学习k12精品专题03 解析几何-2019高考数学(理)热点题型

合集下载

[K12配套]专题03 解析几何-2019高考数学(理)热点题型

[K12配套]专题03 解析几何-2019高考数学(理)热点题型

解析几何热点一 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 题型一 利用几何性质求最值【例1】设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11C .8,12D .10,12答案 C【类题通法】利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法. 【对点训练】如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析 (1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk2-4)=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =----2|22+-2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4,所以|AB |=1+k 2×x 1+x 22-4x 1x 2=1+22×-2--=410.所以△ABP 面积的最大值为410×4552=8 2.题型二 建立目标函数求最值【例2】已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0.于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415,由Δ>0,k 2≥0,得-13<m ≤43.记f (m )=3m 3-5m 2+m +1⎝ ⎛⎭⎪⎫-13<m ≤43,令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝ ⎛⎭⎪⎫-13,19上是增函数,在⎝ ⎛⎭⎪⎫19,1上是减函数,在⎝ ⎛⎭⎪⎫1,43上是增函数, 又f ⎝ ⎛⎭⎪⎫19=256243>f ⎝ ⎛⎭⎪⎫43=59.所以当m =19时,f (m )取到最大值256243,此时k =±5515.所以△ABP 面积的最大值为2565135.【类题通法】(1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等. 【对点训练】平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值.解析 (1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*) 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m21+4k2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k =2k 2+4-m 2m 21+4k2=2 ⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1, 因此S =2-t t =2-t 2+4t ,故S ≤2 3.当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3. 题型三 利用基本不等式求最值【例3】已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值.(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0),联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3. 【类题通法】(1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值. 【对点训练】定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E . (1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k2,∴|OA |2=x 2A +y 2A =+k21+4k 2. 将上式中的k 替换为-1k,可得|OC |2=+k 2k 2+4.∴S △ABC =2S △AOC =|OA |·|OC |=+k 21+4k 2·+k 2k 2+4=+k 2+4k2k 2+.∵+4k2k 2+≤+4k2+k 2+2=+k 22,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .热点二 圆锥曲线中的范围问题圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法. 题型一 利用判别式构造不等关系求范围【例4】已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.(2)由条件D (0,-2),当k =0时,显然-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0), 则x 0=x 1+x 22=-3kt1+3k2, y 0=kx 0+t =t1+3k2,所以H ⎝ ⎛⎭⎪⎫-3kt 1+3k 2,t 1+3k 2,由|DP |=|DQ |, 所以DH ⊥PQ ,即k DH =-1k,所以t1+3k 2+2-3kt 1+3k2-0=-1k ,化简得t =1+3k 2,②所以t >1,将②代入①得,1<t <4. 所以t 的范围是(1,4).综上可得t ∈(1,2).【类题通法】圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围. 【对点训练】设F 1,F 2分别是椭圆E :x 24+y 2b2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.即1=⎝ ⎛⎭⎪⎫1-b 24×4+2b 2-4,解得b 2=1.故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0, 故y 1+y 2=2k k 2+4,y 1·y 2=-3k 2+4. 又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0, 又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,所以x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k24+k2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12<k <12,故k 的取值范围是⎝ ⎛⎭⎪⎫-12,12.题型二 利用函数性质求范围【例5】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2. (1)求椭圆C 的方程;(2)若λ∈⎣⎢⎡⎦⎥⎤12,2,求弦长|AB |的取值范围.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点,λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意.∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0, 由根与系数的关系可得,⎩⎪⎨⎪⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m2m 2+2,又知λ∈⎣⎢⎡⎦⎥⎤12,2, ∴-λ-1λ+2∈⎣⎢⎡⎦⎥⎤-12,0, ∴-12≤-4m2m 2+2≤0,解得m 2∈⎣⎢⎡⎦⎥⎤0,27.|AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝ ⎛⎭⎪⎫1-1m 2+22,∵m 2∈⎣⎢⎡⎦⎥⎤0,27,∴1m 2+2∈⎣⎢⎡⎦⎥⎤716,12, ∴|AB |∈⎣⎢⎡⎦⎥⎤2,928. 【类题通法】利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围. 【对点训练】已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C . (1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,于是PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32,E (2,0),F (-2,0),所以PE ·QF =⎝⎛⎭⎪⎫1,-32·⎝ ⎛⎭⎪⎫-3,32=-3-94=-214.②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214.③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将上面的k 换成-1k,可得AE ·AF =-+k24+3k2, 所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝ ⎛⎭⎪⎫13+4k 2+14+3k 2.令1+k 2=t ,则t >1,于是上式化简整理可得,PE ·QF =-9t ⎝ ⎛⎭⎪⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝ ⎛⎭⎪⎫1t -122.由t >1,得0<1t <1,所以-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范围为⎣⎢⎡⎦⎥⎤-214,-367.热点三 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等. 【例6】如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .(2)证明:把x =0代入方程(x -2)2+⎝ ⎛⎭⎪⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4).①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1.联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2.∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-x 1+x 2x 1x 2. 若k AN +k BN =0,则∠ANM =∠BNM .∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0,∴∠ANM =∠BNM . 【类题通法】解决圆锥曲线证明问题,注意依据直线,圆锥曲线,直线与圆锥曲线的位置关系等,通过代数恒等变形和化简计算进行证明,常见的证明方法有:(1)证明三点共线,可以证明其中两段线段的斜率相等,也可以证明其中两个向量互相平行(共线); (2)证明两直线垂直,可以证明这两条直线的斜率之积等于1-,也可以证明这两直线所在的平面向量的数量积等于零;(3)证明两共点点段相等,可以利用弦长公式证明这两线段长度相等,也可以证明公共点在线段的垂直平分线上. 【对点训练】设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB ⊥BC , 所以可设C (2,y 1),所以AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2. 所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 0x 0+(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝ ⎛⎭⎪⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .。

2019年高考真题理科数学解析分类汇编7立体几何

2019年高考真题理科数学解析分类汇编7立体几何

2019年高考真题理科数学解析分类汇编7 立体几何一、选择题1.【2018高考新课标理7】如图,格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9()C 12 ()D 18【答案】B【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B.2.【2018高考浙江理10】已知矩形ABCD ,AB=1,BC=2。

将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的.3.【2018高考新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 6 ()B ()C 3 ()D 2【答案】A【解析】ABC ∆的外接圆的半径r =点O 到面ABC 的距离d ==SC为球O 的直径⇒点S 到面ABC 的距离为2d =此棱锥的体积为11233ABC V S d ∆=⨯==另:123ABC V S R ∆<⨯=排除,,B C D ,选A.4.【2018高考四川理6】下列A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.5.【2018高考四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )A 、R、4R π C 、R 、3R π[答案]A[解析] 以O 为原点,分别以OB 、OC 、OA 所在直线为x 、y 、z 轴,则A )0,23,21(),22,0,22(R R P R R42arccos=∠∴AOP42arccos ⋅=∴R P A[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功.6.【2018高考陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB夹角的余弦值为( )35【答案】A.【解析】法1:设a CB =||,则a CC CA 2||||1==,),2,0(),0,2,0(),,0,0(),0,0,2(11a a B a C a B a A ,),2,0(),,2,2(11a a BC a a a -=-=∴,55||||,cos 111111=>=<∴BC AB BC AB ,故选A. 法2:过点1B 作11//B D C B 交Oz 轴于点D ,连结AD ,设122CA CC CB a ===,则422=∙=∠∴R PO AO AOP COS113,,AB a B D AD ==,在1AB D ∆中,由余弦定理知直线1AB 与直线1BC 夹角的余弦值为22211112AB B D AD AB B D +-==⋅. 7.【2018高考湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.查空间想象能力.是近年高考中的热点题型.8.【2018高考湖北理4】已知某几何体的三视图如右图所示,则该几何体的体积为A.8π3B .3πC.10π3D .6π【答案】B考点分析:本题考察空间几何体的三视图.【解析】显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B. 9.【2018高考广东理6】某几何体的三视图如图所示,它的体积为俯视图侧视图正视图第4题图4A .12π B.45π C.57π D.81π 【答案】C【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得πππ57533-53312222=⨯⨯+⨯⨯⨯=+=圆柱圆锥V V V .故选C .10.【2018高考福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱 【答案】D. 【【解析】法1:球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC ,故选D.法2:球的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

2019年高考数学考纲解读与热点难点突破专题13空间几何体热点难点突破理含解析20190330241

2019年高考数学考纲解读与热点难点突破专题13空间几何体热点难点突破理含解析20190330241

空间几何体1.已知α,β是两个不同的平面,l是一条直线,给出下列说法:①若l⊥α,α⊥β,则l∥β;②若l∥α,α∥β,则l∥β;③若l⊥α,α∥β,则l⊥β;④若l∥α,α⊥β,则l⊥β.其中说法正确的个数为( )A.3 B.2 C.1 D.4答案 C解析①若l⊥α,α⊥β,则l∥β或l⊂β,不正确;②若l∥α,α∥β,则l∥β或l⊂β,不正确;③若l⊥α,α∥β,则l⊥β,正确;④若l∥α,α⊥β,则l⊥β或l∥β或l与β相交且l与β不垂直,不正确,故选C.2.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示GH,MN是异面直线的图形的序号为( )A.①② B.③④ C.①③ D.②④答案D解析由题意可得图①中GH与MN平行,不合题意;图②中GH与MN异面,符合题意;图③中GH与MN相交,不合题意;图④中GH与MN异面,符合题意.8.已知正四棱锥P -ABCD 的各顶点都在同一球面上,底面正方形的边长为2,若该正四棱锥的体积为2,则此球的体积为( )A.124π3B.625π81C.500π81D.256π9答案 C解析 如图所示,设底面正方形ABCD 的中心为O ′,正四棱锥P -ABCD 的外接球的球心为O ,∵底面正方形的边长为2,∴O ′D =1,∵正四棱锥的体积为2,∴V P -ABCD =13×(2)2×PO ′=2,解得PO ′=3, ∴OO ′=|PO ′-PO |=|3-R |,在Rt △OO ′D 中,由勾股定理可得OO ′2+O ′D 2=OD 2,即(3-R )2+12=R 2,解得R =53, ∴V 球=43πR 3=43π×⎝ ⎛⎭⎪⎫533=500π81. 9.在三棱锥S -ABC 中,侧棱SA ⊥底面ABC ,AB =5,BC =8,∠ABC =60°,SA =25,则该三棱锥的外接球的表面积为( )A.643π B.2563π C.4363π D.2 048327π 答案 B解析 由题意知,AB =5,BC =8,∠ABC =60°,则根据余弦定理可得AC 2=AB 2+BC 2-2×AB ×BC ×cos∠ABC ,解得AC =7,设△ABC 的外接圆半径为r ,则△ABC 的外接圆直径2r =AC sin B =732,∴r =73, 又∵侧棱SA ⊥底面ABC , ∴三棱锥的外接球的球心到平面ABC 的距离d =12SA =5,则外接球的半径R = ⎝ ⎛⎭⎪⎫732+()52=643,则该三棱锥的外接球的表面积为S =4πR 2=2563π. 10.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为( )A .16B .82+8C .22+26+8D .42+46+8答案 D解析 由三视图知,该几何体是底面边长为22+22=22的正方形,高PD =2的四棱锥P -ABCD ,因为PD ⊥平面ABCD ,且四边形ABCD 是正方形,易得BC ⊥PC ,BA ⊥PA,又PC =PD 2+CD 2=22+22=23,所以S △PCD =S △PAD =12×2×22=22, S △PAB =S △PBC =12×22×23=2 6.所以几何体的表面积为46+42+8.11.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( )A .6πB .12πC .32πD .36π答案 B解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,AC ,AM ⊂平面SAC ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选B.12.若四棱锥P -ABCD 的三视图如图所示,则该四棱锥的外接球的表面积为()A.81π5B.81π20C.101π5D.101π20答案 C解析 根据三视图还原几何体为一个四棱锥P -ABCD ,如图所示,平面PAD ⊥平面ABCD ,由于△PAD 为等腰三角形,PA =PD =3,AD =4,四边形ABCD 为矩形,CD =2,过△PAD 的外心F 作平面PAD 的垂线,过矩形ABCD 的中心H 作平面ABCD 的垂线,两条垂线交于一点O ,则O 为四棱锥外接球的球心,在△PAD 中,cos ∠APD =32+32-422×3×3=19,则sin ∠APD =459, 2PF =AD sin ∠APD =4459=955,PF =9510, PE =9-4=5,OH =EF =5-9510=510,BH =1216+4=5, OB =OH 2+BH 2=5100+5=50510, 所以S =4π×505100=101π5. 13.如图所示,正方形ABCD 的边长为2,切去阴影部分围成一个正四棱锥,则正四棱锥侧面积的取值范围为( )A .(1,2)B .(1,2]C .(0,2]D .(0,2)答案 D解析 设四棱锥一个侧面为△APQ ,∠APQ =x ,过点A 作AH ⊥PQ ,则AH =12PQ ×tan x =AC -PQ 2=22-PQ 2=2-12PQ , ∴PQ =221+tan x ,AH =2tan x 1+tan x, ∴S =4×12×PQ ×AH =2×PQ ×AH =2×221+tan x ×2tan x 1+tan x=8tan x 1+tan x ,x ∈⎣⎢⎡⎭⎪⎫π4,π2, ∵S =8tan x 1+tan x 2=8tan x 1+tan 2x +2tan x =81tan x+tan x +2≤82+2=2, ⎝ ⎛⎭⎪⎫当且仅当tan x =1,即x =π4时取等号, 而tan x >0,故S >0,∵S =2时,△APQ 是等腰直角三角形,顶角∠PAQ =90°,阴影部分不存在,折叠后A 与O 重合,构不成棱锥,∴S 的取值范围为(0,2),故选D.14.已知一个三棱锥的三视图如图所示,其中俯视图是顶角为120°的等腰三角形,侧(左)视图为直角三角形,则该三棱锥的表面积为________,该三棱锥的外接球的体积为________.答案 4+3+15 2053π 解析 由三视图得几何体的直观图如图所示,∴S 表=2×12×2×2+12×23×5+12×23×1 =4+15+ 3.以D 为原点,DB 所在直线为x 轴,DE 所在直线为y 轴,DA 所在直线为z 轴,建立空间直角坐标系D -xyz , 则D (0,0,0),A (0,0,2),B (2,0,0),C (-1,3,0),设球心坐标为(x ,y ,z ),∵(x -2)2+y 2+z 2=x 2+y 2+z 2,① x 2+y 2+(z -2)2=x 2+y 2+z 2,②(x +1)2+(y -3)2+z 2=x 2+y 2+z 2,③∴x =1,y =3,z =1,∴球心坐标是(1,3,1), ∴球的半径是12+()32+12= 5. ∴球的体积是43π×()53=2053π. 15.如图所示,三棱锥P -ABC 中,△ABC 是边长为3的等边三角形,D 是线段AB 的中点,DE ∩PB =E ,且DE⊥AB ,若∠EDC =120°,PA =32,PB =332,则三棱锥P -ABC 的外接球的表面积为________.答案 13π解析 在三棱锥P -ABC 中,△ABC 是边长为3的等边三角形,设△ABC 的外心为O 1,外接圆的半径O 1A =32sin 60°=3,在△PAB 中,PA =32,PB =332,AB =3,满足PA 2+PB 2=AB 2,所以△PAB 为直角三角形,△PAB 的外接圆的圆心为D ,由于CD ⊥AB ,ED ⊥AB ,∠EDC =120°为二面角P -AB -C 的平面角,分别过两个三角形的外心O 1,D 作两个半平面的垂线交于点O ,则O 为三棱锥P -ABC 的外接球的球心, 在Rt △OO 1D 中,∠ODO 1=30°,DO 1=32, 则cos 30°=O 1D OD =32OD,OD =1,连接OA ,设OA =R , 则R 2=AD 2+OD 2=⎝ ⎛⎭⎪⎫322+12=134, S 球=4πR 2=4π×134=13π.如图,过P 作PO ⊥AE ,垂足为O ,因为平面PAE ⊥平面ABCDE ,平面PAE ∩平面ABCDE =AE ,PO ⊂平面PAE ,所以PO ⊥平面ABCDE ,PO 为五棱锥P -ABCDE 的高.在平面PAE 内,PA +PE =10>AE =6,P 在以A ,E 为焦点,长轴长为10的椭圆上,由椭圆的几何性质知, 当点P 为短轴端点时,P 到AE 的距离最大,此时PA =PE =5,OA =OE =3,所以PO max =4,所以(V P -ABCDE )max =13S ABCDE ·PO max =13×28×4=1123. (2)证明 连接OB ,如图,由(1)知,OA =AB =3,。

高考数学(理)热点专练09 解析几何(解析版)

高考数学(理)热点专练09  解析几何(解析版)

热点09 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1.0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.【考查题型】选择,填空,解答题【限时检测】(建议用时:55分钟)1.(2019·福建三明一中高三月考)已知1F,2F为椭圆2222:1,(0)x yC a ba b+=>>的左、右焦点,过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程是( )A .22184x y +=B .22182x y +=C .22162x y +=D .22164x y +=【答案】C 【解析】 【分析】先由题意,不妨设点(),A x y 位于第一象限,根据12AF AF ⊥,得到1212==OA F F c ,根据OA 与x 轴正方向的夹角为30︒,得到1,2⎫⎪⎪⎝⎭A c ,从而由122F AF S ∆=求出2c =,)A,得到22311a b+=,224a b -=,联立,即可求出结果. 【详解】因为过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A , 不妨设点(),A x y 位于第一象限,因为12AF AF ⊥,所以12AF F ∆为直角三角形,因此1212==OA F F c ; 又OA 与x 轴正方向的夹角为30︒,所以cos302==ox OA c ,1sin 302==oy OA c ,即1,22⎛⎫ ⎪ ⎪⎝⎭A c c ;所以12112222F AF S c c ∆=⋅⋅=,解得:2c =,所以)A ;因此22311a b +=①, 又2224a b c -==②,由①②解得:2262a b ⎧=⎨=⎩,因此所求椭圆方程为22162x y +=.故选:C【名师点睛】本题主要考查求椭圆的标准方程,熟记椭圆的标准方程,以及椭圆的简单性 质即可,属于常考题型.2.(2019·贵州高三月考(理))已知抛物线2:4C y x =的焦点为F ,Q 为抛物线上一点,连接PF 并延长交抛物线的准线于点P ,且点P |2||=PQ QF ,则直线PF 的方程为( )A 0y -=B 0y +C 0y -=0y +D .10x -= 【答案】D 【解析】 【分析】根据P 的纵坐标为负数,判断出直线PF 斜率大于零,设直线PF 的倾斜角为θ,根据抛物线的定义,求得cos θ的值,进而求得θ,从而求得tan θ也即直线PF 的斜率,利用点斜式求得直线PF 的方程. 【详解】由于P 的纵坐标为负数,所以直线PF 斜率大于零,由此排除B,C 选项.设直线PF 的倾斜角为θ.作出抛物线24y x =和准线1x =-的图像如下图所示.作QA PA ⊥,交准线1x =-于A 点.根据抛物线的定义可知QF QA =,且QFx AQP θ∠=∠=.依题意|2||=PQ QF ,故在直角三角形PQA 中cos 2QA QF PQ PQ θ===,所以π6θ=,故直线PF 的斜率为πtan63=,所以直线PF 的方程为)013y x -=-,化简得10x -=.故选:D.【名师点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,考查数形结合的数学思想方法,属于中档题.3.(2019·广东实验中学高三月考(理))(,2)m ∈-∞-是方程222156x y m m m +=---表示的图形为双曲线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条 D .既不充分也不必要条件【答案】A 【解析】 【分析】方程表示双曲线,可得()()()5320m m m --+<,解得m 范围即可判断出结论,解得m 范围即可判断出结论. 【详解】由方程222156x y m m m +=---表示的图形为双曲线,可得()()2560m m m ---<,即()()()5320m m m --+<即2m <-,或35m <<,∴ (,2)m ∈-∞-是方程222156x y m m m +=---表示的图形为双曲线的充分不必要条件,故选:A【名师点睛】本题考查了双曲线的标准方程、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.4.(2019·全国高三月考(理))双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,以F为圆心的圆()2232x y -+=与双曲线C 的两条渐近线相切,则双曲线C 的方程为( )A .22172x y -=B .22271x y -=C .22181x y -=D .22118x y -=【答案】A 【解析】 【分析】由已知圆的圆心即为焦点,可得c 的值,利用渐近线和圆相切,列方程求出,a b ,即可得双曲线的方程. 【详解】由题意知:3c =,有229a b +=,()3,0到0bx ay -==得()222292182b a bb=+=⇒=,27a =,故双曲线C 的方程为22172x y -=.故选A.【名师点睛】本题考查双曲线的标准方程和性质,考查渐近线方程的应用,考查学生计算能力,是基础题.5.(2019·广东高三月考(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为()3,0F ,过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为()1,1-,则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D 【解析】设()()1122,,,A x y B x y ,直线AB 的斜率 101132k --==- ,2211222222221{1x y a bx y a b+=+= ,两式相减得()()()()12121212220x x x x y y y y a b +-+-+= ,即()()()()121222221212111120022y y y y a b x x x x a b +-+=⇔+⨯⨯=+-- ,即222a b = ,22229,c a b c ==+ ,解得:2218,9a b == ,方程是221189x y +=,故选D.6.(2019·安徽高三月考(理))已知2F 是双曲线22:193x yC -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2AB AF +的最小值为( )A .9B .8 C.D.【答案】A 【解析】【分析】由212AF AF a =+,AB 的最小值是AE r -,转化为求1AF AE +的最小值即为1EF . 【详解】双曲线22193x y -=中3a =,b =c ==1(F -,圆E 半径为1r =,(0,2)E -,∴21126AF AF a AF =+=+,1AB AE BE AE ≥-=-(当且仅当,,A E B 共线且B 在,A E 间时取等号.∴2AB AF +11615AF AE AF AE ≥++-=++1559EF ≥+==,当且仅当A 是线段1EF 与双曲线的交点时取等号.∴2AB AF +的最小值是9. 故选:A .【名师点睛】本题考查双曲线的标准方程,在涉及到双曲线上的点到焦点的距离时,常常与定义联系,双曲线上点到一个焦点的距离可能转化为到另一个焦点的距离,圆外一点到圆上点的距离的最大值为圆外的点到圆心距离加半径,最小值为圆外的点到圆心距离减半径.7.(2019·河北高三月考(理))在平面直角坐标系xOy 中,已知双曲线()2222:10,0x y C b a a b -=>>的左焦点为F ,点B 的坐标为(0,b),若直线BF 与双曲线C的两条渐近线分别交于P ,Q 两点,且5PB BQ =u u u r u u u r,则双曲线C 的离心率为A .23B .32C D .2【答案】B 【解析】 【分析】将直线BF 与双曲线渐近线联立,可求得x 的值;利用5PB BQ =u u u r u u u r可得5P Q x x =-,将x 的值代入,可得320a c -=,从而求得离心率. 【详解】由题可知,(),0F c -,()0,B b则直线BF 方程为1x y c b+=- 又双曲线C 渐近线方程为b y x a=±由1x yc bb y x a ⎧+=⎪⎪-⎨⎪=±⎪⎩可解得ac x c a =-或ac x a c =-- 由5PB BQ =u u u r u u u r可知,5P Q x x =- 由题可知:P ac x c a =-,Q ac x a c =--,则5ac acc a a c=-⨯--- 化简得320a c -=,所以32c e a == 【名师点睛】本题考查双曲线离心率的求解,关键在于能够通过向量的关系得到,a c 的齐次方程,通过方程求得离心率.8.(2019·山东济南外国语学校高考模拟(理))已知1F ,2F 分别为椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是椭圆上位于第一象限内的点,延长2PF 交椭圆于点Q ,若1PF PQ ⊥,且1PF PQ =,则椭圆的离心率为( ) AB.2-C-D1【答案】A 【解析】 【分析】设()10PF m m =>,则22PF a m =-,222QF m a =-,再次利用椭圆的几何性质可 得142QF a m =-,利用11QF =求得m 后再利用12PF F ∆ 为直角三角形得到关于a,c 的方程,进而可求得椭圆的离心率. 【详解】设()10PF m m =>,则22PF a m =-,222QF m a =-,142QF a m =-,因为11QF =,故(4m a =-.因222212124PF PF F F c +==,故()()2224244a a a c ⎡⎤-+--=⎣⎦,整理得到2436c a ⎛⎫⨯=- ⎪⎝⎭c a == A.【名师点睛】圆锥曲线中离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组. 二、填空题9.(2019·山东高三)直线l 过抛物线()2:20C y px p =>的焦点()1,0F ,且与C 交于,A B两点,则p =______,11AF BF+=______. 【答案】2 1 【解析】 【分析】 由题意知12p=,从而2p =,所以抛物线方程为24y x =.联立方程,利用韦达定理可得结果. 【详解】 由题意知12p=,从而2p =,所以抛物线方程为24y x =. 当直线AB 斜率不存在时:1x =代入,解得2AF BF ==,从而111AF BF+=. 当直线AB 斜率存在时:设AB 的方程为()1y k x =-,联立()214y k x y x⎧=-⎨=⎩,整理,得()2222240k x k x k -++=,设()11,A x y ,()22,B x y ,则212212241k x x k x x ⎧++=⎪⎨⎪=⎩从而12121212121222111111112x x x x AF BF x x x x x x x x +++++=+===+++++++. (方法二)利用二级结论:112AF BF p+=,即可得结果.【名师点睛】本题考查抛物线的几何性质,直线与抛物线的位置关系,考查转化能力与计算能力,属于基础题.10.(2019·浙江高三期中)已知椭圆22221x y a b Γ+=:与双曲线22221x y m nΩ-=:共焦点,F 1、F 2分别为左、右焦点,曲线Γ与Ω在第一象限交点为P ,且离心率之积为1.若1212sin 2sin F PF PF F ∠=∠,则该双曲线的离心率为____________.【答案】12【解析】 【分析】根据正弦定理,可得2PF c =,根据椭圆与双曲线定义可求得a m c =+,结合椭圆与双曲线的离心率乘积为1,可得220c m mc --=,进而求得双曲线的离心率c e m=. 【详解】 设焦距为2c在三角形PF 1F 2中,根据正弦定理可得2121212sin sin PF F F F PF PF F =∠∠因为1212sin 2sin F PF PF F ∠=∠,代入可得1222F F PF =,所以2PF c =在椭圆中,1212PF PF PF c a +=+= 在双曲线中,1212PF PF PF c m -=-= 所以112,2PF a c PF m c =-=+ 即22a c m c -=+ 所以a m c =+因为椭圆与双曲线的离心率乘积为1即1c c a m ⨯= ,即2c a m=所以2c m c m+= 化简得220c m mc --=,等号两边同时除以2m得210c c m m⎛⎫--= ⎪⎝⎭,因为c m 即为双曲线离心率 所以若双曲线离心率为e ,则上式可化为210e e --=由一元二次方程求根公式可求得e = 因为双曲线中1e >所以12e +=【名师点睛】本题考查了椭圆与双曲线性质的综合应用,正弦定理的应用,双曲线离心率的表示方法,计算量复杂,属于难题.11.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B=u u u r u u u r,则k =___.【答案】21 【解析】 【分析】根据对称性和中位线判断12QF F ∆为等腰直角三角形,根据椭圆的定义求得离心率.设()()1122,,,A x y B x y 根据113AF F B =u u u r u u u r得到123y y =-,设出直线AB 的方程,联立直线AB 的方程和椭圆方程,根据根与系数关系列方程,解方程求得k 的值.【详解】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q 为短轴的端点,故离心率πcos 4c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220m y mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B =u u u r u u u r ,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1)2;(2)1.【名师点睛】本小题主要考查椭圆离心率的求法,考查直线和椭圆相交的交点坐标有关计算,考查方程的思想,考查化归与转化的数学思想方法,运算能力要求较强,属于中档题.12.(2019·浙江高考真题)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.【解析】 【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁. 【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得3,22P ⎛-⎝⎭,所以212PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得32P ⎛- ⎝⎭,所以212PFk ==【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.三、解答题13.(2019·重庆高三月考(理))已知椭圆()2222:10x y C a b a b +=>>的半焦距为c ,圆222:O x y c +=与椭圆C 有且仅有两个公共点,直线2y =与椭圆C 只有一个公共点.(1)求椭圆C 的标准方程;(2)已知动直线l 过椭圆C 的左焦点F ,且与椭圆C 分别交于,P O 两点,试问:x 轴上是否存在定点R ,使得RP RQ ⋅u u u r u u u r为定值?若存在,求出该定值和点R 的坐标;若不存在,请说明理由.【答案】(1)22184x y +=(2)在x 轴上存在点5,02R ⎛-⎫ ⎪⎝⎭,使得RP RQ u u u r u u u r g 为定值74- 【解析】 【分析】(1)根据已知求出,a b 即得椭圆C 的标准方程;(2)当直线l 的斜率存在时,设直线l 的方程为()2y k x =+,设(),0R m ,利用韦达定理和向量的数量积求出52m =-,此时RP RQ u u u r u u u r g 为定值74-;当直线l 的斜率不存在时,直线l 的方程为2x =-,求出此时点R也 满 足前面的结论,即得解. 【详解】(1)依题意,得2c b ==, 则222448a b c =+=+=,故椭圆的标准方程为22184x y +=.()2①当直线l 的斜率存在时,设直线l 的方程为()2y k x =+,代人椭圆C 的方程,可得()2222218880k k x x k +++-=设()11,P x y ,()22,Q x y ,则2122821k x x k -+=+,21228821k x x k -=+设(),0R m ,则()()1122,,RP RQ x m y x m y =--u u u r u u u rg g()()22222228288421211k k k m k m k k k --++=+-++()2222284821m m k m k +++-=+ 若()2222284821mm k m k +++-+为定值,则22812842m m m -=++,解得52m =- 此时()222228487214mm k m k +++-=-+R 点的坐标为5,02⎛⎫- ⎪⎝⎭②当直线l 的斜率不存在时,直线l 的方程为2x =-,代人22184x y +=,得2x y =-⎧⎪⎨=⎪⎩不妨设((,2,P Q --,若5,02R ⎛-⎫ ⎪⎝⎭,则11,,22RP RQ ⎛⎛== ⎝⎝u u u r u u u r74RP RQ =-u u u r u u u r g综上所述,在x 轴上存在点5,02R ⎛-⎫⎪⎝⎭,使得RP RQ u u u r u u u r g 为定值74-【名师点睛】本题主要考查椭圆的方程的求法,考查椭圆中的定点定值问题,意在考查学生对这些知识的 理解掌握水平.14.(2019·陕西高考模拟(理))已知抛物线C ;22y px =过点()1,1A .()1求抛物线C 的方程;()2过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为1k ,2k ,求证:12k k ⋅为定值.【答案】(1)2y x =.(2)见解析. 【解析】 【分析】(1)利用待定系数法,可求抛物线的标准方程;(2)设过点P (3,﹣1)的直线MN 的方程为()13x t y =++,代入y 2=x 利用韦达定理,结合斜率公式,化简,即可求k 1•k 2的值. 【详解】(1)由题意得21p =,所以抛物线方程为2y x =.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为()13x t y =++, 代入抛物线方程得230y ty t ---=.所以()2280t ∆=++>,12y y t +=,123y y t =--. 所以()()121212221212121212111111111111111312y y y y k k x x y y y y y y y y t t ----⋅=⋅=⋅====-----+++++--++,所以1k ,2k 是定值.【名师点睛】求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.15.(2019·江苏金陵中学高考模拟)已知在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(a >b >0,其短轴长为2. (1)求椭圆C 的标准方程;(2)如图,A 为椭圆C 的左顶点,P ,Q 为椭圆C 上两动点,直线PO 交AQ 于E ,直线QO 交AP 于D ,直线OP 与直线OQ 的斜率分别为k 1,k 2,且k 1k 2=12-,,AD DP AE λ==u u ur u u u r u u u r EQ μuuu r(λ,μ为非零实数),求λ2+μ2的值.【答案】(1)2212x y +=;(2)1【解析】【分析】(1)由题意可得b =1,运用离心率公式和a ,b ,c 的关系,可得a ,b ,进而得到椭圆方程;(2)求得A 的坐标,设P (x 1,y 1),D (x 0,y 0),运用向量共线坐标表示,结合条件求得P 的坐标,代入椭圆方程,可得λ2=22112k +,同理得μ2=21212k 12k +,即可得λ2+μ2的值. 【详解】(1)因为短轴长2b =2,所以b =1,又离心率e=c a =a 2﹣b 2=c 2, 解得a,c =1,则椭圆C 的方程为22x +y 2=1; (2)由(1)可得点 A,0),设P (x 1,y 1),D (x 0,y 0),则y 1=k 1x 1,y 0=k 2x 0,由AD DP λ=u u u r u u u r可得x 0=λ(x 3B x 、﹣x 0),y 0=λ(y 1﹣y 0),即有x 0=1101,1x y y λλλλ+=+,k 1x 1=y 1=1λλ+y 0=1λλ+k 2x 0=k 2(x 1﹣λ), 两边同乘以k 1,可得k 12x 1=k 1k 2(x 1﹣λ)=﹣12(x 1﹣λ), 解得x 1=()()112211,1212y k k k λλ=++,将P (x 1,y 1)代入椭圆方程可得λ2=22112k +,由AE EQ μ=u u u r u u u r可得μ2=2122212k 11212k k =++,可得λ2+μ2=1.【名师点睛】本题考查椭圆方程的求法,注意运用离心率公式和基本量的关系,考查直线方程和向量共线 的坐标表示,以及化简整理的运算能力,属于中档题.16.(2019·黑龙江高三期中(理))如图,已知椭圆E :22221(0)x y a b a b+=>>的离心率为2,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且12PF F ∆的周长为4+(Ⅰ)求椭圆的方程;(Ⅰ)设,C D 是椭圆E 上两不同点,//CD AB ,直线CD 与x 轴,y 轴分别交于,M N两点,且,MC CN MD DN λμ==u u u u r u u u r u u u u r u u u r,求λμ+的取值范围.【答案】(Ⅰ)2214x y +=;(Ⅰ)(,2](2,)-∞-⋃+∞.【解析】试题分析:(1)利用题意求得224,1a b ==,所以椭圆的方程为2214x y +=;(2)利用题意求得λμ+的解析式,结合m 的取值范围可得λμ+的取值范围是(](),22,-∞-⋃+∞.试题解析:(Ⅰ)由题意得:2242a c c e a ⎧+=+⎪⎨==⎪⎩224,1a b ==,所以椭圆的方程为2214x y +=;(Ⅰ)又()()2,0,0,1A B -,所以12AB k =. 由//CD AB ,可直线CD 的方程为12y x m =+.由已知得()()2,0,0,M m N m -,设()()1122,,,C x y D x y .由221412x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩,得:222220x mx m ++-=. ()()222242202m m m ∆=-->⇒<,所以212122,22x x m x x m +=-=-,由MC CN u u u u r u u u rλ=得()()11112,,x m y x m y λ+=--.所以112x m x λ+=-即121m x λ=--,同理221mMD DN x μμ=⇒=--u u u u r u u u r . 所以121122m x x λμ⎛⎫+=--+ ⎪⎝⎭ 121222x x m x x +=--⨯ 22222211m m m =-+=--. 由(]()2222,22,1m m <⇒∈-∞-⋃+∞-所以(](),22,λμ+∈-∞-⋃+∞. 【名师点睛】: (1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.17.(2019·北京高考模拟(理))已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为(Ⅰ)求椭圆C 的标准方程及离心率;(Ⅰ)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足0MA MB MO ++=u u u r u u u r u u u u r r,求证:由点M 构成的曲线L 关于直线13y =对称. 【答案】(Ⅰ)22132x y +=,离心率e =Ⅰ)见解析 【解析】 【分析】(Ⅰ)由已知,得a =c =1,所以c e a ===222a b c =+ ,所以b =即可求出椭圆方程及离心率;(Ⅰ)设A (x 1,y 1),B (x 2,y 2),(),m m M x y ,分两种情况,借助韦达定理和向量的运算,求出点M 构成的曲线L 的方程为2x 2+3y 2﹣2y =0,即可证明. 【详解】(Ⅰ)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =. (Ⅰ)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-u u u r,()0m mMB x y =-u u u r,()0,0m mMO x y=--u u u u r,所以()3,30m m MA MB MC x y ++=--=uuu r uuu r uuu r r .所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩得()2232630k x kx ++-=,()22236123272240k k k ∆=++=+>. 所以122632k x x k -+=+. 则1224032y y k +=>+, 因为()11,m m MA x x y y =--u u u r ,()22,m m MB x x y y =--u u u r ,(),m m MO x y =--u u u u r , 所以()121203,030m m MA MB MO x x x y y y ++=++-++-=uuu r uuu r uuu r r .所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+, 消去k 得()2223200m m m m x y y y +-=>. 综上,点M 构成的曲线L 的方程为222320x y y +-=对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭. 把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭. 所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称. 【名师点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,点的轨迹方程,考查计算能力,属于中档题.。

2019年全国高考理科数学数学分类汇编---解析几何

2019年全国高考理科数学数学分类汇编---解析几何

2019年全国高考理科数学分类汇编——解析几何1.(2019北京理科)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b【答案】B 【解析】 【分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式. 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.2.(2019北京理科)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A. ① B. ②C. ①②D. ①②③【答案】C 【解析】 【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围. 【详解】由221x y x y+=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.【点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.3.(2019北京理科)已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(Ⅰ) 24x y =-,1y =;(Ⅱ)见解析. 【解析】 【分析】(Ⅰ)由题意结合点的坐标可得抛物线方程,进一步可得准线方程;(Ⅱ)联立准线方程和抛物线方程,结合韦达定理可得圆心坐标和圆的半径,从而确定圆的方程,最后令x =0即可证得题中的结论.【详解】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =. (Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=. 故:12124,4x x k x x +=-=-设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-,直线OM方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭, 易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+- ⎪⎝⎭,圆的半径为:1222x x -, 且:()1212122222x x k x x x x ++==,12222x x -==则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的方程的求解及其应用等知识,意在考查学生的转化能力和计算求解能力.4.(2019全国1卷理科)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足.的,称为黄金分割比例),著名的“断臂维纳斯”便是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cmy cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.(2019全国1卷理科)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D.22154x y += 【答案】B【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,A F F B F F ∠∠互补,2121c o s c o s 0A F F B F F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.6.(2019全国1卷理科)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 【分析】通过向量关系得到1F A AB =和1OA F A ⊥,得到1AOB AOF ∠=∠,结合双曲线的渐近线可得21,BOF AOF ∠=∠02160,BOF AOF BOA ∠=∠=∠=从而由0tan 60ba==可求离心率. 【详解】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====. 【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.7.(2019全国1卷理科)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【解析】 【分析】(1)设直线l :3y =x m 2+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得121x x =+;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果.【详解】(1)设直线l 方程为:3y =x m 2+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+=联立2323y x m y x⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.8.(2019全国2卷理科)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p = A. 2 B. 3 C. 4 D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.(2019全国2卷理科)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A.B.C. 2D.【答案】A 【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.10.(2019全国2卷理科)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.【答案】(1)详见解析(2)详见解析 【解析】 【分析】(1)分别求出直线AM 与BM 的斜率,由已知直线AM 与BM 的斜率之积为−12,可以得到等式,化简可以求出曲线C 的方程,注意直线AM 与BM 有斜率的条件;(2)(i )设出直线PQ 的方程,与椭圆方程联立,求出P ,Q 两点的坐标,进而求出点E 的坐标,求出直线QE 的方程,与椭圆方程联立,利用根与系数关系求出G 的坐标,再求出直线PG 的斜率,计算PQ PG k k 的值,就可以证明出PQG 是直角三角形;(ii )由(i )可知,,P Q G 三点坐标,PQG 是直角三角形,求出,PQ PG 的长,利用面积公式求出PQG 的面积,利用导数求出面积的最大值. 【详解】(1)直线AM 的斜率为(2)2y x x ≠-+,直线BM 的斜率为(2)2y x x ≠-,由题意可知:22124,(2)222y y x y x x x ⋅=-⇒+=≠±+-,所以曲线C 是以坐标原点为中心,焦点在x 轴上,不包括左右两顶点的椭圆,其方程为()221,242x yx +=≠±;(2)(i )设直线PQ 的方程为y kx =,由题意可知0k >,直线PQ 的方程与椭圆方程2224x y +=联立,即22,2 4.x y kx x y y ⎧=⎪=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩,点P 在第一象限,所以P Q ,因此点E的坐标为直线QE 的斜率为2QE k k =,可得直线QE方程:2k y x =2222 4.k y x x y ⎧=⎪⎨⎪+=⎩,消去y得,22222128(2)021k k x k ++=+(*),设点11(,)G x y ,显然Q和1x 是方程(*)的解所以有222112128212k k x x k +-+=⇒=+,代入直线QE 方程中,得31y =G的坐标为23,直线PG 的斜率为; 3322222(2)1642(2)PGk k k k k k k -+===-+-+, 因为1()1,PQ PG k k k k=⋅-=-所以PQ PG ⊥,因此PQG 是直角三角形; (ii )由(i)可知:P Q ,G的坐标为23,PQ ==,PG ==,34218()2252PQGk k S k k ∆+==++ 42'4228(1)(1)(232)(252)k k k k S k k -+-++=++,因为0k >,所以当01k <<时,'0S >,函数()S k 单调递增,当1k >时,'0S <,函数()S k 单调递减,因此当1k =时,函数()S k 有最大值,最大值为16 (1)9 S=.【点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了利用导数求函数最大值问题.11.(2019全国3卷理科)双曲线C:22 42x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A.B. C. 12xxD.【答案】A【解析】【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.详解】由2,,a b c===.,2PPO PF x=∴=,又P在C的一条渐近线上,不妨设为在2y x=上,11224PFO PS OF y∴=⋅==△,故选A.【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.12.(2019全国3卷理科)设12F F,为椭圆22:+13620x yC=的两个焦点,M为C上一点且在第一象限.若12MF F△为等腰三角形,则M 的坐标为___________.【答案】(【【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.13.(2019全国3卷理科)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或. 【解析】 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d t d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =。

《精品》2019年高考真题和模拟题分项汇编数学(理)专题03 导数及其应用 (解析版)

《精品》2019年高考真题和模拟题分项汇编数学(理)专题03 导数及其应用 (解析版)

【 当 x < 1时, f ( x ) = x 2 - 2ax + 2a ≥ 0 ⇔ 2a ≥ 恒成立,1 ⎛ 1 ⎫ = - 1 - x +- 2 ⎪ ≤ - 2 (1- x) ⋅ - 2 ⎪⎪ = 0 , ⎝ ⎭ 1 - x D .专题 03 导数及其应用1.【2019 年高考全国Ⅲ卷理数】已知曲线 y = a e x + x ln x 在点(1,a e )处的切线方程为 y =2x +b ,则A . a = e ,b = -1C . a = e -1,b = 1B .a=e ,b =1D . a = e -1 , b = -1【答案】D【解析】∵ y ' = ae x + ln x + 1,∴切线的斜率 k = y ' |x =1 = ae + 1 = 2 ,∴ a = e -1 ,将 (1,1)代入 y = 2 x + b ,得 2 + b = 1,b = -1 .故选 D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.⎧ x 2 - 2ax + 2a, x ≤ 1, 2. 2019 年高考天津理数】已知 a ∈ R ,设函数 f ( x ) = ⎨若关于 x 的不等式 f ( x ) ≥ 0⎩ x - a ln x,x > 1.在 R 上恒成立,则 a 的取值范围为A . [0,1]B . [0,2]C . [0,e][1,e]【答案】C【解析】当 x = 1 时, f (1) = 1 - 2a + 2a = 1 > 0 恒成立;x2 x - 1x 2令 g ( x ) = ,x - 1x 2 (1- x - 1)2 (1- x)2 - 2(1- x) + 1则 g ( x ) = - =- =-1 - x 1 - x 1 - x⎛ ⎫ ⎝ ⎭3. 2019 浙江)已知a, b ∈ R ,函数 f ( x ) = ⎨ 1 1 .若函数 y = f ( x ) - ax - b 恰有 ⎪⎩ 3当1 - x =1,即 x = 0 时取等号,1 - x∴ 2a ≥ g ( x)max = 0 ,则 a > 0 .当 x > 1 时, f ( x ) = x - a ln x ≥ 0 ,即 a ≤ xln x恒成立,令 h ( x ) = x ln x,则 h '( x ) = ln x - 1 (ln x)2 ,当 x > e 时, h '( x ) > 0 ,函数 h( x ) 单调递增,当 0 < x < e 时, h '( x ) < 0 ,函数 h( x ) 单调递减,则 x = e 时, h( x ) 取得最小值 h(e) = e ,∴ a ≤ h( x)min = e ,综上可知, a 的取值范围是[0,e] .故选 C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.⎧ x , x < 0 ⎪(x 3 - (a + 1)x 2 + ax, x ≥ 0 23 个零点,则A .a <–1,b <0C .a >–1,b <0B .a <–1,b >0D .a >–1,b >0【答案】C【解析】当 x <0 时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得 x,则 y =f (x )﹣ax ﹣b 最多有一个零点;当 x ≥0 时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,y ' = x 2 - (a + 1)x ,当 a +1≤0,即 a ≤﹣1 时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则 y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当 a +1>0,即 a >﹣1 时,令 y ′>0 得 x ∈(a +1,+∞),此时函数单调递增,0)令 y ′<0 得 x ∈[0,a +1),此时函数单调递减,则函数最多有 2 个零点.根据题意,函数 y =f (x )﹣ax ﹣b 恰有 3 个零点⇔函数 y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有 2 个零点,如图:>∴ < 0 且,<解得 b <0,1﹣a >0,b >(a +1)3,则 a >–1,b <0.故选 C .【名师点睛】本题考查函数与方程,导数的应用.当 x <0 时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x﹣b 最多有一个零点;当 x ≥0 时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019 年高考全国Ⅰ卷理数】曲线 y = 3(x 2 + x)e x 在点 (0, 处的切线方程为____________.【答案】 3x - y = 0【解析】 y ' = 3(2 x + 1)e x + 3( x 2 + x)e x = 3( x 2 + 3x + 1)e x ,所以切线的斜率 k = y ' |x =0 = 3 ,则曲线 y = 3( x 2 + x)e x 在点 (0,0) 处的切线方程为 y = 3x ,即 3x - y = 0 .【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.y = x + ( x > 0) 切于 ( x 0 , x 0 +由1 - 4= -1 得 x = 2 ( x = - 2 舍去),.. ( x - x ) ,即 y - ln x =x- 1 , x 将点 (-e, -1)代入,得 -1 - ln x5.【2019 年高考江苏】在平面直角坐标系 x Oy 中,P 是曲线 y = x +线 x + y = 0 的距离的最小值是 ▲.【答案】44 x( x > 0) 上的一个动点,则点 P 到直【解析】由 y = x + 4 4 ( x > 0) ,得 y ' = 1 - x x 2,设斜率为 -1的直线与曲线 4 x4 x 0) ,x 2 0 0 0∴曲线 y = x + 4 x( x > 0) 上,点 P( 2,3 2) 到直线 x + y = 0 的距离最小,最小值为2 +3 212 + 12 = 4 .故答案为 4 .【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养采取导 数法,利用数形结合和转化与化归思想解题.6.【2019 年高考江苏】在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点 A 的坐标是▲ .【答案】 (e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标设点 A (x , y 0 0又 y ' =1,x) ,则 y= ln x .当 x = x 0时, y ' = 1 x 0,则曲线 y = ln x 在点 A 处的切线为 y - y 0 =1 x0 = -e x- 1 ,若函数 f (x ) = e + a e 为奇函数,则 f (- x ) = - f (x ), 即 e x- x - x+ a e x =- e x + a e - x ,( )即 x 0 ln x 0 = e ,考察函数 H (x ) = x ln x ,当 x ∈ (0,1)时, H (x ) < 0 ,当 x ∈ (1, +∞)时, H (x ) > 0 ,且 H ' (x ) = ln x + 1 ,当 x > 1 时, H ' (x ) > 0, H (x )单调递增,注意到 H (e ) = e ,故 x 0 ln x 0 = e 存在唯一的实数根 x 0 = e ,此时 y 0 = 1 ,故点 A 的坐标为 (e,1).【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019 年高考北京理数】设函数 f (x ) = e x + a e - x (a 为常数).若 f (x )为奇函数,则 a=________;若 f (x )是 R 上的增函数,则 a 的取值范围是___________.【答案】 -1(-∞,0 ]【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得 a 的值,然后利用 f '( x ) ≥ 0 可得 a 的取值范围.( )即 (a + 1) e x + e - x = 0 对任意的 x 恒成立,则 a +1 = 0 ,得 a = -1 .若函数 f (x ) = e x + a e - x 是 R 上的增函数,则 f '( x ) = e x - ae - x ≥ 0 在 R 上恒成立,即 a ≤ e 2x 在 R 上恒成立,又 e 2 x > 0 ,则 a ≤ 0 ,(1) f '( x ) 在区间 (-1, ) 存在唯一极大值点;当 x ∈ -1, ⎪ 时, g' ( x) 单调递减,而 g' (0) > 0, g' ( ) < 0 ,可得 g' ( x) 在 -1, ⎪ 有唯一零点,则当 x ∈ (-1,α ) 时, g' ( x) > 0 ;当 x ∈ α , ⎪ 时, g' ( x) < 0 .2 ⎭ 单调递减,故 g ( x) 在 -1, ⎪ 存在唯一极大值点,即 f ' ( x) ⎛ 在 -1, ⎪ 存在唯一极大值点.(ii )当 x ∈ 0, ⎥ 时,由(1)知,f ' ( x) 在 (0, α ) 单调递增,在 α , ⎪ 单调递减,而 f ' (0)=0 ,f ' ⎪ < 0 ,,使得 f ' (β ) = 0 ,且当 x ∈ (0, β ) 时, f ' ( x) > 0 ;当 x ∈ β , ⎪ 时, f ' ( x) < 0 . 2 ⎭ ⎝ 2 ⎭⎛ 故 f ( x) 在 (0, β ) 单调递增,在 β , ⎪ 单调递减.即实数 a 的取值范围是 ( -∞,0 ] .【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019 年高考全国Ⅰ卷理数】已知函数 f ( x ) = sin x - ln(1+ x) , f '( x ) 为 f ( x ) 的导数.证明:π2(2) f ( x ) 有且仅有 2 个零点.【答案】(1)见解析;(2)见解析.【解析】(1)设 g ( x ) = f ' ( x ) ,则 g ( x ) = cos x -11 + x 1 , g' ( x ) = - sin x + .(1+ x)2⎛ π⎫ π ⎛ π⎫⎝2 ⎭2⎝2 ⎭设为 α .⎛ π⎫ ⎝2 ⎭所以 g ( x) 在 (-1,α ) 单调递增,在 α , ⎝π⎫ ⎪⎛ π⎫ ⎝ 2 ⎭⎛ π⎫ ⎝2 ⎭(2) f ( x ) 的定义域为 (-1, +∞) .(i )当 x ∈ (-1,0] 时,由(1)知, f ' ( x ) 在 ( - 1,0) 单调递增,而 f ' (0) = 0 ,所以当 x ∈ (-1,0) 时,f ' ( x) < 0 ,故 f ( x ) 在 ( - 1,0) 单调递减,又 f (0)=0 ,从而 x = 0 是 f ( x ) 在 (-1,0] 的唯一零点.⎛ π⎤ ⎛ π⎫ ⎛π⎫ ⎝2 ⎦⎝2 ⎭ ⎝ 2 ⎭所以存在 β ∈ α , ⎝π⎫ ⎛ π⎫ ⎪⎛ π⎫ ⎝2 ⎭又 f (0)=0 , f ⎪ = 1 - ln 1 + > 0 ,所以当 x ∈ 0, ⎥ 时, f ( x) > 0 .从而, f ( x) 在 0, ⎥ 没有⎝ 2 ⎭⎝2 ⎭ ⎝2 ⎦ ⎝ 2 ⎦, π⎥ 时,f ' ( x) < 0 ,所以 f ( x) 在 , π ⎪ 单调递减.而 (iii )当 x ∈ f ⎪ > 0,f (π) < 0 ,所以 f ( x) 在 ⎛π , π⎥有唯一零点. 9.【2019 年高考全国Ⅱ卷理数】已知函数 f (x ) = ln x - x + 1.+ > 0 ,所以 f ( x ) 在(0,1),(1,+∞)单调递增. e + 1 e2 + 1 e 2 -3 < 0 , f (e 2 ) = 2 - < 1 , f ( ) = - ln x + 1 = - f ( x ) = 0 ,故 f (x )在(0,1)有唯一零点 .x x x - 1 xx + 1 (2)因为1 = e - ln x,故点 B (–lnx , )在曲线 y =e x 上. x⎛π⎫ ⎛ π⎫ ⎛ π⎤ ⎛ π⎤ ⎪零点.⎛π ⎤ ⎛π ⎫ ⎝ 2⎦⎝ 2⎭⎛π⎫ ⎝ 2 ⎭⎝ 2 ⎤⎦(iv )当 x ∈ (π, +∞) 时, ln( x + 1) > 1 ,所以 f ( x ) <0,从而 f ( x ) 在 (π, +∞ ) 没有零点.综上, f ( x ) 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题解决零点问题的 关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间 内零点的唯一性,二者缺一不可.x - 1 .(1)讨论 f(x)的单调性,并证明 f(x)有且仅有两个零点;(2)设 x 0 是 f(x)的一个零点,证明曲线 y=lnx 在点 A(x 0,lnx 0)处的切线也是曲线 y = e x 的切线.【答案】(1)函数 f ( x ) 在 (0,1) 和 (1, +∞) 上是单调增函数,证明见解析;(2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为 f ' ( x ) =1 2 x ( x - 1)2因为 f (e )=1 - =e -1 e 2 - 1 e 2 - 1> 0 ,所以 f (x )在(1,+∞)有唯一零点 x 1,即f (x 1)=0.又 0 <1 1 1 1综上,f (x )有且仅有两个零点.x 00 1x + 1 x x x - 1 1由题设知 f ( x ) = 0 ,即 ln x = 0 ,故直线 AB 的斜率 k = 0= 0 = . - x xx - 1曲线 y =e x 在点 B(- ln x ,1x )处切线的斜率是 ,曲线 y = ln x在点 A( x ,ln x )处切线的斜率也是 . ⎩b = -1 ⎩b = 1, +∞ ⎪ 时 , f '( x ) > 0; 当 x ∈ 0, ⎪ 时 , f '( x ) < 0. 故 f ( x) 在 ⎝ 3 ⎭ ⎝ 3 ⎭(-∞,0), , +∞ ⎪ 单调递增,在 0, ⎪ 单调递减;(0, +∞) 时 , f '( x ) > 0; 当 x ∈ ,0 ⎪ 时 , f '( x ) < 0. 故 f ( x) 在 3 ⎭ ⎝3⎭⎛ -∞, ⎪ ,(0, +∞) 单调递增,在 ,0 ⎪ 单调递减.3 ⎭ ⎝⎝ 3 ⎭ a ⎫1 1 x + 1- ln x - 00 0 0 x - 1 - ln x - x x + 1 0 0 0 - 0 00 00 0 11x0 0 x0 0,所以曲线 y = ln x 在点 A( x 0 ,ln x 0 ) 处的切线也是曲线 y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力10.【2019 年高考全国Ⅲ卷理数】已知函数 f ( x ) = 2 x 3 - ax 2 + b .(1)讨论 f ( x ) 的单调性;(2)是否存在 a, b ,使得 f ( x ) 在区间 [0,1] 的最小值为 -1且最大值为 1?若存在,求出 a, b 的所有值; 若不存在,说明理由.⎧a = 0 ⎧a = 4【答案】(1)见解析;(2) ⎨ 或 ⎨.【解析】(1) f '( x ) = 6 x 2 - 2ax = 2 x (3x - a) .令 f '( x ) = 0 ,得 x =0 或 x = a 3.若 a >0 , 则 当 x ∈ (-∞,0)⎛ a ⎫ ⎛ a ⎫⎛ a ⎫ ⎛ a ⎫ ⎝ 3 ⎭ ⎝ 3 ⎭若 a =0, f ( x ) 在 (-∞, +∞) 单调递增;若 a <0 , 则 当 x ∈ -∞, ⎝a ⎫ ⎛ a ⎫ ⎪⎛ ⎛ a ⎫(2)满足题设条件的 a ,b 存在.(i )当 a ≤0时,由(1)知, f ( x ) 在[0,1]单调递增,所以 f ( x ) 在区间[0,l]的最小值为 f (0)=b ,最大值为 f (1) = 2 - a + b .此时 a ,b 满足题设条件当且仅当 b = -1 , 2 - a + b = 1,即 a =0, b = -1 .(iii)当0<a<3时,由(1)知,f(x)在[0,1]的最小值为f ⎪=-令f'(x)=1,即x2-2x+1=1,得x=0或x=.由g(x)=1(ii)当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.⎛a⎫⎝3⎭a327+b,最大值为b或2-a+b.若-若-a327a327+b=-1,b=1,则a=332,与0<a<3矛盾.+b=-1,2-a+b=1,则a=33或a=-33或a=0,与0<a<3矛盾.综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算.11.【2019年高考北京理数】已知函数f(x)=14x3-x2+x.(Ⅰ)求曲线y=f(x)的斜率为1的切线方程;(Ⅱ)当x∈[-2,4]时,求证:x-6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a).当M(a)最小时,求a的值.【答案】(Ⅰ)y=x与y=x-64;(Ⅱ)见解析;(Ⅲ)a=-3.2713【解析】(Ⅰ)由f(x)=x3-x2+x得f'(x)=x2-2x+1.44384388又f(0)=0,f()=,32788所以曲线y=f(x)的斜率为1的切线方程是y=x与y-=x-,27364即y=x与y=x-.27(Ⅱ)令g(x)=f(x)-x,x∈[-2,4].3x3-x2得g'(x)=x2-2x.4434(0, 27(Ⅱ)当 x ∈ ⎢ , ⎥ 时,证明 f ( x) + g ( x) - x ⎪ ≥ 0 ;4 2 ( Ⅲ ) 设 x 为 函 数 u ( x) = f ( x)- 1在 区 间 2n π + ⎝,2n π + ⎪ 内 的 零 点 , 其 中 n ∈ N , 证 明 2 sin x - cos x【答案】(Ⅰ) f ( x) 的单调递增区间为 ⎢2k π - , 2k π + ⎥ (k ∈ Z), f ( x) 的单调递减区间为令 g' ( x ) = 0 得 x = 0 或 x = 83g' ( x ), g ( x ) 的情况如下:.x-2 (-2,0) 0 8)38 3 8( , 4)g' ( x )g ( x )+ - +-6 0 - 64所以 g ( x ) 的最小值为 -6 ,最大值为 0 .故 -6 ≤ g ( x ) ≤ 0 ,即 x - 6 ≤ f ( x ) ≤ x .(Ⅲ)由(Ⅱ)知,当 a < -3 时, M (a) ≥ F (0) =| g (0) - a |= -a > 3 ;当 a > -3 时, M (a) ≥ F (-2) =| g (-2) - a |= 6 + a > 3 ;当 a = -3 时, M (a) = 3 .综上,当 M (a) 最小时, a = -3 .【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.12.【2019 年高考天津理数】设函数 f ( x ) = e x cos x,g ( x ) 为 f (x )的导函数.(Ⅰ)求 f (x )的单调区间;⎡π π⎤ ⎛π ⎫ ⎣ ⎦⎝ 2⎭n⎛ π π⎫ 4 2 ⎭π e -2n π2n π + - x <n 0.⎡ ⎣3π π ⎤ 4 4 ⎦π 5π ⎤ ⎥⎦ (k ∈ Z) .(Ⅱ)见解析;(Ⅲ)见解析. ⎣【解析】(Ⅰ)由已知,有 f ' ( x) = e x (cos x - sin x) .因此,当 x ∈ 2k π +, 2k π + ⎪ (k ∈ Z) 时, 有 sin x > cos x , 得 f '( x) < 0 , 则 f (x ) 单 调 递 减 ;当 x ∈ 2k π -, 2k π + ⎪ (k ∈ Z) 时 ,有 所以, f (x )的单调递增区间为 ⎢2k π - , 2k π + ⎥ (k ∈ Z), f ( x) 的单调递减区间为 π 5π ⎤ 4 4 ⎥⎦⎣(Ⅱ)证明:记 h( x) = f ( x) + g ( x)⎛π- x ⎪.依题意及(Ⅰ),有 g ( x) = e x (cos x - sin x) ,从而 g' ( x) = -2e x sin x .当 x ∈ , ⎪ 时, g'( x) < 0 ,故 h'( x) = f ' ( x) + g' ( x) - x ⎪ + g ( x)(-1) = g' ( x) - x ⎪ < 0 . 因此, h (x ) 在区间 ⎢ , ⎥ 上单调递减,进而 h( x) ≥ h⎪= f ⎪ = 0 .所以,当 x ∈ ⎢ , ⎥ 时, f ( x) + g ( x) - x ⎪ ≥ 0 .4 2 = 1 .记 y = x - 2n π ,则 y ∈ , ⎪ ,⎝ 4 2 ⎭≥ y .由(Ⅱ)知,当 x ∈ , ⎪ 时, g'( x) < 0 ,所⎝ 4 2 ⎭g (x ) 在 ⎡⎢ , ⎤⎥ 上 为 减 函 数 , 因 此 g ( y ) ≤ g ( )y < ⎛ g ⎫⎪ = 0 . 又 由 ( Ⅱ ) 知 ,⎣ 4 2 ⎦⎝ 4 ⎭⎡ ⎢2k π + , 2k π + 4 4⎛⎝π 5π ⎫ 4 4 ⎭sin x < cos x ,得 f ' ( x ) > 0 ,则 f (x )单调递增.⎛ ⎝3π π ⎫ 4 4 ⎭⎡⎣3π π⎤ 4 4 ⎦⎡ ⎢ 2k π +, 2k π + (k ∈ Z) .⎫ ⎝ 2 ⎭⎛π π⎫ ⎝ 4 2 ⎭⎛π ⎫ ⎛π ⎫ ⎝ 2 ⎭ ⎝ 2 ⎭⎡ π π ⎤ ⎛ π ⎫ ⎛π⎫ ⎣ 4 2 ⎦⎝ 2 ⎭ ⎝ 2 ⎭⎡π π⎤ ⎛π ⎫ ⎣ ⎦⎝ 2⎭(Ⅲ)证明:依题意,u (x n ) = f (x )-1 = 0 ,即 e x n cos x nn n n n⎛π π⎫且 f (y n) = e y n cos y = e x n -2n π cos (x - 2n π) = e -2n π (n ∈ N ) .n n由 f (y n) = e-2n π≤ 1 = f (y )及(Ⅰ),得 y 0 n 0 ⎛π π⎫以π π π11n 0f(y)+g(y) -y⎪≥0,故⎝2n⎭-y≤-=-≤=<2g(y)g(y)g(y)e y0(sin y-cos y)sin x-cos x f(y)2sin x-cos xf(x)的单调递增区间是(3,+∞),单调递减区间是(0,3);(2) 0,4⎦【解析】(1)当a=-3f'(x)=-3n nπe-2nπ所以,2nπ+-x<.n00【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.13.【2019年高考浙江】已知实数a≠0,设函数f(x)=a ln x+x+1,x>0.(1)当a=-34时,求函数f(x)的单调区间;(2)对任意x∈[1e2,+∞)均有f(x)≤x2a,求a的取值范围.注:e=2.71828…为自然对数的底数.【答案】(1)⎛2⎤⎥.⎝3时,f(x)=-ln x+1+x,x>0.441(1+x-2)(21+x+1)+=4x21+x4x1+x,所以,函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(1)≤12a2,得0<a≤.4当0<a≤2x x21+x时,f(x)≤等价于-42a a2a-2ln x≥0.令t=1a,则t≥22.设g(t)=t2x-2t1+x-2ln x,t≥22,则g(t)=11+xx(t-1+)2--2ln x.x x12(i )当 x ∈ ⎢ , +∞ ⎪ 时, 1 +⎡ 1p'( x ) = 271(1, +∞)7单调递减极小值p (1)(ii )当 x ∈⎢ , ⎪ 时, g (t )…g 1 + ⎪⎣ e 7 ⎭x ⎭ 2 x⎝, ⎥ ,则 q' (x) = 令 q ( x) = 2 x ln x + ( x + 1), x ∈ ⎢ 故 q ( x) 在 ⎢⎡ 1 1 ⎤, ⎥ 上单调递增,所以 q ( x)…⎣ e 7 ⎦ q ⎪ .由(i )得, q ⎪ = -p ⎪ < - p (1)= 0 . 因此 g (t)…g1 + x ⎪⎭2 x⎣ 7 ⎭ ⎫ 1 x ≤ 2 2 ,则g (t ) ≥ g (2 2) = 8 x - 4 2 1 + x - 2ln x .记 p ( x ) = 4 x - 2 2 1 + x - ln x, x ≥17,则21 2 x x + 1 - 2 x - x + 1- - =x x + 1 x x x + 1= ( x - 1)[1+ x ( 2 x + 2 - 1)]x x + 1( x + 1)( x + 1 + 2 x )故.x1 71( ,1)p'( x )-+p ( x )1 p ( )单调递增所以, p ( x ) ≥ p (1) = 0 .因此, g (t ) ≥ g (2 2) = 2 p ( x ) ≥ 0 .⎡ 1 1 ⎫ ⎛ 1 ⎫ -2 x ln x - ( x + 1)=2.2 ⎡ 1 1 ⎤ ⎣ e 2 7 ⎦⎛ 1 ⎫ ⎝ 7 ⎭ln x + 2 x + 1 > 0 ,⎛ 1 ⎫ ⎝ 7 ⎭2 7 ⎛ 1 ⎫ 2 7 7 ⎝ 7 ⎭ 7所以, q (x)<0 .⎛ 1 ⎫ q ( x ) =- > 0 .⎝13由(i )(ii )知对任意 x ∈⎢⎡ 1, +∞ ⎪ , t ∈ [2 2, +∞ ), g (t )…0 ,, +∞ ⎪ ,均有 f ( x)…即对任意 x ∈ ⎢ ⎣ e ⎭(从而 f ' ( x) = 3( x - b ) x - f ' ( x ) = 0 ,得 x = b 或 x =⎪ .令⎣ e 2 ⎫ ⎭⎡ 1 ⎫ 2 x 2a .⎛ 综上所述,所求 a 的取值范围是 ⎝0, 2 ⎤⎥ .4 ⎦【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. 3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019 年高考江苏】设函数 f ( x ) = ( x - a)( x - b )( x - c), a, b , c ∈ R 、 f ' (x) 为 f (x )的导函数.(1)若 a =b =c ,f (4)=8,求 a 的值;(2)若 a ≠b ,b =c ,且 f (x )和 f ' (x) 的零点均在集合{ - 3,1,3} 中,求 f (x )的极小值;(3)若 a = 0,0 < b … 1, c = 1 ,且 f (x )的极大值为 M ,求证:M ≤ 4 27.【答案】(1) a = 2 ;(2)见解析;(3)见解析.【解析】(1)因为 a = b = c ,所以 f ( x ) = ( x - a)( x - b )( x - c) = ( x - a)3 .因为 f (4) = 8 ,所以 (4 - a)3 = 8 ,解得 a = 2 .(2)因为 b = c ,所以 f ( x ) = ( x - a)( x - b )2 = x 3 - (a + 2b ) x 2 + b (2a + b ) x - ab 2 ,⎛ ⎝2a + b ⎫ 2a + b3 ⎭ 3 .因为 a, b ,2a + b 3都在集合{-3,1,3}中,且 a ≠ b ,2a + b所以 = 1,a = 3, b = -3 .3此时 f ( x ) = ( x - 3)(x + 3)2 , f ' ( x ) = 3( x + 3)( x - 1) .令 f ' ( x ) = 0 ,得 x = -3 或 x = 1 .列表如下:1433,x==[3x2-2(b+1)x+b] 1-⎝3()b+1⎫2b2-b+1b(b+1) -x+9⎭99⎪(b-b+1)≤b(b+1)xf'(x)(-∞,-3)+-3(-3,1)–1(1,+∞)+ f(x)极大值极小值所以f(x)的极小值为f(1)=(1-3)(1+3)2=-32.(3)因为a=0,c=1,所以f(x)=x(x-b)(x-1)=x3-(b+1)x2+bx,f'(x)=3x2-2(b+1)x+b.因为0<b≤1,所以∆=4(b+1)2-12b=(2b-1)2+3>0,则f'(x)有2个不同的零点,设为x,x12(x1<x).2b+1-b2-b+1b+1+b2-b+1由f'(x)=0,得x=.12列表如下:x f'(x)(-∞,x)1+x1(x,x)12–x2(x,+∞)2+f(x)所以f(x)的极大值M=f (x).1解法一:M=f(x)=x3-(b+1)x2+bx1111极大值极小值11⎛x1=-2(b2-b+1)(b+1)b(b+1)2++2792723 b(b+1)2(b-1)2(b+1)2=-+(b(b-1)+1)3 272727244+≤.因此M≤.27272727解法二:15令 g ( x) = x( x - 1)2 , x ∈ (0,1) ,则 g' ( x) = 3 x - ⎪ ( x - 1) .1 ⎛ 1 ⎫ 4max = g ⎪=.因为 0 < b ≤ 1 ,所以 x ∈ (0,1) .1当 x ∈ (0,1) 时, f ( x ) = x( x - b )( x - 1) ≤ x( x - 1)2 .⎛ 1 ⎫ ⎝3 ⎭1令 g' ( x ) = 0 ,得 x = 3xg' ( x )g ( x ).列表如下:1 (0, )3+1 3极大值1( ,1) 3–所以当 x = 时, g ( x ) 取得极大值,且是最大值,故 g ( x ) 3 ⎝ 3 ⎭ 27 .所以当 x ∈ (0,1) 时, f ( x ) ≤ g ( x ) ≤ 4 4,因此 M ≤ .27 27【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学 2019 届高三第二次调研考试数学】函数的单调减区间是A .C .,【答案】AB .D .【解析】,令,解得:.故选 A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题16.【江西省南昌市 2019 届高三模拟考试数学】已知在 上连续可导,为其导函数,且,则A .C .0【答案】CB .D .16联立①②,解得 f (x ) = - x 3 - x + ,则 f ' (x ) = - x 2- 1 ,∴ f (1) = - - 1 + = - , f ' (1) = - -1 = - ,= - (x -1),即10 x + 4 y - 5 = 0 . 【解析】∵ f (- x ) = e - x + e x - f '(1)(- x )(e - x - e x )= f ( x ) ,∴ f ( x ) 是偶函数,两边对 x 求导,得 - f '(- x ) = f '( x ) ,即 f '(- x ) = - f '( x ) ,则 f '( x ) 是 R 上的奇函数,则 f '(0) = 0 ,f '(-2) = - f '(2) ,即 f '(2) + f '(-2) = 0 ,则 f '(2) + f '(-2) - f '(0) f '(1) = 0 .故选 C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校 2019 届高三第二次联考数学】若 f ( x ) + 3 f (- x ) = x 3 + 2 x + 1 对 x ∈ R 恒成立,则曲线y = f (x )在点 (1, f (1))处的切线方程为A . 5x + 2 y - 5 = 0C . 5x + 4 y = 0 【答案】BB .10 x + 4 y - 5 = 0D . 20 x - 4 y - 15 = 0【解析】f (x )+ 3 f (- x ) = x 3 + 2x + 1……①,∴ f (- x )+ 3 f (x ) = - x 3 - 2x + 1……②,1 1 32 4 21 1 5 3 524 4 2 2∴ 切线方程为: y + 5 5 4 2故选 B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学 2019 届高三第二次调研考试数学】函数 f ( x ) = x 2 ln x 的最小值为17令 2ln x +1 = 0 ,解得 x = e2 , 则当 x ∈ (0,e 2 ) 时, f ( x ) 为减函数,当 x ∈ (e 2, +∞) 时, f ( x ) 为增函数, 2 处的函数值为最小值,且f (e ) = - A . - ,1⎪⎛1⎫⎝ e ⎭B . - , +∞ ⎪ D . -∞, ⎪1 ⎫+ + +A . -1 e B . 1eC . -12eD .12e【答案】C【解析】由题得 x ∈ (0, +∞) , f '( x ) = 2 x ln x + x = x(2ln x + 1) ,- 1- 1 - 1所以 x = e- 1 - 121 2e.故选 C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.19.【四川省内江市 2019 届高三第三次模拟考试数学】若函数存在单调递增区间,则 的取值范围是⎛ 1 ⎫ ⎝ e ⎭C . (-1,+∞)【答案】B【解析】 f '( x ) = ax + lnx ,∴ f '( x ) > 0 在 x ∈ (0, ∞) 上成立,即 ax+ lnx >0 在 x ∈ (0, ∞) 上成立,⎝ e ⎭即 a > - lnxx在 x ∈ (0, ∞) 上成立.lnx 1 - ln x令 g (x ) = - ,则 g ′(x ) = - ,x x 2 lnx∴g (x ) =- 在(0,e )上单调递减,在(e ,+∞)上单调递增,x lnx 1∴g (x ) = - 的最小值为 g (e )= - ,x e18【.1∴a > - .e故选 B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.山西省太原市 2019 届高三模拟试题(一)数学】已知定义在 上的函数 满足,且,则 的解集是A . C .【答案】A【解析】令=在上单调递减,且故等价为B .D .,即 ,故,即 x < ,则所求的解集为 .故选 A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题21.【河南省焦作市 2019 届高三第四次模拟考试数学】已知, ,关系为 ,则 的大小A .C .【答案】D【解析】依题意,得 a = ln 3 3 =令,所以.B .D .ln3 lne 3ln2 ln8, b = e -1 = , c = = 3 e 8 8.所以函数在上单调递增,在上单调递减,所以,且,即,所以.故选 D.19A . -∞, ⎪⎛e ⎭ B . (-∞,0 )C . ⎢ , +∞ ⎪⎭D . , +∞ ⎪设 h (x ) = ,则 h ' (x ) = x 设 g (x ) = - lnx - 1 ,则 g ' (x ) = - 【【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数 f (x ) = lnx x是解题的关键,属于中档题.22.【安徽省毛坦厂中学 2019 届高三校区 4 月联考数学】已知,若关于 的不等式恒成立,则实数 的取值范围是1 ⎫ ⎝⎡ 1 ⎫ ⎛ 1 ⎫⎣ e⎝ e ⎭【答案】D【解析】由 f (x ) < 0 恒成立得 a > lnx + 1 e x恒成立,lnx + 1e x 1- lnx - 1 e x.1 1 1- < 0 恒成立,x x 2 x在上单调递减,又, 当时, ,即;当时, ,即,在上单调递增,在上单调递减,,.故选 D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23. 辽宁省丹东市 2019 届高三总复习质量测试】若 x = 1 是函数 f ( x ) =极值点,则 a 的值为A .-2B .3C .-2 或 3D .-3 或 2【答案】B1 3x 3+ (a + 1)x 2 - ( a 2 + a - 3 )x 的【解析】 f (x ) =1 3 x 3 + (a + 1) x2 - (a 2 + a - 3)x ⇒ f '( x ) = x 2 + 2(a + 1) x - (a 2 + a - 3),2 0( )( )( ).由题意可知 f '(1) = 0 ,即1 + 2(a + 1) - a 2 + a - 3 = 0 ⇒ a = 3 或 a = -2 ,当 a = 3 时, f '( x ) = x 2 + 2(a + 1)x - a 2 + a - 3 = x 2 + 8x - 9 = ( x + 9)( x - 1) ,当 x > 1 或 x < -9 时, f '( x ) > 0 ,函数单调递增;当 -9 < x < 1 时, f '( x ) < 0 ,函数单调递减,显然 x = 1 是函数 f (x )的极值点;当 a = -2 时, f '( x ) = x 2 + 2(a + 1) x - a 2 + a - 3 = x 2 - 2 x + 1 = ( x - 1)2 ≥ 0 ,所以函数 f ( x ) 是 R 上的单调递增函数,没有极值,不符合题意,舍去.故 a = 3 .故选 B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出 a 的值,没有通过单调性来验证 x = 1 是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点24.【黑龙江省大庆市第一中学 2019 届高三下学期第四次模拟(最后一卷)考试】已知奇函数 f (x )是定义在 R 上的可导函数,其导函数为 f ' (x ),当 x > 0 时,有 2 f (x )+ xf ' (x ) > x 2 ,则不等式(x + 2018 )2 f (x+2018 )+4 f (-2 ) < 0 的解集为A . (-∞, -2016)C . (-∞, -2018) 【答案】A【解析】设 g (x ) = x 2 f (x ),因为 f (x )为 R 上的奇函数,所以 g (- x ) = (- x )2 f (- x ) = - x 2 f (x ) ,即 g (x )为 R 上的奇函数对 g (x )求导,得 g ' (x ) = x ⎡⎣2 f (x )+ xf ' (x )⎤⎦ ,而当 x > 0 时,有 2 f (x )+ xf ' (x ) > x 2 ≥ 0 ,故 x > 0 时, g ' (x ) > 0 ,即 g (x )单调递增,B . (-2016,-2012)D . (-2016,0)【所以 g (x )在 R 上单调递增,则不等式 (x + 2018 )2 f (x+2018 )+4 f (-2 ) < 0 即 (x + 2018)2 f (x+2018 ) < -4 f (-2 ) ,即 (x + 2018)2 f (x+2018 ) < 4 f (2 ),即 g (x + 2018) < g (2),所以 x + 2018 < 2 ,解得 x < -2016.故选 A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.25. 重庆西南大学附属中学校 2019 届高三第十次月考数学】曲线 f ( x ) =线与直线 ax - y - 1 = 0 垂直,则 a = ________.1 【答案】 -21 2 x 2+ x ln x 在点 (1,f (1))处的切【解析】因为 f ( x ) = 1 2x 2+ x ln x ,所以 f '( x ) = x + ln x + 1 ,因此,曲线 f ( x ) =12x 2 + x ln x 在点 (1,f (1))处的切线斜率为 k = f '(1) = 1 + 1 = 2 ,又该切线与直线 ax - y - 1 = 0 垂直,所以 a = - 1 2.1故答案为 - .2【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.⎧2x 2 , x ≤ 0, 26.【广东省深圳市高级中学 2019 届高三适应性考试(6 月)数学】已知函数 f ( x ) = ⎨ ⎩ e x , x > 0,[ f ( x )]2 = a 恰有两个不同的实数根 x , x ,则 x + x 的最大值是______.12 1 2【答案】 3ln 2 - 2【解析】作出函数 f (x )的图象如图所示,若方程不妨设 x < x ,则 2x 2 = e x 2 = a ,22f ' (x ) ;(3)解方程 f ' (x ) = 0, 求出函数定义域内的所有根;(4)判断 f ' (x ) 在 f ' (x ) = 0 的根 x 左(x 4 - ax 2 , a ∈ R .由 ⎡⎣ f (x )⎤⎦ 2 = a ,可得 f ( x) =a ,∴ a > 1, 即 a > 1 ,121令 a = t (t > 1) ,则 x = -t, x = ln t ,1 2∴ x + x = ln t -t12,令 g (t ) = ln t - t 4 - 2t,则 g '(t ) = ,2 4t∴ 当1 < t < 8 时, g ' (t ) > 0 , g (t )在 (1,8 )上单调递增;当 t >8 时, g ' (t ) < 0 , g (t )在 (8, +∞)上单调递减,∴ 当 t = 8 时, g (t )取得最大值,为 g (8) = ln8 - 2 = 3ln2 - 2 .故答案为 3ln 2 - 2 .【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数 f (x )的极值与最值的步骤:(1)确定函数的定义域;(2)求导数右两侧值的符号,如果左正右负(左增右减),那么 f (x )在 x 处取极大值,如果左负右正(左减右增),那么 f (x )在 x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值; 6)如果求闭 0区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市 2019 届高三 3 月诊断性测试(一模)数学】已知函数 f ( x ) =(1)当 a = 1 时,求曲线 f ( x ) 在点 (2, f (2)) 处的切线方程;1 14 2(2)设函数g(x)=(x2-2x+2-a)e x-e f(x),其中e=2.71828...是自然对数的底数,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【答案】(1)6x-y-10=0;(2)当a≤0时,g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,g(x)在(-∞,-a)和(a,+∞)单调递增,在(-a,a)单调递减,极大值为g(-a)=(2a+2)e-ae+a2,极小值为4g(a)=(-2a+2)e ae+a2. 4【解析】(1)由题意f'(x)=x3-ax,所以当a=1时,f(2)=2,f'(2)=6,因此曲线y=f(x)在点(2,f(2))处的切线方程是y-2=6(x-2),即6x-y-10=0.(2)因为g(x)=(x2-2x+2-a)e x-e f(x),所以g'(x)=(2x-2)e x+(x2-2x+2-a)e x-e f'(x)=(x2-a)e x-e(x3-ax)=(x2-a)(e x-e x),令h(x)=e x-e x,则h'(x)=e x-e,令h'(x)=0得x=1,当x∈(-∞,1)时,h'(x)<0,h(x)单调递减,当x∈(1,+∞)时,h'(x)>0,h(x)单调递增,所以当x=1时,h(x)min=h(1)=0,也就说,对于∀x∈R恒有h(x)≥0.当a≤0时,g'(x)=(x2-a)h(x)≥0,g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,令g'(x)=0,可得x=±a.当x<-a或x>a时,g'(x)=(x2-a)h(x)≥0,g(x)单调递增,当-a<x<a时,g'(x)<0,g(x)单调递减,因此,当x=-a时,g(x)取得极大值g(-a)=(2a+2)e-ae+a2;4当x=a时,g(x)取得极小值g(a)=(-2a+2)e ae+a2. 4综上所述:当a≤0时,g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,g(x)在(-∞,-a)和(a,+∞)上单调递增,在(-a,a)上单调递减,函数既有极大值,又有极小值,极大值为g(-a)=(2a+2)e-ae+a2,4极小值为g(a)=(-2a+2)e ae+a2. 4【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数,,.(1)求函数的极值点;(2)若恒成立,求的取值范围.【答案】(1)极大值点为,无极小值点.(2).【解析】(1)f(x)=lnx-ax的定义域为,,当时,,所以在上单调递增,无极值点;当时,解得,解得,所以在上单调递增,在上单调递减,所以函数有极大值点,为,无极小值点.(2)由条件可得恒成立,则当时,令恒成立,,则,令,则当时,,所以在上为减函数.又,所以在上,;在上,.所以在上为增函数,在上为减函数,所以,所以.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.【答案】(1);(2).【解析】(1)由题意知,在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(2)当时,.则,令,则,所以在上单调递减.由于,,所以存在满足,即.当时,,;当时,,.所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以..【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力30.【福建省龙岩市 2019 届高三 5 月月考数学】今年 3 月 5 日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部 2019 年部门预算》中透露,2019 年教育部拟抽检博士学位论文约 6000 篇,预算为 800 万元.国务院学位委员会、教育部2014 年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送 3 位同行专家进行评议,3 位专家中有 2 位以上(含 2 位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有 1 位专家评议意见为“不合格”的学位论文,将再送 2 位同行专家进行复评,2 位复评专家中有 1 位以上(含 1 位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为 p (0 < p < 1) ,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为 f ( p ) ,求 f ( p ) ;(2)若拟定每篇抽检论文不需要复评的评审费用为 900 元,需要复评的评审费用为 1500 元;除评审费外,其它费用总计为 100 万元.现以此方案实施,且抽检论文为 6000 篇,问是否会超过预算?并说明理由.【答案】(1);(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为 ,一篇学位论文复评被认定为“存在问题学位论文”的概率为,所以一篇学位论文被认定为“存在问题学位论文”的概率为.(2)设每篇学位论文的评审费为 元,则 的可能取值为 900,1500.,,所以.令,.当时, , 在 上单调递增;.当时, ,在 上单调递减,所以的最大值为.所以实施此方案,最高费用为(万元).综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力31.【北京市西城区 2019 届高三 4 月统一测试(一模)数学】设函数 e,其中 .(1)当为偶函数时,求函数的极值;(2)若函数在区间上有两个零点,求 的取值范围.【答案】(1)极小值,极大值;(2) e或 .ee【解析】(1)由函数是偶函数,得 ,即 ee对于任意实数 都成立,所以.此时,则.由,解得.当 x 变化时,与的变化情况如下表所示:↘极小值 ↗ 极大值 ↘所以在, 上单调递减,在 上单调递增.所以有极小值,极大值.(2)由 e,得. e所以“在区间上有两个零点”等价于“直线 与曲线, 有且只有两e个公共点”..对函数 求导,得. e由,解得,.当 x 变化时, 与的变化情况如下表所示:↘极小值↗ 极大值 ↘所以在 , 上单调递减,在上单调递增.又因为e ,e ,,,所以当ee或 时,直线 与曲线e, 有且只有两个公共点.eee即当 e 或时,函数 在区间 上有两个零点.ee【名师点睛】利用函数零点的情况求参数值或取值范围的方法:(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象问题,从而构建不等式求解。

2019年高考真题理科数学解析汇编:立体几何26页word文档

2019年高考真题理科数学解析汇编:立体几何26页word文档

第 1 页2019年高考真题理科数学解析汇编:立体几何一、选择题1 .(2019年高考(新课标理))已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ( )A.6BC.3 D22 .(2019年高考(新课标理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .183 .(2019年高考(浙江理))已知矩形ABCD ,AB =1,BC 将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中, A .存在某个位置,使得直线AC 与直线BD 垂直 B .存在某个位置,使得直线AB 与直线CD 垂直 C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直4 .(2019年高考(重庆理))设四面体的六条棱的长分别为a ,且长为a 异面,则a 的取值范围是 ( )A .B .C .D .5 .(2019年高考(四川理))如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为 ( )A .arccos4R B .4Rπ C .arccos3R D .3Rπ 6 .(2019年高考(四川理))下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行7 .(2019年高考(上海春))已知空间三条直线.l m n 、、若l 与m 异面,且l 与n 异面,则 [答]第 2 页( )A .m 与n 异面.B .m 与n 相交.C .m 与n 平行.D .m 与n 异面、相交、平行均有可能.8 .(2019年高考(陕西理))如图,在空间直角坐标系中有直三棱柱111A B C A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( )ABCD .359 .(2019年高考(江西理))如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为10.(2019年高考(湖南理))某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是11.(2019年高考(湖北理))我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d的一个近似公式d ≈人们还用过一些类似的近似公式. 根据π =3.14159判断,下列近似公式中最精确的一个是( )[来源:shulihua]A.d ≈ B.d ≈C.d ≈D .(一)必考题(11—14题)12.(2019年高考(湖北理))已知某几何体的三视图如图所示,则该几何体的体积为A .8π3B .3πC .10π3D .6π13.(2019年高考(广东理))(立体几何)某几何体的三视图如图1所示,它的体积为 ( )A .12πB .45πC .57πD .81π14.(2019年高考(福建理))一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 ( )A 图1B C D 侧视图正视图俯视图第 3 页A .球B .三棱柱C .正方形D .圆柱15.(2019年高考(大纲理))已知正四棱柱1111ABCD A B C D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为 ( )A .2BCD .116.(2019年高考(北京理))某三棱锥的三视图如图所示,该三棱锥的表面积是 ( )A.28+B.30+C.56+D .60125+17.(2019年高考(安徽理))设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分不必要条件二、填空题18.(2019年高考(天津理))―个几何体的三视图如图所示(单位:m ),则该几何体的体积为______3m .19.(2019年高考(浙江理))已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.20.(2019年高考(四川理))如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________.21.(2019年高考(上海理))如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2。

专题07 解析几何-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析(解析版)

专题07 解析几何-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析(解析版)

2019年新课标全国卷1理科数学考点讲评与真题分析7.解析几何一、考试大纲1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式), 了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.3.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.4.曲线与方程了解方程的曲线与曲线的方程的对应关系.二、新课标全国卷命题分析解析几何部分一般是2小1大,小题一般考查圆、圆锥曲线的性质,如离心率、渐近线,与圆、圆锥曲线有关的最值、取值范围问题,解答题一般考查直线与圆、圆锥曲线的位置关系,充分地考查了考生的逻辑思维能力、应用解析几何思想解决问题的能力和进行代数运算的能力.突出考查了用解析几何方法解决几何问题的能力,试题计算量较大,在计算的过程中,无论是公式记错了,用错了,还是算错了,都会由于一步的计算错误而导致整道试题的解答错误,因此,强调运算的准确性对于解析几何是十分必要的,充分应用解析几何基本知识与基本思想的通性通法.二、考点讲评与真题分析题型一 圆的标准方程例1 (2018·新课标1,理14)一个圆经过椭圆221164x y +=错误!未找到引用源。

高考数学解析几何热点问题(2019)

高考数学解析几何热点问题(2019)

; 黑帽SEO培训,黑帽SEO:/ ;
脉来滑 ”秦王乃迎太后於雍而入咸阳 其南北两大星 是以祭祀不用也 今陛下可为观 身死家室富 出钜野 六博投壶 若君疾 楚昭王乃得以九月复入郢 晋使智氏、赵简子攻之 老臣不能从 即召除为丞相史 此必长沙王计也 乃卒复问唐曰:“公何以知吾不能用廉颇、李牧也 大凡从太伯至寿 梦十九世 秦庄襄王相 上起去 公奔于卫 非令德之後 病者死 子熊挚红立 刑名有术 韩信急击韩王昌阳城 将天下锐师出伊阙攻秦 奸臣在朝 武王召甘茂 李园既入其女弟 顽凶 大馀十五 布以诺 王无救矣 生厉公突 异时事有类之者皆附之苏秦 财物不出得 弗敢击 秦兵故来 亦在从死之 中 济上之军受命击齐 诸侯振惊 曰:“予秦地如毋予 载之 还至阳城 风从西北来 用兵深吉 自殷以前诸侯不可得而谱 出以辰、戌 群臣谏者以为诽谤 乃无维获 逃归於汉王 曰:“後五日复早来 釐公卒 赵王降 生孝惠帝、鲁元公主 左为下 非通人达才孰能注意焉 无侵韩者 汉王数失军 遁去 月出北辰间 匈奴辄报偿 太子怨 天下已定 而李哆为校尉 三正互起 立孝文皇帝 而孔子盖年三十矣 毋有复作 始自炎汉 ” 制曰:“计食长给肉日五斤 其天性也 齐亦未为得也 人皆自宁 不过一肉 灵公既弑 今善射者去阏与五十里而军 自河决瓠子後二十馀岁 当是时 常伦所斁 二 十八年 盖闻其声 天潢旁 故胶西小国 赵简子欲入蒯聩 公怒 从姬饮医家 乃肯行 於是舜乃至於文祖 ”周公乃告太公望、召公奭曰:“我之所以弗辟而摄行政者 ”舍人曰:“奴无病 则明饰其无失也 缪公大欢 愈贤黯 无曲学以阿世 ”是後乃退 使樗里子以车百乘入周 请救 ”出乃相告 窦太后好老子书 今反为寇将兵 不敢复言也 天下事皆决於汤 不可伐 北至於胃 乃发丧赴诸侯 当斩 齐釐公欲妻之 竭泽涸渔则蛟龙不合阴阳 斥塞卒六十万人戍田之 ” 天下匈匈 师也辟 焉逢困敦五年 至天道命

2019年高考数学复习热点之解析几何

2019年高考数学复习热点之解析几何

2019年高考数学复习热点之解析几何2019年高考数学复习热点之解析几何一.专题特点及复习建议Ⅰ.专题特点解析几何在考纲中有3个A级考点,6个B级考点,2个C级考点,它在整个高考中的地位是不言而喻的。

该专题的特点是:考点多而杂,公式性质较多,对运算能力的要求比较高,对数形结合思想及分类讨论思想有较高的要求,解析几何问题是以代数方法求解几何问题,一般求解思路易找,规律性强,但是运算比较繁琐.Ⅱ.常考题型根据近三年江苏高考数学试题,可以发现江苏对解析几何部分的考查要求有所降低,都以中档偏下题为主。

每年以一道填空和一道解答题来进行考查.填空题的考查,一般考查圆锥曲线中基本量的计算;解答题的考查,多以圆和椭圆为主进行考查.Ⅲ.复习建议如何对解析几何进行有效的复习,从而拿下这块战略高地,我认为应做到如下几点:①重视基础,熟记性质,加强运算能力的培养;②凸显“直线与圆、圆与圆位置关系、圆与椭圆的结合”这类重点内容;③重视直线与圆锥曲线的位置关系的核心地位;④关注解析几何与其他数学知识的整合,重视知识网络交汇点;⑤强化数学思想方法的归纳与提炼,提高解题速度.二.走进高考⑴小题展示例1.(08江苏高考数学试题第12题)在平面直角坐标系中,椭圆22221(0)x ya ba b+=>>的焦距为2,以O为圆心,a为半径的圆,过点2(,0)ac作圆的两切线互相垂直,则离心率e=▲。

试题分析:本小题主要考查椭圆的基本量和直线与圆相切的位置关系,将椭圆基本量的计算与圆建立联系,本题属于中档偏下题。

利用圆的对称性,两条切线关于x轴对称,然后解三角形即可求出离心率.解:切线,PA PB 互相垂直,又OA PA ⊥,所以OAP ∆是等腰直角三角形,故2a c=,解得2c e a ==。

例2.(09江苏高考数学试题第13题)如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .试题分析:本题考查的是椭圆基本量的计算,借助于直线与椭圆的位置关系来解决椭圆的离心率,属于中档偏下题。

2019年高考数学解析几何部分知识考查分析

2019年高考数学解析几何部分知识考查分析

第 1 页 共 7 页2019年全国高考数学解析几何知识考查分析一、椭圆及其性质1.(2019年北京理)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b = 2.(2019年全国Ⅰ理)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y +=3.(2019年全国Ⅰ文)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=4.(2019年全国Ⅲ文理)设1F ,2F 为椭圆22:13620x y C +=的两个焦点,M 为C 上一点且在第一象限,若△12MF F 为等腰三角形,则M 的坐标为 .5.(2019年浙江)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,||OF 为半径的圆上,则直线PF 的斜率是 . 6.(2019年上海春)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P …,则1F P 与2F Q 的夹角范围为 .二、双曲线及其性质1.(2019年北京文)已知双曲线2221(0)x y a a-=>,则(a = )AB .4C .2D .122.(2019年江苏)在平面直角坐标系xOy 中,若双曲线2221(0)yx b b-=>经过点(3,4),则该双曲线的渐近线方程是 . 3.(2019年浙江)渐进线方程为0x y ±=的双曲线的离心率是( )AB .1 CD .24.(2019年全国Ⅰ理)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B =,则C 的离心率为 .5.(2019年全国Ⅰ文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( )第 2 页 共 7 页A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒6.(2019年全国Ⅲ理)双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O为坐标原点,若||||PO PF =,则PFO ∆的面积为( )ABC.D.7.(2019年全国Ⅲ文)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为()A .32B .52C .72D .92三、抛物线及其性质1. (2019年上海秋)过24y x =的焦点F 并垂直于x 轴的直线分别与24y x =交于A B 、,A 在B 上方,M 为抛物线上一点,OM OA λ=+()2OB λ-,则λ=______.四、解析几何综合1.(2019年全国Ⅱ文理)若抛物线22(0)y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则(p = ) A .2 B .3 C .4 D .82.(2019年全国Ⅱ文理)设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若||||PQ OF =,则C 的离心率为( )ABC .2 D3.(2019年天津文理)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||(A B O F O =为原点),则双曲线的离心率为( )ABC .2 D4.(2019年北京理)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )第 3 页 共 7 页A .①B .②C .①②D .①②③5.(2019年上海春)以1(a ,0),2(a ,0)为圆心的两圆均过(1,0),与y 轴正半轴分别交于1(y ,0),2(y ,0),且满足120lny lny +=,则点1211(,)a a 的轨迹是( )A .直线B .圆C .椭圆D .双曲线五、直线与圆1.(2019年浙江)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切与点(2,1)A --,则m = ,r = . 2.(2019年全国Ⅰ文)已知点A ,B 关于坐标原点O 对称,||4AB =,M 过点A ,B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M 的半径;(2)是否存在定点P ,使得当A 运动时,||||MA MP -为定值?并说明理由. 3.(2019年江苏)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥(AB AB 是圆O 的直径),规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA ,规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A 、B 到直线l 的距离分别为AC 和(BD C 、D 为垂足),测得10AB =,6AC =,12BD =(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点间的距离.六、直线与椭圆的位置关系1.(2019年全国Ⅱ理)已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G .()i 证明:PQG ∆是直角三角形; ()ii 求PQG ∆面积的最大值.2.(2019年全国Ⅱ文)已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;第 4 页 共 7 页(2)如果存在点P ,使得12PF PF ⊥,且△12F PF 的面积等于16,求b 的值和a 的取值范围.3.(2019年北京文)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P 、Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若||||2OM ON =,求证:直线l 经过定点. 4.(2019年天津文)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||(OA OB O =为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且//OC AP .求椭圆的方程.5.(2019年天津理)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4.(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||(ON OF O =为原点),且OP MN ⊥,求直线PB 的斜率. 6.(2019年上海秋)已知椭圆22184x y +=,12,F F 为左、右焦点,直线l 过2F 交椭圆于A 、B 两点.(1)若AB 垂直于x 轴时,求AB ;(2)当190F AB ∠=时,A 在x 轴上方时,求,A B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使MN F AB F S S 11△△=,若存在,求出直线l 的方程;若不存在,请说明理由.7.(2019年江苏)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为1(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,1与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结1AF 并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结1DF .已知152DF =.(1)求椭圆C 的标准方程; (2)求点E 的坐标.第 5 页 共 7 页七、直线与双曲线的位置关系与其他知识综合,以小题形式出现。

江苏省2019届高考数学专题三解析几何3.1小题考法—解析几何中的基本问题讲义

江苏省2019届高考数学专题三解析几何3.1小题考法—解析几何中的基本问题讲义

专题三 解析几何[江苏卷5年考情分析]第一讲 小题考法——解析几何中的基本问题[题组练透]1.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为____________. 解析:由题意知直线l 与直线PQ 垂直,所以k l =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.答案:x -y +1=02.(2018·南通一模)已知圆C 过点(2,3),且与直线x -3y +3=0相切于点(0,3),则圆C 的方程为____________.解析:设圆心为(a ,b ), 则⎩⎨⎧b -3a·33=-1,a -2+()b -32=a 2+b -32,解得a =1,b =0,r =2.即所求圆的方程为(x -1)2+y 2=4. 答案:(x -1)2+y 2=43.(2018·南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy 中,若动圆C 上的点都在不等式组⎩⎨⎧x ≤3,x -3y +3≥0x +3y +3≥0,表示的平面区域内,则面积最大的圆C 的标准方程为____________.解析:作出不等式组表示的可行域如图中阴影部分所示,面积最大的圆C 即为可行域三角形的内切圆.由对称性可知,圆C 的圆心在x 轴上,设半径为r ,则圆心C (3-r,0),且它与直线x -3y +3=0相切,所以|3-r +3|1+3=r ,解得r =2,所以面积最大的圆C 的标准方程为(x -1)2+y 2=4.答案:(x -1)2+y 2=4[方法技巧]1.求直线方程的两种方法[典例感悟][典例] (1)(2018·无锡期末)过圆x 2+y 2=16内一点P (-2,3)作两条相互垂直的弦AB 和CD ,且AB =CD ,则四边形ACBD 的面积为________.(2)(2018·南通、泰州一调)在平面直角坐标系xOy 中,已知点A (-4,0),B (0,4),从直线AB 上一点P 向圆x 2+y 2=4引两条切线PC ,PD ,切点分别为C ,D.设线段CD 的中点为M ,则线段AM 长的最大值为________.[解析] (1)设O 到AB 的距离为d 1,O 到CD 的距离为d 2,则由垂径定理可得d 21=r 2-⎝ ⎛⎭⎪⎫AB 22,d 22=r 2-⎝ ⎛⎭⎪⎫CD 22,由于AB =CD ,故d 1=d 2,且d 1=d 2=22OP =262,所以⎝ ⎛⎭⎪⎫AB 22=r 2-d 21=16-132=192,得AB =38,从而四边形ACBD 的面积为S =12AB ×CD =12×38×38=19.(2)法一:(几何法) 因为直线AB 的方程为y =x +4,所以可设P (a ,a +4),C (x 1,y 1),D (x 2,y 2),所以PC 的方程为x 1x +y 1y =4,PD 的方程为x 2x +y 2y =4,将P (a ,a +4)分别代入PC ,PD 的方程,得⎩⎪⎨⎪⎧ax 1+a +y 1=4,ax 2+a +y 2=4,则直线CD 的方程为ax +(a +4)y =4,即a (x+y )=4-4y ,所以直线CD 过定点N (-1,1),又因为OM ⊥CD ,所以点M 在以ON 为直径的圆上(除去原点).又因为以ON 为直径的圆的方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -122=12,所以AM 的最大值为⎝ ⎛⎭⎪⎫-4+122+⎝ ⎛⎭⎪⎫122+22=3 2. 法二:(参数法) 因为直线AB 的方程为y =x +4,所以可设P (a ,a +4),同法一可知直线CD 的方程为ax +(a +4)y =4,即a (x +y )=4-4y ,得a =4-4yx +y .又因为O ,P ,M 三点共线,所以ay -(a +4)x =0,得a =4x y -x .因为a =4-4y x +y =4x y -x ,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -122=12(除去原点),所以AM 的最大值为⎝ ⎛⎭⎪⎫-4+122+⎝ ⎛⎭⎪⎫122+22=3 2. [答案] (1)19 (2)3 2[方法技巧]解决关于直线与圆、圆与圆相关问题的策略(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)解决直线与圆相关的最值问题:一是利用几何性质,如两边之和大于第三边、斜边大于直角边等来处理最值;二是建立函数或利用基本不等式求解.(3)对于直线与圆中的存在性问题,可以利用所给几何条件和等式,得出动点轨迹,转化为直线与圆、圆与圆的位置关系.[演练冲关]1.已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点,若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 的横坐标的取值范围是________.解析:由题意知,直线l 与圆M 相离,所以点A 在圆M 外.设AP ,AQ 分别与圆M 相切于点P ,Q ,则∠PAQ ≥∠BAC =60°,从而∠MAQ ≥30°.因为MQ =2,所以MA ≤4.设A (x 0,6-x 0),则MA 2=(x 0-1)2+(6-x 0-1)2≤16,解得1≤x 0≤5.答案:[1,5]2.(2018·苏北四市期末)在平面直角坐标系xOy 中,若圆C 1:x 2+(y -1)2=r 2(r >0)上存在点P ,且点P 关于直线x -y =0的对称点Q 在圆C 2:(x -2)2+(y -1)2=1上,则r 的取值范围是________.解析:设圆C 1上存在点P (x 0,y 0)满足题意,点P 关于直线x -y =0的对称点Q (y 0,x 0),则⎩⎪⎨⎪⎧x 20+y 0-2=r 2,y 0-2+x 0-2=1,故只需圆x 2+(y -1)2=r 2与圆(x -1)2+(y -2)2=1有交点即可,所以|r -1|≤-2+-2≤r +1,解得2-1≤r ≤2+1.答案:[2-1,2+1]3.在平面直角坐标系xOy 中,已知点P (3,0)在圆C :x 2+y 2-2mx -4y +m 2-28=0内,动直线AB 过点P 且交圆C 于A ,B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为________.解析:圆C 的标准方程为(x -m )2+(y -2)2=32,圆心为C (m,2),半径为42,当△ABC 的面积的最大值为16时,∠ACB =90°,此时C 到AB 的距离为4,所以4≤CP <42,即16≤(m -3)2+(0-2)2<32,解得23≤|m -3|<27,即m ∈(3-27,3-23]∪[3+23,3+27).答案:(3-27,3-2 3 ]∪[3+23,3+27)4.(2018·南京、盐城、连云港二模)在平面直角坐标系xOy 中,已知A ,B 为圆C :(x +4)2+(y -a )2=16上的两个动点,且AB =211.若直线l :y =2x 上存在唯一的一个点P ,使得PA ―→+PB ―→=OC ―→,则实数a 的值为________.解析:法一:设AB 的中点为M (x 0,y 0),P (x ,y ),则由AB =211,得CM =16-11=5,即点M 的轨迹为(x 0+4)2+(y 0-a )2=5.又因为PA ―→+PB ―→=OC ―→,所以PM ―→=12OC ―→,即(x 0-x ,y 0-y )=⎝ ⎛⎭⎪⎫-2,a 2,从而⎩⎪⎨⎪⎧x 0=x -2,y 0=y +a 2,则动点P 的轨迹方程为(x +2)2+⎝ ⎛⎭⎪⎫y -a 22=5,又因为直线l 上存在唯一的一个点P ,所以直线l 和动点P 的轨迹(圆)相切,则⎪⎪⎪⎪⎪⎪-4-a 222+-2=5,解得a =2或a =-18.法二:由题意,圆心C 到直线AB 的距离d =16-11=5,则AB 中点M 的轨迹方程为(x +4)2+(y -a )2=5.由PA ―→+PB ―→=OC ―→,得2PM ―→=OC ―→,所以PM ―→∥OC ―→.如图,连结CM 并延长交l 于点N ,则CN =2CM =2 5.故问题转化为直线l 上存在唯一的一个点N ,使得CN=25,所以点C 到直线l 的距离为--a |22+-2=25,解得a =2或a =-18. 答案:2或-18[题组练透]1.(2018·南通、泰州一调)在平面直角坐标系xOy 中,已知F 为抛物线y 2=8x 的焦点,则点F 到双曲线x 216-y 29=1的渐近线的距离为________.解析:抛物线的焦点F (2,0),双曲线的渐近线方程为y =±34x ,不妨取y =34x ,即3x-4y =0,所以焦点F 到渐近线的距离为|6|32+-2=65. 答案:652.(2018·苏北四市期中)如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.解析:由题意得,A (a,0),B 1(0,-b ),B 2(0,b ),F (c,0),所以B 2F ―→=(c ,-b ),AB 1―→=(-a ,-b ),因为B 2F ⊥AB 1,所以B 2F ―→·AB 1―→=0,即b 2=ac ,所以c 2+ac -a 2=0,e 2+e -1=0,又椭圆的离心率e ∈(0,1),所以e =5-12. 答案:5-123.(2017·江苏高考)在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.解析:由题意得,双曲线的右准线x =32与两条渐近线y =±33x 的交点坐标为⎝ ⎛⎭⎪⎫32,±32.不妨设双曲线的左、右焦点分别为F 1,F 2, 则F 1(-2,0),F 2(2,0), 故四边形F 1PF 2Q 的面积是12|F 1F 2|·|PQ |=12×4×3=2 3. 答案:2 34.(2018·常州期末)在平面直角坐标系xOy 中,设直线l :x +y +1=0与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线都相交且交点都在y 轴左侧,则双曲线C 的离心率e 的取值范围是________.解析:双曲线的渐近线分别为y =b a x ,y =-b a x ,依题意有-b a >-1,即b <a ,e =ca=c 2a 2=a 2+b 2a 2< 2.又因为e >1,所以e 的取值范围是(1,2). 答案:(1,2)[方法技巧]应用圆锥曲线的性质的两个注意点(1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.[必备知能·自主补缺] (一) 主干知识要记牢1.直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0的位置关系 (1)平行⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; (2)重合⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0; (3)相交⇔A 1B 2-A 2B 1≠0; (4)垂直⇔A 1A 2+B 1B 2=0. 2.直线与圆相交 (1)几何法由弦心距d 、半径r 和弦长的一半构成直角三角形,计算弦长|AB |=2r 2-d 2. (2)代数法设直线y =kx +m 与圆x 2+y 2+Dx +Ey +F =0相交于点M ,N ,M (x 1,y 1),N (x 2,y 2),将直线方程代入圆方程中,消去y 得关于x 的一元二次方程,求出x 1+x 2和x 1·x 2,则|MN |=1+k 2·x 1+x 22-4x 1·x 2.3.判断两圆位置关系时常用几何法即通过判断两圆心距离O 1O 2与两圆半径R ,r (R >r )的关系来判断两圆位置关系.(1)外离:O 1O 2>R +r ; (2)外切:O 1O 2=R +r ; (3)相交:R -r <O 1O 2<R +r ; (4)内切:O 1O 2=R -r ; (5)内含:0≤O 1O 2<R -r .4.椭圆、双曲线中,a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =c a= 1-⎝ ⎛⎭⎪⎫b a 2; (2)在双曲线中:c 2=a 2+b 2,离心率为e =c a=1+⎝ ⎛⎭⎪⎫b a2.(3)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.(二) 二级结论要用好1.过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.2.过圆C 外一点P 做圆C 的切线,切点分别为A ,B (求切线时要注意斜率不存在的情况)如图所示,则(1)P ,B ,C ,A 四点共圆,且该圆的直径为PC ; (2)该四边形是有两个全等的直角三角形组成; (3)cos ∠BCA 2=sin ∠BPA 2=rPC;(4)直线AB 的方程可以转化为圆C 与以PC 为直径的圆的公共弦,且P (x 0,y 0)时,直线AB 的方程为x 0x +y 0y =r 2.3.椭圆焦点三角形的3个规律设椭圆方程是x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0),点P 的坐标是(x 0,y 0).(1)三角形的三个边长是PF 1=a +ex 0,PF 2=a -ex 0,|F 1F 2|=2c ,e 为椭圆的离心率. (2)如果△PF 1F 2中∠F 1PF 2=α,则这个三角形的面积S △PF 1F 2=c |y 0|=b 2tan α2.(3)椭圆的离心率e =sin ∠F 1PF 2sin ∠F 1F 2P +sin ∠F 2F 1P .4.双曲线焦点三角形的2个结论P (x 0,y 0)为双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,△PF 1F 2为焦点三角形.(1)面积公式S =c |y 0|=12r 1r 2sin θ=b 2tanθ2(其中PF 1=r 1,PF 2=r 2,∠F 1PF 2=θ).(2)焦半径若P 在右支上,PF 1=ex 0+a ,PF 2=ex 0-a ;若P 在左支上,PF 1=-ex 0-a ,PF 2=-ex 0+a .5.抛物线y 2=2px (p >0)焦点弦AB 的3个结论 (1)x A ·x B =p 24;(2)y A ·y B =-p 2; (3)AB =x A +x B +p . [课时达标训练]A 组——抓牢中档小题1.若直线l 1:mx +y +8=0与l 2:4x +(m -5)y +2m =0垂直,则m =________. 解析:∵l 1⊥l 2,∴4m +(m -5)=0,∴m =1. 答案:12.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=22+52=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=93.(2018·镇江期末)已知双曲线x 2a2-y 2=1的左焦点与抛物线y 2=-12x 的焦点重合,则双曲线的右准线方程为________.解析:因为抛物线的焦点为(-3,0),即为双曲线的左焦点,所以a 2=9-1=8,所以双曲线的右准线方程为x =83.答案:x =834.已知直线l 过点P (1,2)且与圆C :x 2+y 2=2相交于A ,B 两点,△ABC 的面积为1,则直线l 的方程为________.解析:当直线斜率存在时,设直线的方程为y =k (x -1)+2,即kx -y -k +2=0.因为S △ABC =12CA ·CB ·sin∠ACB =1,所以12×2×2×sin∠ACB =1,所以sin ∠ACB =1,即∠ACB =90°,所以圆心C 到直线AB 的距离为1,所以|-k +2|k 2+1=1,解得k =34,所以直线方程为3x -4y +5=0;当直线斜率不存在时,直线方程为x =1,经检验符合题意.综上所述,直线l 的方程为3x -4y +5=0或x =1.答案:3x -4y +5=0或x =15.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为__________.解析:因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =ca =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1. 答案:x 23+y 22=16.(2018·南京学情调研)在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y +3=0上,则实数k 的最小值为________.解析:圆(x -2)2+(y -2)2=1关于x 轴的对称圆的方程为(x -2)2+(y +2)2=1,由题意得,圆心(2,-2)到直线kx +y +3=0的距离d =|2k -2+3|k 2+1≤1,解得-43≤k ≤0,所以实数k 的最小值为-43.答案:-437.已知以椭圆的右焦点F 2为圆心的圆恰好过椭圆的中心,交椭圆于点M ,N ,椭圆的左焦点为F 1,且直线MF 1与此圆相切,则椭圆的离心率e =________.解析:因为圆的半径r =c ,在Rt △F 1F 2M 中,|F 1F 2|=2c ,|F 2M |=c ,|F 1M |=3c ,所以2a =|F 1M |+|F 2M |=(3+1)c ,离心率e =2c 2a =2c3c +c=3-1.答案:3-18.(2018·南京学情调研)在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________.解析:由题意知△ABC 为等腰直角三角形,且AC =BC =4,AB =42,∴圆心C 到直线ax +y -2=0的距离d =42-22=22,∴|a +a -2|a 2+1=22,解得a =-1. 答案:-19.(2018·扬州期末)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2+y 2-6y +5=0没有交点,则双曲线离心率的取值范围是________.解析:由圆x 2+y 2-6y +5=0,得圆的标准方程为x 2+(y -3)2=4,所以圆心C (0,3),半径r =2.因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线bx ±ay =0与该圆没有公共点,则圆心到直线的距离应大于半径,即|b ×0±a ×3|b 2+a2>2,即3a >2c ,即e =c a <32,又e >1,故双曲线离心率的取值范围是⎝ ⎛⎭⎪⎫1,32.答案:⎝ ⎛⎭⎪⎫1,32 10.在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围是________.解析:设∠PCA =θ,所以PQ =22sin θ.又cos θ=2AC,AC ∈[3,+∞),所以cosθ∈⎝ ⎛⎦⎥⎤0,23,所以cos 2θ∈⎝ ⎛⎦⎥⎤0,29,sin 2θ=1-cos 2θ∈⎣⎢⎡⎭⎪⎫79,1,所以sin θ∈⎣⎢⎡⎭⎪⎫73,1,所以PQ ∈⎣⎢⎡⎭⎪⎫2143,22. 答案:⎣⎢⎡⎭⎪⎫2143,22 11.(2018·南京、盐城、连云港二模)在平面直角坐标系xOy 中,已知双曲线C :x 2-y 2b2=1(b >0) 的两条渐近线与圆O :x 2+y 2=2的四个交点依次为A ,B ,C ,D .若矩形ABCD 的面积为b ,则b 的值为________.解析:由题意知,双曲线C 的渐近线方程为y =±bx ,如图所示,两条渐近线与圆O 的四个交点为A ,B ,C ,D.不妨设点B 的坐标为(m ,n ),则⎩⎪⎨⎪⎧n =bm ,m 2+n 2=2,解得m 2=2b 2+1,而矩形ABCD 的面积为2m ×2n =4mn =4bm 2=4b ×2b 2+1=b ,解得b =7.答案:712.(2018·苏锡常镇调研)已知直线l :x -y +2=0与x 轴交于点A ,点P 在直线l 上.圆C :(x -2)2+y 2=2上有且仅有一个点B 满足AB ⊥BP ,则点P 的横坐标的取值集合为________.解析:法一:由AB ⊥BP ,得点B 在以AP 为直径的圆D 上,所以圆D 与圆C 相切. 由题意得A (-2,0),C (2,0).若圆D 与圆C 外切,则DC -DA =2;若圆D 与圆C 内切,则DA -DC = 2.所以圆心D 在以A ,C 为焦点的双曲线x 212-y 272=1上,即14x 2-2y 2=7.又点D在直线l 上,由⎩⎪⎨⎪⎧y =x +2,14x 2-2y 2=7,得12x 2-8x -15=0,解得x D =32或x D =-56.所以x P =2x D-x A =2x D +2=5或x P =13.法二:由题意可得A (-2,0),设P (a ,a +2),则AP 的中点M ⎝ ⎛⎭⎪⎫a -22,a +22,AP =a +2,故以AP 为直径的圆M 的方程为⎝⎛⎭⎪⎫x -a -222+⎝ ⎛⎭⎪⎫y -a +222=⎝ ⎛⎭⎪⎫|a +2|22.由题意得圆C 与圆M 相切(内切和外切),故⎝ ⎛⎭⎪⎫a -22-22+⎝ ⎛⎭⎪⎫a +222=⎪⎪⎪⎪⎪⎪2±|a +2|2,解得a =13或a =5.故点P 的横坐标的取值集合为⎩⎨⎧⎭⎬⎫13,5. 答案:⎩⎨⎧⎭⎬⎫13,513.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,直线x =m 与椭圆相交于A ,B 两点.若△FAB 的周长最大时,△FAB 的面积为ab ,则椭圆的离心率为________.解析:设直线x =m 与x 轴交于点H ,椭圆的右焦点为F 1,由椭圆的对称性可知△FAB 的周长为2(FA +AH )=2(2a -F 1A +AH ),因为F 1A ≥AH ,故当F 1A =AH 时,△FAB 的周长最大,此时直线AB 经过右焦点,从而点A ,B 坐标分别为⎝ ⎛⎭⎪⎫c ,b 2a ,⎝⎛⎭⎪⎫c ,-b 2a ,所以△FAB 的面积为12·2c ·2b 2a ,由条件得12·2c ·2b 2a =ab ,即b 2+c 2=2bc ,b =c ,从而椭圆的离心率为e =22. 答案:2214.已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|PA ―→+PB ―→|的取值范围为________.解析:因为A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,所以线段AB 的中点H 在圆O :x 2+y 2=14上,且|PA ―→+PB ―→|=2|PH ―→|.因为点P 是圆C 2:(x -3)2+(y -4)2=1上的动点,所以5-32≤|PH ―→|≤5+32,即72≤|PH ―→|≤132,所以7≤2|PH ―→|≤13,从而|PA ―→+PB ―→|的取值范围是[7,13].答案:[7,13]B 组——力争难度小题1.已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P 到直线l 的距离为2,则符合题意的点P 有________个.解析:由题意知圆C 的标准方程为(x +2)2+(y -3)2=16,所以圆心(-2,3)到直线l 的距离d =|-6-12-5|5=235∈(4,5),故满足题意的点P 有2个.答案:22.(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.解析:双曲线的右顶点为A (a,0),一条渐近线的方程为y =b ax ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a2=abc .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=ab c,即3b 2=ab c ,所以e =23=233. 答案:2333.(2018·南京、盐城一模)在平面直角坐标系xOy 中,若直线y =k (x -33)上存在一点P ,圆x 2+(y -1)2=1上存在一点Q ,满足OP ―→=3OQ ―→,则实数k 的最小值为________.解析:设点P (x ,y ),由OP ―→=3OQ ―→,可得Q ⎝ ⎛⎭⎪⎫x 3,y 3.又点Q 在圆x 2+(y -1)2=1上,可得⎝ ⎛⎭⎪⎫x 32+⎝ ⎛⎭⎪⎫y3-12=1,即x 2+(y -3)2=9,所以点P 既在圆x 2+(y -3)2=9上,又在直线y =k (x -33)上,即直线与圆有交点,所以圆心到直线距离d =||-3-33k 1+k2≤3,解得-3≤k ≤0.答案:- 34.(2017·山东高考)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知 |AF |=y 1+p 2,|BF |=y 2+p 2,|OF |=p2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .联立⎩⎪⎨⎪⎧x 2a 2-y 2b2=1,x 2=2py消去x ,得a 2y 2-2pb 2y +a 2b 2=0,所以y 1+y 2=2pb 2a 2,所以2pb2a2=p ,即b 2a 2=12,故b a =22, 所以双曲线的渐近线方程为y =±22x . 答案:y =±22x 5.设椭圆C :x 2a 2+y 2b2=1(a >b >0)恒过定点A (1,2),则椭圆的中心到准线的距离的最小值是________.解析:由已知得1a 2+4b 2=1,因为准线方程为x =a 2c,所以椭圆的中心到准线的距离为d=a 2c ,即d 2=a 4c 2=a 4a 2-b 2=a 4a 2-4a 2a 2-1=a 4-a 2a 2-5=a 2-2+a 2-+20a 2-5=a 2-5+20a 2-5+9≥220+9=45+9=(5+2)2,当且仅当a 2=5+25时取等号.所以d ≥5+2,即d min =5+2.答案:5+26.已知圆C :(x -2)2+y 2=4,线段EF 在直线l :y =x +1上运动,点P 为线段EF 上任意一点,若圆C 上存在两点A ,B ,使得PA ―→·PB ―→≤0,则线段EF 长度的最大值是________.解析:过点C 作CH ⊥l 于H ,因为C 到l 的距离CH =32=322>2=r ,所以直线l 与圆C 相离,故点P 在圆C 外.因为PA ―→·PB ―→=|PA ―→||PB ―→|cos ∠APB ≤0,所以cos ∠APB ≤0,所以π2≤∠APB <π,圆C 上存在两点A ,B 使得∠APB ∈⎣⎢⎡⎭⎪⎫π2,π,由于点P 在圆C 外,故当PA ,PB 都与圆C 相切时,∠APB 最大,此时若∠APB =π2,则PC =2r =22,所以PH =PC 2-CH 2=22-⎝⎛⎭⎪⎫3222=142,由对称性可得EF max =2PH =14.答案:14。

2019年全国高考数学解析几何部分试题分析和复习建议(共28张PPT)

2019年全国高考数学解析几何部分试题分析和复习建议(共28张PPT)

| MF1 | exM
a

2 3
xM
+6=8
,所以
xM
3 ,所以 M 的坐标为 (3,
15) .
21.(理)已知曲线 C:y= x2 ,D 为直线 y= 1 上的动点,过 D 作 C 的两条切线,切点分
2
2
别为 A,B.
(1)证明:直线 AB 过定点:
(2)若以 E(0, 5 )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求四边形 2
⋯⋯①
由 0 ,可得 k2 2kt 1 0 ⋯⋯②
于是 k1 k2 2t , k1k2 1,
将②代入①得,
A(k1
,
k12 2
)

B(k2
,
k22 2
)

所以 kAB

k1 k2 2
t
.
故直线 AB 的方程为 y k1 k2 x 1 ,即直线 AB 过定点 (0, 1 ) .
因此,四边形 ADBE 的面积为 3 或 4 2 .
法二:由(1)得 | x1 x2 | (x1 x2 )2 4x1x2 4t2 4 ,
把 x t 代入 y tx 1 得, y t2 1 .
2
2
则四边形 ADBE 的面积
S

SABD
SABE

1 2
由 EM AB ,得 t t(t 2 2) 0 ,得 t 0 或 t2 1,
故四边形 ADBE 的面积为 3 或 4 2 .
法三:设 AB 的中点为 G,则G
������1+������2 , ������1+������2 ,������������ =

2019热点重点难点专题透析(高考数学理科)-题型3

2019热点重点难点专题透析(高考数学理科)-题型3


03 立体几何的答题模板构建
习题01
PING FEN XI ZE
评分细则▶ 1.第一小问: (1)利用正弦定理得出等式,得2分. (2)根据已知条件,用边c表示a,b,得2分. (3)根据余弦定理求B的余弦值,得2分. 2.第二小问: (1)利用已知条件求出a,b,c的关系,得2分. (2)根据已知条件求出a,c,得2分. (3)利用面积公式求出面积,得2分.
审题 流程
解析
规范 答题
GUI FAN DA TI
解析▶(1)∵a1=1,an+1=2Sn+1(nN∈*),∴an=2Sn-1+1(n∈N*,n≥2), ∴an+1-an=2(Sn-Sn-1),即an+1-an=2an,(2分) ∴an+1=3an (n∈N*,n≥2).而a2=2a1+1=3,∴a2=3a1. ∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1 (n∈N*).(3分) ∴a1=1,a2=3,a3=9. 在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.(4分) 又∵a1+b1,a2+b2,a3+b3成等比数列,∴(a1+b1)(a3+b3)=(a2+b2)2. 设等差数列{bn}的公差为d, ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2. ∵bn>0 (n∈N*),∴舍去d=-10,故d=2,(5分) ∴b1=3,∴bn=2n+1(n∈N*) .(6分)
审题 流程
解析
规范 答题
GUI FAN DA TI
解析▶ (1)当n=1时,2a1=a2-4+1=a2-3, ① 当n=2时,2(a1+a2)=a3-8+1=a3-7, ②(2分) 又a1,a2+5,a3成等差数列,∴a1+a3=2(a2+5), ③ 由①②③解得a1=1.(4分)

【配套K12】专题04 立体几何-2019高考数学(理)热点题型

【配套K12】专题04 立体几何-2019高考数学(理)热点题型

立体几何热点一 空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】 (满分12分)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.教材探源 本题源于教材选修2-1P109例4,在例4的基础上进行了改造,删去了例4的第(2)问,引入线面角的求解.四边形BCEF 是平行四边形,CE ∥BF ,3分(得分点2) 又BF ⊂平面PAB ,CE ⊄平面PAB , 故CE ∥平面PAB .4分(得分点3)(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).|z |(x -1)2+y 2+z2=22, 即(x -1)2+y 2-z 2=0.① 又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①,②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM →=⎝⎛⎭⎪⎫1-22,1,62.8分(得分点5) 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).10分(得分点6)于是cos 〈m ,n 〉=m ·n |m ||n |=105.因此二面角M -AB -D 的余弦值为105.12分(得分点7) 得分要点❶得步骤分:抓住得分点的解题步骤,“步步为赢”,在第(1)问中,作辅助线→证明线线平行→证明线面平行;第(2)问中,建立空间直角坐标系→根据直线BM 和底面ABCD 所成的角为45°和点M 在直线PC 上确定M 的坐标→求平面ABM 的法向量→求二面角M -AB -D 的余弦值.❷得关键分:(1)作辅助线;(2)证明CE ∥BF ;(3)求相关向量与点的坐标;(4)求平面的法向量;(5)求二面角的余弦值,都是不可少的过程,有则给分,无则没分.❸得计算分:解题过程中计算准确是得满分的根本保证,如(得分点4),(得分点5),(得分点6),(得分点7).【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图在直角梯形BB 1C 1C 中,∠CC 1B 1=90°,BB 1∥CC 1,CC 1=B 1C 1=2BB 1=2,D 是CC 1的中点,四边形AA 1C 1C 可以通过直角梯形BB 1C 1C 以CC 1为轴旋转得到,且二面角B 1-CC 1-A 为120°.(1)若点E 是线段A 1B 1上的动点,求证:DE ∥平面ABC ; (2)求二面角B -AC -A 1的余弦值.又A 1D ∩DB 1=D ,A 1D ,DB 1⊂平面DA 1B 1, ∴平面DA 1B 1∥平面CAB ,又DE ⊂平面DA 1B 1,∴DE ∥平面ABC .(2)解 在平面A 1B 1C 1内,过C 1作C 1F ⊥B 1C 1, 由题知CC 1⊥C 1B 1,CC 1⊥A 1C 1,∴CC 1⊥平面A 1B 1C 1.分别以C 1F ,C 1B 1,C 1C 为x 轴、y 轴、z 轴正方向建立空间直角坐标系C 1-xyz , 则C 1(0,0,0),A (3,-1,1),C (0,0,2),B (0,2,1),所以C 1A →=(3,-1,1),C 1C →=(0,0,2),AC →=(-3,1,1),BC →=(0,-2,1),热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】 在如图所示的几何体中,平面ADNM ⊥平面ABCD ,四边形ABCD 是菱形,ADNM 是矩形,∠DAB =π3,AB =2,AM =1,E 是AB 的中点.(1)求证:平面DEM ⊥平面ABM ;(2)在线段AM 上是否存在点P ,使二面角P -EC -D 的大小为π4?若存在,求出AP 的长;若不存在,请说明理由.(2)解 在线段AM 存在点P ,理由如下: 由DE ⊥AB ,AB ∥CD ,得DE ⊥CD ,因为四边形ADNM 是矩形,平面ADNM ⊥平面ABCD 且交线为AD ,所以ND ⊥平面ABCD .以D 为原点,DE ,DC ,DN 所在直线分别为x 轴、y 轴、z 轴建立如图所示的坐标系.则D (0,0,0),E (3,0,0),C (0,2,0),N (0,0,1), EC →=(-3,2,0),设P (3,-1,m )(0≤m ≤1),则EP →=(0,-1,m ), 易知平面ECD 的一个法向量为DN →=(0,0,1). 设平面PEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EC →=0,n ·EP →=0,即⎩⎨⎧-3x +2y =0,-y +mz =0,取z =1,则n =⎝ ⎛⎭⎪⎫2m 3,m ,1,假设在线段AM 上存在点P ,使二面角P -EC -D 的大小为π4,则cos π4=⎪⎪⎪⎪⎪⎪⎪⎪n ·DN →|n ||DN →|=14m 23+m 2+1⇒m =217,所以符合题意的点P 存在,此时AP =217. 【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等. (2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 是直角梯形,∠ADC =90°,AD ∥BC ,AB ⊥AC ,AB =AC =2,点E 在AD 上,且AE =2ED .(1)已知点F 在BC 上,且CF =2FB ,求证:平面PEF ⊥平面PAC ;(2)当二面角A -PB -E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45°?∵AE =2ED ,CF =2FB ,∴AE =BF =23AD ,∴四边形ABFE 是平行四边形,∴AB ∥EF , ∴AC ⊥EF ,∵PA ⊥底面ABCD ,∴PA ⊥EF , ∵PA ∩AC =A ,PA ,AC ⊂平面PAC , ∴EF ⊥平面PAC ,∵EF ⊂平面PEF ,∴平面PEF ⊥平面PAC .(2)解 ∵PA ⊥AC ,AC ⊥AB ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴AC ⊥平面PAB ,则∠APC 为PC 与平面PAB 所成的角, 若PC 与平面PAB 所成的角为45°, 则tan ∠APC =AC PA=1,即PA =AC =2,取BC 的中点为G ,连接AG ,则AG ⊥BC ,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz .则A (0,0,0),B (1,-1,0),C (1,1,0),E ⎝ ⎛⎭⎪⎫0,23,0,P (0,0,2), ∴EB →=⎝ ⎛⎭⎪⎫1,-53,0,EP →=⎝ ⎛⎭⎪⎫0,-23,2,热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力. 【例3】 在矩形ABCD 中,AB =1,AD =2,点E 为AD 中点,沿BE 将△ABE 折起至△PBE ,如图所示,点P 在平面BCDE 的射影O 落在BE 上.(1)求证:BP ⊥CE ;(2)求二面角B -PC -D 的余弦值.(2)解 以O 为坐标原点,以过点O 且平行于CD 的直线为x 轴,过点O 且平行于BC 的直线为y 轴,直线PO 为z 轴,建立如图所示空间直角坐标系.则B (12,-12,0),C (12,32,0),D (-12,32,0),P (0,0,22),设平面PCD 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CD →=0,n 1·CP →=0,即⎩⎨⎧x 1=0,x 1+3y 1-2z 1=0,令z 1=2,可得n 1=⎝ ⎛⎭⎪⎫0,23,2,设平面PBC 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·PB →=0,n 2·BC →=0,即⎩⎨⎧x 2-y 2-2z 2=0,2y 2=0,令z 2=2,可得n 2=(2,0,2), ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=3311,结合图形判断二面角B -PC -D 为钝二面角, 则二面角B -PC -D 的余弦值为-3311. 【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】 如图(1)所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是线段AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图(2)所示.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求直线BD 与平面A 1BC 所成角的正弦值.(2)解 由(1)知BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,又平面A 1BE ⊥平面BCDE , 所以∠A 1OC =π2,所以OB ,OC ,OA 1两两垂直.如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则B (22,0,0),E (-22,0,0),A 1(0,0,22),C (0,22,0), 得BC →=(-22,22,0),A 1C →=(0,22,-22),由CD →=BE →=(-2,0,0),得D (-2,22,0).最新K12教育教案试题 所以BD →=(-322,22,0).。

【最易丢分的送分题】2019届高三数学(理)三轮:平面解析几何(含解析)

【最易丢分的送分题】2019届高三数学(理)三轮:平面解析几何(含解析)

《最易丢分的送分题(数学)》2019届高三三轮【拣分必备】之9.平面解析几何1.(华安、连城、永安、漳平、龙海、泉港六校联考)圆x 2+y 2-2x -2y +1=0上的点到直线3x +4y +5=0的距离最大值是a ,最小值是b ,则a +b =( )A.125B.245C.65D .5[:[答案] B[解析] 圆心C(1,1)到直线3x +4y +5=0距离d =125,∴a +b =⎝ ⎛⎭⎪⎫125+r +⎝ ⎛⎭⎪⎫125-r =245(r 为圆的半径). 2.(金华模拟)已知点A(1,3),B(-2,-1).若直线l :y =k(x -2)+1与线段AB 相交,则k 的取值范围是( ) A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12解析:(数形结合法)由已知直线l 恒过定点P(2,1),如图.若l 与线段AB 相交,则k PA ≤k ≤k PB ,∵k PA =-2,k PB =12,∴-2≤k ≤12.答案:D3.(衡水模拟)方程(x 2+y 2-4)x +y +1=0表示的曲线形状是( )[答案] C[解析] 注意到方程(x 2+y 2-4)x +y +1=0等价于①⎩⎪⎨⎪⎧ x 2+y 2-4=0,x +y +1≥0,或②x +y +1=0.①表示的是不在直线x +y +1=0的左下方且在圆x 2+y 2=4上的部分;②表示的是直线x +y +1=0.因此,结合各选项知,选C.[:4.(广州模拟)动点A 在圆x 2+y 2=1上移动时,它与定点B(3,0)连线的中点的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1D .(x +32)2+y 2=12 [答案] C[:[解析] 设中点M(x ,y),则点A(2x -3,2y),∵A 在圆x 2+y 2=1上,∴(2x -3)2+(2y)2=1,即(2x -3)2+4y 2=1,故选C.[:5.(青岛模拟)设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=( ) A.10B .210[: C. 5 D .2 5解析:如图,由PF 1→·PF 2→=0可得PF 1→⊥PF 2→,又由向量加法的平行四边形法则可知▱PF 1QF 2为矩形,因为矩形的对角线相等,故有|PF 1→+PF 2→|=|P Q →|=2c =210,所以选B.答案:B6.(银川联考)已知A ,B ,P 是双曲线x 2a 2-y 2b 2=1(a>0,b>0)上不同的三个点,且A ,B 的连线经过坐标原点,若直线PA 、PB 的斜率的乘积k PA ·k PB =23,则该双曲线的离心率为( ) A.52 B.62 C. 2D.153 解析:因为A ,B 的连线经过坐标原点,所以A 、B 关于原点对称,设P(x 0,y 0),A(x 1,y 1),B(-x 1,-y 1),由A ,B ,P 在双曲线上得x 20a 2-y 20b 2=1,x 21a 2-y 21b 2=1,两式相减并且变形得y 20-y 21x 20-x 21=b 2a 2.又k PA ·k PB =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=b 2a 2=23,即c 2-a 2a 2=e 2-1=23,故双曲线的离心率e =153. 答案:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何热点一 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 题型一 利用几何性质求最值【例1】设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11C .8,12D .10,12答案 C【类题通法】利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法. 【对点训练】如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析 (1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk2-4)=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =----2|22+-2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4,所以|AB |=1+k 2×x 1+x 22-4x 1x 2=1+22×-2--=410.所以△ABP 面积的最大值为410×4552=8 2.题型二 建立目标函数求最值【例2】已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0.于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415,由Δ>0,k 2≥0,得-13<m ≤43.记f (m )=3m 3-5m 2+m +1⎝ ⎛⎭⎪⎫-13<m ≤43,令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝ ⎛⎭⎪⎫-13,19上是增函数,在⎝ ⎛⎭⎪⎫19,1上是减函数,在⎝ ⎛⎭⎪⎫1,43上是增函数, 又f ⎝ ⎛⎭⎪⎫19=256243>f ⎝ ⎛⎭⎪⎫43=59.所以当m =19时,f (m )取到最大值256243,此时k =±5515.所以△ABP 面积的最大值为2565135.【类题通法】(1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等. 【对点训练】平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值.解析 (1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*) 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m21+4k2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2k 2+4-m 2m 21+4k2=2 ⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1, 因此S =2-t t =2-t 2+4t ,故S ≤2 3.当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3. 题型三 利用基本不等式求最值【例3】已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值.(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0),联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +,消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3. 【类题通法】(1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值. 【对点训练】定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E . (1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k2,∴|OA |2=x 2A +y 2A =+k21+4k 2. 将上式中的k 替换为-1k,可得|OC |2=+k 2k 2+4.∴S △ABC =2S △AOC =|OA |·|OC |=+k 21+4k 2·+k 2k 2+4=+k 2+4k2k 2+.∵+4k2k 2+≤+4k2+k 2+2=+k 22,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .热点二 圆锥曲线中的范围问题圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法. 题型一 利用判别式构造不等关系求范围【例4】已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.(2)由条件D (0,-2),当k =0时,显然-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0), 则x 0=x 1+x 22=-3kt1+3k2, y 0=kx 0+t =t1+3k2,所以H ⎝ ⎛⎭⎪⎫-3kt 1+3k 2,t 1+3k 2,由|DP |=|DQ |, 所以DH ⊥PQ ,即k DH =-1k,所以t1+3k 2+2-3kt 1+3k2-0=-1k ,化简得t =1+3k 2,②所以t >1,将②代入①得,1<t <4. 所以t 的范围是(1,4).综上可得t ∈(1,2).【类题通法】圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围. 【对点训练】设F 1,F 2分别是椭圆E :x 24+y 2b2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.即1=⎝ ⎛⎭⎪⎫1-b 24×4+2b 2-4,解得b 2=1.故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0, 故y 1+y 2=2k k 2+4,y 1·y 2=-3k 2+4. 又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0, 又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,所以x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k24+k2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12<k <12,故k 的取值范围是⎝ ⎛⎭⎪⎫-12,12.题型二 利用函数性质求范围【例5】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2. (1)求椭圆C 的方程;(2)若λ∈⎣⎢⎡⎦⎥⎤12,2,求弦长|AB |的取值范围.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点,λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意.∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0, 由根与系数的关系可得,⎩⎪⎨⎪⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m2m 2+2,又知λ∈⎣⎢⎡⎦⎥⎤12,2, ∴-λ-1λ+2∈⎣⎢⎡⎦⎥⎤-12,0, ∴-12≤-4m2m 2+2≤0,解得m 2∈⎣⎢⎡⎦⎥⎤0,27.|AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝ ⎛⎭⎪⎫1-1m 2+22,∵m 2∈⎣⎢⎡⎦⎥⎤0,27,∴1m 2+2∈⎣⎢⎡⎦⎥⎤716,12, ∴|AB |∈⎣⎢⎡⎦⎥⎤2,928. 【类题通法】利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围. 【对点训练】已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C . (1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,于是PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32,E (2,0),F (-2,0),所以PE ·QF =⎝⎛⎭⎪⎫1,-32·⎝ ⎛⎭⎪⎫-3,32=-3-94=-214.②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214.③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将上面的k 换成-1k,可得AE ·AF =-+k24+3k2, 所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝ ⎛⎭⎪⎫13+4k 2+14+3k 2.令1+k 2=t ,则t >1,于是上式化简整理可得,PE ·QF =-9t ⎝ ⎛⎭⎪⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝ ⎛⎭⎪⎫1t -122.由t >1,得0<1t <1,所以-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范围为⎣⎢⎡⎦⎥⎤-214,-367.热点三 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等. 【例6】如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .(2)证明:把x =0代入方程(x -2)2+⎝ ⎛⎭⎪⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4).①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1.联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2.∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-x 1+x 2x 1x 2. 若k AN +k BN =0,则∠ANM =∠BNM .∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0,∴∠ANM =∠BNM . 【类题通法】解决圆锥曲线证明问题,注意依据直线,圆锥曲线,直线与圆锥曲线的位置关系等,通过代数恒等变形和化简计算进行证明,常见的证明方法有:(1)证明三点共线,可以证明其中两段线段的斜率相等,也可以证明其中两个向量互相平行(共线);(2)证明两直线垂直,可以证明这两条直线的斜率之积等于1-,也可以证明这两直线所在的平面向量的数量积等于零;(3)证明两共点点段相等,可以利用弦长公式证明这两线段长度相等,也可以证明公共点在线段的垂直平分线上. 【对点训练】设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB ⊥BC , 所以可设C (2,y 1),所以AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2. 所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 0x 0+(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝ ⎛⎭⎪⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .。

相关文档
最新文档