几何光学2折射成像

合集下载

几何光学的三个基本定律

几何光学的三个基本定律

几何光学的三个基本定律一、引言几何光学是研究光在直线传播过程中的行为的光学分支。

其理论基础是几何光学三个基本定律,这些定律揭示了光在透明介质中的传播规律。

本文将详细介绍这三个基本定律,并探讨它们对光学现象的解释和应用。

二、第一定律:直线传播定律直线传播定律是几何光学中最基本的定律,它表明光线在均匀介质中直线传播。

光的传播路径可以用直线表示,且沿一定方向传播。

这意味着光线在不同介质之间传播时会发生折射,但在同一介质内则是直线传播。

三、第二定律:反射定律反射定律是几何光学的第二个基本定律,它描述了光线在界面上的反射行为。

根据反射定律,入射光线与法线的夹角等于反射光线与法线的夹角,而且入射光线、反射光线和法线在同一平面内。

这个定律解释了为什么我们能够看到镜子中的自己,以及为什么我们可以利用反射现象制作反光镜和平面镜。

四、第三定律:折射定律折射定律是几何光学中的第三个基本定律,它描述了光线在不同介质中的折射行为。

根据折射定律,入射光线、折射光线和法线在同一平面内,而且入射角和折射角之间的正弦比等于两个介质的折射率之比。

这个定律解释了为什么我们能看到水中的鱼和游泳池底部的景物,以及为什么光能够通过透镜形成清晰的图像。

1. 折射率的定义折射率是指光在某一介质中的速度与真空中速度之比。

高折射率的介质会使光线偏折得更多,而低折射率的介质则会使光线偏折得较少。

2. 斯涅尔定律斯涅尔定律是折射定律的一种特殊形式,适用于光线从一介质射入另一介质的情况下。

根据斯涅尔定律,入射角、折射角和两个介质的折射率之比满足一个简单的数学关系式。

五、光学现象的应用几何光学的三个基本定律在光学现象的解释和应用中起着重要的作用。

以下是几个常见光学现象及其与定律的关系:1. 倒影倒影是一种反射现象,发生在平面镜或其他光滑表面上。

根据反射定律,镜子中的物体通过镜面反射形成倒立的像。

这个现象在我们日常生活中的镜子和反光材料中得到了广泛应用。

2. 折射折射是光线在不同介质之间传播时发生的偏折现象。

物体成像原理

物体成像原理

物体成像原理
物体成像原理是指物体在经过光学系统成像时,各点的位置、形状和颜色等特征在成像面上得到可见的结果。

成像原理主要包括几何光学和波动光学两种理论。

在几何光学中,物体成像是基于光的直线传播和反射定律的理论依据。

例如,当光线经过透明介质的界面时,会发生折射现象,根据斯涅尔定律可以预测光线在不同介质中的传播角度。

当光线在平面镜或曲面镜上发生反射时,按照反射定律可以确定光线的入射角和反射角。

根据几何光学原理,我们可以得出以下成像规律:
1. 物距与像距的关系:根据薄透镜成像公式可以得知,物体与像之间的距离与凸透镜的焦距和物体与凸透镜之间的距离有关。

当物体距离透镜的距离等于焦距时,成像位置位于无穷远处,称为无穷远点成像。

2. 物像大小的关系:根据放大倍数的定义,可以计算出物体与像的大小比例。

物体成像时,根据物距与像距的比值关系可以得知物体与像的大小关系。

波动光学是几何光学的补充,它将光视为一种波动现象。

光波经过光学系统成像时,根据波的干涉、衍射和透射等特性会产生一系列现象。

例如,在夜空中看到星星闪烁的现象就是由于大气中的折射和干涉造成的。

波动光学的原理可以用于解释像的分辨率、色散和像差等现象。

综上所述,物体成像原理包括几何光学和波动光学两个方面。

几何光学主要研究光的传播和反射定律,给出物体成像的基本规律;波动光学则通过对光波的特性进行分析,进一步解释了像的分辨率、色散等现象。

这些原理在光学系统设计、成像技术和显微镜等领域具有广泛应用。

第2章 光学成像的几何学原理

第2章 光学成像的几何学原理

(2.2-16)
傍轴光线在平面上的反射成像公式: (2.2-17)
像似深度:傍轴光线在平面上折射成像时的像距s'。
说明:平面镜是唯一能够理想成像的光学系统,而球面折射、反射以及平 面折射系统则只有在近轴近似条件下才能准确成像。
2 光学成像的几何学原理
2.2 光在单个球面上的折射与成像
2.2.4 离轴物点的傍轴光线成像
物(像)方焦距f ( f ' ) :F (F ' )到球面顶点O之距离
(2.2-9)
2 光学成像的几何学原理
2.2 光在单个球面上的折射与成像
说明:
2.2.3 轴上物点的傍轴光线成像
① 焦点是特殊的轴上物点和像点。因此,物
方焦距与物距、像方焦距与像距遵守相同 的符号规则。
F n
n'
O
f>0(f '>0):F(F')为实焦点,且位于O点
1. 物空间与像空间的基本概念 2. 光学系统理想成像的条件
2 光学成像的几何学原理
§2. 2 光在单个球面上的折射 与成像
2 光学成像的几何学原理
2.2 光在单个球面上的折射与成像
主要内容
1. 基本概念和符号规则 2. 光在单个球面上的折射,同心性的破坏
3. 轴上物点的傍轴光线成像 4. 高斯物像公式与牛顿物像公式 5. 光在单个球面上的反射成像
2 光学成像的几何学原理
2.2 光在单个球面上的折射与成像
2.2.2 光在单个球面上的折射,同心性的破坏
(1) 像距与物距的关系
M n
i h
i'
n' Q'
Q
u O
-u'

02 球面折射成像

02 球面折射成像

u tan u h u tan u h tan h
s
s
r
n1 n2 n2 n1 s s r
END
球面折射物像公式
n1 n2 n2 n1 s s r
符号规则:
• 实物取正; 虚物取负. • 实像取正; 虚像取负. • 当物体面对凸面时, 曲率半径为正;
当物体面对凹面时, 曲率半径为负. • 正立像为正;倒立像为负.
sinsin折射定律球面折射成像end球面折射成像球面折射物像公式符号规则
大学物理
几何光学
第2讲 球面折射成像
折射定律
n1 sin i1 n2 sin i2 n1i1 n2i2 几何关系:i1 u i2 u
n1u n2u (n2 n1)
球面折射成像
傍轴系统
球面折射成像
n1u n2u (n2 n1)
1 90 cm
虚像 s1 即为物点 s2 s2 90 20 110cm
n2 n1 n1 n2
s2 s2
r
解得
s2 27.5cm
END
球面折射成像
球面折射成像
例题. 点光源P在玻璃球心点左侧25cm处. 已知玻璃球半径 是0cm,折射率为1.5, 空气折射率近似为1,求像点的位置.
解: s1 15cm
r 10cm
n1 1
n2 1.5
n1 n2 n2 n1
s1 s1
r
1 s1
1 1.5
1.5 1.0 10
1.0 15

初中物理竞赛教程 光学中的成像问题

初中物理竞赛教程 光学中的成像问题

物理竞赛教程浅谈光学中的成像问题光在同一种均匀介质中传播时遵循光的直线传播规律,若从一种介质进入另一种介质,在其介面上要同时发生反射与折射现象,其光线分别遵循光的反射定律与光的折射定律,这就是几何光学的三大传播规律.在高中物理竞赛辅导的过程中,经常会遇到有关物体成像问题.光学中的成像问题可归结为两类:一类是反射成像,也就是反射光直接相交成像(实像),或反射光延长线相交成像(虚像 );另一类是折射成像,也就是折射光直接相交成像(实像),或折射光延长线相交成像(虚像 ). 现将光学竞赛中涉及的成像问题作一归类分析.一、 反射镜与反射成像反射镜遵循光的反射定律,如果反射面是平的我们就称是平面镜,如果反射面是球面的一部分,这种镜叫球面镜.反射面如果是凹面的叫凹面镜,简称凹镜;反射面是凸面的叫凸面镜,简称凸镜.它们有共同的成像规律: 成像公式:f v u 111=+=R2(R 为球面镜的曲率半径) 像的长度放大率:uv f u f AB B A m =-==11 这些公式只适用于近轴光线成像.u 、v 的符号法则与透镜类似,即实物u 为正值,虚物u 为负值;实像v 为正值,虚像v 为负值;凹镜的焦距f>0,凸镜的焦距f<0.而对于平面镜可看作是球面镜的一个特例,即曲率半径R=∞.这样,我们可得到平面镜成像的简单公式:1,=-=m u v二、 折射镜与折射成像棱镜与透镜的成像规律遵循光的折射定律,属于折射镜.这里只谈薄透镜成像的规律.薄透镜是一种理想化的物理模型,它们两表面的曲率中心之间的距离大于它两个顶点之间的距离.对近轴光线,其成像规律与球面镜相似. 成像公式:fv u 111=+ 其中透镜的焦距)11)(1(121r r n f +-= (1r 、2r 是二球面的半径,n 是透镜的折射率) 像的长度放大率:uv f u f AB B A m =-==11 u 、v 的符号法则:实物u 为正值,虚物u 为负值;实像v 为正值,虚像v 为负值;凸透镜的焦距f>0,凹透镜的焦距f<0.三、 光具组成像各个光学元件组成的光光系统称为光具组.解物体通过光具组成像这类问题的总原则是:物体通过前一光学元件所成的像就是后一光学元件的物,遇到平面镜、球面镜等反射镜,就考虑光线折回后再成像这一点.具体地说,可有以下几个结论:1、后一次成像的物距(有正负)等于前后两光具的距离(总为正)与前一次成像的像距(有正负)之差,即n n n v d u -=+12、最终成像位置由最后一个光具所成像的位置决定.0>n v 表示最终成像在最后光具沿主轴的正向侧,0<n v 表示最终成像在最后光具的反向侧.3、最终成像的虚实,由最后一次成像决定,0>n v 为实像,0<n v 为虚像.4、总放大系数等于各次放大系数的乘积,即 321m m m m =5、最后成像正倒的确定:先根据单次成像时,实物成实像与虚物成虚像为倒立,实物成虚像与虚物成实像为正立的原则确定正、倒立的总次数,再根据倒立了偶数次则最终成像正立、倒立了奇数次则最终成像倒立确定最终成像的正倒情况.如果各光学元件之间的距离0=d ,那么整个光具组的总焦距f 与各个光学元件的焦距f 1、f 2、f 3之间存在如下的关系: +++=3211111f f f f .我们就可应用整个光具组成像法解决成像问题.四、 应用举例例1:一平行光沿薄平凸透镜的主光轴入射,经透镜折射会聚于透镜后f=48cm 处,透镜的折射率为n=1.5.若将此透镜的凸面镀银,物置于平面前12cm 处,求最后所成像的位置. 分析与求解:根据透镜的焦距公式)11)(1(121r r n f +-=, 而r 1=∞,21)1(1r n f -= 解得凸球面的半径r 2=24cm. 凸面镀银后,相当于有三个光学元件组合成像,即先通过透镜折射成像,再经球面镜反射成像,最后再经透镜折射成像. 先经透镜成像111111v u f +=,得cm v 161-= 再经凹面镜成像cm u 162=,22222111r f v u ==+ 得cm v 482=最后又经透镜成像cm u 483-= ,331111v u f +=,cm v 243=. 即最后成像在透镜前24cm 处.此题还有另外一种解法.由于三个光学元件之间的间距为0,设整个光学系统的总焦距为f,则有3211111f f f f ++=,得光具的总焦距为f=8cm.再由成像公式f v u 111=+,811121=+v ,得cm v 24= 例2:在焦距为15cm 的会聚透镜左方30cm 处放一物体,在透镜右侧放一垂直于主轴的平面镜,试求平面镜在什么位置,才能使物体通过此系统所成的像距离透镜30cm?分析与求解:设平面镜与透镜的距离为d,物距cm u 301=,焦距cm f 151=111111v u f +=, 得cm v 301=. 由平面镜成像时cm d u )30(2-=,cm d v )30(2-=最后又经透镜成像,cm d v d u )302(23-=-=331111v u f += 解得452)302(153--=d d v 若成实像cm v 303=, 此时d=30cm若成虚像cm v 303-=, 此时d=20cm例3:设有两个薄凸透镜o 1和o 2,其焦距分别为f 1=20cm,f 2=30cm,两者共轴,相距d=35cm,在主光轴上透镜o 1左方100cm 处垂直于主轴放一长为4cm 的物体,求最终成像的位置、大小和虚实情况.分析与求解:物体先经透镜o 1成像,物距cm u 1001=,焦距cm f 201= 由111111v u f +=, 得cm v 251=.放大率25.0211==u v m再经透镜O 2成像,cm cm d u 10)25(2=-=,焦距cm f 302= 由222111v u f +=,得cm v 152-=.放大率5.1222==u v m 最终成像的总放大率375.021==m m m ,像长为1.5cm 倒立的虚像,像在透镜O 2左方15cm 处.例4、一平凸透镜焦距为f,其平面上镀了银,现在其凸面一侧距它2f 处,垂直于主轴放置一高为H的物,其下端在透镜的主轴上.1、用作图法画出物经镀银透镜所成的像,并标明该像是虚、是实.2、用计算法求出此像的位置和大小.分析与求解:1. 用作图法求得物AP ,的像''A P 及所用各条光线的光路如图预解16-5所示.说明:平凸薄透镜平面上镀银后构成一个由会聚透镜L 和与它密接的平面镜M 的组合LM ,如图所示.图中O 为L 的光心,'AOF 为主轴,F 和'F 为L 的两个焦点,AP 为物,作图时利用了下列三条特征光线:(1)由P 射向O 的入射光线,它通过O 后方向不变,沿原方向射向平面镜M ,然后被M 反射,反射光线与主轴的夹角等于入射角,均为α.反射线射入透镜时通过光心O ,故由透镜射出时方向与上述反射线相同,即图中的'OP .(2)由P 发出已通过L 左方焦点F 的入射光线PFR ,它经过L 折射后的出射线与主轴平行,垂直射向平面镜M ,然后被M 反射,反射光线平行于L 的主轴,并向左射入L ,经L 折射后的出射线通过焦点F ,即为图中的RFP .(3)由P 发出的平行于主轴的入射光线PQ ,它经过L 折射后的出射线将射向L 的焦点'F ,即沿图中的'QF 方向射向平面镜,然后被M 反射,反射线指向与'F 对称的F 点,即沿QF 方向.此反射线经L 折射后的出射线可用下法画出:通过O 作平行于QF 的辅助线'S OS ,'S OS 通过光心,其方向保持不变,与焦面相交于T 点,由于入射平行光线经透镜后相交于焦面上的同一点,故QF 经L 折射后的出射线也通过T 点,图中的QT 即为QF 经L 折射后的出射光线.上列三条出射光线的交点'P 即为LM 组合所成的P 点的像,对应的'A 即A 的像点.由图可判明,像''A P 是倒立实像,只要采取此三条光线中任意两条即可得''A P ,即为正确的解答.2.计算物AP 经LM 组合所成像的位置、大小.解法一:按光具组整个系统成像计算像的位置和大小.由于三个光学元件之间的间距为0,设整个光学系统的总焦距为总f .这三个光学元件分别是两个透镜和一个平面镜. 根据3211111f f f f ++=总,其中f f f ==31,=2f ∞ 解得光具组的总焦距2f f =总 再由成像公式总f v u 111=+,得 f v 32= 总的放大率31==u v m ,像高为物高的13. 解法二:按陆续成像计算物AP 经LM 组合所成像的位置、大小.物AP 经透镜L 成的像为第一像,取12u f =,由成像公式可得像距12v f =,即像在平向镜后距离2f 处,像的大小'H 与原物相同,'H H =.第一像作为物经反射镜M 成的像为第二像.第一像在反射镜M 后2f 处,对M 来说是虚物,成实像于M 前2f 处.像的大小H ''也与原物相同,H H H '''==.第二像作为物,而经透镜L 而成的像为第三像,这时因为光线由L 右方入射,且物(第二像)位于L 左方,故为虚物,取物32u f =-,由透镜公式33111u v f+=可得像距 333203fu v f u f ==>- 上述结果表明,第三像,即本题所求的像的位置在透镜左方距离23f 处,像的大小H '''可由3313v H H u '''==''求得,即 1133H H H '''''==,像高为物高的13. 例5、两个薄透镜L 1和L 2共轴放置,如图所示.已知L 1的焦距f 1=f,L 2的焦距f 2=-f,两透镜间距离也是f.小物体位于物面P 上,物距u 1=3f.(1)小物体经这两个透镜所成的像在L 2的____边,到L 2的距离为____,是____像(虚或实)、____像(正或倒),放大率为____.(2)现在把两透镜位置调换,若还要给定的原物体在原像处成像,两透镜作为整体应沿光轴向____边移动距离____.这个新的像是____像(虚或实)、____像(正或倒),放大率为____.分析与求解:(1)由题意知:f u 31=,f 1=f11111v u f += 得f v 5.11= 而ff f v d u 5.05.112-=-=-=22111v u f +=-,得f v =2 放大率15.035.121=⨯==ff f f m m m 所以像成在L 2的右边,到L 2的距离为f,像的放大率为1,是倒立的实像.(2)根据光路可逆原理及共轭成像的规律,物距1u 应为f,最终的像距为3f.整个光具组应向左移动2f,成倒立等大的实像.一道光学竞赛试题的解法探析2004年第21届全国中学生物理竞赛预赛题试卷第6题,此题涉及有关单球面折射成像问题.而原试卷评分标准中的分析与解答显得非常繁琐,计算任务艰巨,学生在应试时很难解答完整.笔者参加了这次预赛试题的评卷工作,发现很多学生对该题没有解答,有的同学只是乱画了一些光路图,没有形成正确的解题的思维程序.本文就从不同的角度谈谈该题的一些解法.原题(2004年第21届全国中学生物理竞赛预赛题试卷第6题)一种高脚酒杯,如图1所示.杯内底面为一凸起的球面,球心在顶点O 下方玻璃中的C 点,球面的半径R = 1.50cm,O 到杯口平面的距离为8.0cm .在杯脚底中心处P 点紧贴一张画片,P 点距O 点6.3cm .这种酒杯未斟酒时,若在杯口处向杯底方向观看,看不出画片上的景物,但如果斟了酒,再在杯口处向杯底方向观看,将看到画片上的景物.已知玻璃的折射率56.11=n ,酒的折射率34.12=n .试通过分析计算与论证解释这一现象.一、利用单球面折射成像公式直接求解.光在单球面上从一种介质折射进入另一种介质时,其成像公式可表示为: r n n L n L n -=-```.式中L 和`L 分别为物距和像距,n 和`n 分别是物方和像方的介质的折射率,r 为球面的半径,其中L 、`L 和r 都含有符号.如图2所示,并且我们这样来规定它的符号法则:①以球面顶点(O )为参考点②都以实际光线进行方向做为参考方向,如果该距离与实际光线方向一致,那么该距离为“+”,反之为“负”.在图2中,C 为球面的球心,根据符号法则以球面顶点O 为参考原点,因为S 点在球面的左方,故实际光线方向应该是由左到右为距离的正方向.物距L 为OS 与实际光线参考方向相反,取负号;像距`L 为OS `与实际光线参考方向相同,取正号;而球面半径r 为OC 方向与实际光线参考方向相反,取负号.1.未斟酒时的成像规律杯底凸球面的两侧介质分别为玻璃和空气,其折射率分别为:56.1=n 1`=n 物距cm L 3.6-= cm r 50.1-=.由单球面成像公式r n n L n Ln -=-```得: 50.156.113.656.11`--=--L 解得cm L 9.7`=,像距为“正”的7.9说明像在符号法则的正方向.如图3所示,由此可见,未斟酒时,画片上景物所成实像在杯口距O 点7.9cm 处.已知 O 到杯口平面的距离为8.0cm,当人眼在杯口处向杯底方向观看时,该实像离人 眼太近,所以看不出画片上的景物.2.斟酒后的成像规律杯底凸球面两侧介质分别为玻璃和酒,其折射率分别为:56.1=n 34.1`=n 物距cm L 3.6-= cm r 50.1-= 由单球面成像公式r n n L n L n -=-```得: 50.156.134.13.656.134.1`--=--L解得cm L 13`-=像距为“负”的13cm 说明像在符号法则的负方向.如图4所示.由此可见,斟酒后画片上景物成虚像于S '处,距O 点13cm .即距杯口21cm.虽然该虚像还要因酒液平表面的折射而向杯口处拉近一定距离,但仍然离杯口处足够远,所以人眼在杯口处向杯底方向观看时,可以看到画片上景物的虚像.二、利用近轴光线成像规律求解1.未斟酒时的成像规律杯底凸球面的两侧介质的折射率分别为n 1和n 0=1.在图5中,P 为画片中心,由P 发出经过球心C 的光线PO 经过顶点不变方向进入空气中;由P 发出的与PO 成角的另一光线PA 在A 处折射.设A 处入射角为i ,折射角为r ,半径CA 与PO 的夹角为,由折射定律和几何关系可得: rn i n sin sin 01=αθ+=i在△PAC 中,由正弦定理,有iPC R sin sin =α 考虑近轴光线成像,、i 、r 都是小角度,则有i n n r 01= i PCR =α 由以上各式中的n 0、n 1、R 的数值及cm CO PO PC 8.4=-=,可得i 31.1=θ i r 56.1=因此有θ>r由上式及图5可知,折射线将与PO 延长线相交于P ',P '即为P 点的实像.画面将成实像于P '处.在△CA P '中,由正弦定理有 r P C R sin sin '=β 又有βθ+=r 考虑到是近轴光线,可得:R r r P C θ-=' 又有R P C P O -'='由以上各式并代入数据,可得cm P O 9.7='由此可见,未斟酒时,画片上景物所成实像在杯口距O 点7.9cm 处.已知O 到杯口平面的距离为8.0cm,当人眼在杯口处向杯底方向观看时,该实像离人眼太近,所以看不出画片上的景物.2.斟酒后的成像规律杯底凸球面两侧介质分别为玻璃和酒,折射率分别为n 1和n 2,如图6所示.考虑到近轴光线有:i n n r 21= 代入n 1和n 2的值,可得i r 16.1=由此我们知道 θ<r由上式及图6可知,折射线将与OP 延长线相交于P ',P '即为P 点的虚像.画面将成虚像于P '处.计算可得:R rr P C -='θ 又有R P C P O +'='由以上各式并代入数据得 P O '=13cm由此可见,斟酒后画片上景物成虚像于P'处,距O点13cm.即距杯口21cm.虽然该虚像还要因酒液平表面的折射而向杯口处拉近一定距离,但仍然离杯口处足够远,所以人眼在杯口处向杯底方向观看时,可以看到画片上景物的虚像.。

理解几何光学中的球面折射与成像

理解几何光学中的球面折射与成像

理解几何光学中的球面折射与成像光学是物理学的一个重要分支,研究光的传播、反射、折射和成像等现象。

在光学中,球面折射与成像是一个重要的概念,它涉及到光线在球面上的传播和折射,以及由此产生的成像效果。

理解球面折射与成像对于我们认识光学现象和应用光学原理具有重要意义。

首先,我们来了解一下球面折射的基本原理。

当光线从一种介质射向另一种介质时,由于介质的折射率不同,光线会发生折射。

而当光线射入球面时,由于球面的曲率,光线会发生弯曲。

这种现象就是球面折射。

球面折射的基本原理可以用斯涅尔定律来描述,即光线在折射时入射角和折射角之间的关系满足sinθ1/sinθ2=n2/n1,其中θ1为入射角,θ2为折射角,n1和n2分别为两种介质的折射率。

在理解了球面折射的基本原理后,我们可以进一步探讨球面折射对成像的影响。

当光线通过球面折射后,会发生折射点的偏移和成像的变化。

具体来说,对于一束平行光线射入球面,经过折射后,光线会集中到球面的一个焦点上。

这个焦点就是球面的主焦点,它是球面折射后光线汇聚的位置。

而对于一个物体,当光线经过球面折射后,会在另一侧的球面上形成一个像。

这个像的位置和形状取决于物体的位置和球面的曲率。

当物体位于球面的主焦点上时,成像会出现在无限远处,形成一个实像。

当物体位于主焦点和球面之间时,成像会出现在球面的另一侧,形成一个放大的虚像。

当物体位于主焦点和球面之外时,成像会出现在球面的同一侧,形成一个缩小的虚像。

除了主焦点外,球面还具有次焦点和次主焦点。

次焦点是光线平行射入球面后汇聚的位置,次主焦点是光线从球面射出后汇聚的位置。

次焦点和次主焦点的位置和主焦点相对应。

当光线从球面射出时,会经过次焦点或次主焦点,然后发散出去。

这种现象在实际应用中有着重要的意义,比如在望远镜和显微镜中,通过调节物镜和目镜之间的距离,可以使光线从球面射出,从而实现放大或缩小的效果。

理解球面折射与成像对于我们认识光学现象和应用光学原理具有重要意义。

几何光学成像

几何光学成像

1 1 2 由球面反射成像公式 ' s s r 得 : s ' 0.1 m
最后像是处于镜后0.1米处的虚像。
一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径 为 2cm。若在离哑铃左端5cm处的轴上有一物点,试求像的位 置和性质。 n n [解]:两次折射成像问题。
2
2

2
n 2 (s r ) 2
n 2 ( s r ) 2
1 1 s2 s2 2 ] 4r sin [ 2 2 2 2 2 2 2 2 n ( s r ) n (s r ) n ( s r ) 2 n (s r )
Φ不同,s’不同,即从Q点发出的同心光束不能保持同心性
s1
-s2’
s2
代入数据 16cm
2、P1’为物,对球面O2折射成像
已知: s2 20 16 4cm, r2 2cm,
有: s
' 2
n'
n' n n s2 r2
n 1.6, n ' 1
' s2 10cm
§3 薄透镜
3.1薄透镜
其中:P、P’称为共轭点。
1.3 物像之间的等光程性 物点与像点之间的光程总是平稳的, 即不管光线经何路径,凡是由物点通过 同样的光学系统到达像点的光线,都是 等光程的。
§2.共轴球面组傍轴成像
理想光具组



精确成像的必要条件是物上一点与像上一点对应。 使同心光束保持其同心性不变的光具组为理想光具 组 理想光具组是成像的必要条件
1、P为物,对球面O1折射成像P1’
已知 : s1 5cm , r1 2cm , n 1, n' 1.6 n' n n' n 由折射成像公式 ' s1 s1 r1

几何光学基础—球面透镜成像(眼镜光学技术课件)

几何光学基础—球面透镜成像(眼镜光学技术课件)

y l r nl


y
l -r
nl
一、单球面成像放大率

y nl

y nl
• 当 β<0 时,l与l’异号,即物、像分居折射面两侧;
此时表示成倒像,像的虚实与物一致,即实物成实
像或虚物成虚像。
• 当 β>0时,l与l’同号,即物、像分居折射面同
侧;此时表示成正像,像的虚实与物相反,即实

l' l
r
n2 n1
u2 u1
l 2 l1 d
眼轴长计算
转面公式
利用转面公式,求出第一面
到最后像面之间的距离
教学目的
思政元素
专业、敬业、精益求精
教学目标
掌握单球面放大率的计算方法
掌握共轴球面系统放大率的计算方法
知识目标
单球面放大率的计算方法
共轴球面系统放大率的计算方法
2
PART
03
眼轴长度计算
一、眼睛光学结构参数
角膜
曲率半径
折射率
厚度
房水
晶体
玻璃体




7.8
6.8
10.0
-6.0
1.376
1.336
1.406
0.5
3.1
3.0
1.336
二、眼轴长度计算
• 角膜前表面成像
n角膜 1 n角膜 1

l1

r1
• 角膜后表面成像n角膜Fra bibliotekl1
n角膜 1

1 2
l2 l1
n


一、单球面成像放大率

光学_02几何光学成像

光学_02几何光学成像
nr 像方焦点: F ,像方焦距: f ,有 f n' n nr 物方焦点: F,物方焦距: f ,有 f n ' n
f n f ' n'
f' f 1 s' s
•单球折射面成像的符号法则
入射光从左向右传播时 1)若 Q 和 F 点在A点的左方,则 s 0 , f 0 若 Q 和 F 点在A点的右方, 则 s 0 , f 0 F 和 C点在A点的左方, 则 s ' 0 f ' 0 r 0 2)若Q、 , , F 和 C点在A点的右方, 则 s ' 0 f ' 0 r 0 若Q、 , , 3)若入射光由右向左传播时,符号法则与上述规定相反
O1 O2 s2
nL
n
P
s'1
P1 P2
d
s2
1)薄透镜定义:
2)光心: O
n
P
s1
1 2
O1 O2 s2
nL
n
P
s'1
P1 P2
d
s2
1)焦距公式的推导
s2 s '1 d s '1 , s2 d s '1 s s1 , s ' s ' 2
轴外共轭点的旁轴条件:
y 0 或 y' 0 y 0 或 y' 0
y 2 , y '2 s 2 , s '2 , r 2
2.4 横轴放大率公式
定义:
P
y

n
n
A

i
y i s
折射球面横向放大率公式的推导:

几何光学中的折射与反射

几何光学中的折射与反射

光学作为一门研究光的传播与现象的学科,其重要性不可忽视。

在光的传播过程中,折射和反射是两个基本的现象。

几何光学中的折射与反射,是描述光传播和碰撞的重要理论。

本文将以“几何光学中的折射与反射”为题,简要介绍这两个现象的基本原理和应用。

首先,让我们来了解一下什么是折射和反射。

折射是光线从一种介质中传播到另一种介质中时发生的现象。

当光线由一种介质进入另一种介质时,光线的传播速度和传播方向都会发生改变。

而反射则是光线碰撞到边界面上时,从边界面上被反弹回来的现象。

反射时,光线的传播方向会与边界面的法线垂直,符合反射定律。

接下来,我们来看一下折射和反射的基本原理。

折射定律是描述光在介质之间传播时的规律。

根据斯涅耳-斯尼尔定律,光线入射角、折射角和介质折射率之间有一个简单的关系:入射角的正弦值与折射角的正弦值的比例等于两种介质的折射率的比值。

这个关系可以用一个简单的公式来表示:n1sin(θ1) =n2sin(θ2)。

其中,n1和n2分别代表两种介质的折射率,θ1和θ2分别代表光线入射角和折射角。

反射定律则是描述光在碰撞到边界面时的规律。

根据反射定律,光线入射角与反射角相等,并且在反射过程中,入射角、反射角和边界面的法线在同一个平面上。

这个定律可以用一个简单的公式来表示:θ1 = θr。

其中,θ1代表光线入射角,θr代表光线反射角。

几何光学中的折射与反射不仅有着基本的理论原理,还有着广泛的应用。

折射和反射的现象被广泛应用于光学仪器和光学设备的设计中。

例如,在眼镜、望远镜和显微镜等光学仪器中,折射和反射被用于实现光的聚焦和成像。

折射和反射还被用于设计光学元件,例如透镜和反射镜等。

此外,折射和反射还被广泛应用于光纤通信中。

光纤通过折射实现光信号的传输,而反射则用于控制和引导光信号的传播路径。

总结起来,几何光学中的折射和反射是描述光传播和碰撞的重要现象。

折射定律和反射定律是描述这两个现象的基本原理。

折射和反射不仅在理论上有重要意义,而且在实际应用中有着广泛的应用。

光学中的几何光学解析

光学中的几何光学解析

光学中的几何光学解析光学是物理学的重要分支之一,它研究光的产生、传播和与物质的相互作用等现象。

而几何光学作为光学的基础,其主要研究光在介质中的传播规律以及光的成像原理。

本文将对光学中的几何光学进行解析,并探讨其应用领域。

一、光线与光的传播在几何光学中,我们将光看作一束直线上的光线。

光线沿直线传播,具有直线传播的特性。

当光线在两个介质的交界面上发生折射和反射时,我们利用折射定律和反射定律来描述光线的传播方向和路径。

1. 折射定律当光线从一个介质传播到另一个介质时,会出现折射现象。

折射定律表明了入射光线、折射光线和法线之间的关系。

根据斯涅尔定律,光线在两个介质的交界面上的入射角和折射角满足如下关系:\[ n_1\sin\theta_1 = n_2\sin\theta_2 \]其中,\( n_1 \)和\( n_2 \)分别代表两个介质的折射率,\( \theta_1 \)和\( \theta_2 \)分别代表入射角和折射角。

2. 反射定律当光线从一个介质射到另一个介质上时,会发生反射现象。

反射定律表明了入射光线、反射光线和法线之间的关系。

根据反射定律,入射角和反射角相等,即入射角等于反射角。

二、成像原理与光学器件几何光学研究了光线穿过透镜等光学器件时的成像原理。

光学器件的设计依赖于成像原理,通过调整光学器件的参数,可以实现不同的成像效果。

1. 透镜成像透镜是一种常见的光学器件,它根据折射定律使光线发生折射,从而形成图像。

根据透镜形状的不同,透镜可以分为凸透镜和凹透镜。

通过调整透镜与物体和图像的距离,可以改变成像的大小和位置。

2. 球面反射镜成像球面反射镜是另一种常见的光学器件,它通过反射光线形成图像。

球面反射镜可以分为凸面反射镜和凹面反射镜。

凸面反射镜能够使光线发散,形成实像;而凹面反射镜能够使光线汇聚,形成虚像。

三、几何光学的应用几何光学在物体成像、光学仪器设计以及光学透镜组等领域具有重要应用价值。

几何光学基本定律球面反射和折射成像

几何光学基本定律球面反射和折射成像
几何光学基本定律球面反射和折射成像
P
P
CF
凹面镜: 物距:P>R 像距:R/2(f)<p’<R 倒立缩小实像
P CPF
凹面镜: 物距:f<P<R 像距:p’>R 倒立放大实像
几何光学基本定律球面反射和折射成像
C F P P
凹面镜: 物距:0<P<f: 像距:p’<0 正立放大虚像
P
P F C
凸面镜: 物距:任意值 像距:-f<p’<0 正立缩小虚像
n21
sin i sinr
v1 v2
绝对折射率:一种介质相对于真空的折射率 n c v 。

c n1 v1
c n2 v2
n 21
v1 v2
n2 n1
n1sinin2sinr 几何光学基本定律球面反射和折射成像
几种介质的折射率:
介质 金刚石 玻璃 水晶 岩盐

折射率 2.42
1.50 ~ 1.75 1.54 ~ 1.56
发散光入射凸面镜: 总是成虚像 P
几何光学基本定律球面反射和折射成像
R
P
C
符号法则:
物点 P 在镜前时,物距为正;物点 P 在镜后 时,物距为负。
像点在镜前时,像距为正;像点在镜后时, 像距为负。
凹面镜的曲率半径 R 取正,凸面镜的曲率半 径 R 取负。
实正虚负!
几何光学基本定律球面反射和折射成像
i i
几何光学基本定律球面反射和折射成像
11-1-3 光的折射
折射定律: ⑴ 折射光线总是位于入射面内, 并且与入射光线分居在法线的两 侧;
i i v1 n1
n2
r v2

几何光学高三知识点梳理

几何光学高三知识点梳理

几何光学高三知识点梳理几何光学是光学的基础分支,是描述光的传播和反射折射规律的一门学科。

在高中的物理课程中,几何光学是必修内容之一。

本文将对高三几何光学的知识点进行梳理和总结,以帮助同学们更好地学习和理解。

一、光的传播路径与反射1. 光的传播直线性原理:光在均匀介质中沿直线传播,光线可以表示光的传播路径。

光线具有方向,可以用箭头表示。

2. 光的反射定律:入射角等于反射角。

光线在与界面垂直的方向上发生反射。

3. 光的反射规律:光线在反射过程中,入射角、反射角和法线三者处在同一平面内。

二、光的折射1. 光的折射定律:折射定律也叫斯涅尔定律,它是描述光线通过界面从一种介质到另一种介质时的反射规律。

光线在通过界面时折射角和入射角之间的关系式是sin(i)/sin(r)=n。

2. 光的折射规律:光线在折射过程中,入射角、折射角和法线三者处在同一平面内。

3. 折射率:折射率是描述光线从一个介质射入另一个介质中时,光在两个介质中传播速度比值的一种物理量。

其计算公式为n =c/v,其中c为真空中的光速,v为光在介质中的传播速度。

折射率是一个与介质的物理性质有关的常数。

4. Snell-Descartes定律:光从一个相对密度较大的介质射入到一个相对密度较小的介质中时,光线经过界面的折射方向偏离法线,折射角小于入射角。

光从一个相对密度较小的介质射入到一个相对密度较大的介质中时,光线经过界面的折射方向趋近于法线,折射角大于入射角。

三、透镜成像1. 透镜的种类:透镜分为凸透镜和凹透镜。

凸透镜是由两个球面交替组成,呈现凸形状;凹透镜也是由两个球面交替组成,呈现凹形状。

2. 凸透镜成像规律:凸透镜成像时,遵循以下规律:- 物体离凸透镜近,像离凸透镜远;- 物体离凸透镜远,像离凸透镜近;- 物体在焦距处,像无限远;- 物体无限远,像在焦点处。

3. 凹透镜成像规律:凹透镜成像时,遵循以下规律:- 物体离凹透镜近,像离凹透镜近;- 物体离凹透镜远,像离凹透镜远;- 物体无限远,像在焦点处。

几何光学知识点总结

几何光学知识点总结

几何光学知识点总结几何光学是光学中的一个重要分支,它主要研究光线和物体之间的关系,用于描述光在空间传播和反射的规律。

在几何光学中,把光看成是直线和点的集合,而不考虑它的波动性质。

几何光学用于解释和模拟许多日常生活和科学技术中的光学现象,例如透镜成像、光学仪器的工作原理等。

在这篇文章中,我们将介绍几何光学的基本概念和常见的知识点,包括光的传播、反射、折射、成像等内容。

1. 光的传播在几何光学中,光线被看成是一条直线,它沿着直线路径向前传播。

根据光线的传播特点,可以得出以下几个基本原理:(1)直线传播原理:光线在各种介质中传播时,沿直线路径传播。

(2)相互独立原理:不同光线之间相互独立,它们不会相互干扰或影响。

(3)射线矢量守恒原理:在介质的交界面上,入射角、反射角和折射角之间存在一定的关系,如入射角等于反射角、入射角与折射角满足Snell定律等。

2. 光的反射光的反射是指光线遇到光滑表面时,从表面下射出的现象。

根据反射定律,反射光线的入射角等于反射角。

反射可以分为平面镜反射和球面镜反射两种情况。

3. 光的折射光的折射是指光线从一种介质传播到另一种介质时改变传播方向的现象。

根据斯涅尔定律,光线从一种介质进入另一种介质时,入射角和折射角之间满足一定的关系。

折射过程中,光线的传播速度和传播方向都会发生变化。

4. 成像原理在几何光学中,成像是指物体通过透镜、凸镜等光学器件后,产生的像。

根据几何光学原理,成像可以分为实像和虚像两种情况,实像是通过透镜、凸镜等成像器件产生的,可以在屏幕上观察到;虚像则不能在屏幕上观察到,只存在于透镜、凸镜等器件的一侧。

成像的位置、大小和性质与物体、成像器件之间的关系有着一定的规律和定律,例如放大率、焦距等参数。

5. 透镜和成像透镜是几何光学中常用的器件,它通过折射作用可以实现光线的聚焦和散焦。

透镜的主要种类有凸透镜和凹透镜,它们在成像时有着不同的特点。

在成像过程中,透镜的成像规律可以通过透镜公式进行描述,包括变焦距公式、薄透镜方程等。

南开考研光学专业习题与解答第一章

南开考研光学专业习题与解答第一章

第一章 几何光学例题1.1 人眼前一小物体,距人眼25厘米,今在人眼和小物体之间放置一块平行平面玻璃板,玻璃板的折射率为1.5 ,厚度为5毫米 .试问此时看小物体相对它原来的位置移动多远?解:已知玻璃板的折射率5.1=n ,板厚.5mm d =物体S 经玻璃板两次折射成像, 第一次以O 1为原点, 向右为正, 物距s =-a ,曲率半径r =∞,代入成像公式得00.11=--'a s n , 解得第二次成像,以O 2为原点,向右为正,物距为,12d na d s s --=-'= 代入成像公式得,01=---'d na n s 解得).(nda s +-='小物体的像向着玻璃板移动了).(35)5.111(5)11()(mm n d d s a s =-⨯=-=-'-=∆1.2 如习题1.2图所示,空气中的尖劈棱镜顶角α很小,折射率为n ,点光源S 到尖 劈棱镜的距离为a ,求S 通过棱镜成的像在何处?并讨论像的虚实.解:点光源S 通过尖劈的两个界面,两次折射成像.第一次折射成像,以原点O为顶点, 物距为-a ,物方折射率为1.0,像方折射率为n ,曲率半径为无穷大,代入单球面成像 公式,得,0.10.11∞-=--'n a s n.1na s -=' 如计算题1.2解图所示建立坐标,像点S1' 的坐标为(-na ,0),第二次折射成像,以O ' 为顶点,物距为-na ,像距为s ',物方折射率为n ,像方折射率为1.0,曲率半径无穷大,代入成像公式,得 ,0.10.1∞-=--'n na n s,a s -='α · Sa 计算题1.2图.1na s -=' adS S 'S '1 O 1O 2计算题1.1解图最后像点在点光源上方,由几何关系可求出.)1(a n S S α-='因此,最后像点S'的坐标为(-a ,a n α)1(-),是虚象.1.3 在报纸上放一个平凸透镜,眼睛通过透镜看报纸,当平面在上时,报纸的虚像在平面下13.3毫米处,当凸面在上时,报纸的虚像在凸面下14.6毫米处.若透镜的中央厚度为20毫米,求透镜的折射率和凸球面的曲率半径.解:人眼看到的是字透过透镜成的像.第一种情况,字在球面的顶点,此次成像物、像重合.字再经过平面折射成像,物距为-20毫米,像距为-13.3毫米,由成像公式,得,0203.130.1=---n(1)第二种情况,字仅通过折射成像,物距为-20毫米,像距为-14.6毫米,成像公式为.0.1206.140.1rn n -=---(2)解(1)(2)两方程,得5.1=n , 84.76-=r 毫米.1.4 物与像相距为1米,如果物高4倍于像高,求凹面镜的曲率半径,并作出光路图. .解 题中给出凹面镜,0<r ,又知物高4倍于像高,即4/1=β,所以应有两种情况.(1)4/1+=β,则41='-=''=s s s n s n β,即s s '-=4.这说明物像分居于凹面镜的两侧.由于物像之间距离为1000毫米,故可得出像距200='s 毫米.凹面镜成像公式为rs s 211=+', 若以200='s 毫米,800-=s 毫米代入,则得0>r ,不合题意.若用200-='s 毫米,800=s 毫米代入,可求得凹面镜的曲率半径为3.533-=r 毫米.这种成像情况画在计算题1.4解图(a )中,为虚物实象. (2)若41-=β,则41-='-s s ,即s s '=4.此种情况物像居于凹面镜的同侧.题中报纸 计算题1.3解图X O αa 计算题1.2解图 ∙ ∙S1' S S ' YO'给出物与像距离1000毫米,则像距数值为3.333='s 毫米.若选3.333='s 毫米,则得0>r 的结果,不合题意.选3.333-='s 毫米,解得3.533-=r 毫米.此种情况实物成实像,光路图画于计算题1.4解图(b)中.两种情况所得曲率半径一样.1.5 如计算题1.5图 所示的系统,C 为凹面镜的曲率中心,物点S 经薄透镜和凹面镜成像,最后像点S '与物点S 重合,求薄透镜的焦距.解法一:如计算题1.5解图所示,物点S 与像点S ' 重合有两种情况. 第一种情况是:第一次经薄透镜成像,像在凹面镜的曲率中心, 此次是实物成虚象, 物距为-10厘米,像距为-20厘米,代入薄透镜成像公式,111f S S '=-'解得cm f 20='. 第二种情况是:第一次成像在透镜的2倍焦距处,即凹面镜的顶点,因此有cm f 102=', cm f 5='.计算题1.5图· · 10cm10cm10cmC S S ' 计算题1.5解图 · · 10cm 10cm 10cmC S S ' O1 O2· · C F 法线 虚物实像 计算题1.4解图(a) C F 法线 实物 实象计算题1.4解图(b)解法二:物点 S经过透镜和凹面镜三次成像,第一次经透镜折射成像,以O1为顶点,向右为正,物距cm s 10-=,像距为1s ',焦距为f '.根据薄透镜成像公式得方程:,110111f s '=--' (1)第二次经凹面镜反射成像,以O2为顶点,向右为正,物距为),10(1cm s -'像距为2s ',曲率半径r=-30cm 由反射镜成像公式得方程:,302)10(1112-=-'+'s s (2)第三次经透镜折射成像,以O1为顶点,向左为正,物距为cm s )10(2+'-,像距为s ',代入成像公式,得:,1)10(112f s s '=+'--'(3)联立方程(1)、(2)、(3),得两解.5,2021cm f cm f ='='1.6 一个新月形状的薄凸透镜,由折射率 n=1.5的玻璃制成.半径为15厘米的后表面镀铝,半径为20厘米的前表面正前方40厘米处的光轴上,有一高1厘米的实物.试求最后像的位置、大小和虚实.解:薄透镜厚度不计,如计算题1.6解图所示,O 1 O 2距离可视为零.物经系统三次成像. 第一次折射成像,以O 1为原点,向右为正,物距为-40cm ,物方折射率为1.0,像方折射率为1.5,r 1=--20cm ,代入单球面折射成像公式,得.20.15.1400.15.11--=--'S 解得第一次成像的像距为cm s 301-='.垂轴放大率21)40(5.1)30(0.111=-⨯-⨯='=ns s n β. 第二次反射成像,以O2为原点,向右为正.物距为-30cm ,像距2s ',曲率半径r 2=-15cm ,代入球面反射成像公式,得.15230112-=-+'s 解得,102cm s -='第二次成像的垂轴放大率为313010122-=---=''-=s s β.第三次折射成像,以O1为顶点,向左为正.物距为10cm ,像距为s '.物方折射率为1.5,像方折射率为1.0,曲率半径为20cm .代入成像公式,得205.10.1105.10.1-=-'s . 解得cm s 8=',最后像的位置在镜前8cm 处.第三次成像垂轴放大率为2.1100.185.13=⨯⨯=β系统的总放大率为:.2.02.1)31(21321-=⨯-⨯=⋅⋅=ββββ因此,系统最后成像高为.2.012.0cm y y -=⨯-=⋅='β 系统最后成一缩小的、倒立的实象.1.7 如计算题1.7图所示,薄透镜是一透明容器,两侧呈曲率半径相同的凹球面的,器壁甚薄,可不计厚度.左侧为空气,右侧为n =4/3的水.试问在容器中到入液体的折射率xn 为多大时,才能对左侧轴上10厘米远的实物产生一正立、同大的虚象?解 产生正立同大的虚象,为无焦系统,系统的光焦度0=φ.又因系统的光焦度为两个折射球面的和,即0121=-+--=+=rn n r n xx φφφ, 且∞≠r ,故有 0237=-x n ,67=x n .1.8 正透镜将某物成像于屏幕上,已知实象高50毫米,物至幕的距离150毫米.在物至幕的距离不变的情况下,如何移动透镜才能在幕上得高度为20毫米的实像?解 现将两种成像情况表示在计算题1.8解图中.第一种情况,实物成实象.物与像距离D=150毫米,设物距为s 1,则像距为11s D s +=', (1)设第二种情况透镜移动距离为d ,则第一种情况下物距可表示为2/)(1d D s --=. (2)第二种情况物距为12s s -=',像距为d s s -=12.设物高h ,则有 hs s 5011-=', (3)hd s s 2011-=--.(4)O 1 O 240cm 计算题1.6解图 S S ' 0.1=n3/4='n10cmx n计算题1.7图将已知量代入,解上面四个方程,得第二次成像透镜移动的距离d=33.75毫米.1.9 计算题1.9图中四面直角体,其顶角A 到斜面的距离为d ,四面直角体由折射率为n 的玻璃制成,试证明由斜面进入四面体的光线,依次经过三个相互垂直的平面反后,出射光线与入射光线反向,并求出光在四面直角体中的光程.(四面直角体的折射率为n )解:如计算题1.9解图(a)建立坐标系.设xz 面、yz 面和xy 面分别为1面、2面和3面.光线MP 以 i 角入射于斜面上P 点,折射后方向为(cos α,cos β,cos γ).α、β、γ 分别为光线PO 1与三个坐标轴的夹角.光线PO 1经1面反射后,方向变为(cos α, -cos β, cos γ) 再 依 次经2面3面反射后, 方向变为 (-cos α, -cos β, -cos γ).因此, PO 1与O 3P '平行反向, MP 与P 'M '平行反向.光线在四面体走过的光程为光程[L]可以用镜像法求出.将四面体依次对1面,2面,3面成像,三次像的位置分别在第4,第3和第7挂限.斜面在第7挂限的位置与在第1 挂限的位置严格平行,相距2d .延长光线PO 1,延长线依次通过第4,第3和7挂限,且必过P '点在第7挂限的像点P ",PP "等于光在四面直角体中走过的路程,由计算题1.9解图(b),其光程为)(][332211P O O O O O PO n nL L '+++==计算题1.9图A P A 屏幕150mm d 计算题1.8解图 -s 120 50 S '1S '2 计算题1.9解图 y M' x 1o 2o 3o 12 3 M(a ) P P ' z i 'i 2d P" (b ) Pi nd P P n L '=''=cos /2)(][其中22/)(sin 1cos n i i -='.1.10 一开普勒天文望远镜,物镜的焦距为40厘米,相对孔径为f/5.0.今测得出瞳孔直径为2厘米,试求望远镜的放大率和目镜的焦距. 解 已知开普勒望远镜相对孔径为0.5/f ,焦距40='f 厘米,所以它的直径为80.5/401==D 厘米.出瞳直径为21='D 厘米,所以放大率4/1-='-=D D M . 由于放大率21/f f M ''-==-4,可求出102='f 厘米.1.11 一架显微镜,物镜焦距为4毫米,中间像成在物镜第二焦点后160毫米处.如果目镜是20⨯,问显微镜总的放大率是多少? 解 显微镜的物镜成像公式为111111f s s '=-', 现已知41='f 毫米,1641='s 毫米,代入上式求得物距为 1.41644164411111-=-⨯='-'''=s f s f s (毫米).被观察物恰在物镜物方焦点外一点点的地方,物镜的垂轴放大率401.4164111-≈-='=s s β. 乘以目镜的放大率,得显微镜的总放大率 80020)40(-=⨯-=M . 得放大的倒像.1.12 开普勒望远镜的物镜焦距为25厘米,直径为5厘米,而目镜焦距为5厘米,调节望远镜的远点置向无限远处,如果在目镜外放置一毛玻璃,改变毛玻璃的位置时,在毛玻璃上可以看到一个尺寸最小,但边界清晰的圆形光圈.试求: (1) 此时毛玻璃与目镜相距多远? (2) 毛玻璃上的圆圈直径有多大?解 (1)物镜的孔径D=5厘米,焦距为25厘米,目镜的焦距为5厘米. 物镜到目镜的距离为3021='+'f f 厘米.在开普勒望远镜系统中,物镜为孔径光阑,其相对于目镜的像为出射光瞳.由薄透镜成像公式,可求出出射光瞳的位置和大小.5130112=--'s , 解得62='s 厘米. 将开普勒望远镜的光路作在计算题1.12解图中,由图中可以看出,成像光束都通过出瞳,光束在出瞳处孔径最小,因此毛玻璃应该放在出瞳处,距目镜6厘米.(2)毛玻璃上光斑直径就是出瞳直径,为15306=⨯=='D D β(厘米).DD'物镜目镜计算题1.12解图毛玻璃作图题1.1 已知作图题1.1图中1和1'是一对共轭光线,作图求2的共轭光线..解 已知共轴球面系统的节点、主点、共轭光线1和1'及光线2,求2的共轭光线的步骤是(见作图题1.1解图): (1) 过节点N 、N '作平行于1的共轭辅助光线3和3',3'必定和1'交于系统像方焦平面上一点,过此交点作光轴的垂线,得到像方焦点. (2) 过节点N 、N '作平行于2的共轭辅助光线4和4',4'交于系统像方焦平面上一点. (3) 延长光线2,交于物方主平面上一点,其共轭光线2'必定由像方主平面上的等高点出发,过4'与像方焦平面的交点出射.1.2 如作图题1.2图所示,已知共轴球面系统的主点焦点,作图求光线1的共轭光线1'.解:已知光线1、共轴球面系统的焦点和主点,且两焦距不同,因此主点与系统的节点不重合.作图步骤为(见作图题1.2解图):(1) 过物方焦点F作光线1的平行线2,光线2到达物方主平面,其共轭光线2'由像方主平面的等高点出发平行光轴出射.(2) 延长光线1到系统的物方主平面,其共轭光线1'由像方主平面上的等高点出发,过2'与像方焦平面的交点出射.H ' N 'H N 1 1' 2作图题1.1图 HH ' · F· F '作图题1.2图1N H N'H' 1 1'F ' 2 2' 3 3' 4 4'作图题1.1解图F' ⋅⋅11'F F '22'焦平面作图题1.2解图HH '1.3 惠更斯目镜由两片平凸薄透镜组成(作图题1.3图),场镜L 1的焦距为a 3,接目镜L 2的焦距为a ,两透镜间距为a 2.试用作图法求惠更斯目镜的焦距和焦点、主点的位置.解 惠更斯目镜系统子系统的基点已知,作图法求系统的基点的步骤是: (1) 作一条平行于光轴的入射光线1,该光线过场镜L1后,拐向L 1的焦点F '1.1'为光线1在场镜L 1和接目镜L 2之间的共轭光线.(2) 过透镜L2的光心(L2的主点和节点)作一条平行于光线2'的辅助线(图中用虚线),该辅助线交接目镜L2的焦平面于P点.(3) 1'在L 2后的共轭光线1"必经过P 点.(4) 1"与光轴的交点就是系统的像方焦点F'.反向延长1",该延长线与光线1的延长线交点必在系统的像方主平面上.过两延长线交点作光轴的垂线,交光轴于像方主点(平行于光轴的入射光线,到达像方主平面上开始拐折,并拐向系统的像方焦点).由作图题1.3解图可以看出,系统的像方焦距为1.5a ,为正值,是会聚系统.可以作一条平行光轴的出射光线用同样的方法求系统的物方主点和物方焦点,问答题1.1 平面镜反射成像时,像和物左右互易,为什么像和物并不上下颠倒?答:平面反射镜是一个理想的光学系统,其物、像对于镜面是对称的,人照镜子感到左右互换,上下不颠倒,不过是照镜子人的主观看法.设想人要是躺在床边上照镜子,他会得出镜子成像上下颠倒左右不颠倒.实际上平面镜是镜面对称成像.这种像加上人们平时观察物体的习惯,就产生了上面的混乱的观点.1.2 为什么金刚石比切割成相同形状的玻璃仿制品看起来更加闪耀夺目?答:作为透明介质的金刚石,其折射率比一般玻璃要大.根据菲涅耳反射公式可知,对于相同形状的金刚石和仿制品,金刚石的反射光强要比纺仿制品的大,所以显得更亮.而题中所说闪耀的含义是有些表面看起来特别亮,而另一些表面看起来则不甚亮.即不同倾斜程度的表面,其反射光强差别很大.或同一表面的不同方向观察,其反射光强变化剧烈,因此形成闪耀的印象.作图题1.3解图 2a a3a L1 L2F 1'F '2F ' H ' 11' P1" 焦平面主平面作图题1.3图2aa 3aL1 L2F 2 F 1'F 2'由于金刚石折射率高,其能发生全内反射的临界角小,具有各种不同倾斜度内表面的金刚石较之相同形状的玻璃制品更易发生全内反射,所以显得更加闪耀夺目.1.3调节显微镜是改变载物台与镜筒间相对距离而不改变物镜和目镜的相对距离.但调节望远镜却采用调节物镜和目镜相对位置的办法,何以解释?答:显微镜的焦距是确定的,为了把它的β标定在物镜上,则必须固定它的物距和像距.我们使像距(即f '物+∆)为定值,即筒长固定,而在实用中调节物距,使它正是β所要求的物距值,这样做既可能,又方便.望远镜的物距几乎是无限大,实用中调节物距是无效的.故我们可以调节物镜和目镜的间距,使物镜的像正好落在目镜的焦平面上.1.4正常人眼使用开普勒望远镜看星星时,将使物镜焦距与目镜焦距重合,若对近视眼和远视眼,应如何调节?答:正常人眼,远点在无穷远.近视眼的眼球过长,当睫状肌完全松弛时,无限远的物体成像在视网膜的前方,它的远点在有限远的位置.因此对于近视眼,开普勒望远镜的目镜应当向靠近物镜的方向移动一点,以便使光学间隔∆为负值,保证向近视眼投以发散光束.远视眼的眼球过长,无穷远的物成像在视网膜的后方,因此开普勒望远镜的目镜应该向着远离物镜的方向移动一点,使光学间隔∆为正,以保证向远视眼投以会聚光束.1.5若在惠更斯目镜、冉斯登目镜中放叉丝,应放在什么地方?目镜本质上是放大镜,为什么惠更斯目镜不能当放大镜使?答:惠更斯目镜的物方焦点位于场镜和接目镜之间,即故不能观察实物,不能做放大镜使用.叉丝应放置在接目镜的物方焦平面上,此处为虚物平面.冉斯登目镜的物方焦点在场镜表面上或场镜前一点的地方,叉丝和物镜的像都应放置在这一位置上.填空题1.1人眼是__ ;望远镜是;显微镜是_ ;惠更斯目镜是_ _.(变焦系统,无焦系统,发散系统,会聚系统)1.2一台开普勒望远镜,其孔径光阑位置在,视场光阑位置在_ .1.3人眼作为一个观察系统,当物在的位置时人眼最放松.1.4正常人眼,远点在无穷远,近点约在眼前10厘米处.与正常人眼相比,近视眼远点变得更加___,近点变得更加_ ____;远视眼远点变得更加_ __,近点变得更加_ ____.1.5共轴球面系统光轴上有一点,当整个系统绕这一点转动一小角度时,焦平面屏幕上的像点不移动,这点是_ _____.1.6一个实际的光学系统一般都有孔径光阑和视场光阑,这两种光阑中最有效控制成像光束光能量者是_,最有效限制成像物空间范围者是___.1.7在讨论几何光学成像问题时,用笛卡儿坐标规定物距和像距符号.可以根据物距和像距的正负来判定物、像的虚实.对于薄透镜,物距大于零为____物,物距小于零为__ ___物,像距大于零为_ 像,像距小于零为__像;对于反射球面镜,物距大于零为_ ____物,物距小于零为____物,像距大于零为___像,像距小于零为_____像.选择题1.1下列四种说法正确的是:(1)游泳池的实际水深比站在池边的人所感觉到的水深要深;(2)二氧化碳(n=1.63)中的凸透镜(n=1.50)将具有会聚性质;(3)空气中的凸薄透镜对一切实物构成一倒立实象;(4)空气中的凹薄透镜对实物均得一正立的虚象.1.2两个薄凸透镜,焦距分别为f1和f2,将它们叠在一起组成一个系统,则其总的焦距应是:(1)f = f1+f2;(2)f= - f1f2/(f1+f2);(3)f = f1f2/(f1+f2);(4)f = (f1+f2)/f1f2.1.3 图中,光学元件的折射率小于它周围介质的折射率,下面的光路图对的是1.4 下面的说法正确的是(1) 球面折射系统的焦距与系统所在介质的折射率有关,而光焦度与系统所在介质的折射率无关;(2) 球面反射系统的焦距与系统所在介质的折射率无关,光焦度与系统所在介质的折射率有关;(3) 光焦度大于零的系统为会聚系统,光焦度小于零的系统为发散系统;(4) |φ|大的系统对平行光的拐折本领大,|φ|小的系统对平行光的拐折本领小.1.5 玻璃三棱镜对白光分光的作用,是由于:(1) 在棱镜中不同色的光反射不同;(2) 在棱镜中不同色的光传播速度不同;(3) 在进入棱镜后的折射不同;(4) 某一色的光进入棱镜后改变了其频率.1.6 对于一个光学系统,物方折射率是:(1) 实物和虚物所在的几何空间的折射率;(2) 未经系统变换的光束所在的几何空间的折射率;(3) 入射光瞳、入射窗所在几何空间的折射率.1.7 一束平行单色光从左则进入光学元件箱,已知自元件箱出射的光束有下面选择题1.7图(一)中有四种情况,每一种情况对应的装置分别是选择题1.7图(二)中的哪一种?(a) (d ) (c ) (b ) 选择题1.3图(二) (1) (2) (3) (4)选择题1.7图(一) (b ) (c ) (a ) (d )1.8空气中的薄负透镜可以使:(1)虚物成放大的虚象;(2)实物成缩小的实象;(3)虚物成放大的实象;(4)虚物成缩小的实象;(5)实物成放大的实象.1.9凹面镜可以有(1)虚物成虚象的情况;(2)实物成放大的虚象的情况;(3)实物成缩小的虚象的情况;(4)实物成正立的实象的情况.。

《几何光学成像》课件

《几何光学成像》课件
工作原理
通过反射镜和透镜的组合,将远处的物体放大并形成清晰的图像。
应用领域
天文学、军事侦察等。
CHAPTER 04
几何光学成像的应用
摄影与摄像
摄影
通过几何光学成像原理,摄影师能够理 解和Байду номын сангаас握如何使用镜头、光圈和快门速 度等参数来控制图像的清晰度和景深, 从而拍摄出高质量的照片。
VS
摄像
在视频拍摄中,几何光学成像原理同样重 要。专业摄像师需要掌握如何使用镜头和 灯光来保持画面清晰、色彩鲜艳,并控制 景深和焦点。
光线在均匀介质中沿直线传播,当光线遇到不同介质的界面时,将发生反射和折 射现象。
光的直线传播的应用
在摄影、投影、光学仪器等领域有广泛应用,如照相机的镜头、电影放映机的聚 光镜等。
光的反射定律
光的反射定律
入射光线、反射光线和法线在同一平面内,入射角等于反射 角。
镜面反射和漫反射
镜面反射是指光线在平滑表面上的反射,漫反射则是光线在 粗糙表面上的散射。
医学影像技术
医学影像技术
在医学领域,几何光学成像技术广泛应用于 各种医学影像设备的制造和设计,如X光机 、CT扫描仪和核磁共振成像仪等。这些设 备利用几何光学原理来生成高质量的医学图 像,帮助医生准确诊断病情。
显微镜
显微镜是另一种重要的医学影像设备,它利 用几何光学成像原理来放大微小物体,以便 观察和研究。在生物学、医学和科学研究领 域,显微镜是不可或缺的工具。
原理
光线在同一种介质中沿直线传播,当 光线通过透镜等光学元件时,会发生 折射或反射,改变光路,最终在像平 面汇聚形成倒立的实像或虚像。
几何光学成像的重要性
科学基础
几何光学成像作为光学和视觉科 学的基础,是理解光线传播规律 、光学仪器设计和视觉感知机制 的关键。

高中物理公式总结--光的反射和折射

高中物理公式总结--光的反射和折射

高中物理公式总结:光的反射和折射
光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
(3)光导纤维是光的全反射的实际应用〔见第三册P12〕,放大镜是凸透镜,近视眼镜是凹透镜;
(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;
(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕。

几何光学2

几何光学2

几何光学21、双镜面反射 1.1成像个数例1、用几何的方法不难证明:这三个虚像都位于以O 为圆心、OS 为半径的圆上。

用这个方法我们可以容易地确定较复杂的情况中复像的个数和位置。

解:两面平面镜AO 和BO 成60º角放置,用上述规律,很容易确定像的位置训练:两个平面镜之间的夹角为45º、60º、120º。

而物体总是放在平面镜的角等分线上。

试分别求出像的个数。

解:右图所示:1.2路程例2、α=15°OA=10cm ,A 点发出的垂直于L2的光线射向 L1后在两镜间反复反射,直到光线平行于某一镜面射出,则从A 点开始到最后一次反射点,光线所走的路程是多少?解:根据平面反射的对称性, BC ’=BC ∠ BOA=∠ BOC ’=α,上述ABC ’D ’均在一条直线上。

因此,光线在 L1和L2间反复反射跟光线沿ABC ’直线传播等效 设N ’为第n 次反射的入射点,则n 满足关系:a n na )1(900+<<n 〈6取n=5 ∠N ’OA=75°总路程 :cm a OA AN 3.375tan `==例3 如图所示,AB 表示一平直的平面镜,P1 P2是水平放置的米尺(有刻度的一面朝着平面镜)MN 是屏,三者相互平行,屏MN 上的ab 表示一条竖直的缝(即ab 之间是透光的)。

某人眼睛紧贴米尺上的小孔S (其位置如图所示),可通过平面镜看到米尺的一部分刻度。

试在本题图上用三角板作图求出可看到的部位,并在 P1 P2上把这部分涂以标志。

2、全反射全反射光从密度媒质1射向光疏媒质2,当入射角大于临界角α=sin -1n21 ,光线将发生全反射。

例4、图是光导纤维的示意图。

AB 为其端面,纤维内芯材料的折射率 n1=1.3,n2=1.2,试问入射角在什么范围内才能确保光在光导纤维内传播?解:r 表示光第一次折射的折射角,β表示光第二次的入射角,只要β大于临界角,光在内外两种材料的界面上发生全反射,光即可一直保持在纤维内芯里传播。

光学成像的基本原理

光学成像的基本原理

光学成像的基本原理:
光学成像的基本原理是基于光线传播、折射和反射的基本定律,通过透镜等光学器件的组合来实现物体的成像。

具体来说,光学成像的原理如下:
1.光线传播:光线在均匀的介质中沿直线传播,当通过不同密度的介质时,会发生折射和反射。

折射是光线从一种介质
进入另一种介质时改变传播方向的现象,而反射是光线遇到介质表面时被弹回的现象。

2.成像原理:利用光的传播方式,通过透镜等光学器件的组合,在成像面上形成原物体的像或反映出的信息。

常见的成
像原理包括几何光学和物理光学。

几何光学是以物体和像的几何关系为基础进行解释的,而物理光学则考虑了光波的传播和衍射等现象。

3.凸透镜成像原理:凸透镜是光学成像中常用的透镜之一。

当物体位于凸透镜焦点的左侧时,光线经过凸透镜折射形成
的像位于凸透镜的右侧;而当物体位于凸透镜焦点的右侧时,光线经过凸透镜折射形成的像位于凸透镜的左侧。

如果物体位于凸透镜的焦位上,那么成像后光线将会平行,光路无偏移。

4.凹透镜成像原理:凹透镜也是一种常用的透镜。

由于凹透镜会发生球差,因此在实际应用中较少采用。

凹透镜成像原
理与凸透镜成像原理类似,但是由于凹透镜对光线的发散作用,使得成像位置有所不同。

5.光路的传播:在光学系统中,影响光路的因素还包括成像光学器件的折射率、光线通过光学器件时可能发生的散射等
等。

我们可以通过经典的几何光学或辐射计量学来预测光线在光学器件中的传播和成像情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何光学2折射成像
1折射定律
2折射率
绝对折射率
相对折射率
例题1如图所示,介质在一定区域x>0、y>0内的折射率随着y的变化而连续变化.一束细光束沿x方向垂直入射到介质表面,并沿着一个半径为R的圆弧路径穿过介质,求折射率n随y变化的规律.如果y=0时折射率n0=1,已知的材料中最大折射率(金刚石折射率)不超过2.5,圆弧所对应的圆心角最大可能达多少?
例题2有一薄透镜如图所示,S1面是旋转椭球面(椭圆绕长轴
旋转而成的曲面),其焦点为F1和F2;S2面是球面,其球心C
与F2重合。

已知此透镜放在空气中时能使从无穷远处位于椭球长
轴的物点射来的全部入射光线(不限于傍轴光线)会聚于一个像
点上,椭圆的偏心率为e。

⑴求此透镜材料的折射率(要论证);
⑵如果将此透镜置于折射率为n的介质中,并能达到上述的同样的要求,椭圆应满足什么条件?
4证明折射光路光程最短
例题3如图.湖湾成顶角为α的楔形,岸上住有一个渔人:他的房子在A
点,从A点到他离湖最近的C点之距离为h,而到湖湾的一头,即到D点之距
离为l.湖对岸B点处有渔人好友的房子,点B位置与A点相对湖岸对称.渔
人拥有一只小船,他可以速度v沿岸步行或以速度v/2乘船在湖中划行,他从自
己家出发到好友家里去.求他需要的最短时间
4平面折射成像
例题4深度为3 cm的水面上(n1=1.33)漂浮着2 cm厚的醇(n2=1.36)层,则水底距醇表面的像视深度为__
矩形玻璃砖的成像
5全反射
例题5如图所示,ABCD是表示折射率为n的透明长方体,其四周介质的折射率均为1,一单色光束以角度θ入射至AB面上的P点,AP=AD/2.
(1)若要此光束进入长方体后能直接射至AD面上,角θ的最小值是多少?
(2)若要此光束直接射到AD面上能在AD面上全反射,角θ应在什么范围内?
(3)如果要求从P射入的一切光线,只要能到达AD,一定发生全反射,求n满足的条件
例题6某行星上大气的折射率随着行星表面的高度h按照n=n0-ah的规律而减小,行星的半径为R,行星表面某一高度h0处有光波道,它始终在恒定高度,光线沿光波道环绕行星传播,试求高度h0
6三棱镜
最小偏折角
全反射三棱镜的三种典型全反射光路
例题7等腰直角玻璃镜的底面AC和侧面BC是光滑的,而侧面AB是毛糙的,如图,棱镜的底面放在报纸上,一位观察者从光滑面BC看去,只看见报纸上一篇文章的一部分,且可见部分与应见部分之比为k=0.95(按面积),试求玻璃的折射率。

小顶角三棱镜对光线的功能
7球面折射成像
成像公式的推导
公式的推广和符号法制
球面透镜的公式推导
例题7由点光源S发出的近轴光线经透明球形成像S,像到透明球的距离为
b,如图。

如果沿垂直于水平轴将球分成两半,左边一半的平面上镀银,那么像
的位置在_________,与球的距离为_________。

例题8一薄凸透镜,凸面曲率半径R=30cm,如图所示。

已知在利用近轴光线成像时:⑴若将此透镜的平面镀银,其作用等同于一个焦距是30cm的凹面镜;⑵若将此透镜的凸面镀银,其作用也等同于一个凹面镜。

求在⑵情况下的等效凹面镜的焦距
例题9如图所示,两个完全相同的球面薄表壳玻璃合在一起,中空,
其中一块涂银成为球面反射镜.屏上小孔Q为点光源,它发出的光经反
射后成像于Q’点。

调整屏与表壳间的距离L,当L=20cm时,像点Q’正
好落在屏上。

然后在表壳玻璃间注满折射率n=4/3的水。

试问当 L为何值
时,像点Q’仍落在屏上?
例题10如图所示,薄壁球形玻璃鱼缸的半径为R,所盛水的折射率n=4/3。

鱼缸左侧与轴线垂直的平面反射镜离球心的距离为3R。

一条位于左球面顶点
处的小鱼沿缸壁以速度v游动。

从鱼缸右侧观察鱼的直接像与反射像(先经
平面镜反射,再经鱼缸所成的像)。

试求两像之间的相对速度。

巩固
1在一凸透镜左侧放一块厚d,折算率为n的矩形玻璃砖,当平行光从透镜右边射来时,其聚焦位置较无此玻璃砖移动的距离___________
2有一水平放置的平行平面玻璃板H,厚3.0 cm,折射率1.5。

在其下表
面下2.0 cm处有一小物S;在玻璃扳上方有一薄凸透镜L,其焦距30cm,透
镜的主轴与玻璃板面垂直;s位于透镜的主轴上,如图所示。

若透镜上方的
观察者顺着主轴方向观察到s的像就在s处,问透镜与玻璃板上表面的距离
为多少?
3照相机镜头L前 2.28m处的物体被清晰地成像在镜头后面
12.0cm处的照相胶片P上。

今将一折射率为1.50、厚AB=0.90cm、
两面平行的玻璃平板插入镜头与胶片之间,与光轴垂直,位置如图
所示。

设照相机镜头可看作一个简单薄凸透镜,光线为近轴光线。

1.求插入玻璃板后,像的新位置。

2.如果保持镜头、玻璃板、胶片三者间距离不变,并要求物体
仍清晰地成像于胶片上,则物体应放在何处?
4体温计横截面如图所示,已知细水银柱A离圆柱面顶点O的距离为2R,R为该圆柱面半径,C 为圆柱面中心轴位置。

玻璃的折射率n=3/2,E代表人眼,求图示横截面上人眼所见水银柱像的位置、虚实、正倒和放大倍数。

5如示意图所示,一垂直放置的高为15.0cm的圆柱形中空玻璃容器,其底部玻璃
较厚,底部顶点A点到容器底平面中心B点的距离为8.0cm,底部上沿为一凸起的球
冠,球心C点在A点正下方,球的半径为1.75cm.已知空气和容器玻璃的折射率分
别是n0=1.0和n1=1.56.只考虑近轴光线成像。

(1)当容器内未装任何液体时,求从B点发出的光线通过平凸玻璃柱,在玻璃
柱对称轴上所成的像的位置,并判断像的虚实;
(2)当容器内装满折射率为1.30的液体时,求从B点发出的光线通过平凸玻璃
柱的上表面折射后所成像点的位置,并判断这个像的虚实。

相关文档
最新文档