九年级数学用列举法求概率1

合集下载

25.2 用列举法求概率(第1课时)九年级上册数学人教版

25.2 用列举法求概率(第1课时)九年级上册数学人教版
一个因素所包含的可能情况
另一个 因素所 包含的 可能情 况
两个因素所组合的所 有可能情况,即n
说明
如果第一个 因素包含2种 情况;第二 个因素包含3 种情况;那 么所有情况
n=2×3=6.
探究新知 素养考点 1 利用列表法解答掷骰子问题
例1 同时掷两个质地均匀的骰子,计算下列事件
的概率: (1)两个骰子的点数相同.
.
(3,3)
课堂检测
拓广探索题
在6张卡片上分别写有1-6的整数,随机地抽取一张后 放回,再随机地抽取一张,那么第一次取出的数字能够 整除第二次取出的数字的概率是多少?
第二第张一 张
1
2
3
4
5
6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
1 第第 二一个个 2 3 4 5 6 1
(2)两个骰子的点数之和
2
是9.
3
4
(3)至少有一个骰子的点数 5
为2.
6
探究新知
分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷
出1、2、···6中的每一种情况,第2枚骰子也可能掷出1,2,···,
6中的每一种情况.可以用“列表法”列出所有可能的结果如下:
解:利用表格列出所有可能的结果:
结果 第二次
第一次


红1
红2
(白,红1) (白,红2)
红1
(红1,白)
(红1,红2)
红2
(红2,白) (红2,红1)
探究新知
注意
通过例2及拓展延伸的讲解,放回与不放回 列举的过程是不同的,解答问题时,注意明确, 若无明确,具体问题具体分析.

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册
A.


B.


1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.




D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.


B.


C.


D.


随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.


B.


C.


D.


随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机

人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案

人教版数学九年级上册25.2.1《用列举法求概率》教案一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第二节的第一课时,本节课主要内容是让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。

教材通过引入实际问题,引导学生用列举法列出所有可能的结果,再找出符合条件的结果,从而计算概率。

本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、必然事件等,并掌握了用树状图法求概率的方法。

但是,由于九年级学生的逻辑思维能力和空间想象能力还在发展阶段,对于用列举法求概率的方法可能会感到困惑。

因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握列举法求概率的方法。

三. 教学目标1.知识与技能目标:让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。

2.过程与方法目标:通过学生自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:用列举法求概率的方法。

2.难点:如何引导学生理解和掌握用列举法求概率的方法,以及如何解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。

2.互动教学法:通过学生之间的合作交流,培养学生解决问题的能力。

3.引导发现法:教师引导学生发现列举法求概率的步骤和方法,培养学生自主学习的能力。

六. 教学准备1.教学课件:制作课件,展示相关例题和练习题。

2.练习题:准备一些实际问题,让学生课后练习。

七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如抛硬币、抽奖等,引导学生思考如何求解这些问题。

让学生意识到用列举法求概率的重要性。

2.呈现(10分钟)教师展示一些简单的例题,如抛硬币两次,求正正、正反、反正、反反的概率。

人教版初中数学九年级上册教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率

人教版初中数学九年级上册教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率

当一个事件要涉及两个因素并且可能出现
的结果数目较多时,通常采用列表法.
运用列表法求概率的步骤如下:
①列表;
②通过表格确定公式中m、n的值;
③利用P(A)=
m n
计算事件的概率.
基础巩固
随堂演练
• 1.把一个质地均匀的骰子掷两次,至少有一次
骰子的点数为2的概率是( ) D
A. 1 2
C. 1 36
2
3
4
5
6
1 1,1 2,1 3,1 4,1 5,1 6,1
2 1,2 2,2 3,2 4,2 5,2 6,2
3 1,3 2,3 3,3 4,3 5,3 6,3
4 1,4 2,4 3,4 4,4 5,4 6,4
5 1,5 2,5 3,5 4,5 5,5 6,5
6 1,6 2,6 3,6 4,6 5,6 6,6
第1枚 第2枚
1 2 3 4 5 6
(123•)记解两至:枚少骰有子一的枚点骰数子相的同和点为是数事9为为件2事为A件事. B件. C.
P(CBA)
1641 36
.
1 69
.
点数一相共同有的3有6 种几结种果?.
1
2
3
4
5
6
1,1 2,1 3,1 4,1 5,1 6,1
1,2 2,2 3,2 4,2 5,2 6,2
解:记一次打开锁为事件A.
P(
A)
2 6
13 .
练习
1. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差
别。随机摸出一个小球后,放回并摇匀,再随机摸出一个。
求下列事件的概率:
【教材P138练习 第1题】
(1)第一次摸到红球,第二次摸到绿球;

九年级上册人教版数学《学练优 湖北专版》习题讲评 第25章 第42课时 用列举法求概率(1)

九年级上册人教版数学《学练优 湖北专版》习题讲评  第25章  第42课时 用列举法求概率(1)

6.如图是一个圆形转盘,现按 1∶2∶3∶4 分成四
个部分,分别涂上红、黄、蓝、绿四种颜色,2 自由转动 转盘,停止后指针落在绿色区域的概率为 5 .
7.在 5 张完全相同的卡片上分别画上等边三角形、
平行四边形、等腰梯形、正六边形和圆.在看不见图形
的情况下随机摸出31 张,则这张卡片上的图形是中心对 称图形的概率是 5 .
(1)盒子中有红球多少个; 解:设红球有 m 个,则盒子中共有球(2+3+m)个. 根据题意,得2+32+m=14,解得 m=3. 经检验,m=3 是原方程的解,且符合题意. ∴盒子中有红球 3 个.
变式 2 一个盒子里装有白球 2 个、黑球 3 个,红球 若干个,已知小亮随机抽取一个球恰好为白球的概率为14. 求:
(2)一个袋子中装有 6 个黑球,3 个白球,这些球除 颜色外,形状、大小质地等完全相同.在看不到球的条 件下,随机地从这个袋子中摸出一个球.
①求摸到黑球、白球的概率分别是多少, 摸到黑球 还是白球的概率大;
②求摸到黑球或白球的概率是多少. 解:①P(摸到黑球)=69=23,P(摸到白球)=39=13,摸 到黑球的概率大. ②P(摸到黑球或白球)=1.
第二十五章 概率初步
第42课时 用列举法求概率(1)
核心提要 典例精炼 变式训练 基础巩固 能力拔高 拓展培优
1.表示一个事件发生的可能大小的这个数,叫做这 个事件的概率,概率是某一事件发生的可能性大小的理 论值.
2.利用公式:p=nk计算某事件的概率. (公式中的 n 为该事件所有机会均等的结果总数,k 为我们关注的结果总数)
4.小燕抛一枚质地均匀的硬币 10 次,有 71次正面 朝上,当她抛第 11 次时,正面朝上的概率为 2 .

《25.2.1用列举法求概率(1)》名师教案(人教版九年级上册数学)

《25.2.1用列举法求概率(1)》名师教案(人教版九年级上册数学)

25.2.1 用列举法求概率(彭小永)一、教学目标(一)学习目标1.了解列举法的含义.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.会用列举法计算简单的随机事件的概率.(二)学习重点用列举法计算简单的随机事件的概率(三)学习难点包含两步的随机事件的概率二、教学设计(一)课前设计1.预习任务(1)古典概型试验有两个特点:①一次试验中,可能出现的结果有有限个;②一次试验中,各种结果发生的可能性大小相同 .(2)列表法求概率:当一次试验要涉及两个因素,并且可能出现的结果数目较少时,为不重不漏列出所有可能结果,通常采用列举法 .(3)抛掷一枚质地均匀的硬币,正面朝上的概率是 0.5 ,反面朝上的概率是 0.5 .2.预习自测(1)甲、乙、丙三人站成一排拍照,则甲站在中间的概率为()A. B. C. D.【知识点】随机事件的概率【解题过程】解:甲有左、中、右三个位置可以选择,所以甲站中间的概率为.【思路点拨】列举甲站位所有的可能性,找出符合条件的,便可算出其概率.【答案】B(2)有5张看上去无差别的卡片,上面分别写着1、2、3、4、5,随机抽取3张,用抽到的 3个数字作为边长,恰好构成三角形的概率是()A. B. C. D.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:所有的可能结果有:(1,2,3)、(1,2,4)、(1,2,5)、(1,3,4)、(1,3,5)、(1,4,5)、(2,3,4)、(2,3,5)、(2,4,5)、(3,4,5)共10种情况,只有(2,3,4)、(2,4,5)、(3,4,5)三种情况可以构成三角形,所以结果为.【思路点拨】列举出所有可能的情况,再利用“三角形的任意两边之和大于第三边,任意两边之差小于第三边”,找出符合条件的3组值,便得到答案.【答案】A(3)从-2、-1、0、1、2这5个数中任取一个数,作为关于的一元二次方程的值,则所得的方程有两个不相等的实数根的概率是 .【知识点】概率,根的判别式【解题过程】解:因为方程x2-x+k=0有两个不相等的实根,所以根的判别式,所以,有-2、-1和0满足要求,其概率为.【思路点拨】弄清一元二次方程有两个不相等实根的条件,找出的取值范围,再计算其概率.【答案】(4)在一个不透明的袋子中,有两个红球和两个白球,它们只有颜色上区别,从袋子里随机摸出一个球记下颜色后放回,再随机地摸出一个球,则两次都摸到白球的概率是 . 【知识点】用列举法求概率【解题过程】解:设4个球分别为红1、红2、白1、白2,则可列出下表:第二次第一次红1红2白1白2红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)从表中可以看出,在总共16种情况中,只有4种符合要求,所以,所求的概率为.【思路点拨】用列表的方法便可轻松地找到答案. 如果第一次摸了不放回,则在表格中的从左上到右下这条对角线上的四组数据不会出现. 也就是说,做这种题时,要特别注意第一次摸出后是否放回的问题,它对结果有较大的影响.【答案】(二)课堂设计1.知识回顾(1)必然事件、不可能事件发生的概率分别是 1和0 ;随机事件的概率大于0且小于1 . (2)如果在一次试验中,有n种可能的结果,它们发生的可能性都相同,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .2.问题探究探究一温故知新,引出课题●活动①请思考后,回答下列问题(1)抛掷两枚质地均匀的硬币,有哪些可能的结果?请写出这些结果.(2)抛掷一枚质地均匀的硬币两次,有哪些可能的结果?请写出这些结果.(3)“同时抛掷两枚质地均匀的硬币两次”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果是一样的吗?由学生思考后,举手回答.【设计意图】让学生通过回答前两个问题,初步学会使用列举法解决问题.探究二利用列举法求概率,解决实际问题●活动①初试列举法例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:同时抛掷两枚硬币,有以下四种结果:(正,正)、(正、反)、(反,正)、(反、反);(1)由于全部正面朝上的结果(正,正)这只有1种,所以,P(两次正面朝上);(2)由于全部反面朝上的结果(反,反)这只有1种,所以,P(两次反面朝上)(3)由于一枚正面朝上、一枚反面朝上的结果有(正,反)与(反,正)两种,所以,P(一正.一反)【思路点拨】排列出所有可能的结果,再找出符合条件的,便可轻松得解. 特别注意试验结果要不重不漏.【答案】(1);(2);(3).练习:在一个不透明的盒子里有3个分别标有5、6、7的小球,他们除数字外其他均相同. 充分摇匀后,先摸出1个球不放回,再摸出一个球,那么这两个球上的数字之和为奇数的概率为 .【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:∵摸出的所有可能结果有:(5,6)、(5,7)、(6,5)、(6,7)、(7,5)、(7,6)共6种情况,它们之和分别为11、12、11、13、12、13共4个奇数和2个偶数,∴P(两数之和为奇数)【思路点拨】用列举法得出所有可能的结果,找出符合条件的,问题便迎刃而解.特别注意事先摸出的球是否放回对概率的影响,还要注意不重不漏.【答案】【设计意图】让学生在列举法的使用上熟能生巧.●活动②用列表法求概率例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子的点数和是9;(3)至少有一枚骰子的点数为2.【知识点】用列表法求概率【数学思想】分类讨论思想【解题过程】解:两枚骰子分别记为1和2,可用下表列举出所有可能的结果:第1枚1 2 3 4 5 6第2枚1 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可以看出,同时掷两枚骰子,可能出现36种结果,并且它们出现的可能性相等. (1)两枚骰子的点数相同(记为事件A)的结果有6种,分别是(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6),所以P(A)=;(2)两枚骰子的点数之和为9(记为事件B)的结果有4种,分别是(3,6)、(4,5)、(5,4)、(6,3)所以P(B)=;(3)至少有一枚点数为2(记为事件C)的结果有11种(见上表),所以P(C)=.【思路点拨】分横行和纵列将两枚骰子的点数排列出来,计算符合条件的结果即可. 要注意不重不漏.【答案】(1);(2);(3)练习:有A、B两只不透明口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“细”“致”的字样,B袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是( )A.13B.14C.23D.34【知识点】用列表法求概率【解题过程】解:摸球的结果如下:A袋B袋细致信细信致信心细心致心共有4种可能的结果,且每种结果是等可能性的. 所以抽出“细心”的概率为 . 【思路点拨】用列表法可以轻松得解,注意不重不漏,还要注意摸球讲不讲顺序.【答案】 .●活动③拓展提高,解答概率综合题例3 有一枚均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为,另有三张背面完全相同,正面分别写着-2、-1、1的卡片,小亮将其混合,正面朝下旋转在桌面上,并从中抽取一张,把卡片正面的数字记为.然后他们计算出S=x+y的值.和-2 -1 11 -1 0 22 0 1 33 1 2 44 2 3 5(1)用列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率. 【知识点】用列表法求概率【数学思想】分类讨论思想【解题过程】解:(1)列表如右,共12种情况.(2)P(S=0)=; P(S<2).【思路点拨】用表格将所有情况列举出来,然后找出符合条件的即可轻松得解.【答案】(1)共有如上表的12种情况. (2)P(S=0)=;P(S<2).练习:某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛. 九年级1班经过投票初选,小亮和小丽票数全班并列第一,现在他们都想代表全班参赛. 经过班长与他们协商决定,用掷骰子的办法让获胜者去参赛. 规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面都是偶数,则小丽胜;否则视为平局,若为平局,继续上述游戏,直到分出胜负为止. 如果小亮和小丽都按上述规则各掷一次骰子,解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表法说明理由.【知识点】用列表法求概率【解题过程】解:(1)∵朝上一面的点数为奇数有3种情况,∴P(奇数)(2)由题意知,可列表如下:1 2 3 4 5 61 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可知:共有36种等可能的结果,其中小亮和小丽获胜各有9种结果,∴P(小亮胜)P(小丽胜).【思路点拨】列表法求概率是一种很常见的方法.【答案】(1)P(奇数);(2)公平.小亮与小丽获胜的概率同样大(表格见上). 【设计意图】强化列表法求概率,使其熟练掌握.3. 课堂总结知识梳理(1)列举法的使用条件:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可通过列举试验结果的方法,求出随机事件发生的概率.(2)列表法的使用条件:当一次试验要涉及的因素只有两个(我们也常称为两步操作试验),且每一步的结果为有限多个情形,我们常通过列表的方法列举所有可能的结果,找出事件A可能发生的结果,再利用公式P(A)求它的概率.(3)使用列举法求概率时,要求做到不重不漏.重难点归纳(1)只有有限多个情形时,我们可以使用列举法;(2)当一次试验要涉及两个因素(或叫两步),且每一步的结果为有限多个情形,我们可以通过列表法求它的概率;(3)使用列举法求概率时,要求做到不重不漏. (三)课后作业 基础型 自主突破1. 为支援灾区,小明准备通过爱心热线捐款,他只记得号码的前5位,后三位由5、1、2这三个数字组成,但具体顺序忘记了.他第一次就拨通电话的概率是( ) A. 12 B. 14 C. 16 D. 18【知识点】用列举法求概率 【数学思想】分类讨论思想【解题过程】5、1、2这三个数字的排列方式有:512、521、125、152、215、251共6种,其中只有一种是正确的,所以,他第一次就拨通电话的概率是16.【思路点拨】用列举法不重不漏地将三个数排列出来是关键. 【答案】C 2.在的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )A .1 B.34 C.12 D.14【知识点】用列举法求概率 【解题过程】解:方框中符号的填法共有:(+,+)(-,-)、(+,-)、(-,+)4 种,只有 (+,+)与(-,+)2种符合要求,所以能构成完全平方式的概率为12.【思路点拨】记住完全平方式的符号特点,再用列举法排列出所有的情况,便可求得其概率. 【答案】C3.如图所示,每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______. 【知识点】用列举法求概率【解题过程】解:翻动木牌有6种情形,只有两种情况可以中奖,中奖的概率为【思路点拨】找出所有的情形和符合条件的个数即可计算出相应的概率.【答案】.4.从-2、-1、2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是________.【知识点】用列举法求概率【解题过程】-2、-1、2这三个数学共有6种排法,分别是(-2,-1)、(-1,-2)、(-2,2)、(-1,2)、(2,-2)、(2,-1),其中只有(2,-2)和(2,-1)在第四象限,其它的均不合要求,所以该点在第四象限的概率为.【思路点拨】第四象限的点的横、纵坐标分别为正和负,只有两个点符合条件,其概率为.【答案】5.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是________.【知识点】用列举法求概率【解题过程】长度为8厘米的木棍截成长为整数的三段,共有5组结果,它们分别是:(1,1,6)、(1,2,5)、(1,3,4)、(2,2,4)、(2,3,3),其中只有(2,3,3)这一种情形能构成三角形,其概率为.【思路点拨】注意不重不漏;还要注意三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】 .6. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.34【知识点】用列举法求概率小明小华A BA (A,A)(B,A)B (A,B)(B,B)【解题过程】分别将“打扫社区卫生”和“参加社会调查”记为事件A和事件B,则两人的选择有如下情况,同时选择“参加社会调查”(事件B)的只有一种情况,其概率为14.【思路点拨】用表格排列出所有的情况和符合条件的情况,即可求出其概率.【答案】1 4能力型师生共研7. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为________.【知识点】用列表法求概率【思想方法】分类讨论思想【解题过程】解:可列表如右,共有9种可能的情况,其中只有4种情况符合题意,所以P(两次都是奇数).1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3) (2,3) (3,3)【思路点拨】利用表格排列出所有可能的情况,再找出符合题意的即可.【答案】P (两次都是奇数).8. 一个口袋中有4个相同的小球,分别写有字母A 、B 、C 、D ,随机地抽取一个小球后放回,再随机抽取一个小球.(1)试用列表法列举出两次抽出的球上字母的所有可能结果; (2)求两次抽出的球上字母相同的概率. 【知识点】用列表法求概率 【数学思想】分类讨论思想 【解题过程】解:(1)根据题意,可以列表如右,共有16种可能的结果.(2)因为在总共的16种情况中,只有4种是两个字母相同的情况,所以P (两次的字母相同).【思路点拨】利用表格排列出所有可能的情况,再找出符合题意的即可.【答案】(1)共有16种情况(见上表); (2)P (两次的字母相同).探究型 多维突破9. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色. 求可配成紫色的概率. 【知识点】用列表法求概率 【数学思想】数形结合思想 【解题过程】第1次 第2次A B C DA (A ,A) (B ,A) (C ,A) (D ,A) B (A ,B) (B ,B) (C ,B) (D ,B) C(A ,C) (B ,C) (C ,C) (D ,C)D(A ,D) (B ,D) (C ,D) (D ,D)红 蓝1 蓝2红 (红,红) (红,蓝1) (红,蓝2)解:由于必须是等可能性的,所以需将第2个转盘的蓝色分成蓝1和蓝2 ,因此可列出右表,从表中可以看出,共有6种等可能情况,有3种可以配成紫色,所以P (配成紫色).【思路点拨】只有红配蓝或者蓝配红可以配成紫色;用列表法可以轻松得出所有可能的情况.【答案】P (配成紫色) .10. 如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可以使小灯泡发光.(1)任意闭合其中一个开关,小灯泡发光的概率是多少? (2)任意闭合其中的两个开关,小灯泡发光的概率是多少? 【知识点】用列举法求概率 【数学思想】分类讨论思想 【解题过程】解:(1)由电路图可知,闭合开关D 可以使灯光发光,只闭合A 、B 、C 三个都不使灯光发光,所以,P (闭合一个开关可发光).(2)闭合两个开关的情况如表中所示,其中只有开关D 闭合的才能让小灯光发光,共有6种情况,所以,P (闭合两个开关可发光). 第1 个 第2个A BCDA (B ,A ) (C ,A ) (D ,A )B (A ,B )(C ,B ) (D ,B )C (A ,C ) (B ,C )(D ,C )D(A ,D ) (B ,D ) (C ,D )【思路点拨】注意灯泡发光的一个基本条件是连通有电源的电路.蓝 (蓝,红) (蓝,蓝1) (蓝,蓝2)【答案】(1)P(闭合一个开关可发光);(2)P(闭合两个开关可发光).自助餐1.从2、3、4、5中任选两个数,分别记作m、n,那么点( m,n)在函数图象上的概率为()A. B. C. D.【知识点】用列举法求概率【数学思想】函数思想,分类讨论思想【解题过程】.从2、3、4、5中任选两个数作为点的坐标,分别是(2,3)、(2,4)、(2,5)、(3,2)、(3,4)、(3,5)、(4,2)、(4,3)、(4,5)、(5,2)、(5,3)、(5,4)共有12种情况,在函数图象上的只有(3,4)和(4,3)两个点,所以P(点在函数上). 【思路点拨】选两个数,相当于选了一个数后,不放回,再选一个数. 选了第一个数后是否放回对结果有直接的影响,务必重视.【答案】D2.小强和小华两人玩“石头、剪子、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】若三个动作分别简记为“石、剪、布”,则两人出手的情况包括:(石,石)、(石,剪)、(石,布)、(剪,石)、(剪,剪)、(剪,布)、(布,石)、(布,剪)、(布,布)九种情况,平局只有3种,所以两人平局的概率为.【思路点拨】用列举法排出所有可能的情况,指出平局的3种情况,即可得到答案.【答案】B3.同时抛掷A、B两个小正方体骰子,正面朝上的数字分别记为,并以此确定点P(),那么,点P落在抛物线上的概率为 .【知识点】用列举法求概率【数学思想】函数思想,数形结合思想【解题过程】解:如下表所示,得到的点共有36种情况,只有(1,2)、(2,2)两个点满足要求,所以,点P在抛物线上的概率为 .x y 1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)【思路点拨】用列表法找出所有的点,再将1、2、3、4、5、6作为变量的值代入函数的解析式,求出的值,找出符合条件的点P,便可轻松得解.【答案】.4.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲任选一个数字,记为m,将它放回后,再由乙任选一个数字,记为n. 若m、n满足,则称两人心有灵犀,那么两人心有灵犀的概率是 .【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:从下表可知,共有16种可能的情况,符合条件的有10种,其概率为.甲结果0 1 2 3乙0 0 1 2 31 1 0 1 22 2 1 0 13 3 2 1 0【思路点拨】用表格排列出所有可能的情况,找出符合条件的情况即可轻松得解.【答案】 .5.一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球.【知识点】用列举法求概率【解题过程】解:(1)共有4种情况,摸出红球的概率为;(2)如图,共有16种情况,两次均为红色的只有1种,其概率为.第1 次红黄蓝白第2次红(红,红)(黄,红)(蓝,红)(白,红)黄(红,黄)(黄,黄)(蓝,黄)(白,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)(白,蓝)白(红,白)(黄,白)(蓝,白)(白,白)【思路点拨】第一次摸出后是否放回对结果有着重大影响.【答案】(1)摸出红球的概率为;(2)两次均为红色的概率为.6.六一儿童节前夕,某市“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行彰.某校八年级8个班中只能选两个班级参加这项活动,且八(1)班必须参加,另外再从其他班级中选一个班参加活动.八(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标有1、2、3、4四个数字,转动转盘两次,将两次指针所指的数字相加(当指针指在某一条等分线上时视为无效,重新转动),和为几就选哪个班参加.你认为这种方法公平吗?请说明理由.【知识点】用列表法求概率【数学思想】数形结合思想【解题过程】解:我认为这个方法不公平,理由如下:我们可以用下表列出所有可能的情况. 两次得到的数字之和分别为2、3、4、5、3、4、5、6、4、5、6、7、5、6、7、8共16种情况. 所以,八(2)班被选中的概率为116,八(3)班被选中的概率为216=18,八(4)班被选中的概率为316,八(5)班被选中的概率为416=14,八(6)班被选中的概率为316,八(7)班被选中的概率为216=18,八(8)班被选中的概率为116,所以这种方法不公平.第1 次和第2次1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8【思路点拨】用列表法将所有可能的情况排列出来,算出各个班被选中的概率,通过比较确定是否公平.【答案】这种方法不公平,理由如上.。

九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计

九年级数学人教版上册25.2用列举法求概率第1课时用列表法求概率教学设计
1.列表法的关键是列出所有可能的结果,确保不重复、不遗漏。
2.在列出列表后,如何统计各种结果的数量,以及如何根据数量计算概率。
3.列表法适用于哪些类型的概率问题,以及在实际应用中需要注意的问题。
(三)学生小组讨论
在讲授新知之后,我会组织学生们进行小组讨论。我会给出几个不同难度的实际问题,让学生们分组讨论如何使用列表法求概率。在这个过程中,我会鼓励学生们积极发言,分享自己的观点和解决问题的方法。
8.教学反思:教师在本节课结束后,进行教学反思,不断提高教学水平。
-分析教学过程中的优点和不足,调整教学方法,以满足学生的学习需求。
四、教学内容与过程
(一)导入新课
在本节课开始时,我将通过一个生动的例子来导入新课。我会问学生们:“同学们,你们在生活中遇到过抽奖的活动吗?当你们参加这样的活动时,是否想过自己中奖的概率是多少?”通过这个问题,让学生们思考概率在生活中的应用。然后,我会拿出一个提前准备好的抽奖箱,里面装有一些彩球,每个球上写有不同的数字。
1.学生对列表法概念的理解:部分学生可能对列表法的概念理解不够深入,需要通过具体实例和讲解,帮助他们理解和掌握列表法的内涵。
2.学生在解决问题时的思维定势:学生在解决概率问题时,容易受到思维定势的影响,局限于某一种解法。教师应引导学生尝试不同的方法,培养其灵活运用列表法的能力。
3.学生的合作交流能力:在小组讨论中,部分学生可能表现出不积极参与、沟通不畅等问题。教师应关注学生的合作交流能力,引导他们积极参与讨论,提高团队协作能力。
(二)过程与方法
1.引导学生通过观察、分析、总结,发现列表法求概率的方法。
2.通过小组合作,培养学生的团队协作能力和沟通能力。
3.设计具有挑战性的问题,激发学生的探究欲望,培养其解决问题的能力。

人教新目标九年级数学上25.2用列举法求概率(第1课时)教学设计

人教新目标九年级数学上25.2用列举法求概率(第1课时)教学设计

25.2用列举法求概率(第1课时)一、教学目标【知识与技能目标】(1)理解“包含两步,并且每一步的结果为有限多个情形”的意义。

(2)会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果。

(3)学习用列表法计算概率,并通过比较概率大小作出合理的决策。

【过程与方法目标】(1)经历实验、列表、统计、运算等活动,学生在具体情境中分析事件,计算其发生的概率。

(2)渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。

【情感与态度目标】(1)通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯和提高学生的自学能力。

(2)在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。

二、教学重难点【重点】正确地用列表法计算出现结果数目较多时随机事件发生的概率【难点】如何灵活地列表表示出试验所有等可能的结果三、教具准备多媒体课件、学案、尺四、教学过程(一)问题与情境1、必然事件:在一定条件下必然发生的事件。

2、不可能事件:在一定条件下不可能发生的事件。

3、随机事件:在一定条件下可能发生也可能不发生的事件回答下列问题,并说明理由.(1)掷一枚硬币,正面向上的概率是_______;(2)袋子中装有 5 个红球,3 个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,它是红色的概率为________;(3)掷一个骰子,观察向上一面的点数,点数大于 4 的概率为______.(二)猜硬币游戏老师向空中抛掷两枚质地均匀的硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢;请问,你们觉得这个游戏公平吗?(三)探究新知例1 同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上解:方法一:将两枚硬币分别记做 A、B,于是可以直接列举得到:(正正)(正反)(反正)(反反)1P(两枚正面向上)=41P(两枚反面向上)=4P(一枚正面向上,一枚反面向上)=12例2、同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子点数之和是9(3)至少有一个骰子的点数为2解:(1)两枚骰子点数相同(记为事件A)的结果有 6种,即(1,1 1),(2,2),(3,3),(4,4),(5,5),(6,6),所以,P(A)=6(2)两枚骰子点数之和是 9(记为事件B)的结果有 4 种,即(3,16),(4,5),(5,4),(6,3),所以,P(B)=9(3)至少有一枚骰子的点数是 2(记为事件C)的结果有 11 种,11所以,P(C)=36(四)学以运用1、如图,甲转盘的三个等分区域分别写有数字1、2、3,乙转盘的四个等分区域分别写有数字4、5、6、7。

25.2 用列举法求概率(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)

25.2 用列举法求概率(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)

25.2 用列举法求概率(第一课时)一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十五章“概率初步”25.2 用列举法求概率(第一课时列表法求概率),内容包括:用列举法(列表法)求简单随机事件的概率.2.内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法. 当每次试验涉及两个因素时,为了更清晰、不重不漏地列举出试验的所有结果,教科书给出了以表格形式呈现的列举法——列表法.这种方法适合列举每次试验涉及两个因素,且每个因素的取值个数较多的情形.相对于直接列举法,用表格列举体现了分步分析对思考较复杂问题时起到的作用.将试验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中,就形成了不重不漏地列举出这两个因素所有可能结果的表格.这种分步分析问题的方法,将在下节课树状图法中进一步运用.基于以上分析,确定本节课的教学重点是:用列表法求简单随机事件的概率.二、目标和目标解析1.目标1)会用直接列举法、列表法列举所有可能出现的结果.2)用列举法(列表法)计算简单事件发生的概率.2.目标解析达成目标1)的标志是:对于结果种数有限且每种结果等可能的随机事件,可以用列举法求概率;当每次试验涉及两个因素,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将试验的所有结果不重不漏地表示出来.达成目标2)的标志是:掌握列表法求概率的步骤:1)列表;2)通过表格计数,确定所有等可能的结果数n和符合条件的结果数m的值;,计算出事件的概率.3)利用概率公式P(A)=mn三、教学问题诊断分析学生已经理解了列举法求概率的含义,但对于涉及两个因素的试验,如何不重不漏地列举出试验所有可能的结果这对学生而言是一种考验,如何设计出一种办法解决这个较复杂问题,“分步”分析起到了重要作用.基于以上分析,本节课的教学难点是:掌握列表法求概率的步骤.四、教学过程设计(一)复习巩固【提问】简述概率计算公式?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾上节课所学内容,为接下来学习利用列表法求概率打好基础.(二)探究新知【问题一】老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,学生赢. 你们觉得这个游戏公平吗?师生活动:教师提出问题,学生尝试思考.【设计意图】通过现实生活中的实际问题,激发学生学习数学的兴趣.【问题二】同时掷两枚硬币,求下列事件的概率:1)两枚硬币两面一样.2)一枚硬币正面朝上,一枚硬币反面朝上.3)问题一中的游戏公平吗?师生活动:教师提出问题,先要求学生说出可能出现的情况.部分学生认为:上述三个事件恰好代表了抛掷两枚硬币的所有可能的结果,故概率分别为13;另一位学生认为:出现结果为:正正、正反、反正、反反,其中“正反”与“反正”应分别算作两种可能的结果,故上述事件的概率分别为14,14和12.教师强调:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法.师:你觉得问题一中的游戏公平吗?师生活动:学生通过刚才的结论得出:学生赢的概率与教师赢的概率相等,所以该游戏是公平的. 教师补充说明:上述这种列举法我们称为直接列举法(枚举法)并给出使用直接列举法的注意事项.【设计意图】让学生掌握用列举法求概率的使用条件:①所有可能出现的结果是有限个.②每个结果出现的可能性相等.【问题三】“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?由此你发现了什么?师生活动:教师共同作答,得出:同时掷两枚硬币,会出现:两正、两反,一正一反和一反一正;先后两次掷一枚硬币,也会出现:两正、两反,一正一反和一反一正.所以这两种实验的所有可能的结果一样.教师指出:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的,因此作此改动对所得结果没有影响.当试验涉及两个因素时,可以“分步”对问题进行分析.【设计意图】让学生理解当试验涉及两个因素时,可以“分步”对问题进行分析.(三)典例分析与针对训练例1 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是_________【针对训练】1. 从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为____________2. 如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为______________3.(2020·江苏南通·统考中考真题)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:1)写出这三辆车按先后顺序出发的所有可能结果;2)两人中,谁乘坐到甲车的可能性大?请说明理由.4.(2022·江苏南京·统考中考真题)甲城市有2个景点A、B,乙城市由3个景点C、D、E,从中随机选取景点游览,求下列事件的概率:(1)选取1个景点,恰好在甲城市;(2)选取2个景点,恰好在同一个城市.【设计意图】巩固用列举法求概率.(四)探究新知【问题三】同时投掷两个质地均匀的骰子,观察向上一面的点数,求下列事件的概率.1)两个骰子的点数相同.2)两个骰子点数的和是9.3)至少有一个骰子的点数为2.师生活动:师生分析得出,与问题二类似,问题三的试验也涉及两个因素(第一枚骰子和第二枚骰子),但这里每个因素的取值个数要比问题二多(抛一枚硬币有2种可能的结果,但掷一枚骰子有6种可能的结果),因此试验的结果数也就相应要多很多.因此,直接列举会比较繁杂,可以使用列表法.列表法适合列举每次试验涉及两个因素,并且每个因素的取值个数较多的情形.师:如何列表?师生活动:学生分析,因为试验涉及两个因素(两枚骰子),可以分两步进行思考,将第1枚骰子的所有可能结果作为表头的横行,将第2枚骰子的所有可能结果作为表头的竖列,列出如下表格:由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相同.1)两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)= 636= 16 2)两枚骰子的点数相同(记为事件B)的结果有4种,即(3,6),(6,3),(5,4),(4,5) 所以P(B)= 436= 193)至少有一个骰子的点数为2(记为事件C)的结果有11种,即(1,2),(2,2),(3,2),(4,2),(5,2),(6,2) (2,1),(2,3),(2,4),(2,5),(2,6)所以P(B)= 1136【设计意图】明确列表法.【问题四】简述列表法求概率的步骤?师生活动:教师提出问题,学生尝试回答.教师引导与归纳得出:1)列表;2)通过表格计数,确定所有等可能的结果数n 和符合条件的结果数m 的值;3)利用概率公式P (A )=mn ,计算出事件的概率.【设计意图】让学生掌握列表法求概率的方法.(五)典例分析与针对训练例2 一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是_______________【针对训练】1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行调查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是______________2.从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛.(1)若甲一定被选中参加比赛,再从其余3名学生中任意选取1名,恰好选中乙的概率是___________;(2)任意选取2名学生参加比赛,求一定有丁的概率.3.在一个不透明的口袋中装有大小材质完全相同的三个小球,分别标有数字3,4,5, 另有四张背面完全一样的卡片,卡片正面分别标有数字2,3,4,5,四张卡片背面朝上放在桌面上.小明先从口袋中随机摸出一个小球,记下小球上的数字为x,小红再从桌面上随机抽出一张卡片,记下卡片上的数字为y.(1)从口袋中摸出一个小球恰好标有数字3的概率是___________;(2)求点P(x,y)在直线y=x−1上的概率.【设计意图】巩固列表法求概率的方法.(六)直击中考1.(2023·安徽中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59 B.12C.13D.292.(2023·湖南中考真题)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是()A.16 B.14C.13D.123.(2023·黑龙江齐齐哈尔中考真题)某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.12 B.13C.14D.16【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点. (七)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 用列举法求概率应该注意哪些问题?3. 列表法适用于解决哪类概率求解问题?使用列表法有哪些注意事项?(八)布置作业P138:练习五、教学反思。

人教版九年级数学上册25.2用列表法求概率一等奖优秀教学设计

人教版九年级数学上册25.2用列表法求概率一等奖优秀教学设计

人教版义务教育课程标准实验教科书九年级上册25.2用列举法求概率教学设计一、教材分析1、内容解析:在一次实验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举实验结果的方法,求出随机事件发生的概率。

当每次实验涉及两个因数时,为了更清晰、不重不漏的列举出实验的结果。

教科书给出了以表格形式呈现的列举法——列表法。

这种方法适合列举每次实验涉及两个因素,且每个因素的取值个数较多的情形。

相对于直接列举,用表格列举体现了分步分析对思考较复杂问题时所起到的作用。

将实验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中。

就形成了不重不漏的列举出这两个因数所有可能结果的表格。

这种分步分析问题的方法将在下节课树状图法和高中分步乘法计算原理的学习中进一步运用。

另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念。

2、目标和目标解析:(1)、目标:①用列举法求简单随机事件的概率,进一步培养随机观念。

②感受分步分析对思考较复杂问题时起到的作用。

(2)、目标解析:达成目标1的标志是:学生清晰的知道,对于结果种数有限且每种结果等可能的随机实验中的事件,可以用列举法求概率。

当每次实验涉及两个因数,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将实验的所有结果不重不漏的列举出来,学生能够利用列表法正确计算简单随机事件的概率。

结合具体问题进一步体会概率是如何定量地刻画随机事件发生可能性的大小。

目标2体现在学生探索、归纳列表法的过程中。

学生在问题的引导下思考如何才能将涉及两个因素实验的所有可能的结果不重不漏的表示出来。

将体会“分步”策略对分析复杂问题起到的作用。

3、教学重、难点教学重点:用列表法求简单随机事件的概率。

教学难点:列表格不重不漏的列举随机实验的所有结果。

突破难点的方法:让学生合作探究,自主学习,体验列举实验结果过程。

二、教学准备:多媒体课件、导学案。

人教版数学九上25.2用列举法求概率(第1课时)教学设计

人教版数学九上25.2用列举法求概率(第1课时)教学设计
(2)小组展示:每组选取一道具有代表性的问题,展示列举法的解题过程,并分享解题心得。
作业要求:
1.学生在完成作业时,要注重解题过程的规范性和逻辑性,避免出现遗漏和重复。
2.对于思考题,学生可以尝试用文字、图表等形式进行阐述,培养分析和解决问题的能力。
3.小组合作任务中,每个成员都要积极参与,充分发挥团队协作精神,共同完成任务。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结列举法求解概率问题的步骤和要点。
2.学生分享自己的学习心得和收获,提出在解题过程中遇到的问题和困惑。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固所学知识。
4.教师强调数学在生活中的实际应用,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学的知识,培养学生的实际应用能力,特布置以下作业:
6.作业布置,分层设计
教师可以根据学生的实际情况,设计不同难度的作业,使学生在完成作业的过程中,达到巩固知识、提高能力的目的。
7.教学评价,关注过程
教师应关注学生在课堂上的表现,包括思考、交流、合作等方面,进行全面、客观的评价,激励学生不断进步。
四、教学内容与过程
(一)导入新课
1.教师出示一个不透明的袋子,里面装有红球和白球,提问:“同学们,你们知道从袋子中随机摸出一个球,摸到红球和白球的概率分别是多少吗?”
3.学生在合作交流过程中,可能存在沟通不畅、分工不明确等问题,需要教师引导和培养团队协作能力。
4.部分学生对数学学科的兴趣和热情有待提高,教师应关注学生的情感态度,激发学生的学习积极性。
针对以上学情分析,教师在教学过程中应注重以下方面:
1.通过生动的实例,引导学生深入理解列举法的内涵,培养学生的逻辑思维能力。

人教版九年级数学上册25.2用列举法求概率(第1课时)

人教版九年级数学上册25.2用列举法求概率(第1课时)

“课后练案”内容.
公平
请同学们回答下列问题. 1.概率是什么? 2.P(A)的取值范围是什么? 不管求什么事件的概率,我们都可以做大量的试验.求
频率得概率,这是上一节课也是刚才复习的内容,它具有普
遍性,但求起来确实很麻烦,是否有比较简单的方法,这种 方法就是我们今天要介绍的方法——列举法.
把学生分为10组,按要求做试验并回答问题. (1)从分别标有1,2,3,4,5号的5根纸签中随机地抽取 一根.抽出的号码有多少种?其抽到1的概率为多少? (2)掷一个骰子,向上的一面的点数有多少种可能?向上 一面的点数是1的概率是多少?
老师点评:
(1)可能结果有1,2,3,4,5等5种、由于纸签的形状、 大小相同,又是随机抽取的,所以我们可以认为:每个号被 抽到的可能性相等,都是1/5.其概率是1/5.
(2)有1,2,3,4,5,6等6种可能.由于骰子的构造相同 质地均匀,又是随机掷出的,所以我们可以断言:每个结果 的可能性相等,都是1/6,所以所求概率是1/6.
20 4 4 4
A D
C
解:设原来盒中有白色弹珠x颗,黑色弹珠y颗.
x 1 xy 3
∴x=4.
x 12 2 x y 12 3
1.学生互相交流这节课的体会与收获,教师可将学生的 总结与板书串一起,使学生对知识掌握条理化、系统化.
2.在学生交流总结时,还应注意总结评价这节课所经历 的探索过程,体会到的数学价值与合作交流学习的意义.
n
知识点 用直接列举法求概率
A
B
知识点 用直接列举法求概率
B
B
知识点 用直接列举法求概率
D
1 5
例1:在一个不透明的袋子里放入除颜色外完全相同的 2个红球和2个黄球,摇匀后摸出一个记下颜色,放回后摇匀,

初三【数学(人教版)】25.2 用列举法求概率(1)

初三【数学(人教版)】25.2 用列举法求概率(1)

第2枚
1
2
3
4
5
6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
第 1
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

5 (5,1) (5,2) (5,3) (5,4) (5,5) 6 :(6,1) (6,2) (6,3) (6,4) (6,5)
分析:两枚骰子可能出现的结果:
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
1.两枚是奇数 ൡ 至少有一枚是奇数
2.一枚是奇数一枚是偶数
3. 0枚是奇数(都是偶数)
27 3 P(C)= 36 = 4 .
第2枚
1
2
3
4

1 (1,1) (1,2) (1,3) (1,4) (1,5)

2 (2,1) (2,2) (2,3) (2,4) (2,5)
3 (3,1) (3,2) (3,3) (3,4) (3,5)
1
4 (4,1) (4,2) (4,3) (4,4) (4,5)
第2枚
1
2
3
4
5
6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
1
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

九年级数学上册《用列举法求概率》教案、教学设计

九年级数学上册《用列举法求概率》教案、教学设计
a.通过课堂提问、练习和课后作业,了解学生对知识的掌握程度。
b.针对学生的反馈,及时调整教学策略,提高教学效果。
7.关注学生心理健康,营造良好课堂氛围:
a.教师应以鼓励、表扬为主,关注学生的心理需求,增强他们的自信心。
b.营造轻松、愉快的课堂氛围,让学生在愉悦的情感中学习。
四、教学内容与过程
(一)导入新课,500字
一、导入新课
1.引导学生回顾已学的概率知识,为新课的学习做好铺垫。
2.提问:“我们之前学过如何求一个事件的概率吗?今天我们要学习一种新的求概率的方法,你们猜猜是什么?”
二、自主学习
1.让学生阅读教材,了解列举法求概率的基本概念和步骤。
2.学生尝试解决教材中的例题,体验列举法求概率的过程。
三、合作探究
b.选取典型例题进行讲解,引导学生运用所学知识解决问题。
c.设计课堂练习,让学生独立完成,巩固所学知识。
5.课堂总结与拓展:
a.让学生总结本节课所学的知识点,加深理解。
b.提问引导学生思考列举法在实际生活中的应用,激发他们的学习兴趣。
c.布置课后作业,巩固所学知识,培养学生的自主学习能力。
6.教学评价与反馈:
a.让学生自主阅读教材,了解列举法求概率的基本概念和步骤。
b.将学生分组,进行合作探究,讨论列举法在实际问题中的应用,培养学生的团队协作和沟通能力。
3.分层教学,因材施教:
针对不同学生的认知水平,设计不同难度的练习题,使每位学生都能在课堂上获得成就感。
4.精讲精练,强化巩固:
a.教师针对学生的讨论成果,详细讲解列举法求概率的步骤和方法。
2.难点:
a.学生在列举过程中可能出现遗漏或重复现象,需要引导他们细心、严谨地完成列举。

九年级数学 用列举法求概率

九年级数学  用列举法求概率

A反B正 A正B反 A反B反
所以,
n=4
m=1
p(2正)=1/4
例1、袋子里面装有一个黑球两个红球、
摸两次,第一次放回去再摸一次,两次都 摸到红球的概率是多少。 如图:
解: 1 2
第一次
红1
红2

第二次
红1 红2 黑
红1 红2 黑 红1 红2 黑
所以, n=9 所以
m=4
4 p(2红)= 9
归纳 把所有可能事件写出来、或者 用表格、树形图表示出来。然后 p(A)=m/n求出概率,这种求概率 的方法叫列举法求概率。
上节知识的回顾
1、概率公式 p(A)=m/n 2、不可能事件的概率;p(A)=0 3、必然事件的概率; P(A)=1 本节内容;列举法求概率
投一枚硬币求正面向上的概率。 袋子里有两个红球一个黑球,摸一次摸到黑 球的概率。
例1,一学生一次投两枚硬币试求两枚正面都朝上的概率。
A
B
解,列举所有的可能性:A正B正
练习(一)
是一电子元件,它有通电和不通电两种情况。求 下列安装由A到B通电的概率
解:1通2通 1通2不通 。 1不通2通 1不通2不通 P(通)=m/n=1/4
解:P(通)=m/n=3/4 解
练习(二)
三两概率 。
解:P(3车右拐)=1/27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程师无正当理由不确认承包商提出的变更工程价款报告时,则变更工程价款报告自行生效的时间是自变更价款报告送达之日起天后。A.7B.10C.14D.28 下列关于家庭资产负债表的说法,错误的是。A.借鉴企业的资产负债表,可以制定出家庭资产负债表B.其格式可以采用报告式,也可以采用账户式C.报告式即将资产项目放在下方,负债项目在上方D.账户式即将表分为左右两个部分,左边是资产项目,右边是负债项目 肝性脑病的正确概念应是()A.肝脏疾病并发脑部疾病B.肝功能衰竭并发脑水肿C.肝功能衰竭所致的昏迷D.肝功能衰竭所致的精神紊乱性疾病E.严重肝病所致的神经精神综合征 演示脱手术衣的步骤。 对于稳定的系统,衰减率总是。A、大于1;B、大于0;C、小于1;D、小于0。 比赛场地线宽为。A、必须为12cmB、不得超过12cmC、必须为10cm 引起副溶血性弧菌食物中毒的好发食品是A.奶制品B.海产品C.豆制品D.剩饭E.肉制品 对于一患慢性肾盂肾炎患者,经系统治疗,尿菌已阴性,为防止复发,下列哪项措施是错误的A.寻找尿路梗阻等不利因素B.停药后,复查尿常规和细菌培养C.多饮水,定时排尿D.增加营养,提高免疫的功能E.大剂量抗生素联合应用 下列关于女性生殖系统炎症的叙述,错误的是。A.滴虫阴道炎患者其性配偶也应检查B.生殖器炎症常为需氧菌及厌氧菌混合感染C.衣原体支原体所致生殖器炎症属性传播疾病D.滴虫阴道炎治疗一疗程后复查阴性即为治愈E.外阴阴道念珠菌病久治不愈,应查血糖 对洋地黄中毒后处理不正确的是A.补钾B.立即停药C.电复律D.阿托品E.应用抗心律失常药物 国家奖励为国家通用语言文字事业做出的组织和个人。A.重大贡献B.突出贡献C.特殊贡献 构建团队执行力文化的根本任务是___。A.提高团队的整体素质B.提高凝聚力C.塑造负责敬业的精神D.激发创造力 较大儿童和成人可在何种局麻下行唇裂修复术()A.上牙槽后神经阻滞麻醉B.眶下神经阻滞麻醉C.腭前神经阻滞麻醉D.鼻腭神经阻滞麻醉E.下颌神经阻滞麻醉பைடு நூலகம்患者因中龋一次银汞充填后冷热刺激痛,无自发痛。查:充填物完好,叩(-)冷热测正常牙面时无痛,但测充填体处痛。处理应为()A.观察B.脱敏C.去旧充填体,重新垫底充填D.牙髓治疗E.去旧充填体,改其他修复材料充填 项目管理过程组的实施过程包括协调人员和资源,以便实施项目计划并生产出项目或项目阶段的产品或可交付成果。下列不属于项目实施过程的是。A.组建一个项目团队B.制定项目章程C.确保项目质量D.采购必需的资源 负责电力营销竞赛和电力基础资料管理的部门是。A.省公司市场营销部及各级市场营销部门B.各供电公司用电检查部门C.供电营业所D.客户服务中心 利用沉淀反应进行重量分析时,希望沉淀反应进行得越完全越好。就相同类型的沉淀物而言,沉淀的溶解度越小,沉淀越不完全,沉淀的溶解度越大,沉淀越完全。A.正确B.错误 心脏位于。A.胸腔前纵隔内B.胸腔上纵隔内C.胸腔中纵隔内D.胸腔下纵隔内E.胸腔后纵隔内 HIV血清学检测中最常用的确证性试验是A.病毒分离B.ELISAC.RIAD.免疫印迹试验E.RTPCR [问答题,案例分析题]2002年1月,某作者Z将其旅行经历写成多篇文章,投给甲期刊社。该社自当年2月至12月连续刊登了这些作品,受到读者广泛欢迎。但是,该刊并未登载Z关于不得转载、摘编的声明。2002年3月,乙出版社将上述文章汇集成共10万字的《探险历程》一书出版,作者署名为Z。第一次印刷的1万册投放市场后,乙出版社主动与作者Z联系,告知拟按每千字50元的标准支付基本稿 印数稿酬。但是,作者Z对乙出版社的做法十分不满,便向法院提起著作权诉讼。 1918年5月21日的学生的请愿活动发生后,政府教育部训令各地学校学生集会和请愿,学生们的斗争没有取得什么结果。A."严加取缔"B.协助阻止C.下令阻止 具有“祛风除湿,化痰通络,活血止痛”功用的方剂是A.大秦艽汤B.小活络丹C.川芎茶调散D.独活寄生汤E.玉真散 [单选,共用题干题]编号为0、1、2、3…15的16个处理器,采用单级互联网络联接。当互联函数为Cube3时,11号处理器连接到(1)号处理器上。若采用Shuffle互联函数,则11号处理器应连接到(2)号处理器上。空白(1)处应选择A.2B.3C.7D.9 寒凝血瘀,月经不调,少腹冷痛,应选用药物的性味是。A.辛,凉B.苦,温C.辛,温D.苦,寒E.咸,寒 与工程项目合同有直接关系的法律包括。A.《民法通则》B.《招标投标法》C.《建筑法》D.《行政复议法》E.《中华人民共和国合同法》 受体拮抗药的特点是()A.无亲和力,无内在活性B.有亲和力,有内在活性C.有亲和力.有较弱的内在活性D.有亲和力.无内在活性E.无亲和力,有内在活性 对容量滞后较大,负荷变化大、控制质量较高的无差控制系统,调节应选择。A、比例调节规律B、比例积分调节规律C、比例微分调节规律D、比例积分微分调节规律 心理活动的源泉和内容是A.感觉与知觉B.客观现实C.认知过程D.反映活动E.想象 不是主动脉瓣关闭不全体征的是A.靴形心B.心尖搏动向左下移位C.杂音向颈部传导D.叹气样舒张期杂音E.水冲脉 胎儿一胎盘单位功能是指A.孕妇血或尿雌三醇(E3)测定B.血清HPL测定C.血清PRL判定D.催产素激惹试验(OCT)E.无激惹试验(NST) 患者,男,23岁,因上呼吸道感染,剧烈咳嗽,持续发热而就诊,测体温持续在39~40℃左右一周时间,且一天内体温波动幅度不超过1℃。其热型为()A.稽留热B.弛张热C.间歇热D.不规则热E.超高热 下列各项,不属小儿体格生长发育规律的是.A.由初级到高级B.由上到下C.由粗到细D.由简单到复杂E.由远及近 前端设备包含从天线到分配系统的所有部件,它是系统的心脏,主要由等组成。A.放大器B.均衡器C.衰减器D.混合器 [单选,案例分析题]一急性心梗患者,突然晕厥,心电图为室速160次/分,查血压为80/60nmmHg,脉搏触不清,心音弱,无杂音。首选的药物是A.β受体阻滞剂B.钙拮抗剂C.硝酸酯D.抗凝剂E.抗血小板制剂 汽轮机的相对内效率是功率和功率之比。 /word?w=%E7%BB%88%E4%BA%8E%E6%89%BE%E5%88%B0%E9%9D%A0%E8%B0%B1%E7%9A%84%E8%85%BE%E8%AE%AF%E5%88%86%E5%88%86%E5%BD%A9%E6%AD%A3%E8%A7%84%E5%BE%AE%E4%BF%A1%E7%BE%A4%09%E3%80%903118900%E3%80%91%E7%83%A4%E9%81%93Pd71
相关文档
最新文档