体积,整理出了圆柱体积的计算公式。

知道哪些条件就可以计算圆柱的体积呢?找同学来连一连。

自己检查一下,真棒。

同桌之间互相说一说可以怎样计算出圆柱的体积?2.教师出示一个满的瓶子。

师:今天这节课老师带来了一个什么?p这个瓶子的容积是多少?不太好回答,那这个瓶子的容积和标签上的净含量是一个意思吗?谁来解释一下?是的,一般情况下瓶子的容积都要大于所装液体的容积。

今天我们一起来研究怎样求这个不规则瓶子的容积的问题。

[板书课题:圆柱的体积(3)不规则瓶子的容积]二、体验过程,探索瓶子容积的计算方法1.老师这儿还有一些纸杯。

今天谁回答问题特别好的,发一个纸杯奖励,下课可以到老师这儿领礼品。

(把饮料盖子拧开倒出来2/3再提问?)同学们观察的都很仔细。

现在你能提出什么数学问题?(123)【申】预设1:瓶子里还有多少水?(就是剩下的水的体积。

)预设2:喝了多少水?(也就是瓶子的空气部分的体积。

)预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积。

)师:同学们都特别爱思考,p老师把大家的问题整理了一下。

大家提出的问题分别有剩下水的体积是多少?瓶子空气部分的体积是多少?瓶子的容积是多少?这样的数学问题。

哪个问题好解决?【学】求瓶子里还有多少水。

圆柱体的体积公式

圆柱体的体积公式

小学数学图形计算公式1、体积公式:1)、圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h 。

2)、长方体的体积公式:体积=长×宽×高。

(底面积乘以高 S底·h)如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc。

3)、正方体的体积公式:体积=棱长×棱长×棱长。

(底面积乘以高 S底·h) 如果用a表示正方体的棱长,则正方体的体积公式为V=a·a·a=a^3。

4)、锥体的体积=底面面积×高÷3 。

圆锥=S底×hx3分之一。

2、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积小学应用题计算公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、和差问题的公式:(和+差)÷2=大数、(和-差)÷2=小数11、和倍问题:和÷(倍数-1)=小数、小数×倍数=大数、(或者和-小数=大数)12、差倍问题:差÷(倍数-1)=小数、小数×倍数=大数、(或小数+差=大数)13、植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数14、盈亏问题:(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数15、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间17、流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷218、浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量19、利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)单位换算1、长度:1千米=1000米、1米=10分米、1分米=10厘米、1米=100厘米、1厘米=10毫米2、面积:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米1平方分米=100平方厘米、1平方厘米=100平方毫米、3、体(容)积:1立方米=1000立方分米、1立方分米=1000立方厘米、1立方分米=1升1立方厘米=1毫升、1立方米=1000升、4、重量:1吨=1000 千克、1千克=1000克、1千克=1公斤5、人民币:1元=10角、1角=10分、1元=100分6、时间:1世纪=100年 1年=12月、大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月、平年2月28天, 闰年2月29天、1时=3600秒平年全年365天, 闰年全年366天、1日=24小时 1时=60分、1分=60秒。

北师六年级下册数学1单元 第5课时 圆柱的体积(1) 教案

北师六年级下册数学1单元 第5课时 圆柱的体积(1) 教案
如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,那么圆柱的体积计算公式可以表示为V=Sh
如果圆柱的底面积未知,已知底面半径、直径、或底面周长,我们可以怎样计算呢?认真想一想。
生:如果已知底面半径,就需要先算出圆柱底面圆的面积再乘高,用字母表示为V =πr2h;
如果已知底面直径或周长,就需要先算出底面半径,再算底面积乘高,分别用字母表示是V =π(d÷2)2h、V =π(C÷π÷2)2h
师:在底面积未知的情况下,我们都需要先计算出底面半径,只有根据半径才能计算底面积。明白了这些让我们回头帮助淘气和笑笑解决刚才的问题吧!
笑笑了解到一根柱子的底面半径为0.4m,高为5m。你能算出它的体积吗?试一试,并说说你的计算过程和注意事项。
生:已知底面半径和高,求体积,可以根据V=πr2h直接计算。3.14×0.42×5=3.14×0.16×5我们先来计算0.16×5比较简单,不容易出错,最终计算结果是2.512m3,一定要注意单位是体积单位。
学情分析
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课最大化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过 “类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
教学策略
引导学生利用“等积变形”的方法去探究圆柱体积的计算方法。
教学内容
北师大版六年级下册 教科书第8页
教学目标
1.结合具体情境和实践活动,了解圆柱体积的含义,进一步理解体积和容积的含义。
2.通过圆柱与长方体的“类比”,经历“猜想与验证”探索圆柱体积计算方法的过程,体会“类比”的数学思想方法。

圆柱体积公式有哪些怎么算

圆柱体积公式有哪些怎么算

圆柱体积公式有哪些怎么算圆柱体的体积公式是基于其底面积和高度来计算的。

以下是圆柱体积的几种常见公式以及详细计算方法。

1.圆柱体的体积公式:圆柱体的体积(V)等于底面积(A)乘以高度(h)。

V=A×h2.圆柱体的底面积公式:圆柱体的底面积等于圆的面积。

A=πr^23.计算方法示例:假设我们有一个圆柱体,其底面半径为3m,高度为5m。

我们可以按照以下步骤进行计算:a.首先计算底面的面积:A=πr^2A=3.14×3^2A=3.14×9A≈28.26平方米b.然后将底面积乘以高度来计算体积:V=A×hV≈28.26×5V≈141.3立方米以上是在已知底面半径和高度的情况下计算圆柱体体积的基本方法。

然而,有时候给定的信息可能不完整,需要根据其他已知条件进行计算。

4.根据直径来计算:如果给出的是圆柱体的直径(d),而非半径,可以按照以下方法将直径转换为半径:r=d/2然后,再使用上述公式进行计算。

5.根据表面积来计算:如果给出的是圆柱体的表面积(S),并且其他条件未知,可以按照以下步骤进行计算:a.首先计算底面的面积:A=S/2+πr^2b.然后,可以根据已知的底面积和面积公式解得半径。

c.最终,再使用体积公式进行计算。

6.根据体积和高度计算底面积:如果给出的是圆柱体的体积和高度,而底面积未知,可以按照以下步骤进行计算:a.首先,将体积公式转换为底面积公式:A=V/hb.根据已知的体积和高度,计算得到底面积。

总之,圆柱体的体积公式是基于其底面积和高度来计算的。

根据已知的条件,可以使用不同的公式来计算圆柱体的体积、底面积或其他参数。

圆柱体的体积 (1)

圆柱体的体积 (1)

讨论题
1、拼成的长方体的体积与原来的圆柱体体积是否相等? 2、它的底面积变了吗? 3、它的高变了吗?
割拼成
长方体体积和原来圆柱体相等 长方体底面积和原来圆柱体底面积相等 长方体高和原来圆柱体的高相等
长方体的体积=底面积×高
所以
圆柱体的体积=底面积×高
V=S×h
例1
一根圆柱形钢材,底面积 是20平方厘米,高是1.5米。 它的体积是多少?
图1 :


讨论题:它们的什么条件是相同的?什 么条件不同?谁的体积大?
图2


讨论题:甲圆柱与乙圆柱谁的体积大?
图2
讨论题:它们的什么条件是相同的?什 么条件不同?谁的体积大?
圆柱的体积与底面的面积和高有关系,究竟 有什么关系? 圆柱能否像圆形一样转化成我们学过的图形, 从而推出它的体积计算公式呢?
1.5米=150厘米 V=SH =20×150=3000(立方厘米)
答:它的体积是3000立方厘米。
做一做
(1)一根圆柱形木料,底面积为75平方 厘米,长90厘米,它的体积是多少?
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
我能行!
看图列式,并写出相应的公式。
12平方分米
7分米
V=兀(d÷2)×h
2
由于它们都是直柱体,所 以,体积计算公式相同
直柱体的体积 = 底面积×高
V =s h
(1)你会计算它们的体积吗?
(2)试写出它们的体积公式。
2.5平方分米
5平方米
4.5米
5分米
你收获了什么?
圆柱体的体积
北师大六年级数学下册
设计:陈荣华
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:圆柱的体积(1)
教学内容
P25
课型
新授课
教案设计
杨贤舜
执教
杨贤舜
单元第(4)课时
教学目标
①经历公式推导过程,理解并掌握体积计算方法;
②解决简单实际问题,培养学生独立思考能力;
③渗透转化和极限思想。
教学重点难点
重点:推导公式。
难点:渗透极限思想
教学预设
设计意图
问题生成
动态表现




一、情境导入
4、总结反思
5、达标检测
第28页的1、3、4题
创设情境
提出问题
激发欲望
自主探究
发散思维
点拨方法:转化
复习迁移
合作探究
渗透极限思想




圆柱的体积
长方体的体积=底面积X高
圆柱的体积=底面积X高
用字母表示V=Sh=πr2
教学后记
注:教案和课件应提前一周分发到每位老师手上,教案中的内容字体采用五号宋体,课题采用四号宋体。
2、自主探究
(1)你有办法知道这个圆柱形蛋糕的体积吗?
预设:1、捏成长方体。2排水法。3、公式法。
点拨:转化
(2)你知道这个公式是这么推导出来的吗?
1、引导回顾圆面积公式的推导方法
2、小组合作利用学具探究一
(1)圆柱体切拼后,转化为什么形体?什么变了?什么没变?
(2)交流点拨
3、小组合作利用学具探究二
(5)根据公式,你想到了什么?、
4、你现在能解决小红的问题了吗?(给出数据:圆柱的半径15厘米,高10厘米。长方体的长30厘米,宽25厘米,高9厘米)
3、巩固拓展
1、第25页的做一做1、2题
2、(1)已知一个圆柱的体积是100立方米,底面积是20平方米,高是多少?
(2)已知一个圆柱的体积是200立方米,高10米,这个圆柱的底面积是多少?
请同学们重点探究:将圆柱体转化为长方体来进行推导。
(1)长方体的底面积与圆柱的什么有关系?有什么关系?
(2)长方体的高与圆柱的什么有关系?有什么关系?
(3)你认为圆柱的体积可以怎样计算?为什么?
3、交流拨
(1)学生演示讲解
(2)课件演示:当分的份数越多时,拼成的图形越接近长方体。
(3)完整推导
(4)字母公式
奶奶生日了,小红准备给奶奶买一个生日蛋糕。到了蛋糕店,她发现有两款蛋糕比较不错,一款是圆柱形的,一款是长方体的,而且价格相同。这时她犹豫了,买哪款蛋糕更划算呢?
提问:你打算怎样解决这个问题?
预设:1、比重量2、比体积
提问:(1)圆柱的体积是指什么?
(2)怎样求长方体的体积?
师:圆柱体的体积?揭示课题
相关文档
最新文档