北师大版高中数学必修一综合测试题(一).docx

合集下载

高中数学必修一全部测试题北师大版

高中数学必修一全部测试题北师大版

高一第一学期期中试题(数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共120分,考试时间100分钟.第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题5分,共50分, 在每小题给出的四个选项中只有一个正确) 1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1②A ∈-}1{③A ⊆φ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有一样的像; (3)B 中的多个元素可以在A 中有一样的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值X 围是( )A 、3-≤aB 、3-≥aC 、5≤aD 、5≥a 5、下列各组函数是同一函数的是 ( )①()f x =()g x =;②()f x x =与()g x =③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①② B 、①③ C 、③④ D 、①④6.根据表格中的数据,可以断定方程02=--x e x的一个根所在的区间是 (7.若=-=-33)2lg()2lg(,lg lg y x a y x 则 ( )A .a 3B .a 23 C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( )A. [)0,+∞B. (]0,1C. [)1,+∞D. R9.函数]1,0[在xa y =上的最大值与最小值的和为3,则=a ( )A .21 B .2 C .4 D .41 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

第一章综合测试一、选择题(本大题共10小题,共50分)1.已知集合{}15A x x =≤<,{}3B x a x a =-+<≤.若()B A B ⊆,则a 的取值范围为( )A .312⎛⎫-- ⎪⎝⎭,B .32⎛⎫-∞- ⎪⎝⎭,C .()1-∞-,D .32⎛⎫-+∞ ⎪⎝⎭, 2.已知集合M ,P 满足MP M =,则下列关系中:①M P =;②M P ;③M P P =;④P M ⊆.一定正确的是( )A .①②B .③④C .③D .④3.有下列四个命题:①{}0是空集;②若a ∈N ,则a -∉N ; ③集合{}2210A x x x =∈-+=R 有两个元素; ④集合6B x x ⎧⎫=∈∈⎨⎬⎩⎭N N 是有限集. 其中正确命题的个数是( )A .0B .1C .2D .34.下列命题中,真命题的个数是( )①若a b >,0c <,则c c a b>②“1a >,1b >”是“1ab >”的充分不必要条件 ③若0a <,则12a a+≤-④命题:“若1xy ≠,则1x ≠或1y ≠” A .1 B .2 C .3 D .45.“关于x 的不等式220x ax a -+>对x ∈R 恒成立”的一个必要不充分条件是( )A .01a <<B .01a ≤≤C .102a << D .1a ≥或a ≤06.已知集合65M a a a +⎧⎫=∈∈⎨⎬-⎩⎭N Z ,且,则M 等于( ) A .{}23, B .{}1234,,, C .{}1236,,, D .{}1234-,,, 7.已知集合{}220A x x x =--<,B 是函数()2lg 1y x =-的定义域,则( )A .AB = B .A B ⊂C .B A ⊂D .A B =∅8.已知集合401x A x x ⎧⎫-=⎨⎬+⎩⎭≤,()(){}2210B x x a x a =---<,若A B =∅,则实数a 的取值范围是( ) A .()2+∞, B .{}[)12+∞, C .()1+∞, D .[)2+∞,9.已知集合{}2340A x x x =--<,()(){}20B x x m x m =-⎡-+⎤⎣⎦>,若AB =R ,则实数m 的取值范围是( ) A .()1-+∞, B .()2-∞, C .()12-, D .[]12-,10.不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是( ) A .()30-, B .(]30-, C .[]30-, D .()[)30-∞-+∞,,二、填空题(本大题共4小题,共20分)11.已知集合{}2021A a a =-,,,{}519B a a =--,,,且()9A B ∈,则a =________. 12.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q =,则实数a 的取值范围是________.13.命题:p x ∀∈R ,20x ax a ++≥,若命题p 为真命题,则实数a 的取值范围是________.14.若全集U =R ,集合{}24M x x =>,103x N x x ⎧⎫+=⎨⎬-⎩⎭<,则M N =________.三、解答题(本大题共7小题,共80分)15.设集合{}2320A x x x =-+=,集合()(){}()222150B x x a x a a =+++-=∈R .(1)若{}1AB =,求实数a 的值;(2)若AB A =,求实数a 的取值范围.16.设集合{}2230A x x x =+-<,集合{}10B x x a a =+<,>,命题:p x ∈A ,命题:p x ∈B .(1)若p 是q 的充要条件,求正实数a 的值;(2)若q ⌝是p ⌝的必要不充分条件,求正实数a 的取值范围.17.已知集合{}30A x x a =->,{}260B x x x =-->.(1)当3a =时,求A B ,A B ;(2)若()AC B ≠∅R ,求实数a 的取值范围.18.设集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=,且A B A =,A C C =,求实数a ,m 的取值范围.19.已知二次函数()()20f x ax ax c a =-+≠,且不等式()2f x x >的解集为()12,. (1)求函数()f x 的解析式(2)若()f x x d +≥在x ∈R 时恒成立,求实数d 的取值范围.20.(1)已知()22f x x bx c =-++,不等式()0f x >的解集是()13-,,求b 的值.(2)若对于任意[]10x ∈-,,不等式()4f x t +≤恒成立,则实数t 的取值范围是多少?21.已知函数()()223f x x a x =+--.(1)若函数()f x 在[]24-,上是单调函数,求实数a 的取值范围;(2)当5a =,[]11x ∈-,时,不等式()24f x m x +->恒成立,求实数m 的范围.第一章综合测试答案解析一、1.【答案】C【解析】解:由条件得()B AB ⊆,又因为()A B B ⊆, 所以A B B =,即有B A ⊆.①当B =∅,有3a a -+≥,解得:32a -≤; ②当B ≠∅,有3135a a a a -+⎧⎪-⎨⎪+⎩<≥<,解得:312a --<≤. 综上,实数a 的取值范围为:312⎛⎤-- ⎥⎝⎦,. 2.【答案】B【解析】解:已知集合M ,P 满足M P M =,则P M ⊆,故④正确,①错误,②错误;由P M ⊆可得MP P =,故③正确. 3.【答案】B【解析】解:①{}0不是空集,故①不正确;②若a ∈N ,当0a =时,a -∈N ,故②不正确; ③集合{}{}22101A x x x =∈-+==R ,只有1个元素,故③不正确; ④集合{}61236B x x ⎧⎫=∈∈=⎨⎬⎩⎭N N ,,,,是有限集,故④正确. 故选B.4.【答案】C【解析】解:若a b >,0c <,则()c b a c c a b ab -=-可知,当0ab >时,有c c a b >;当0ab <时,有c c a b<.故①是假命题;②若1a >,1b >时,有1ab >;反之不一定,比如取2a =-,3b =-,有61ab =>成立,但不满足1a >,1b >,所以“1a >,1b >”是“1ab >”的充分不必要条件.故②是真命题;③若0a <,则()12a a ⎛⎫-+- ⎪⎝⎭≥,当且仅当1a =-时等号成立,所以有12a a +≤-.故③是真命题;④命题:“若1xy ≠,则1x ≠或1y ≠”的逆否命题为“若1x =且1y =,则1xy =”,是真命题,所以原命题亦为真命题.故④是真命题.5.【答案】B【解析】:若关于x 的不等式220x ax a -+>,x ∈R 恒成立可得2440a a -<,解得01a <<,所以“关于x 的不等式220x ax a -+>,x ∈R 恒成立”的一个必要不充分条件是01a ≤≤.6.【答案】D 【解析】解:因为集合65M a a a +⎧⎫⎧=∈∈⎨⎨⎬-⎩⎩⎭N Z ,且, 所以5a -可能值为1,2,3,6,所以对应a 的值为4,3,2,1-,所以集合{}1234M =-,,,. 7.【答案】C 【解析】解:{}{}22012A x x x x x =--=-<<<,要使函数()2lg 1y x =-有意义,则210x ->,解得11x -<<,即集合{}11B x x =-<<, 所以B A ⊂.8.【答案】B 【解析】解:集合{}40141x A x x x x ⎧⎫-==-⎨⎬+⎩⎭≤<≤, ()221210a a a -=-+∵≥,212a a +∴≥, 当212a a +=即1a =时,()(){}2210B x x a x a =---=∅<此时,满足已知A B =∅,当212a a +>即1a ≠时,()(){}{}2221021B x x a x a x a x a =---=+<<<若A B =∅,则24a ≥或211a +-≤,解得2a ≥.∴实数a 的取值范围是{}[)12+∞,9.【答案】C 【解析】解:集合{}()234014A x x x =--=-<,,集合()(){}()()2082B x x m x m m m =-⎡-+⎤=-++∞⎣⎦>,,, 若A B =R ,则124m m -⎧⎨+⎩>< 解得:()12m ∈-,. 10.【答案】A【解析】解:当0k =时不等式308-<符合题意;当0k ≠时,由一元二次不等式23208kx kx +-<对一切实数x 都成立, 则2034208k k k ⎧⎪⎨⎛⎫-⨯⨯- ⎪⎪⎝⎭⎩<<, 解得30k -<<. 综上,满足一元二次不等式23208kx kx +-<对一切实数x 都成立的k 的取值范围是(]30-,二、11.【答案】5或3-【解析】解:()9A B ∈;9A ∈∴;219a -=∴,或29a =;5a =∴,或3a =±;①5a =时,{}0925A =,,,{}049B =-,,,满足条件;②3a =时,{}229B =--,,,不满足集合元素的互异性; ③3a =-时,{}079A =-,,,{}849B =-,,,满足条件; 故答案为5或3-.12.【答案】()4+∞,【解析】解:由集合{}2280P x x x =-->解得{}24P x x x =-<或>,由P Q Q =,得Q P ⊆,{}Q x x a =∵≥,4a ∴>,故实数a 的取值范围是()4+∞,. 13.【答案】{}04a a ≤≤【解析】解:∵命题p 为真命题,即20x ax a ++≥在R 上恒成立,则240a a ∆=-≤,解得04a ≤≤,故实数a 的取值范围是{}04a a ≤≤.14.【答案】()23, 【解析】解:{}()(){}{}2422022M x x x x x x x x ==-+=->>>或<,()(){}{}10130133x N x x x x x x x ⎧⎫+==+-=-⎨⎬-⎩⎭<<<<,{}{}{}221323M N x x x x x x x =--=∴>或<<<<<三、15.【答案】解:(1)由题意知:{}{}232012A x x x =-+==,,{}1A B =∵,1B ∈∴,将1带入集合B 中得:()()212150a a +++-=,解得:3a =-或1a =,当时3a =-,集合{}14B =,符合题意;当1a =时,集合{}14B =,-,符合题意,综上所述:3a =-或1a =;(2)若A B A =,则B A ⊆,{}12A =∵,,B =∅∴或{}1B =或{}2或{}12,,①若B =∅,则()()2221450a a ∆=+--<,解得214a -<;②若{}1B =,则()21121115a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解;③若{}2B =,则()22221225a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解;④若{}12B =,,则()21221125a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解. 综上214a -<. 16.【答案】解:{}()223031A x x x =+-=-<,,()11B a a =---,, (1)p ∵是q 的充要条件,A B =∴,即13110a a a --=-⎧⎪-=⎨⎪⎩>,解得2a =.(2)q ⌝∵是p ⌝的必要不充分条件,p ∴是q 的必要不充分条件,∴集合B 是集合A 的真子集, 13110.a a a ---⎧⎪-⎨⎪⎩≥,∴<,>或13110.a a a ---⎧⎪-⎨⎪⎩>,≤,>解得02a <<,即正实数a 的取值范围是()02,. 17.【答案】解:由30x a ->得3a x >,所以3a A x x ⎧⎫=⎨⎬⎩⎭>, 由260x x -->,得()()23x x +->0,解得2x -<或3x >,所以{}23B x x x =-<或>(1)当3a =时,{}1A x x =>, 所以{}3A B x x =>,{}21A B x x x =-<或>. (2)因为{}23B x x =-<或>,所以{}23C B x x =-R ≤≤.又因为()A C B ≠∅R ,所以33a <,解得9a <. 所以实数a 的取值范围是()9-∞,. 18.【答案】解:{}{}232012A x x x =-+==,. 因为A B A =,所以B A ⊆,所以B 可能为∅,{}1,{}2,{}12,,因为()()()224120a a a ∆=---=-≥,所以B ≠∅,又因为()()2111x ax a x x a -+-=-⎡--⎤⎣⎦,所以B 中一定有1,所以11a -=或12a -=,即2a =或3a =.经验证2a =,3a =均满足题意;又因为A C C =,所以C A ⊆, 所以C 可能为∅,{}1,{}2,{}12,. 当C =∅时,方程220x mx -+=无解,所以28m ∆=-<0,所以m -<当{}1C =时,m 无解;当{}2C =时,m 也无解;当{}12C =,时,3m =.综上所述,2a =或3a =;m -<3m =.19.【答案】解:(1)二次函数()()20f x ax ax c a =-+≠,且不等式()2f x x >的解集为()12,, 则()220ax a x c -++<的解集为()12,, 即方程()220ax a x c -++=的两个根为1和2,且0a >, 由根与系数关系可得:212a a ++=,12c a⨯=, 解得1a =,2c =,故函数()f x 的解析式为()22f x x x =-+;(2)若()f x x d +≥在x ∈R 时恒成立,则222x x d -+≥在x ∈R 时恒成立,由于()2222111x x x -+=-+≥,故1d ≤.高中数学 必修第一册 11 / 11 20.【答案】解:(1)由不等式()0f x >的解集是()13-,,可知1-和3是方程220x bx c -++=的根, 即2232b c ⎧=⎪⎪⎨⎪-=-⎪⎩,,解得46b c =⎧⎨=⎩,, 所以4b =(2)由(1)可知()2246f x x x =-++.所以不等式()4f x t +≤可化为2242t x x --≤,[]10x ∈-,. 令()2242g x x x =--,[]10x ∈-,, 由二次函数的性质可知()g x 在[]10x ∈-,上单调递减, 则()g x 的最小值为()02g =-,则2t -≤.所以实数t 的取值范围为(]2-∞-,. 21.【答案】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]24-,上是单调函数,242a --∴≥或222a ---≤, 解得6a -≤或6a ≥.∴实数a 的取值范围为(][)66-∞-+∞,,; (2)当5a =,[]11x ∈-,时,()24f x m x +->恒成立,即21x x m ++>恒成立,令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]1112x =-∈-,, ()min 1324g x g ⎛⎫=-= ⎪⎝⎭∴,即34m >, m ∴的范围为34⎛⎫-∞ ⎪⎝⎭,.。

高中数学 第一章 预备知识章末综合测评(含解析)北师大版必修第一册-北师大版高一第一册数学试题

高中数学 第一章 预备知识章末综合测评(含解析)北师大版必修第一册-北师大版高一第一册数学试题

章末综合测评(一) 预备知识(满分:150分 时间:120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∀x ∈R ,使得x 2≥0”的否定形式是( ) A .∀x ∈R ,x 2<0 B .∀x ∈R ,x 2≤0 C .∃x ∈R ,x 2≥0D .∃x ∈R ,x 2<0D [命题“∀x ∈R ,x 2≥0”的否定形式是∃x ∈R ,x 2<0,故选D.]2.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{3,4,5}D .{2,3,4,5}A [图中阴影部分所表示的集合为A ∩(∁UB ),故选A.]3.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x -2x ≤0,B ={0,1,2,3},则A ∩B =( )A .{1,2}B .{0,1,2}C .{1}D .{1,2,3}A [∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -2x ≤0={x |0<x ≤2}, ∴A ∩B ={1,2}.]4.设x ∈R ,则“x 3>8”是“|x |>2” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件A [解不等式x 3>8,得x >2,解不等式|x |>2,得x >2或x <-2, 所以“x 3>8”是“|x |>2” 的充分而不必要条件.故选A.]5.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}C [∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}. 故选C.]6.满足条件M ∪{1,2}={1,2,3}的集合M 的个数是( ) A .4 B .3 C .2D .1 A [∵M ∪{1,2}={1,2,3},∴3∈M ,且可能含有元素1,2, ∴集合M 的个数为集合{1,2},子集的个数4.故选A.]7.已知实数a ,b ,c 满足b +c =3a 2-4a +6,c -b =a 2-4a +4,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =a 2-4a +4=(a -2)2≥0,∴c ≥b ; 又b +c =3a 2-4a +6, ∴2b =2a 2+2, ∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎫a -12+34>0, ∴b >a , ∴c ≥b >a .]8.已知a >0,b >0,若不等式m3a +b ≤a +3b ab 恒成立,则m 的最大值为 ( )A .4B .16C .9D .3B [m3a +b≤a +3b ab ,即m ≤(a +3b )(3a +b )ab ;又(a +3b )(3a +b )ab =3a b +3ba +10≥23a b ·3ba=6+10=16,当且仅当a =b 时,取等号,∴m ≤16,故选B.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.不等式mx 2-ax -1>0(m >0)的解集不可能是( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .R C .⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32D .∅BCD [因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D.]10.对于任意实数a ,b ,c ,d ,下列四个命题中其中假命题的是( ) A .若a >b ,c ≠0,则ac >bc B .若a >b ,则ac 2>bc 2 C .若ac 2>bc 2,则a >b D .若a >b >0,c >d ,则ac >bdABD [若a >b ,c <0时,ac <bc ,A 错;B 中,若c =0,则有ac 2=bc 2,B 错;C 正确;D 中,只有c >d >0时,ac >bd ,D 错,故选ABD.]11.已知集合A ={x |x >2},B ={x |x <2m },且A ⊆∁R B ,那么m 的值可以是( ) A .0 B .1 C .2D .3 AB [根据补集的概念,∁R B ={x |x ≥2m }. 又∵A ⊆∁R B ,∴2m ≤2.解得m ≤1,故m 的值可以是0,1.]12.设集合A ={x |x 2-(a +2)x +2a =0},B ={x |x 2-5x +4=0},集合A ∪B 中所有元素之和为7,则实数a 的值为( )A .0B .1C .2D .4ABCD [x 2-(a +2)x +2a =(x -2)(x -a )=0,解得x =2或x =a ,则A ={2,a }.x 2-5x +4=(x -1)(x -4)=0,解得x =1或x =4,则B ={1,4}.当a =0时,A ={0,2},B ={1,4},A ∪B ={0,1,2,4},其元素之和为0+1+2+4=7;当a =1时,A ={1,2},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7;当a =2时,A ={2},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7;当a =4时,A ={2,4},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7.则实数a 的取值集合为{0,1,2,4}.]三、填空题:本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上. 13.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. ⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a [原不等式可化为(x -a )(x -1a )<0,由0<a <1,得a <1a ,∴a <x <1a.]14.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值X 围________.(-∞,1][用数轴表示集合A ,B ,若A ∪B =R ,则a ≤1,即实数a 的取值X 围是(-∞,1].] 15.“∃x ∈[0,3],x 2-a >0”是假命题,则实数a 的取值X 围是________.[9,+∞)[由题意得“∀x ∈[0,3],x 2-a ≤0”是真命题,即a ≥x 2,所以a ≥(x 2)max =9. ] 16.某商家一月份至五月份累计销售额达3 860万元,六月份的销售额为500万元,七月份的销售额比六月份增加x %,八月份的销售额比七月份增加x %,九、十月份的销售总额与七、八月份的销售总额相等,若一月份至十月份的销售总额至少为7 000万元,则x 的最小值为________.20[由题意得七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,所以一月份至十月份的销售总额为3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-115(舍去)或1+x %≥65,即x %≥20%,所以x 的最小值为20.]四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)若集合A={x|-2<x<4},B={x|x-m<0}.(1)若m=3,全集U=A∪B,试求A∩(∁U B).(2)若A∩B=A,某某数m的取值X围.[解](1)当m=3时,由x-m<0,得x<3,∴B={x|x<3},∴U=A∪B={x|x<4},则∁U B={x|3≤x<4},∴A∩(∁U B)={x|3≤x<4}.(2)∵A={x|-2<x<4},B={x|x-m<0}={x|x<m},由A∩B=A得A⊆B,∴m≥4,即实数m的取值X围是[4,+∞).18.(本小题满分12分)解下列不等式:(1)3+2x-x2≥0;(2)x2-(1+a)x+a<0.[解](1)原不等式化为x2-2x-3≤0,即(x-3)(x+1)≤0,故所求不等式的解集为{x|-1≤x≤3}.(2)原不等式可化为(x-a)(x-1)<0,当a>1时,原不等式的解集为(1,a);当a=1时,原不等式的解集为∅;当a<1时,原不等式的解集为(a,1).19.(本小题满分12分)已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},当A∪B=B时,某某数a的取值组成的集合P.[解]由A∪B=B知A⊆B.又A={-4,0},故此时必有B={-4,0},即-4,0为方程x2+2(a+1)x+a2-1=0的两根,于是⎩⎪⎨⎪⎧-4+0=-2(a +1),(-4)×0=a 2-1,得a =1.即P ={1}.20.(本小题满分12分)已知a >b >0,求证:a +b +3>ab +2a +b . [证明]a +b +3-ab -2a -b =12(2a +2b -2ab -4a -2b )+3 =12(a -4a +b -2b +a +b -2ab )+3 =12(a -4a +4+b -2b +1+a +b -2ab -5)+3 =12[(a -2)2+(b -1)2+(a -b )2-5]+3 =12(a -2)2+12(b -1)2+12(a -b )2+12, ∵(a -2)2≥0,(b -1)2≥0,(a -b )2>0, ∴a +b +3-ab -2a -b >0, ∴a +b +3>ab +2a +b .21.(本小题满分12分)已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],某某数m 的值; (2)若A ⊆∁U B ,某某数m 的取值X 围.[解] 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3,∴m =2.(2)∁U B ={x |x <m -2或x >m +2}, ∵A ⊆∁U B ,∴m -2>3或m +2<-1, 即m >5或m <-3.22.(本小题满分12分)已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x 使不等式恒成立?若存在,求出m 的取值X 围;若不存在,请说明理由.[解] 要使不等式mx 2-2x -m +1<0恒成立,即函数y =mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数y =mx 2-2x -m +1为二次函数,其图象需满足开口向下且与x 轴没有公共点,即⎩⎪⎨⎪⎧m <0,Δ=4-4m (1-m )<0,不等式组的解集为空集,即m 不存在. 综上可知,不存在这样的实数m 使不等式恒成立.。

新北师大版高一数学必修一期末测试卷一(含详细解析)

新北师大版高一数学必修一期末测试卷一(含详细解析)

新北师大版高一必修一期末测试卷(共2套附解析)综合测试题(一) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)A.(1,2) B.(2,3)C.(3,4) D.(4,5)5.已知f(x)是定义域在(0,+∞)上的单调增函数,若f(x)>f(2-x),则x的取值范围是() A.x>1 B.x<1C.0<x<2 D.1<x<26.已知x+x-=5,则的值为()A.5B.23C.25D.277.(2014·山东高考)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图像如图,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1D.f(2)<f(-)<f(-1)12.如果一个点是一个指数函数的图像与一个对数函数的图像的公共点,那么称这个点为“好点”,在下面的五个点M(1,1),N(1,2),P(2,1),Q(2,2),G(2,)中,“好点”的个数为()A.0 B.1C.2 D.3第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.若已知A∩{-1,0,1}={0,1},且A∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A共有________个.14.(2014·浙江高考)设函数f(x)=若f(f(a))=2,则a=________.15.用二分法求方程x3+4=6x2的一个近似解时,已经将一根锁定在区间(0,1)(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.22.(本小题满分12分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=a x-1.其中a>0且a≠1.23.(1)求f(2)+f(-2)的值;(2)求f(x)的解析式;(3)解关于x的不等式-1<f(x-1)<4,结果用集合或区间表示.一.选择题1.[答案] D[解析]A={x|x2-4x+3<0}={x|1<x<3},B={x|2x-3>0}={x|x>}.故A∩B={x|<x<3}.故选D.2.[答案] C[解析]由函数y=f(x)的表达式可知,函数f(x)的定义域应满足条件:,解=52-2=23.故选B.7.[答案] D[解析]本题考查对数函数的图像以及图像的平移.由单调性知0<a<1.又图像向左平移,没有超过1个单位长度.故0<c<1,∴选D.8.[答案] B[解析]f(x)=3x+3-x且定义域为R,则f(-x)=3-x+3x,∴f(x)=f(-x),∴f(x)为偶函数.同理得g(-x)=-g(x),∴g(x)为奇函数.故选B.9.[答案] D[解析]∵y=()x为减函数,<,∴()>().13.[答案] 4[解析]∵A∩{-1,0,1}={0,1},∴0,1∈A且-1?A.又∵A∪{-2,0,2}={-2,0,1,2},∴1∈A且至多-2,0,2∈A.故0,1∈A且至多-2,2∈A.∴满足条件的A只能为:{0,1},{0,1,2},{0,1,-2},{0,1,-2,2},共有4个.14.[答案][解析]此题考查分段函数、复合函数,已知函数值求自变量.令f(a)=t,则f(t)=2.∵t>0时,-t2<0≠2,∴t≤0.即t2+2t+2=2,∴t=0或-2.∴A={x|x2-7x+12=0}={3,4},B={x|x2-5x+6=0}={2,3},经检验符合题意.∴A∪B={2,3,4}.18.[解析](1)原式=log33+lg(25×4)+2+1=+2+3=.(2)∵f(x-)=(x+)2=x2++2=(x2+-2)+4=(x-)2+4∴f(x)=x2+4,∴f(x+1)=(x+1)2+4=x2+2x+5.19.[解析](1)函数有两个零点,则对应方程-3x2+2x-m+1=0有两个根,易知Δ>0,即Δ=4+12(1-m)>0,可解得m<;Δ=0,可解得m=;Δ<0,可解得m>.故m<时,函数有两个零点;(2)设1≤x1<x2≤2,则f(x2)-f(x1)=ax+-ax-=(x2-x1)[a(x1+x2)-],由1≤x1<x2≤2,得x2-x1>0,2<x1+x2<4,1<x1x2<4,-1<-<-,又1<a<3,所以2<a(x1+x2)<12,得a(x1+x2)->0,从而f(x2)-f(x1)>0,即f(x2)>f(x1),故当a∈(1,3)时,f(x)在[1,2]上单调递增.23.[解析](1)∵f(x)是奇函数,∴f(-2)=-f(2),即f(2)+f(-2)=0. (2)当x<0时,-x>0,∴f(-x)=a-x-1.由f(x)是奇函数,有f(-x)=-f(x),∵f(-x)=a-x-1,∴f(x)=-a-x+1(x<0).∴所求的解析式为f(x)=.。

高中数学必修1综合测试题(北师大版)

高中数学必修1综合测试题(北师大版)

高中数学必修1综合测试题(一)(北师大版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·陕西高考)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .[0,1) C .(0,1] D .(0,1)[答案] B[解析] x 2<1,∴-1<x 〈1,∴M ∩N ={x |0≤x <1}.2.(2015·湖北高考)函数f (x )=错误!+lg 错误! 的定义域为( ) A .(2,3) B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6][答案] C[解析] 由函数y =f (x )的表达式可知,函数f (x )的定义域应满足条件:错误!,解得错误!.即函数f (x )的定义域为(2,3)∪(3,4],故应选C.3.下列各组函数,在同一直角坐标中,f (x )与g (x )有相同图像的一组是( ) A .f (x )=(x 2)错误!,g (x )=(x 错误!)2B .f (x )=x 2-9x +3,g (x )=x -3C .f (x )=(x 错误!)2,g (x )=2log 2x D .f (x )=x ,g (x )=lg10x[答案] D[解析] 选项A 中,f (x )的定义域为R ,g (x )的定义域为[0,+∞);选项B 中,f (x )的定义域为(-∞,-3)∪(-3,+∞),g (x )的定义域为R ;选项C 中,f (x )=(x 错误!)2=x ,x ∈[0,+∞),g (x )=2log 2x ,x ∈(0,+∞),定义域和对应关系都不同;选项D中,g (x )=lg10x=x lg10=x ,故选D 。

北师大版高中数学必修一综合测试题

北师大版高中数学必修一综合测试题

必修1复习题一、选择题:(每小题5分,共60分)1.下列四个关系式中,正确的是 ( ) A. {}a ∅∈ B. {}a a ∉ C. {}{,}a a b ∈ D 。

{,}a a b ∈ 2.下列各个对应中, 从A 到B 构成映射的是 ( )A B A B A B A BA. B. C 。

D 。

3.函数()2log 12y x x =++-的定义域为 ( )A. ()0,2B. (]1,2-C. ()1,2-D. []0,24.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程。

在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较 符合该学生走法的是 ( ) 5.下列函数的值域是的是 ( )A .B .C .D .6.幂函数f (x )的图像过点(3,91),那么f (8) 的值为 ( ) A .22 B .42 C .41 D .6417. 下列说法正确的是 ( ) A. xx f 3)(-=是偶函数 B. (]3,3,)(2-∈=x x x f 是偶函数 C 。

x x x f +=3)(是奇函数D 。

1)(+=x x f 是奇函数8.已知b a 3.03.0log log >,则ae 与be 的大小关系正确的是 ( )A 。

b a e e > B. b a e e < C. b a e e = D 。

不能确定与ba e e 9.已知函数223y x x =+-,[]2,2x ∈-,则最大值最小值分别为 ( )A .最小值为-3,最大值为5B .最小值为—4,最大值为5C .最小值为-4,无最大值D .最大值为5,无最小值10.设lg 2a =,lg3b =,则6lg ( )A. b a + B 。

b a •C 。

b a - D. b a ÷11.函数43)(2++-=x x x f 的零点是 ( ) A 。

北师大版数学必修一综合测试题及答案

北师大版数学必修一综合测试题及答案

1,已知函数()lg(2),()lg(2),()()().f x x g x x h x f x g x =+=-=+设 (1)求函数()h x 的定义域(2)判断函数()h x 的奇偶性,并说明理由. 解:(1)()()()lg(2)lg(2)h x f x g x x x =+=++-由 20()20x f x x +>⎧=⎨->⎩ 得22x -<< 所以,()h x 的定义域是(-2,2)()f x Q 的定义域关于原点对称()()()lg(2)lg(2)()()()h x f x g x x x g x f x h x -=-+-=-++=+=()h x ∴为偶函数2.已知函数()f x 对一切实数,x y R ∈都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =. (Ⅰ)求(0)f 的值; (Ⅱ)求()f x 的解析式;(Ⅲ)已知a R ∈,设P :当102x <<时,不等式()32f x x a +<+ 恒成立; Q :当[2,2]x ∈-时,()()g x f x ax =-是单调函数。

如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求()R A C B I (R 为全集). ,解析:(Ⅰ)令1,1x y =-=,则由已知(0)(1)1(121)f f -=--++ ∴(0)2f =-(Ⅱ)令0y =, 则()(0)(1)f x f x x -=+ 又∵(0)2f =- ∴2()2f x x x =+-(Ⅲ)不等式()32f x x a +<+ 即2232x x x a +-+<+即21x x a -+<当102x <<时,23114x x <-+<, 又213()24x a -+<恒成立故{|1}A a a =≥又()g x 在[2,2]-上是单调函数,故有112,222a a --≤-≥或 ∴{|3,5}B a a a =≤-≥或 ∴{|35}R C B a a =-<< ∴()R A C B I ={|15}a a ≤<22()2(1)2g x x x ax x a x =+--=+--3,(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.解:(Ⅰ) 设12,[1,)x x ∈+∞,且12x x <,则21212111()()()()f x f x x x x x -=+-+122112(1)()x x x x x x -=- 121x x ≤<Q ∴210x x -> ∴121x x >,∴1210x x ->∴122112(1)()0x x x x x x --> ∴21()()0f x f x ->,即12()()f x f x < ∴()y f x =在[1,)+∞上是增函数4,已知函数f(x)=2x +2ax +b,且f(1)=52,f(2)=174。

北师大高中数学必修1综合测试卷及答案1

北师大高中数学必修1综合测试卷及答案1

班级:____________________ 姓名:____________________ 学号:____________________◇◇◇◇◇◇◇◇◇装◇◇◇◇◇◇订◇◇◇◇◇◇线◇◇◇◇◇◇内◇◇◇◇◇◇请◇◇◇◇◇◇勿◇◇◇◇◇◇答◇◇◇◇◇◇题◇◇◇◇◇◇◇◇2012-2013学年度高一(上)必修一检测(1)已知集合{}34A x x =-≤<,{}25B x x =-≤≤,则A B =(A ){}35x x -≤≤(B ){}24x x -≤<(C ){}25x x -≤≤(D ){}34x x -≤<(2)设集合2{650}M x x x =-+=,2{50}N x x x =-=,则MN 等于 ( )A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5}(3)已知5()lg ,(2)f x x f ==则( )(A )lg 2 (B )lg 32 (C )1lg32(D )1lg 25(4)已知函数()y f x =是R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()2f a f ≥-,则a 的取值范围是 (A )2a ≤ (B )2a ≥ (C )22a a ≤-≥或 (D )22a -≤≤(5)函数23y ax bx =++在(],1-∞-上是增函数,在[)1,-+∞上是减函数,则 (A )0b >且0a < (B )20b a =<(C )20b a =>(D )a ,b 的符号不确定(6)设x x e1e )x (g 1x 1x lg)x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶函数,g(x)是奇函数 (7)使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4) (8)函数362+-=x kx y 图像与x 轴有交点,则k 的取值范围是( )A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且 (9)若函数()()22log 43f x kx kx =++的定义域为R ,则k 的取值范围是 (A )()30,4 (B )[)30,4(C )[]30,4(D )(]()3,0,4-∞+∞ (10)若2()f x x =,则对任意实数x1,x2,下列不等式总成立的是 ( )(A )12()2x x f +≤12()()2f x f x + (B )12()2x x f +<12()()2f x f x + (C )12()2x x f +≥12()()2f x f x + (D )12()2x x f +>12()()2f x f x +二.填空题:本大题共5小题,每小题5分,共25分。

新北师大版高一数学必修一期末测试卷一有详细解析

新北师大版高一数学必修一期末测试卷一有详细解析

新北师大版高一必修一期末测试卷(共2套 附解析) 综合测试题(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·全国卷Ⅰ理,1)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A .(-3,-32)B .(-3,32) C .(1,32)D .(32,3)2.(2015·湖北高考)函数f (x )=4-|x |+lg x 2-5x +6x -3 的定义域( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]3.下列各组函数,在同一直角坐标中,f (x )与g (x )有相同图像的一组是( )A .f (x )=(x 2)12,g (x )=(x 12 )2B .f (x )=x 2-9x +3,g (x )=x -3C .f (x )=(x 12 )2,g (x )=2log 2xD .f (x )=x ,g (x )=lg10x4.函数y =ln x +2x -6的零点,必定位于如下哪一个区间( ) A .(1,2) B .(2,3) C .(3,4)D .(4,5)5.已知f (x )是定义域在(0,+∞)上的单调增函数,若f (x )>f (2-x ),则x 的取值范围是( )A .x >1B .x <1C .0<x <2D .1<x <26.已知x 12 +x -12=5,则x 2+1x 的值为( )A .5B .23C .25D .277.(2014·山东高考)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <18.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数9.(23)23 ,(25)23 ,(23)13 的大小关系为 ( ) A .(23)13 >(25)23 >(23)23 B .(25)23 >(23)13 >(23)23 C .(23)23 >(23)13 >(25)23D .(23)13 >(23)23 >(25)2310.已知函数f (x )=log 12 x ,则方程(12)|x |=|f (x )|的实根个数是( ) A .1 B .2 C .3D .200611.若偶函数f (x )在(-∞,-1]上是增函数,则下列关系式中,成立的是( )A .f (-32)<f (-1)<f (2) B .f (-1)<f (-32)<f (2) C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)12.如果一个点是一个指数函数的图像与一个对数函数的图像的公共点,那么称这个点为“好点”,在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,“好点”的个数为( )A .0B .1C .2D .3第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.若已知A ∩{-1,0,1}={0,1},且A ∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A 共有________个.14.(2014·浙江高考)设函数f (x )=⎩⎨⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.15.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.16.函数y =log 13(x 2-3x )的单调递减区间是________三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设全集U 为R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(?U A )∩B ={2},A ∩(?U B )={4},求A ∪B . 18.(本小题满分12分)(1)不用计算器计算:log 327+lg25+lg4+7log 72+(-9.8)0 (2)如果f (x -1x )=(x +1x )2,求f (x +1).19.(本小题满分12分)已知函数f (x )=-3x 2+2x -m +1. (1)当m 为何值时,函数有两个零点、一个零点、无零点; (2)若函数恰有一个零点在原点处,求m 的值.20.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数,并且当x ∈(0,+∞)时,f (x )=2x .(1)求f (log 213)的值;(2)求f (x )的解析式.21.(本小题满分12分)(2015·上海高考)已知函数f (x )=ax 2+1x ,其中a 为常数 (1)根据a 的不同取值,判断函数f (x )的奇偶性,并说明理由; (2)若a ∈(1,3),判断函数f (x )在[1,2]上的单调性,并说明理由.22.(本小题满分12分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中 a >0且a ≠1.23.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 一.选择题 1.[答案] D[解析] A ={x |x 2-4x +3<0}={x |1<x <3},B ={x |2x -3>0}={x |x >32}. 故A ∩B ={x |32<x <3}.故选D. 2.[答案] C[解析] 由函数y =f (x )的表达式可知,函数f (x )的定义域应满足条件:⎩⎨⎧4-|x |≥0,x 2-5x +6x -3>0,解得⎩⎨⎧-4≤x ≤x x >2且x ≠3.即函数f (x )的定义域为(2,3)∪(3,4],故应选C.3.[答案] D[解析] 选项A 中,f (x )的定义域为R ,g (x )的定义域为[0,+∞);选项B 中,f (x )的定义域为(-∞,-3)∪(-3,+∞),g (x )的定义域为R ;选项C 中,f (x )=(x 12 )2=x ,x ∈[0,+∞),g (x )=2log 2x ,x ∈(0,+∞),定义域和对应关系都不同;选项D 中,g (x )=lg10x =x lg10=x ,故选D.4.[答案] B[解析] 令f (x )=ln x +2x -6,设f (x 0)=0, ∵f (1)=-4<0,f (3)=ln3>0, 又f (2)=ln2-2<0,f (2)·f (3)<0, ∴x 0∈(2,3). 5.[答案] D[解析]由已知得⎩⎨⎧ x >02-x >0x >2-x?⎩⎪⎨⎪⎧x >0x <2x >1,∴x ∈(1,2),故选D. 6.[答案] B[解析] x 2+1x =x +1x =x +x -1=(x 12+x-12 )2-2=52-2=23. 故选B. 7.[答案] D[解析] 本题考查对数函数的图像以及图像的平移.由单调性知0<a <1.又图像向左平移,没有超过1个单位长度.故0<c <1,∴选D. 8.[答案] B[解析] f (x )=3x +3-x 且定义域为R ,则f (-x )=3-x +3x ,∴f (x )=f (-x ),∴f (x )为偶函数.同理得g (-x )=-g (x ),∴g (x )为奇函数.故选B. 9.[答案] D[解析] ∵y =(23)x 为减函数,13<23, ∴(23)13 >(23)23 .又∵y =x 23在(0,+∞)上为增函数,且23>25,∴(23)23 >(25)23 ,∴(23)13 >(23)23 >(25)23 .故选D. 10.[答案] B[解析] 在同一平面直角坐标系中作出函数y =(12)|x |及y =|log 12x |的图像如图所示,易得B.11.[答案] D[解析] ∵f (x )为偶函数,∴f (2)=f (-2).又∵-2<-32<-1,且f (x )在(-∞,-1)上是增函数, ∴f (2)<f (-32)<f (-1). 12.[答案] C[解析] ∵指数函数过定点(0,1),对数函数过定点(1,0)且都与y =x 没有交点, ∴指数函数不过(1,1),(2,1)点,对数函数不过点(1,2),∴点M 、N 、P 一定不是好点.可验证:点Q (2,2)是指数函数y =(2)x 和对数函数y =log 2x 的交点,点G (2,12)在指数函数y =(22)x 上,且在对数函数y =log 4x 上.故选C.二.填空题 13.[答案] 4[解析] ∵A ∩{-1,0,1}={0,1}, ∴0,1∈A 且-1?A .又∵A ∪{-2,0,2}={-2,0,1,2}, ∴1∈A 且至多-2,0,2∈A . 故0,1∈A 且至多-2,2∈A .∴满足条件的A 只能为:{0,1},{0,1,2},{0,1,-2},{0,1,-2,2},共有4个. 14.[答案]2[解析] 此题考查分段函数、复合函数,已知函数值求自变量. 令f (a )=t ,则f (t )=2. ∵t >0时,-t 2<0≠2,∴t ≤0. 即t 2+2t +2=2,∴t =0或-2.当t =0时,f (a )=0,a ≤0时,a 2+2a +2=0无解. a >0时,-a 2=0,a =0无解.当t =-2时,a ≤0,a 2+2a +2=-2无解 a >0时-a 2=-2,a = 2. 15.[答案] (12,1)[解析] 设f (x )=x 3-6x 2+4, 显然f (0)>0,f (1)<0,又f (12)=(12)3-6×(12)2+4>0,∴下一步可断定方程的根所在的区间为(12,1). 16. [答案] (3,+∞)[解析] 先求定义域,∵x 2-3x >0,∴x >3或x <0, 又∵y =log 13u 是减函数,且u =x 2-3x .即求u 的增区间.∴所求区间为(3,+∞). 三.解答题17.[解析] ∵(?U A )∩B ={2},A ∩(?U B )={4}, ∴2∈B,2?A,4∈A,4?B ,根据元素与集合的关系,可得⎩⎨⎧ 42+4p +12=022-10+q =0,解得⎩⎨⎧p =-7,q =6.∴A ={x |x 2-7x +12=0}={3,4},B ={x |x 2-5x +6=0}={2,3},经检验符合题意. ∴A ∪B ={2,3,4}. 18.[解析] (1)原式=log 3332+lg(25×4)+2+1=32+2+3=132. (2)∵f (x -1x )=(x +1x )2=x 2+1x 2+2=(x 2+1x 2-2)+4=(x -1x )2+4 ∴f (x )=x 2+4,∴f (x +1)=(x +1)2+4=x 2+2x +5.19.[解析] (1)函数有两个零点,则对应方程-3x 2+2x -m +1=0有两个根,易知Δ>0,即Δ=4+12(1-m )>0,可解得m <43; Δ=0,可解得m =43;Δ<0,可解得m >43. 故m <43时,函数有两个零点;m =43时,函数有一个零点;m >43时,函数无零点. (2)因为0是对应方程的根,有1-m =0,可解得m =1.20.[解析] (1)因为f (x )为奇函数,且当x ∈(0,+∞)时,f (x )=2x , 所以f (log 213)=f (-log 23)=-f (log 23) =-2log 23=-3.(2)设任意的x ∈(-∞,0),则-x ∈(0,+∞), 因为当x ∈(0,+∞)时,f (x )=2x ,所以f (-x )=2-x , 又因为f (x )是定义在R 上的奇函数,则f (-x )=-f (x ), 所以f (x )=-f (-x )=-2-x , 即当x ∈(-∞,0)时,f (x )=-2-x ; 又因为f (0)=-f (0),所以f (0)=0,综上可知,f (x )=⎩⎨⎧2x ,x >00,x =0-2-x ,x <0.21.[解析] (1)f (x )的定义域为{x |x ≠0,x ∈R },关于原点对称, f (-x )=a (-x )2+1-x=ax 2-1x , 当a =0时,f (-x )=-f (x )为奇函数,当a ≠0时,由f (1)=a +1,f (-1)=a -1,知f (-1)≠-f (1),故f (x )即不是奇函数也不是偶函数.(2)设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)[a (x 1+x 2)-1x 1x 2],由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4, -1<-1x 1x 2<-14,又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增. 23.[解析] (1)∵f (x )是奇函数, ∴f (-2)=-f (2),即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ),∵f (-x )=a -x -1,∴f (x )=-a -x +1(x <0).∴所求的解析式为f (x )=⎩⎨⎧a x-1?x ≥0?-a -x +1?x <0?.(3)不等式等价于⎩⎨⎧x -1<0-1<-a -x +1+1<4 或⎩⎨⎧x -1≥0-1<a x -1-1<4, 即⎩⎨⎧ x -1<0-3<a -x +1<2或⎩⎨⎧x -1≥00<a x -1<5. 当a >1时,有⎩⎨⎧ x <1x >1-log a 2或⎩⎨⎧x ≥1x <1+log a 5 注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .。

北师大版高中数学必修一综合测试题(一)

北师大版高中数学必修一综合测试题(一)

高中数学学习材料(灿若寒星精心整理制作)必修1全册综合测试题(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2011·新课标文)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有( )A.2个B.4个C.6个D.8个2.(2012·银川高一检测)设函数f(x)=log a x(a>0,且a≠1)在(0,+∞)上单调递增,则f(a+1)与f(2)的大小关系是( ) A.f(a+1)=f(2) B.f(a+1)>f(2)C.f(a+1)<f(2) D.不确定3.下列函数中,与函数y=1x有相同定义域的是( )A .f(x)=ln xB .f(x)=1xC .f(x)=|x|D .f(x)=e x4.(2011·北京文)已知全集U =R ,集合P ={x |x 2≤1},那么∁U P =( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)5.函数y =ln x +2x -6的零点,必定位于如下哪一个区间( ) A .(1,2) B .(2,3) C .(3,4)D .(4,5)6.已知f (x )是定义域在(0,+∞)上的单调增函数,若f (x )>f (2-x ),则x 的取值范围是( )A .x >1B .x <1C .0<x <2D .1<x <27.设y 1=,y 2=,y 3=(12)-,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 28.(2012·德阳高一检测)已知log 32=a,3b =5,则log 330由a ,b 表示为( )(a+b+1) (a+b)+1(a+b+1) a+b+19.若a>0且a≠1,f(x)是偶函数,则g(x)=f(x)·log a(x+x2+1)是( )A.奇函数B.偶函数C.非奇非偶函数D.奇偶性与a的具体值有关10.定义两种运算:a⊕b=a2-b2,a⊗b=(a-b)2,则函数f(x)=2⊕x(x⊗2)-2的解析式为( )A.f(x)=4-x2x,x∈[-2,0)∪(0,2)B.f(x)=x2-4x,x∈(-∞,2]∪[2,+∞)C.f(x)=-x2-4x,x∈(-∞,2]∪[2,+∞)D.f(x)=-4-x2x,x∈[-2,0)∪(0,2]第Ⅱ二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上)11.幂函数f(x)的图像过点(3,427).则f(x)的解析式是________.12.(2011·安徽文)函数y =16-x -x 2的定义域是________.13.设函数f (x )=x (e x +ae -x )(x ∈R )是偶函数,则实数a 的值为________.14.已知f (x 6)=log 2x ,则f (8)=________.15.已知函数f (x )=x 2+ax(x ≠0,常数a ∈R ),若函数f (x )在x∈[2,+∞)上为增函数,则a 的取值范围为________.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)设全集U 为R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},A ∩(∁U B )={4},求A ∪B .17.(本小题满分12分)(2012·广州高一检测)(1)不用计算器计算:log 327+lg25+lg4+7log72+(-0(2)如果f (x -1x )=(x +1x)2,求f (x +1).18.(本小题满分12分)已知函数f (x )=x 32x -1,(1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.19.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数,并且当x ∈(0,+∞)时,f (x )=2x .(1)求f (log 213)的值;(2)求f (x )的解析式.20.(本小题满分13分)已知二次函数f (x )=ax 2+bx +c (a ≠0)和一次函数g (x )=-bx (b ≠0),其中a ,b ,c 满足a >b >c ,a +b +c =0(a ,b ,c ∈R ).(1)求证:两函数的图像交于不同的两点;(2)求证:方程f (x )-g (x )=0的两个实数根都小于2. 21.(本小题满分14分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比; (2)至今年为止,该森林已砍伐了多少年 (3)今后最多还能砍伐多少年1[答案] B[解析] 本题考查了集合运算、子集等,含有n 个元素的集合的所有子集个数是2n .∵M={0,1,2,3,4},N={1,3,5},∴M∩N={1,3},所以P的子集个数为22=4个.2[答案] B[解析] ∵f(x)=log a x在(0,+∞)上单调递增,∴a>1,∴a+1>2,∴f(a+1)>f(2),故选B.3[答案] A[解析] 函数y=1x的定义域为(0,+∞),故选A.4[答案] D[解析] 本题考主要考查集合的运算与解不等式问题.P={x|x2≤1}={x|-1≤x≤1},所以∁U P=(-∞,-1)∪(1,+∞).5[答案] B[解析] 令f(x)=ln x+2x-6,设f(x0)=0,∵f(1)=-4<0,f(3)=ln3>0,又f(2)=ln2-2<0,f(2)·f(3)<0,∴x0∈(2,3).6[答案] D[解析]由已知得⎩⎪⎨⎪⎧ x >02-x >0x >2-x⇒⎩⎪⎨⎪⎧x >0x <2x >1,∴x ∈(1,2),故选D. 7[答案] D [解析] ∵y 1==,y 2==(23)=,y 3=,又∵函数y =2x 是增函数,且>>. ∴y 1>y 3>y 2. 8[答案] A[解析] 3b =5,b =log 35, log 330=12log 330=12log 3(3×10)=12(1+log 310) =12(1+log 32+log 35)=12(a +b +1). 9[答案] A[解析] g (-x )=f (-x )·log a (-x +x 2+1)=f (x )·log a1x 2+1+x=-f (x )·log a (x +x 2+1)=-g (x ). 则g (x )是奇函数. 10[答案] D[解析] ∵a ⊕b =a 2-b 2,a ⊗b =(a -b )2, ∴f (x )=2⊕x (x ⊗2)-2=22-x 2(x -2)2-2=4-x 2|x -2|-2.∵-2≤x ≤2且|x -2|-2≠0,即x ≠0,∴f (x )=4-x 22-x -2=-4-x 2x,x ∈[-2,0)∪(0,2].11[答案] f (x )=x 34[解析] 设f (x )=x α,将(3,427)代入, 得3α=427=334 ,则α=34.∴f (x )=x 34.12[答案] {x |-3<x <2}[解析] 该题考查函数的定义域,考查一元二次不等式的解法,注意填定义域(集合).由6-x -x 2>0, 得x 2+x -6<0, 即{x |-3<x <2}.13[答案] -1[解析] ∵f (-x )=f (x )对任意x 均成立,∴(-x )·(e -x +ae x )=x (e x +ae -x )对任意x 恒成立,∴x (-ae x -e -x )=x (e x +ae -x ),∴a =-1. 14[答案] 12[解析] ∵f (x 6)=log 2x =16log 2x 6,∴f (x )=16log 2x ,∴f (8)=16log 28=16log 223=12.15[答案] (-∞,16][解析] 任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2=(x 1-x 2)x 1x 2[x 1x 2(x 1+x 2)-a ],要使函数f (x )在x ∈[2,+∞)上为增函数,需使f (x 1)-f (x 2)<0恒成立.∵x 1-x 2<0,x 1x 2>4>0,∴a <x 1x 2(x 1+x 2)恒成立. 又∵x 1+x 2>4,∴x 1x 2(x 1+x 2)>16,∴a ≤16,即a 的取值范围是(-∞,16].16[解析] ∵(∁U A )∩B ={2},A ∩(∁U B )={4}, ∴2∈B,2∉A,4∈A,4∉B ,根据元素与集合的关系,可得⎩⎪⎨⎪⎧42+4p +12=022-10+q =0,解得⎩⎪⎨⎪⎧p =-7,q =6.∴A ={x |x 2-7x +12=0}={3,4},B ={x |x 2-5x +6=0}={2,3},经检验符合题意.∴A ∪B ={2,3,4}.17[解析] (1)原式=log 3332+lg(25×4)+2+1 =32+2+3=132. (2)∵f (x -1x )=(x +1x)2=x 2+1x 2+2=(x 2+1x2-2)+4=(x -1x)2+4∴f (x )=x 2+4 ∴f (x +1)=(x +1)2+4 =x 2+2x +5.18[解析] (1)由2x -1≠0,即2x ≠1,得x ≠0,所以函数f (x )的定义域为(-∞,0)∪(0,+∞).(2)因为f (1)=1,f (-1)=2,所以f (-1)≠f (1),且f (-1)≠-f (1),所以f (x )既不是奇函数也不是偶函数.(3)由于函数的定义域为(-∞,0)∪(0,+∞),因为当x >0时,2x >1,2x -1>0,x 3>0,所以f (x )>0;当x <0时,0<2x <1,2x -1<0,x 3<0,所以f (x )>0.综上知f (x )>0.本题得证.19[解析] (1)因为f (x )为奇函数,且当x ∈(0,+∞)时,f (x )=2x ,所以f (log 213)=f (-log 23)=-f (log 23) =-2log23=-3.(2)设任意的x ∈(-∞,0),则-x ∈(0,+∞),因为当x ∈(0,+∞)时,f (x )=2x ,所以f (-x )=2-x , 又因为f (x )是定义在R 上的奇函数,则f (-x )=-f (x ),所以f (x )=-f (-x )=-2-x ,即当x ∈(-∞,0)时,f (x )=-2-x ;又因为f (0)=-f (0),所以f (0)=0,综上可知,f (x )=⎩⎪⎨⎪⎧ 2x ,x >00,x =0-2-x ,x <0.20[解析] (1)若f (x )-g (x )=0,则ax 2+2bx +c =0, ∵Δ=4b 2-4ac =4(-a -c )2-4ac=4[(a -c 2)2+34c 2]>0, 故两函数的图像交于不同的两点.(2)设h (x )=f (x )-g (x )=ax 2+2bx +c ,令h (x )=0可得ax 2+2bx +c =0.由(1)可知,Δ>0.∵a >b >c ,a +b +c =0(a ,b ,c ∈R ),∴a >0,c <0,∴h (2)=4a +4b +c =4(-b -c )+4b +c =-3c >0,-2b 2a =-b a =a +c a =1+c a<2, 即有⎩⎪⎨⎪⎧ Δ>0a >0h (2)>0-2b 2a <2,结合二次函数的图像可知,方程f (x )-g (x )=0的两个实数根都小于2.21[解析] (1)设每年砍伐的百分比为x (0<x <1).则a (1-x )10=12a ,即(1-x )10=12, 解得x =1-(12)110 . (2)设经过m 年剩余面积为原来的22, 则a (1-x )m =22a , 即(12)m 10 =(12)12 ,m 10=12, 解得m =5,故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍了n 年,则n 年后剩余面积为22a (1-x )n , 令22a (1-x )n ≥14a ,即(1-x )n ≥24, (12)n 10 ≥(12)32,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.{。

北师大版高一数学必修1综合检测题

北师大版高一数学必修1综合检测题

必修1综合检测一、选择题(每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个 B .4个 C .5个 D .6个解析:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.答案:A2.下列函数为奇函数的是( )A .y =x 2B .y =x 3C .y =2xD .y =log 2x解析:A 为偶函数,C 、D 均为非奇非偶函数.答案:B3.函数y =1x +log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞)解析:要使函数有意义,自变量x 的取值须满足 ⎩⎨⎧x ≠0x +3>0,解得x >-3且x ≠0. 4.函数y =(12)x 的反函数的图象为()答案:D5.已知f (x 3-1)=x +1,则f (7)的值为( )A.37-1B.37+1 C .3 D .2解析:令x 3-1=7,得x =2,∴f (7)=3.答案:C6.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2a b解析:log 295=log 29-log 25=2log 23-log 25=2a -b .答案:B7.函数y =x 2+x (-1≤x ≤3)的值域是( )A .[0,12]B .[-14,12]C .[-12,12]D .[34,12]解析:画出函数y =x 2+x (-1≤x ≤3)的图象,由图象得值域是[-14,12].答案:B 8.下列四个图象中,表示函数f (x )=x -1x 的图象的是()解析:函数y =x ,y =-1x 在(0,+∞)上为增函数,所以函数f (x )=x -1x 在(0,+∞)上为增函数,故满足条件的图象为A 答案A9.函数y =-x 2+8x -16在区间[3,5]上( )A .没有零点B .有一个零点C .有两个零点D .有无数个零点 解析:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点 答案:B10.已知f (x )是定义在(0,+∞)上的增函数,若f (x )>f (2-x ),则x 的取值范围是( ) A .x >1 B .x <1C .0<x <2 D .1<x <2解析:由题目的条件可得⎩⎨⎧x >02-x >0x >2-x,解得1<x <2,故答案应为D.答案:D11.若函数f (x )=log a |x -2|(a >0,且a ≠1)在区间(1,2)上是增函数,则f (x )在区间(2,+∞)上( )A .是增函数且有最大值B .是增函数且无最大值C .是减函数且有最小值D .是减函数且无最小值解析:在区间(1,2)上函数y =log a |x -2|=log a (2-x )是增函数,因此0<a <1,于是函数f (x )在区间(2,+∞)上为减函数,且不存在最小值.答案:D 12.为了进一步保障手机消费者权益,某市工商行政管理部门于2006年3月15日起对《移动电话买卖合同》规范文本作出了调整.新合同条款规定:对符合换货条件但消费者要求退货的情况,按照移动电话“三包”规定,消费者应按照“移动电话价款×0.25%×购买天数”来支付折旧费,而原先的合同则规定“折旧费=移动电话价款×0.5%×购买天数”.据以上合同条款内容的修改,以下说法不正确的是( )A .若按新合同条款计算,一位消费者购买一台价格为2200元的手机150天时合理要求退货,他需要为此支付825元折旧费B .实行新合同条款之后,在相同的条件下消费者需要支付的移动电话折旧费减少为原来的一半C .若按原合同条款计算,当购买天数超过200天后,退货就失去了意义D .新合同实施后,消费者购买的手机价格越低,在退货时对消费者越有利解析:由题意,只有D 是不正确的,因为折旧费由三个因素构成,即手机价格,折旧率以及购买天数,单纯强调任何一个因素都是片面的,因此D 不正确.答案:D 二、填空题(每小题5分,共20分)13.已知集合A ={x |x <-1或2≤x <3},B ={x |-2≤x <4},则A ∪B =____.答案:{x |x <4} 14.函数y =log 2(3-4x )的定义域为__________.解析:根据对数函数的性质可得log 2(3-4x )≥0=log 21,解得3-4x ≥1,得x ≤12,所以定义域为(-∞,12].答案:(-∞,12]15.据有关资料统计,通过环境整治,某湖泊污染区域S (km 2)与时间t (年)可近似看作指数函数关系,已知近两年污染区域由0.16 km 2降至0.04 km 2,则污染区域降至0.01 km 2还需要__________年.解析:设S =a t ,则由题意可得a 2=14,从而a =12,于是S =(12)t ,设从0.04 km 2降至0.01 km 2还需要t 年,则(12)t =14,即t =2.答案:216.我们将一系列值域相同的函数称为“同值函数”,已知f (x )=x 2-2x +2,x ∈[-1,2],试写出f (x )的一个“同值函数”(除一次函数、二次函数外)__________. 解析:函数f (x )=x 2-2x +2在[-1,2]上的值域为[1,5],从而可以构造一个值域为[1,5]的函数,这样的函数可以有很多.答案:y =log 2x ,x ∈[2,32](不唯一)三、解答题(写出必要的计算步骤,只写最后结果不得分,70分) 17.(10分)已知集合A ={x |1≤x <4},B ={x |x -a <0}, (1)当a =3时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)当a =3时,B ={x |x -3<0}={x |x <3},则有A ∩B ={x |1≤x <3}.(2)B ={x |x -a <0}={x |x <a },当A ⊆B 时,有a ≥4,即实数a 的取值范围是[4,+∞).18.(12分)(1)计算:(279)12 +(lg5)0+(2764)-13 ;(2)解方程:log 3(6x -9)=3.解:(1)原式=(259)12 +(lg5)0+[(34)3]-13=53+1+43=4. (2)由方程log 3(6x -9)=3得6x -9=33=27,∴6x =36=62, ∴x =2.经检验,x =2是原方程的解.19.(12分)判断函数f (x )=1a x -1+x 3+12的奇偶性. 解由a x -1≠0,得x ≠0,∴函数定义域为(-∞,0)∪(0,+∞),f (-x )=1a -x -1+(-x )3+12=a x 1-a x -x 3+12=(a x-1)+11-a x -x 3+12=-1a x -1-x 3-12=-f (x ).∴f (x )为奇函数.20.(12分)某市出租车的收费标准是:3 km 起价5元(乘一次车的最少车费);行驶3 km 后,每千米车费1.2元;行驶10 km 后,每千米车费再加收50%的空驶费(即每千米车费1.8元).(1)写出车费与路程的关系式.(2)一顾客行程30 km ,为了省钱,他设计了两种乘车方案; a .分两段乘车:乘一车行15 km ,换乘另一车再行15 km ; b .分3段乘车:每行10 km ,换乘一次车. 问:哪一种方案更省钱?解:(1)由题设易求车费f (x )和路程x 的函数关系式为 f (x )=⎩⎨⎧5 (0<x ≤3)5+(x -3)×1.2 (3<x ≤10)5+7×1.2+(x -10)×1.8 (x >10)即f (x )=⎩⎨⎧5 (x <x ≤3)1.2x +1.4 (3<x ≤10)1.8x -4.6 (x >10).(2)30 km 不换乘车的车费为1.8×30-4.6=49.40元.方案a .:行两个15 km 的车费为2(1.8×15-4.6)=44.80元; 方案b .:行三个10 km 的车费为3(1.2×10+1.4)=40.20元.可见方案a 和方案b 都比不换乘车省钱,方案b 比方案a 更省钱.21.(12分)已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:若a =0,f (x )=2x -3,显然在[-1,1]上没有零点,所以a ≠0.令Δ=4+8a (3+a )=8a 2+24a +4=0,解得a =-3±72;①当a =-3-72时,y =f (x )恰有一个零点在[-1,1]上;②当f (-1)·f (1)=(a -1)(a -5)<0,即1<a <5时,y =f (x )在[-1,1]上也恰有一个零点;当a =1时,y =f (x )在[-1,1]上也恰有一个零点; ③当y =f (x )在[-1,1]上有两个零点时,则有:⎩⎪⎨⎪⎧a >0Δ=8a 2+24a +4>0-1<-12a <1f (1)≥0f (-1)≥0;或⎩⎪⎨⎪⎧a <0Δ=8a 2+24a +4>0-1<-12a <1f (1)≤0f (-1)≤0解得:a ≥5或a <-3-72;综上所述:实数a 的取值范围是a ≥1或a ≤-3-72.22.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.解:(1)设f (x )=k 1x (k 1≠0),g (x )=k 2x (k 2≠0).∵f (1)=1,g (1)=1,∴k 1=1,k 2=1.∴f (x )=x ,g (x )=1x .(2)由(1)得h (x )=x +1x ,则函数h (x )的定义域是(-∞,0)∪(0,+∞),h (-x )=-x +1-x=-(x +1x )=-h (x ),∴函数h (x )=f (x )+g (x )是奇函数.(3)证明:由(1)得S (x )=x 2+2.设x 1,x 2∈(0,+∞),且x 1<x 2,则S (x 1)-S (x 2)=(x 21+2)-(x 22+2)=x 21-x 22=(x 1-x 2)(x 1+x 2). ∵x 1,x 2∈(0,+∞),且x 1<x 2,∴x 1-x 2<0,x 1+x 2>0. ∴S (x 1)-S (x 2)<0.∴S (x 1)<S (x 2).∴函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.。

(北师大版)高中数学必修第一册第三章综合测试01(含答案)

(北师大版)高中数学必修第一册第三章综合测试01(含答案)

第三章综合测试第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1111242x M N xx +⎧⎫=−=∈⎨⎬⎩⎭Z ,,<<,,则M N 为( )A .{}11−,B .{}1−C .{}0D .{}10−,2.在下列根式与分数指数幂的互化中,正确的是( ) A .())0.50x x −=≠B()130yy =<C.)340x xy y −⎛⎫=≠ ⎪⎝⎭D.13x−=3.已知关于x 的不等式42133x x −−⎛⎫⎪⎝⎭>,则该不等式的解集为( )A .[)4+∞,B .()4−+∞,C .()4−∞−,D .(]41−,4.下列函数中,值域为+R 的是( )A .125xy −=B .113xy −⎛⎫= ⎪⎝⎭C.y =D.y =5.已知函数()2020xx a x f x x −⎧⎪=⎨⎪⎩,≥,<若()()11f f −=,则a =( )A .14B .12C .1D .26.已知3114221133a b c π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则下列不等式正确的是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>7.已知函数()()()x xf x x e ae x −=+∈R ,若()f x 是偶函数,记a m =,若()f x 是奇函数,记a n =,则2m n +的值为( )A .0B .1C .2D .1−8.在下图中,二次函数2y bx ax =+与指数函数xa yb ⎛⎫= ⎪⎝⎭的图象只可能是( )二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分)9.若函数()1x y a b =+−(0a >,且1a ≠)的图象不经过第二象限,则有( ) A .1a >B .01a <<C .1b >D .0b ≤10.已知函数()133xxf x ⎛⎫=− ⎪⎝⎭,则()f x ( )A .是奇函数B .是偶函数C .在R 上是增函数D .在R 上是减函数11.设指数函数()x f x a =(0a >,且1a ≠),则下列等式中正确的是( ) A .()()()f x y f x f y +=B .()()()f x f x y f y −=C .()()()nf nx f x n =∈⎡⎤⎣⎦QD .()()()()nnnf xy f x f y n +=∈⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦N12.已知3515a b ==,则a b ,可能满足的关系是( ) A .4a b +>B .4ab >C .()()22112a b −+−>D .228a b +<第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知函数()f x 是指数函数,且35225f ⎛⎫−=⎪⎝⎭,则()f x =________. 14.函数()2223x xf x −⎛⎫= ⎪⎝⎭的单调递减区间是________,值域为________.15.已知函数()x af x e −=(a 为常数).若()f x 在区间[)1+∞,上是增函数,则a 的取值范围是________. 16.设函数()31121x x x f x x −⎧=⎨⎩,<,≥,则满足()()2f a f f a =⎡⎤⎣⎦的a 的取值范围是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值:(1)00.54413925421e −⎛⎫⎛⎫−++− ⎪ ⎪−⎝⎭⎝⎭;(2)若346a b c ==,则1112a b c+−.18.(本小题满分12分)函数()y F x =的图象如图所示,该图象由指数函数()x f x a =与幂函数()b g x x =“拼接”而成. (1)求()F x 的解析式;(2)比较b a 与a b 的大小;(3)若()()432bbm m −−+−<,求m 的取值范围.19.(本小题满分12分)设()0x xe aa f x a e =+>,是R 上的偶函数.(1)求a 的值;(2)证明()f x 在()0+∞,上是增函数.20.(本小题满分12分)某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题: (1)写出x 年后该城市的人口总数y (万人)与年数x (年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万);(3)计算大约多少年以后该城市人口总数将达到120万(精确到1年).()()()1015161 1.2% 1.1271 1.2% 1.1961 1.2% 1.21⎡⎤+≈+≈+≈⎣⎦,,21.(本小题满分12分)已知函数()x f x b a =(其中a b ,为常数,且01a a ≠>,)的图象经过点()()16324A B ,,,.(1)试确定()f x ;(2)若不等式110x xm a b ⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭≥在(]81x ∈−,时恒成立,求实数m 的取值范围.22.(本小题满分12分)已知()f x 是定义在()11−,上的奇函数,当()01x ∈,时,()241xx f x =+. (1)求()f x 在()11−,上的解析式;(2)求()f x 的值域.第三章综合测试 答案解析1.【答案】B【解析】1124112212x x x +−+−∵<<,∴<<,∴<<.又x ∈Z ,{}{}101N M N =−=−∴,,∴∩.2.【答案】C【解析】)33440x y xy y x −⎛⎫⎛⎫==≠ ⎪⎪⎝⎭⎝⎭,故选C .3.【答案】B【解析】依题意可知,原不等式可转化为4233x x −+−>,由于指数函数3x y =为增函数,故424x x x −+−−>,>,故选B . 4.【答案】B【解析】选项A 中函数的值域为()()011+∞,,,选项C 中函数的值域为[)0+∞,,选项D 中函数的值域为[)01,,故选B . 5.【答案】A【解析】根据题意可得()()()()121221221f f f f a −==−===,∴,解得14a =,故选A . 6.【答案】D【解析】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,且13024<<,所以1b a >>.又因为x y π=在R 上单调递增,且102>,所以1c >.所以c b a >>.故选D . 7.【答案】B【解析】当()f x 是偶函数时,()()f x f x =−,即()()x x xx x e ae x e ae −−+=−+,即()()10x x a e e x −++=①.因为①式对任意实数x 都成立,所以1a =−,即1m =−.当()f x 是奇函数时,()()f x f x =−−,即()()x x x x x e ae x e ae −−+=+,即()()10x x a e e x −−−=②. 因为②式对任意实数x 都成立,所以1a =,即1n =,所以21m n +=. 8.【答案】C【解析】由二次函数常数项为0可知函数图象过原点,排除A ,D ;B ,C 中指数函数单调递减,因此()01a b∈,,因此二次函数图象的对称轴02ax b=−<.故选C . 9.【答案】AD【解析】由题意当()1x y a b =+−)不过第二象限时,其为增函数,1a ∴>且110b +−≤,即1a >且0b ≤,故选AD . 10.【答案】AC【解析】()()113333xx xx f x f x −−⎡⎤⎛⎫⎛⎫−=−=−−=−⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以()f x 是奇函数,A 正确;又3x y =为增函数,13xg ⎛⎫= ⎪⎝⎭为减函数,所以()133xx f x ⎛⎫=− ⎪⎝⎭为增函数,C 正确,故选A 、C .11.【答案】ABC【解析】因为()()()x y x y x y f x y a f x f y a a a +++===,,所以A 正确;()()()x y f x f x y a f y −−==,所以B 正确;()()()nnnx xf nx a a f x ===⎡⎤⎣⎦,所以C 正确;()()()()()()n nn nxy xyn x yf xy a a a a f x f y ====⎡⎤⎡⎤⎣⎦⎣⎦,所以D 错误,故选ABC . 12.【答案】ABC【解析】由3515a b ==,得()()315515315515351515baab b a ab b ab a ab ab b a =====,,∴,,∴,即1515ab a b a b ab +=+=,∴,又a b ,为不相等的正数,a b ab +∴>>,即4ab >,故A ,B 正确;()()22112a b −+−>等价于()222a b a b ++>,又a b ab +=,则222a b ab +>,故C 正确;因为2222248a b ab ab a b ++>,>,∴>,故D 错误.故选A 、B 、C .13.【答案】5x【解析】设()xf x a =(0a >,且1a ≠),由32f ⎛⎫−= ⎪⎝⎭得()31322225555x a a f x −−−====,∴,∴.14.【答案】[)1+∞,302⎛⎤⎥⎝⎦, 【解析】令22u x x =−,其单调递增区间为[)1+∞,,根据函数23uy ⎛⎫= ⎪⎝⎭是定义域上的减函数知,函数()f x 的单调递减区间就是[)1+∞,.由1u ≥,得23032u⎛⎫⎪⎝⎭<≤,所以()f x 的值域为302⎛⎤ ⎥⎝⎦,. 15.【答案】(]1−∞,【解析】令t x a =−,则t x a =−在区间[)a +∞,上单调递增,而t y e =在R 上为增函数,所以要使函数()x af x e−=在[)1+∞,上单调递增,则有1a ≤,所以a 的取值范围是(]1−∞,. 16.【答案】23⎡⎫+∞⎪⎢⎣⎭, 【解析】因2x y =与31y x =−在()1−∞,上没有公共点,故由()()2f a f f a =⎡⎤⎣⎦可得()1f a ≥,故有1311a a ⎧⎨−⎩<≥或121a a ⎧⎨⎩≥≥,解得a 的取值范围是23⎡⎫+∞⎪⎢⎣⎭,. 17.【答案】(1)原式221133e e =−++−=+. (2)设346a b c m ===,则0m >.346log log log a m b m c m ===∴,,.1111log 3log 4log 622m m m a b c +−=+−∴ log 3log 2log 6m m m =+−32log log 106mm ⨯===. 18.【答案】(1)依题意得11421142b a ⎧=⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得11612a b ⎧=⎪⎪⎨⎪=⎪⎩,所以()111641124x x F x x x ⎧⎛⎫⎪ ⎪⎪⎝⎭=⎨⎪⎪⎩,≤,>. (2)因为1122161111622b a a b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,指数函数12xy ⎛⎫= ⎪⎝⎭单调递减,所以12161122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即b a a b <.(3)由()()1122432m m −−+−<,得40320432m m m m +⎧⎪−⎨⎪+−⎩>>>,解得1332m −<<,所以m 的取值范围是1332⎛⎫− ⎪⎝⎭,.19.【答案】(1)因为()x xe af x a e =+是R 上的偶函数,所以()()f x f x =−,即x x x x e a e aa e a e −−+=+, 故()10x x a e e a −⎛⎫−−= ⎪⎝⎭,又x x e e −−不可能恒为0, 所以当10a a−=时,()()f x f x =−恒成立,故1a =. (2)证明:在()0+∞,上任取12x x <, 因为()()12121211f x f x ex ex ex ex −=+−− ()()()()()12121212211212121111ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex −−⎛⎫=−+−=−+−= ⎪⎝⎭, 又12100e x x >,>,>,所以121ex ex <<,所以1212010ex ex ex ex −−<,>,故()()120f x f x −<,即()()12f x f x <,所以()f x 在()0+∞,上是增函数.20.【答案】(1)1年后该城市人口总数为()100100 1.2%1001 1.2%y =+⨯=⨯+; 2年后该城市人口总数为()()()21001 1.2%1001 1.2% 1.2%1001 1.2%y =⨯++⨯+⨯=⨯+; 3年后该城市人口总数为()31001 1.2%y =⨯+;……;x 年后该城市人口总数为()1001 1.2%xy x +=⨯+∈N ,.(2)10年后该城市人口总数为()()10101001 1.2%100 1.012112.7y =⨯+=⨯≈万. (3)令120y =,则有()1001 1.2%120x⨯+=, 解方程可得1516x <<.故大约16年后该城市人口总数将达到120万.21.【答案】(1)因为()x f x b a =的图象过点()()16324A B ,,,,所以3624b a b a =⎧⎨=⎩,①,②÷②①得24a =,又0a >且1a ≠,所以23a b ==,,所以()32x f x =.(2)由(1)知110x x m a b ⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭≥在(]1x ∈−∞,时恒成立可化为1123x xm ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≤在(]1x ∈−∞,时恒成立. 令()1123xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 在(]1−∞,上单调递减, 所以()()min 1151236m g x g ==+=≤, 即实数m 的取值范围是56⎛⎤−∞ ⎥⎝⎦,.22.【答案】(1)当()10x ∈−,时,()01x −∈,. ∵函数()f x 为奇函数,()()224114x xx xf x f x −−=−−=−=−++∴. 又()()()()()00020000f f f f f =−=−==,∴,.故当()11x ∈−,时,()f x 的解析式为()()()201410021041xx xx x f x x x ⎧∈⎪+⎪==⎨⎪⎪−∈−+⎩,,,,,. (2)因为()214xxf x =+在()01,上单调递减,从而由奇函数的对称性知()f x 在()10−,上单调递减. ∴当01x <<时,()1010224141f x ⎛⎫∈ ⎪++⎝⎭,,即()2152f x ⎛⎫∈ ⎪⎝⎭,;当10x −<<时,()010*******f x −−⎛⎫∈−− ⎪++⎝⎭,,必修第一册 6 / 6 即()1225f x ⎛⎫∈−− ⎪⎝⎭,. 而()00f =,故函数()f x 在()11−,上的值域为{}211205225⎛⎫⎛⎫−− ⎪ ⎪⎝⎭⎝⎭,,.。

北师大版高中数学必修一第1、2章综合测试题.docx

北师大版高中数学必修一第1、2章综合测试题.docx

高中数学学习材料唐玲出品第一、二章综合测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|-2<x<3},则下列结论正确的是()A.2.5∈M B.0⊆MC.∅∈M D.集合M是有限集[答案] A[解析]因为-2<2.5<3,所以2.5是集合M中的元素,即2.5∈M.2.(2014·山东文,2)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)[答案] C[解析]A={x|x2-2x<0}={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x≤2},故选C.3.下面四个结论:①偶函数的图像一定与y轴相交;②奇函数的图像一定经过原点;③偶函数的图像关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R).其中正确命题的个数是()A.1B.2C.3D.4[答案] A[解析]偶函数的图像关于y轴对称,但不一定与y轴相交.反例:y=x0,故①错误,③正确.奇函数的图像关于原点对称,但不一定经过原点. 反例:y =x -1,故②错误.若y =f (x )既是奇函数又是偶函数, 由定义可得f (x )=0,但未必x ∈R .反例:f (x )=1-x 2+x 2-1,其定义域为{-1,1},故④错误.∴选A. 4.已知函数f (x )=1+x 21-x 2,则( )A .f (x )是奇函数且f (1x )=-f (x )B .f (x )是奇函数且f (1x )=f (x )C .f (x )是偶函数且f (1x )=-f (x )D .f (x )是偶函数且f (1x )=f (x )[答案] C[解析] f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ),又f (1x )=1+(1x )21-(1x)2=-(1+x 21-x 2)=-f (x ).故选C.5.f (x )=⎩⎪⎨⎪⎧x 2-1,|x |≥1,1-x 2,|x |<1,f (33)的值为( ) A .-23B .13C.23 D .43[答案] C [解析] ∵|33|<1,则应代入f (x )=1-x 2, 即f (33)=1-13=23. 6.若f [g (x )]=6x +3,且g (x )=2x +1,则f (x )=( ) A .3 B .3x C .6x +3 D .6x +1[答案] B[解析] 由f [g (x )]=f (2x +1)=6x +3=3(2x +1),知f (x )=3x .7.(2013·浙江高考)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)[答案] C[解析] 本题考查集合的运算,由条件易知∁R S ={x |x ≤-2},T ={x |-4≤x ≤1},所以∁R S ∪T ={x |x ≤1}.8.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( )A .[0,1)B .[0,1]C .[0,1)∪(1,4]D .(0,1)[答案] A[解析] 由题意知:⎩⎪⎨⎪⎧0≤2x ≤2x ≠1∴0≤x <1,故函数定义域为[0,1).9.已知定义在R 上的奇函数f (x ),在[0,+∞)上单调递减,且f (2-a )+f (1-a )<0,则实数a 的取值范围是( )A .(32,2]B .(32,+∞)C .[1,32)D .(-∞,32)[答案] D[解析] ∵f (x )在[0,+∞)单调递减且f (x )为奇函数,∴f (x )在(-∞,0)上单调递减,从而f (x )在(-∞,+∞)上单调递减,∴f (2-a )<f (a -1), ∴2-a >a -1,∴a <32,故选D.10.如果奇函数y =f (x )(x ≠0)在x ∈(0,+∞)上,满足f (x )=x -1,那么使f (x -1)<0成立的x 的取值范围是( )A .x <0B .1<x <2C .x <2且x ≠0D .x <0或1<x <2[答案] D[解析] x <0时,-x >0.由题设f (-x )=-x -1. 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=x +1.∴函数y =f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1 (x <0)x -1 (x >0),∴不等式f (x -1)<0化为⎩⎪⎨⎪⎧x -1<0x <0,或⎩⎪⎨⎪⎧x -1>0x -2<0. ∴x <0或1<x <2.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上)11.若⎩⎨⎧⎭⎬⎫(x ,y )⎩⎪⎨⎪⎧x +y =1x -y -3=0⊆{(x ,y )|y =ax 2+1},则a =________.[答案] -12[解析] 由⎩⎪⎨⎪⎧ x +y =1x -y -3=0得⎩⎪⎨⎪⎧x =2y =-1, 由题意知,-1=4a +1, ∴a =-12.12.已知f (x )为偶函数,则f (x )=⎩⎪⎨⎪⎧x +1 -1≤x ≤0,0≤x ≤1.[答案] 1-x[解析] 当x ∈[0,1]时,-x ∈[-1,0], f (-x )=-x +1,又f (x )为偶函数, ∴f (x )=f (-x )=1-x .13.若已知A ∩{-1,0,1}={0,1},且A ∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A 共有________个.[答案] 4[解析] ∵A ∩{-1,0,1}={0,1}, ∴0,1∈A 且-1∉A .又∵A ∪{-2,0,2}={-2,0,1,2}, ∴1∈A 且至多-2,0,2∈A . 故0,1∈A 且至多-2,2∈A .∴满足条件的A 只能为:{0,1},{0,1,2},{0,1,-2},{0,1,-2,2},共有4个. 14.函数f (x )的定义域为A ,若x 1,x 2∈A ,且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数,下列命题:①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原像; ④函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中的真命题是________.(写出所有真命题的编号) [答案] ②③[解析] 当f (x )=x 2时,不妨设f (x 1)=f (x 2)=4,有x 1=2,x 2=-2,此时x 1≠x 2,故①不正确;由f (x 1)=f (x 2)时总有x 1=x 2可知,当x 1≠x 2时,f (x 1)≠f (x 2),故②正确;若b ∈B ,b 有两个原像时,不妨设为a 1,a 2,可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;函数f (x )在某区间上具有单调性时在整定义域上不一定单调,因而f (x )不一定是单函数,故④不正确.故答案为②③.15.函数f (x )对任意正整数a ,b 满足条件f (a +b )=f (a )·f (b ),且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2016)f (2015)的值是________. [答案] 2016[解析] ∵函数f (x )对任意正整数a ,b 都满足f (a +b )=f (a )·f (b ), ∴令a =n ,b =1(n ∈N +),得f (n +1)=f (n )·f (1), 即f (n +1)f (n )=f (1).由n 的任意性得 f (2)f (1)=f (4)f (3)=f (6)f (5)=…=f (2016)f (2015)=f (1). 故f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2016)f (2015)=1008f (1)=1008×2=2016.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)设全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 取值构成的集合. [解析] (1)A ∩B ={x |3≤x <6}. ∵∁R B ={x |x ≤2,或x ≥9},∴(∁R B )∪A ={x |x ≤2或3≤x <6,或x ≥9}. (2)∵C ⊆B ,如图所示:∴⎩⎪⎨⎪⎧a ≥2a +1≤9,解得2≤a ≤8,∴所求集合为{a |2≤a ≤8}.17.(本小题满分12分)二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. [解析] (1)设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而,f (x +1)-f (x )=[a (x +1)2+b (x +1)+c ]-(ax 2+bx +c )=2ax +a +b , 又f (x +1)-f (x )=2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0⇒⎩⎪⎨⎪⎧a =1,b =-1又f (0)=c =1,∴f (x )=x 2-x +1. (2)由(1)及f (x )>2x +m ⇒m <x 2-3x +1,令g (x )=x 2-3x +1,x ∈[-1,1],则当x ∈[-1,1]时,g (x )=x 2-3x +1为减函数, ∴当x =1时,g (x )min =g (1)=-1,从而要使不等式m <x 2-3x +1恒成立,则m <-1. 18.(本小题满分12分)已知集合A ={x ∈R |x 2+(p +2)x +1=0},若A ∩R +=∅,求实数p 的取值范围.(其中R +={x ∈R |x >0}).[解析] ∵A ∩R +=∅,R +={x ∈R |x >0},A ={x ∈R |x 2+(p +2)x +1=0}, ∴方程x 2+(p +2)x +1=0没有正实数根,∴Δ=(p +2)2-4<0或⎩⎪⎨⎪⎧Δ=(p +2)2-4≥0-(p +2)<0, 即p (p +4)<0或⎩⎪⎨⎪⎧p (p +4)≥0,p >-2.解得-4<p <0或p ≥0, ∴实数p 的取值范围是p >-4.19.(本小题满分12分)设函数f (x )为奇函数,对任意x ,y ∈R ,都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2.求f (x )在[-3,3]上的最大值和最小值.[解析] 设-3≤x 1<x 2≤3,则x 2-x 1>0, ∵f (x )为奇函数,且当x >0时,f (x )<0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)<0, ∴f (x 2)<f (x 1).∴f (x )在[-3,3]上是减函数.故f (x )max =f (-3)=-f (3)=-[f (1)+f (2)]=-[f (1)+f (1)+f (1)]=6, f (x )min =f (3)=-f (-3)=-6.20.(本小题满分13分)已知定义在R 上的函数f (x )满足:①对任意的x ,y ∈R ,都有f (xy )=f (x )+f (y ); ②当x >1时,f (x )>0.求证: (1)f (1)=0;(2)对任意的x ∈R ,都有f (1x )=-f (x );(3)判断f (x )在(-∞,0)上的单调性. [解析] (1)证明:令x =y =1,则有 f (1)=f (1)+f (1)⇒f (1)=0. (2)对任意x >0,用1x 代替y ,有f (x )+f (1x )=f (x ·1x )=f (1)=0,∴f (1x)=-f (x ).(3)f (x )在(-∞,0)上是减函数. 取x 1<x 2<0,则x 1x 2>1,∴f (x 1x 2)>0,∵f (x 1)-f (x 2)=f (x 1)+f (1x 2)=f (x 1x 2)>0,∴f (x 1)>f (x 2),∴f (x )在(-∞,0)上为减函数.21.(本小题满分14分)已知二次函数f (x )=ax 2+bx +c (a ≠0)(a ,b ,c ∈R ),且同时满足下列条件:①f (-1)=0;②对任意实数x ,都有f (x )-x ≥0;③当x ∈(0,2)时,有f (x )≤(x +12)2.(1)求f (1);(2)求a ,b ,c 的值;(3)当x ∈[-1,1]时,函数g (x )=f (x )-mx (m ∈R )是单调函数,求m 的取值范围. [解析] (1)由f (-1)=0,得a -b +c =0, ①令x =1,有f (1)-1≥0和f (1)≤(1+12)2=1,∴f (1)=1.(2)由f (1)=1得a +b +c =1② 联立①②可得b =a +c =12,由题意知,对任意实数x ,都有f (x )-x ≥0,即ax 2+(a +c )x +c -x ≥0, 即ax 2-12x +c ≥0对任意实数x 恒成立,于是⎩⎪⎨⎪⎧a >0Δ≤0即⎩⎪⎨⎪⎧a >0,14-4ac ≤0.∵c =12-a ,∴⎩⎪⎨⎪⎧ a >014-2a +4a 2≤0⇒⎩⎪⎨⎪⎧a >0(2a -12)2≤0⇒a =14, ∴a =c =14,b =12.(3)由(2)得:g (x )=f (x )-mx =14x 2+12x +14-mx =14[x 2+(2-4m )x +1]∵x ∈[-1,1]时,g (x )是单调的, ∴|-2-4m2|≥1,解得m ≤0或m ≥1. ∴m 的取值范围是(-∞,0]∪[1,+∞).。

新教材高中数学第一章预备知识综合测试北师大版必修第一册

新教材高中数学第一章预备知识综合测试北师大版必修第一册

第一章综合测试考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021·全国新高考Ⅰ卷)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B =( B ) A .{2} B .{2,3} C .{3,4}D .{2,3,4}[解析] 由题设有A ∩B ={2,3},故选B . 2.命题“∀x >0,x 2-2x +1>0”的否定是( A ) A .∃x 0>0,x 20-2x 0+1≤0 B .∀x >0,x 2-2x +1≤0 C .∃x 0≤0,x 20-2x 0+1≤0D .∀x ≤0,x 2-2x +1≤0[解析] 含有量词的命题的否定,一改量词将“∀”改为“∃”,二否结论将“>”改为“≤”,条件不变,故选A .3.设a ∈R ,则a >3是|a |>3的( D ) A .既不充分也不必要条件 B .必要不充分条件 C .充要条件D .充分不必要条件[解析] 由“a >3”能推出“|a |>3”,充分性成立;反之由|a |>3无法推出a >3,必要性不成立.故选D .4.下列命题正确的是( D ) A .若a >b ,则1a <1bB .若a >b >0,c >d ,则a ·c >b ·dC .若a >b ,则a ·c 2>b ·c2D .若a ·c 2>b ·c 2,则a >b[解析] 由题意,对于选项A 中,当a >0>b 时,此时1a >1b,所以A 是错误的;对于选项B 中,当0>c >d 时,此时不等式不一定成立,所以B 是错误的;对于选项C 中,当c =0时,不等式不成立,所以C 是错误的.根据不等式的性质,可得若ac 2>bc 2时,则a >b 是成立的,所以D 是正确的. 5.已知2x +3y =3,若x ,y 均为正数,则3x +2y的最小值是( C )A .53B .83C .8D .24[解析] 因为2x +3y =3,x ,y 均为正数, 则3x +2y =13⎝ ⎛⎭⎪⎫3x +2y (2x +3y )=13⎝ ⎛⎭⎪⎫12+9y x +4x y ≥12+29y x ·4xy 3=8,当且仅当9y x =4xy且2x +3y =3,即x =34,y =12时取等号,所以3x +2y的最小值是8.6.集合{y ∈N |y =-x 2+6,x ∈N }的真子集的个数是( C ) A .9 B .8 C .7D .6[解析] x =0时,y =6;x =1时,y =5;x =2时,y =2;x =3时,y =-3. 所以{y ∈N |y =-x 2+6,x ∈N }={2,5,6}共3个元素,其真子集的个数为23-1=7个,故选C .7.若不等式4x 2+ax +4>0的解集为R ,则实数a 的取值范围是( D ) A .{a |-16<a <0} B .{a |-16<a ≤0} C .{a |a <0}D .{a |-8<a <8}[解析] 不等式4x 2+ax +4>0的解集为R , 所以Δ=a 2-4×4×4<0,解得-8<a <8, 所以实数a 的取值范围是{a |-8<a <8}.8.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式S =p (p -a )(p -b )(p -c )求得,其中p 为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足a +b =12,c =8,则此三角形面积的最大值为( C )A .4 5B .415C .8 5D .815[解析] 由题意,p =10,S =10(10-a )(10-b )(10-c )=20(10-a )(10-b )≤20·10-a +10-b2=85,当且仅当a =b =6时取等号,所以此三角形面积的最大值为85.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列命题中,是全称量词命题的有( BC ) A .至少有一个x 使x 2+2x +1=0成立 B .对任意的x 都有x 2+2x +1=0成立C .对任意的x 都有x 2+2x +1=0不成立 D .存在x 使x 2+2x +1=0成立[解析] A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题,B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题.故选BC .10.下列命题中真命题的是( AB ) A .“a >b >0”是“a 2>b 2”的充分条件 B .“a >b ”是“3a >3b ”的充要条件 C .“a >b ”是“|a |>|b |”的充分条件 D .“a >b ”是“ac 2≤bc 2”的必要条件[解析] 当a >b >0时a 2>b 2,A 正确;B 正确;对于C ,当a =1,b =-2时,满足a >b ,但|a |<|b |,故C 不正确;对于D ,“a >b ”与“ac 2≤bc 2”没有关系,不能相互推出,因此不正确.故选AB .11.已知不等式ax 2+bx +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <2,则下列结论正确的是( BCD )A .a >0B .b >0C .c >0D .a +b +c >0[解析] 因为不等式ax 2+bx +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <2,故相应的二次函数y =ax2+bx +c 的图象开口向下,所以a <0,故A 错误;易知2和-12是方程ax 2+bx +c =0的两个根,则有c a =-1<0,-b a =32>0,又a <0,故b >0,c >0,故BC 正确;由二次函数的图象可知当x =1时y =a +b +c >0,故D 正确,故选BCD .12.设a 、b 是正实数,下列不等式中正确的是( BD ) A .ab >2aba +bB .a >|a -b |-bC .a 2+b 2>4ab -3b 2D .ab +2ab>2[解析] 对于A ,ab >2ab a +b ⇒1>2ab a +b ⇒a +b2>ab ,当a =b >0时,不等式不成立,故A 中不等式错误;对于B ,a +b >|a -b |⇒a >|a -b |-b ,故B 中不等式正确;对于C ,a 2+b 2>4ab -3b 2⇒a 2+4b 2-4ab >0⇒(a -2b )2>0,当a =2b 时,不等式不成立,故C 中不等式错误;对于D ,ab +2ab≥22>2,故D 中不等式正确.三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.若x >1,则y =3x +1x -1的最小值是. [解析] ∵x >1,∴x -1>0,因此y =3x +1x -1=3(x -1)+1x -1+3≥23(x -1)·1x -1+3=3+23, 当且仅当3(x -1)=1x -1,即x =33+1时取等号,因此y =3x +1x -1的最小值是3+23. 14.不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13<x <12,则a =__-6__,c =__-1__.[解析] 由题意知a <0,且不等式对应方程的两个根分别为13,12,根据根与系数的关系得⎩⎪⎨⎪⎧-5a =13+12,c a =13×12,解得⎩⎪⎨⎪⎧a =-6,c =-1.15.已知集合A ={1,2,3},B ={x |-3x +a =0},若A ∩B ≠∅,则a 的值为__3或6或9__.[解析] 由题意可知B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =a 3.若A ∩B ≠∅,则a 3=1或a 3=2或a3=3,得a =3或6或9.16.在下列所示电路图中,下列说法正确的是__(1)(2)(3)__(填序号).(1)如图①所示,开关A 闭合是灯泡B 亮的充分不必要条件; (2)如图②所示,开关A 闭合是灯泡B 亮的必要不充分条件; (3)如图③所示,开关A 闭合是灯泡B 亮的充要条件; (4)如图④所示,开关A 闭合是灯泡B 亮的必要不充分条件.[解析] (1)A 闭合,B 亮;而B 亮时,A 不一定闭合,故A 是B 的充分不必要条件,因此正确;(2)A 闭合,B 不一定亮;而B 亮,A 必须闭合,故A 是B 的必要不充分条件,因此正确;(3)A 闭合,B 亮;而B 亮,A 必闭合,所以A 是B 的充要条件,因此正确;(4)A 闭合,B 不一定亮;而B 亮,A 不一定闭合,所以A 是B 的既不充分也不必要条件,因此错误.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知全集U ={0,1,2,3,4,5,6},集合A ={x ∈N |1<x ≤4},B ={x ∈R |x 2-3x +2=0}.(1)用列举法表示集合A 与B ; (2)求A ∩B 及∁U (A ∪B ).[解析] (1)由题知,A ={2,3,4},B ={x ∈R |(x -1)(x -2)=0}={1,2}. (2)由题知,A ∩B ={2},A ∪B ={1,2,3,4},所以∁U (A ∪B )={0,5,6}. 18.(本小题满分12分)设集合A ={x |-1≤x ≤2},集合B ={x |2m <x <1}. (1)若“x ∈A ”是“x ∈B ”的必要条件,求实数m 的取值范围;(2)若命题“B ∩(∁R A )中只有一个整数”是真命题,求实数m 的取值范围.[解析] (1)若“x ∈A ”是“x ∈B ”的必要条件,则B ⊆A .由题知,A ={x |-1≤x ≤2}. ①当m <12时,B ={x |2m <x <1},此时-1≤2m <1,解得-12≤m <12;②当m ≥12时,B =∅,B ⊆A 成立.综上,实数m 的取值范围是⎣⎢⎡⎭⎪⎫-12,+∞. (2)∵A ={x |-1≤x ≤2},∴∁R A ={x |x <-1或x >2}. ①当m <12时,B ={x |2m <x <1},若(∁R A )∩B 中只有一个整数,则-3≤2m <-2, 得-32≤m <-1;②当m ≥12时,B =∅,(∁R A )∩B =∅,不符合题意.综上,实数m 的取值范围是⎣⎢⎡⎭⎪⎫-32,-1. 19.(本小题满分12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.[解析] (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系得⎩⎪⎨⎪⎧1+b =3a ,1×b =2a ,解得⎩⎪⎨⎪⎧a =1,b =2.(2)结合(1)可知,原不等式可化为x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.所以 ①当c >2时,不等式的解集为{x |2<x <c }; ②当c <2时,不等式的解集为{x |c <x <2}; ③当c =2时,不等式的解集为∅.20.(本小题满分12分)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R . (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集),试探究集合B 能否为有限集.若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由.[解析] (1)当k =0时,A =(-∞,4);当k >0时,A =(-∞,4)∪⎝⎛⎭⎪⎫k +4k,+∞;当k <0时,A =⎝⎛⎭⎪⎫k +4k,4.(2)由(1)知,当k ≥0时,集合B 中的元素的个数无限; 当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集.因为k +4k =-⎣⎢⎡⎦⎥⎤(-k )+4-k ≤-4,当且仅当k =-2时,等号成立,所以当k =-2时,集合B 中的元素个数最少,此时A =(-4,4),故集合B ={-3,-2,-1,0,1,2,3}.21.(本小题满分12分)已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x (x ≥40)万部并且全部销售完,每万部的收入为R (x )万元,且R (x )=74000x -400000x2. (1)写出年利润W (万元)关于年产量x (万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.[解析] (1)由题意,可得年利润W 关于年产量x 的函数关系式为W =xR (x )-(160x +400)=x ⎝⎛⎭⎪⎫74000x -400000x 2-(160x +400)=74000-400000x -160x -400 =73600-400000x-160x (x ≥40).(2)由(1)可得W =73600-400000x-160x≤73600-2400000x·160x=73600-16000=57600,当且仅当400000x=160x ,即x =50时取等号,所以当年产量为50万部时,公司在该款手机的生产中获得的利润最大,最大值57600万元.22.(本小题满分12分)已知函数y =x 2+mx +n (m ,n ∈R ). (1)若m +n =0,解关于x 的不等式y ≥x (结果用含m 式子表示);(2)若存在实数m ,使得当x ∈{x |1≤x ≤2}时,不等式x ≤y ≤4x 恒成立,求负数n 的最小值.[解析] (1)由题得:x ≤x 2+mx -m ,即(x +m )(x -1)≥0; ①m =-1时可得x ∈R ;②m <-1时,-m >1,可得不等式的解集为{x |x ≤1或x ≥-m }; ③m >-1时,-m <1,可得不等式的解集为{x |x ≤-m 或x ≥1}. (2)x ∈{x |1≤x ≤2}时,x ≤x 2+mx +n ≤4x 恒成立, 即为1≤x +nx+m ≤4对x ∈{x |1≤x ≤2}恒成立,即存在实数m ,使得-x -n x +1≤m ≤-x -n x+4对x ∈{x |1≤x ≤2}恒成立,所以⎝ ⎛⎭⎪⎫-x -n x+1max ≤m ≤⎝⎛⎭⎪⎫-x -nx +4min ,即⎝⎛⎭⎪⎫-x -n x+1max ≤⎝⎛⎭⎪⎫-x -nx +4min . 由y =-x -nx (n <0)在[1,2]上递减,所以-n ≤2-n2,即n ≥-4,所以负数n 的最小值为-4.。

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

第一章综合测试一、单选题(每小题5分,共40分)1.已知集合{}{}31A x x x Z B x x x Z =∈=∈<,,>,,则A B =( )A .∅B .){3223--,,,C .{}202-,,D .{}22-,2.命题“()01x x e x ∀∈+∞+,,≥”的否定是( ) A .()01x x e x ∃∈+∞+,,≥B .()01x x e x ∀∈+∞+,,< C .()01x x e x ∃∈+∞+,,<D .()01x x e x ∀∈-∞+,,≥ 3.若集合{}0A x x =<,且B A ⊆,则集合B 可能是( ) A .{}1x x ->B .RC .{}23--,D .{}3101--,,, 4.若a b c R ∈,,且a b >,则下列不等式成立的是( ) A .22a b >B .11a b<C .a c b c >D .2211a bc c ++>5.已知a b R ∈,,则“20a b +=”是“2ab=-”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.某市原来居民用电价为0.52元/kW h ,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW h ,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW h .对于一个平均每月用电量为200kW h 的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( ) A .110kW hB .114kW hC .118kW hD .120kW h7.已知210a +<,则关于x 的不等式22450x ax a -->的解集是( ) A .{5x x a <或}x a -> B .{5x x a >或}x a -< C .{}5x a x a -<<D .{}5x a x a -<<8.若102x <<,则函数y = )A .1B .12C .14D .18二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合[)()25A B a ==+∞,,,.若A B ⊆,则实数a 的值可能是( ) A .3-B .1C .2D .510.下列不等式不一定正确的是( )A .12x x+≥B .222x y xy+≥C .222x y xy +>D .2x y+≥ 11.已知2323x y <<,<<,则( )A .2x y +的取值范围为()69,B .2x y -的取值范围为()23,C .x y -的取值范围为()11-,D .xy 的取值范围为()49,12.23520x x +->的充分不必要条件是( )A .132x -<<B .102x -<<C .12x <<D .16x -<<三、填空题(每小题5分,共20分)13.已知集合{}2114M m m =++,,,如果5M ∈,那么m =________.14.二次函数()2y ax bx c x R =++∈的部分对应值如表:则a =________;不等式20ax bx c ++>的解集为________.15.已知{}{}2212210A x x B x x ax a ==-+-<<,<,若A B ⊆,则a 的取值范围是________. 16.若正数a b ,满足1a b +=,则113232a b +++的最小值为________. 四、解答题(共70分)17.(10分)判断下列命题是全称量词命题还是存在量词命题. (1)任何一个实数除以1,仍等于这个数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)()210x R x ∀∈+,≥;(4)22x R x ∃∈,<.18.(12分)已知集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x U R =>,.(1)求()UA B AB ,;(2)若{}2131C x m x m =-+<≤,且B C U =,求m 的取值范围.19.(12分)(1)已知集合{}{2124A a B ==,,,,,且A B B =,求实数a 的取值范围;(2)已知:20:40P x q ax -->,>,其中a R ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.20.(12分)“绿水青山就是金山银山”.随着经济的发展,我国更加重视对生态环境的保护,2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x 元、y 元(单位:kg );甲、乙两人的购买方式不同:甲每周购买3kg 鸡蛋,乙每周购买10元钱鸡蛋.(1)若810x y ==,,求甲、乙两周购买鸡蛋的平均价格.(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由.21.(12分)解关于x 的不等式()22340x ax a a R +-∈<.22.(12分)为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距120千米的乙地,运费为每小时60元,装卸费为1 000元,猪肉在运输途中的损耗费(单位:元)是汽车速度(km /h )值的2倍.(说明:运输的总费用=运费+装卸费+损耗费) (1)若汽车的速度为每小时50千米,试求运输的总费用.(2)为使运输的总费用不超过1 260元,求汽车行驶速度的范围.(3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?第一章综合测试答案解析一、 1.【答案】D【解析】选D .因为{}{}321012A x x x Z =∈=--<,,,,,,{}{11B x x x Z x x =∈=>,>或}1x x Z -∈<,,所以{}22AB =-,.2.【答案】C【解析】选C .命题为全称量词命题,则命题“()01x x e x ∀∈+∞+,,≥”的否定是“()01xx e x ∃∈+∞+,,<”. 3.【答案】C【解析】选C .因为23A A -∈-∈,,所以{}23A --⊆,. 4.【答案】D【解析】选D .选项A :01a b ==-,,符合a b >,但不等式22a b >不成立,故本选项是错误的;选项B :当01a b ==-,符合已知条件,但零没有倒数,故11a b<不成立,故本选项是错误的;选项C :当0c =时,a c b c >不成立,故本选项是错误的; 选项D :因为210c +>,所以根据不等式的性质,由a b >能推出2211a bc c ++>. 5.【答案】B【解析】选B .220aa b b=-⇒+=,反之不成立. 所以“20a b +=”是“2ab=-”成立的必要不充分条件.6.【答案】C【解析】选C .设每月峰时段的平均用电量为kW h x , 则谷时段的用电量为()200kW h x -;根据题意,得:()()()0.520.550.520.352002000.5210%x x -+--⨯⨯≥,解得118x ≤. 所以这个家庭每月峰时段的平均用电量至多为118kW h . 7.【答案】A【解析】选A .方程22450x ax a --=的两根为5a a -,. 因为210a +<,所以12a -<, 所以5a a ->.结合二次函数2245y x ax a =--的图象,得原不等式的解集为{5x x a <或}x a ->,故选A . 8.【答案】C【解析】选C .因为102x <<,所以2140x ->,所以2211414122224x x +-⨯⨯=≤,当且仅当2x =4x =. 二、9.【答案】AB【解析】选AB .因为A B ⊆,所以2a <,结合选项可知,实数a 的值可能是3-和1. 10.【答案】BCD 【解析】选BCD .因为x 与1x同号, 所以112x x x x+=+≥,A 正确; 当x y ,异号时,B 不正确;当x y =时,222x y xy +=,C 不正确;当11x y ==-,时,D 不正确.11.【答案】ACD【解析】选ACD .因为2323x y <<,<<, 所以49426xy x <<,<<, 所以629x y +<<,而32y ---<<,所以12411x y x y ---<<,<<. 12.【答案】BC【解析】选BC .由不等式23520x x +->,可得22530x x --<,解得132x -<<,由此可得:选项A ,132x -<<是不等式23520x x +->成立的充要条件;选项B ,102x -<<是不等式23520x x +->成立的充分不必要条件;选项C ,12x <<是不等式23520x x +->成立的充分不必要条件; 选项D ,16x -<<是不等式23520x x +->成立的必要不充分条件. 三、13.【答案】4或1或1-【解析】①当15m +=时,4m =,此时集合{}1520M =,,,符合题意, ②当245m +=时,1m =或1-,若1m =,集合{}125M =,,,符合题意,若1m =-,集合{}105M =,,,符合题意, 综上所求,m 的值为4或1或1-. 14.【答案】1 {2x x -<或}3x >【解析】由表知2x =-时03y x ==,时,0y =, 所以二次函数2y ax bx c =++可化为()()23y a x x =+-.又因为1x =时,6y =-,所以1a =,图象开口向上,结合二次函数的图象可得不等式20ax bx c ++>的解集为{2x x -<或}3x >. 15.【答案】12a ≤≤【解析】方程22210x ax a -+-=的两根为11a a +-,,且11a a +->, 所以{}11B x a x a =-+<<.因为A B ⊆,所以1112a a -⎧⎨+⎩≤≥,解得12a ≤≤.16.【答案】47【解析】由1a b +=,知()()113232732323232910b a a b a b ab ++++==+++++, 又2124a b ab +⎫⎛= ⎪⎝⎭≤(当且仅当12a b ==时等号成立), 所以499104ab +≤,所以749107ab +≥. 四、17.【答案】(1)命题中含有全称量词“任何一个”,故是全称量词命题. (2)命题中含有存在量词“至少有一个”,是存在量词命题. (3)命题中含有全称量词“∀”,是全称量词命题. (4)命题中含有存在量词“∃”,是存在量词命题.18.【答案】(1)因为集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x >,所以32AB x x ⎧⎫=⎨⎬⎩⎭≤或}2x >,因为{1U R B x x ==,<或}2x >,所以{}U12B x x =≤≤.所以()U 312AB x x ⎧⎫=⎨⎬⎩⎭≤≤.(2)依题意得:2131211312m m m m -+⎧⎪-⎨⎪+⎩<,<,≥,即2113m m m ⎧⎪-⎪⎨⎪⎪⎩>,<,≥,所以113m ≤<.19.【答案】(1)由题知BA ⊆.2=时,4a =,检验当4a =时,{}{}1241612A B ==,,,,,符合题意. 4=时,16a =,检验当16a =时,{}{}12425614A B ==,,,,,符合题意. 2a 时,0a =或1,检验当0a =时,{}{}124010A B ==,,,,,符合题意. 当1a =时,{}1241A =,,,,由于元素的互异性,所以舍去. 综上:4a =或16a =或0a =.(2)设{}{}240A x x B x ax ==->,>, 因为p 是q 的必要不充分条件,所以BA .①当0a >时,42a>,所以02a <<.②当0a <时,不满足题意.③当0a =时,:40q ->,即B ≠∅,符合题意. 综上:02a ≤<.20.【答案】(1)因为810x y ==,,所以甲两周购买鸡蛋的平均价格为()3831096⨯+⨯=元,乙两周购买鸡蛋的平均价格为()208010109810=+元. (2)甲两周购买鸡蛋的平均价格为3362x y x y++=, 乙两周购买鸡蛋的平均价格为2021010xyx y x y=++, 由(1)知,当810x y ==,时,乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.证法一(比较法):依题意0x y ,>,且x y ≠,因为()()()()22420222x y xy x y x y xy x y x y x y +--+-==+++>, 所以22x y xyx y++>, 所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 证法二(分析法):依题意0x y ,>,且x y ≠, 要证:22x y xyx y++>, 只需证:()24x y xy +>只需证:222x y xy +>, 只需证:x y ≠(已知).所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 21.【答案】由于()22340x ax a a R +-∈<可化为()()40x a x a -+<,且方程()()40x a x a -+=的两个根分别是a 和4a -.当4a a =-,即0a =时,不等式的解集为∅; 当4a a ->,即0a >时,解不等式得4a x a -<<; 当4a a -<,即0a <时,解不等式得4a x a -<<.综上所述,当0a =时,不等式的解集为∅;当0a >时,不等式的解集为{}4x a x a -<<;当0a <时,不等式的解集为{}4x a x a -<<.22.【答案】(1)当汽车的速度为每小时50千米时,运输的总费用为:()120601000250124450⨯++⨯=元. (2)设汽车行驶的速度为km /h x , 由题意可得:12060100021260x x⨯++≤, 化简得213036000x x -+≤, 解得4090x ≤≤,故为使运输的总费用不超过1260元,汽车行驶速度不低于40km /h 时,不高于90km /h . (3)设汽车行驶的速度为km /h x ,则运输的总费用为12072006010002100010001240x x x ⨯++++=≥, 当72002x x=,即60x =时取得等号, 故若要使运输的总费用最小,汽车应以每小时60千米的速度行驶.。

北师大版高中数学必修一综合测试题1

北师大版高中数学必修一综合测试题1

综合测试题(一)
本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分.考试时间120分钟.
第I卷(选择题共50分)
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合
A={1,2,3,4},B={xlx=n2,n^A},贝VA H B=()
A.{1,4}
B.{2,3}
C.{9,16}
D.{1,2}
[答案]A
[解析]先求集合B,再进行交集运算.
T A二{1,2,3,4},B二{xlx二n2,n w A},
•••B二{1,4,9,16},^AHB={1,4}・
2.(2013・大纲高考题)已知函数fx)的定义域为(一1,0),则函数f(2x+1)的定义域为()
A.(—1,1)
B.(-1,-2)
C.(—1,0)
D.(|,1)
[答案]B
[解析]本题考查复合函数定义域的求法.
fx)的定义域为(-1,0)
1v2x+1<01<x<-1.
3.在下列四组函数中,fx)与g(x)表示同一函数的是()
B.fx)=lx+1l,g(x)=x+1,x±—1—x—1,x<—1
C.fx)=x+2,x^R,g(x)=x+2,x^Z
D.fx)=x2,g(x)=xlxl
[答案]B
[解析]若两个函数表示同一函数,则它们的解析式、定义域必须相同,A中g(x)要求x M1.C选项定义域不同,D选项对应法则不同.故选B.。

北师大版高中数学必修检测题及答案

北师大版高中数学必修检测题及答案

必修1检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共120分,考试时间90分钟.第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①()f x =()g x =()f x x =与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①② B 、①③ C 、③④ D 、①④6.根据表格中的数据,可以断定方程02=--x e x 的一个根所在的区间是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算b a ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )A .21B .2C .4D .41 10. 下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料鼎尚图文*整理制作必修1全册 综合测试题(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2011·新课标文)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个2.(2012·银川高一检测)设函数f(x)=log a x(a>0,且a ≠1)在(0,+∞)上单调递增,则f(a +1)与f(2)的大小关系是( )A .f(a +1)=f(2)B .f(a +1)>f(2)C .f(a +1)<f(2)D .不确定3.下列函数中,与函数y =1x 有相同定义域的是( )A .f(x)=ln xB .f(x)=1x C .f(x)=|x|D .f(x)=e x4.(2011·北京文)已知全集U =R ,集合P ={x |x 2≤1},那么∁U P =( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)5.函数y =ln x +2x -6的零点,必定位于如下哪一个区间( ) A .(1,2) B .(2,3) C .(3,4)D .(4,5)6.已知f (x )是定义域在(0,+∞)上的单调增函数,若f (x )>f (2-x ),则x 的取值范围是( )A .x >1B .x <1C .0<x <2D .1<x <27.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 28.(2012·德阳高一检测)已知log 32=a,3b =5,则log 330由a ,b 表示为( )A.12(a +b +1) B.12(a +b )+1 C.13(a +b +1)D.12a +b +19.若a >0且a ≠1,f (x )是偶函数,则g (x )=f (x )·log a (x +x 2+1)是( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与a 的具体值有关10.定义两种运算:a ⊕b =a 2-b 2,a ⊗b =(a -b )2,则函数f (x )=2⊕x (x ⊗2)-2的解析式为( )A .f (x )=4-x 2x ,x ∈[-2,0)∪(0,2) B .f (x )=x 2-4x ,x ∈(-∞,2]∪[2,+∞) C .f (x )=-x 2-4x ,x ∈(-∞,2]∪[2,+∞) D .f (x )=-4-x 2x ,x ∈[-2,0)∪(0,2]第Ⅱ二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上)11.幂函数f (x )的图像过点(3,427).则f (x )的解析式是________. 12.(2011·安徽文)函数y =16-x -x 2的定义域是________. 13.设函数f (x )=x (e x +ae -x )(x ∈R )是偶函数,则实数a 的值为________.14.已知f (x 6)=log 2x ,则f (8)=________.15.已知函数f (x )=x 2+a x (x ≠0,常数a ∈R ),若函数f (x )在x ∈[2,+∞)上为增函数,则a 的取值范围为________.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)设全集U 为R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},A ∩(∁U B )={4},求A ∪B .17.(本小题满分12分)(2012·广州高一检测)(1)不用计算器计算:log 327+lg25+lg4+7log72+(-9.8)0(2)如果f (x -1x )=(x +1x )2,求f (x +1). 18.(本小题满分12分)已知函数f (x )=x 32x -1,(1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.19.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数,并且当x ∈(0,+∞)时,f (x )=2x .(1)求f (log 213)的值; (2)求f (x )的解析式.20.(本小题满分13分)已知二次函数f (x )=ax 2+bx +c (a ≠0)和一次函数g (x )=-bx (b ≠0),其中a ,b ,c 满足a >b >c ,a +b +c =0(a ,b ,c ∈R ).(1)求证:两函数的图像交于不同的两点; (2)求证:方程f (x )-g (x )=0的两个实数根都小于2.21.(本小题满分14分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比;(2)至今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?1[答案] B[解析] 本题考查了集合运算、子集等,含有n 个元素的集合的所有子集个数是2n .∵M ={0,1,2,3,4},N ={1,3,5},∴M ∩N ={1,3}, 所以P 的子集个数为22=4个. 2[答案] B[解析] ∵f(x)=log a x 在(0,+∞)上单调递增, ∴a>1,∴a +1>2, ∴f(a +1)>f(2),故选B . 3[答案] A[解析] 函数y =1x 的定义域为(0,+∞),故选A .4[答案] D[解析] 本题考主要考查集合的运算与解不等式问题. P ={x |x 2≤1}={x |-1≤x ≤1}, 所以∁U P =(-∞,-1)∪(1,+∞). 5[答案] B[解析] 令f (x )=ln x +2x -6,设f (x 0)=0, ∵f (1)=-4<0,f (3)=ln3>0, 又f (2)=ln2-2<0,f (2)·f (3)<0, ∴x 0∈(2,3). 6[答案] D[解析]由已知得⎩⎪⎨⎪⎧ x >02-x >0x >2-x⇒⎩⎨⎧x >0x <2x >1,∴x ∈(1,2),故选D. 7[答案] D[解析] ∵y 1=40.9=21.8, y 2=80.48=(23)0.48=21.44,y 3=21.5, 又∵函数y =2x 是增函数,且1.8>1.5>1.44. ∴y 1>y 3>y 2. 8[答案] A[解析] 3b =5,b =log 35, log 330=12log 330=12log 3(3×10)=12(1+log 310)=12(1+log 32+log 35)=12(a +b +1). 9[答案] A[解析] g (-x )=f (-x )·log a (-x +x 2+1)=f (x )·log a 1x 2+1+x=-f (x )·log a (x +x 2+1)=-g (x ). 则g (x )是奇函数. 10[答案] D[解析] ∵a ⊕b =a 2-b 2,a ⊗b =(a -b )2, ∴f (x )=2⊕x (x ⊗2)-2=22-x 2(x -2)2-2=4-x 2|x -2|-2. ∵-2≤x ≤2且|x -2|-2≠0,即x ≠0, ∴f (x )=4-x 22-x -2=-4-x 2x ,x ∈[-2,0)∪(0,2].11[答案] f (x )=x 34[解析] 设f (x )=x α,将(3,427)代入,得3α=427=334 ,则α=34.∴f (x )=x 34.12[答案] {x |-3<x <2}[解析] 该题考查函数的定义域,考查一元二次不等式的解法,注意填定义域(集合).由6-x -x 2>0, 得x 2+x -6<0, 即{x |-3<x <2}. 13[答案] -1[解析] ∵f (-x )=f (x )对任意x 均成立,∴(-x )·(e -x +ae x )=x (e x+ae -x )对任意x 恒成立,∴x (-ae x -e -x )=x (e x +ae -x ),∴a =-1. 14[答案] 12[解析] ∵f (x 6)=log 2x =16log 2x 6,∴f (x )=16log 2x ,∴f (8)=16log 28=16log 223=12. 15[答案] (-∞,16][解析] 任取x 1,x 2∈[2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2=(x 1-x 2)x 1x 2[x 1x 2(x 1+x 2)-a ],要使函数f (x )在x ∈[2,+∞)上为增函数,需使f (x 1)-f (x 2)<0恒成立.∵x 1-x 2<0,x 1x 2>4>0,∴a <x 1x 2(x 1+x 2)恒成立. 又∵x 1+x 2>4,∴x 1x 2(x 1+x 2)>16,∴a ≤16, 即a 的取值范围是(-∞,16].16[解析] ∵(∁U A )∩B ={2},A ∩(∁U B )={4}, ∴2∈B,2∉A,4∈A,4∉B ,根据元素与集合的关系,可得⎩⎪⎨⎪⎧ 42+4p +12=022-10+q =0,解得⎩⎪⎨⎪⎧p =-7,q =6.∴A ={x |x 2-7x +12=0}={3,4},B ={x |x 2-5x +6=0}={2,3},经检验符合题意.∴A ∪B ={2,3,4}.17[解析] (1)原式=log 3332+lg(25×4)+2+1 =32+2+3=132. (2)∵f (x -1x )=(x +1x )2=x 2+1x 2+2=(x 2+1x 2-2)+4=(x -1x )2+4 ∴f (x )=x 2+4 ∴f (x +1)=(x +1)2+4 =x 2+2x +5.18[解析] (1)由2x -1≠0,即2x ≠1,得x ≠0, 所以函数f (x )的定义域为(-∞,0)∪(0,+∞).(2)因为f (1)=1,f (-1)=2,所以f (-1)≠f (1),且f (-1)≠-f (1),所以f (x )既不是奇函数也不是偶函数.(3)由于函数的定义域为(-∞,0)∪(0,+∞),因为当x >0时,2x >1,2x -1>0,x 3>0,所以f (x )>0; 当x <0时,0<2x <1,2x -1<0,x 3<0,所以f (x )>0. 综上知f (x )>0.本题得证.19[解析] (1)因为f (x )为奇函数,且当x ∈(0,+∞)时,f (x )=2x , 所以f (log 213)=f (-log 23)=-f (log 23) =-2log23=-3.(2)设任意的x ∈(-∞,0),则-x ∈(0,+∞), 因为当x ∈(0,+∞)时,f (x )=2x ,所以f (-x )=2-x , 又因为f (x )是定义在R 上的奇函数,则f (-x )=-f (x ), 所以f (x )=-f (-x )=-2-x ,即当x ∈(-∞,0)时,f (x )=-2-x ; 又因为f (0)=-f (0),所以f (0)=0,综上可知,f (x )=⎩⎪⎨⎪⎧2x ,x >00,x =0-2-x ,x <0.20[解析] (1)若f (x )-g (x )=0,则ax 2+2bx +c =0, ∵Δ=4b 2-4ac =4(-a -c )2-4ac =4[(a -c 2)2+34c 2]>0,故两函数的图像交于不同的两点.(2)设h (x )=f (x )-g (x )=ax 2+2bx +c ,令h (x )=0可得ax 2+2bx +c =0.由(1)可知,Δ>0.∵a >b >c ,a +b +c =0(a ,b ,c ∈R ),∴a >0,c <0, ∴h (2)=4a +4b +c =4(-b -c )+4b +c =-3c >0, -2b 2a =-b a =a +c a =1+ca <2,即有⎩⎪⎨⎪⎧Δ>0a >0h (2)>0-2b 2a <2,结合二次函数的图像可知,方程f (x )-g (x )=0的两个实数根都小于2. 21[解析] (1)设每年砍伐的百分比为x (0<x <1). 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-(12)110.(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a ,即(12)m10 =(12)12,m 10=12,解得m =5,故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n , 令22a (1-x )n ≥14a ,即(1-x )n≥24, (12)n10 ≥(12)32,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.。

相关文档
最新文档