食品中铅的测定

合集下载

食品中铅的测定

食品中铅的测定

食品中铅的测定食品中铅(lead)是体内铅的主要来源,含铅农药的使用,陶瓷食具釉料中含铅颜料的加入,食品生产中使用含铅量高的镀锡管道、器械或容器,均可直接或间接造成食品的铅污染。

食品中铅的限量标准因不同食品而异。

粮食≤0.5mg/kg,蔬菜、水果≤0.2mg/kg,薯类≤0.2mg/kg,豆类≤0.8mg/kg,肉类(0.5mg/kg,鱼虾类≤0.5mg/kg,调味品≤1.0mg/kg。

食品中铅的测定方法主要有石墨炉原子吸收光谱法、火焰原子吸收光谱法和二硫腙比色法及示波极谱法。

一火焰原子吸收光谱法1.原理样品经处理后,铅离子在一定的pH条件下与二乙基二硫代氨基甲酸钠(DDTC)形成络合物,经4-甲基戊酮-2(MLBK)萃取分离,导入原子吸收光谱仪中,经火焰原子化后,吸收283.3nm共振线,其吸收量与铅的含量成正比,与标准系列比较定量。

2.试剂硝酸-高氯酸消化液(4+1);300g/L硫酸铵溶液;250g/L枸橼酸铵溶液;1g/L溴百里酚蓝水溶液;50g/L二乙基二硫代氨基甲酸钠(DDTC)水溶液;氨水(1+1);4-甲基戊酮-2(MLBK)。

铅标准使用液:将1.0mg/ml铅标准贮备液用亚沸蒸馏水逐级稀释至10.0μg/ml。

3.仪器原子吸收分光光度计附火焰原子化器。

其余同石墨炉法。

4.操作(1)样品处理:1)饮品及酒类:取均匀样品10.0g~20.0g于烧杯中,酒类应先在水浴上蒸干酒精,于电热板上先蒸发至一定体积后,加入10ml硝酸+高氯酸消化液(4+1),消化完全后,转移,定容至50ml容量瓶中。

2)包装材料浸泡液可直接测定。

3)谷类、禽、蛋、水产品:取样品5.0~10.0g,置于50ml瓷坩埚中,小火炭化后移入马弗炉,500℃以下灰化16h,放冷后再用少量混合酸消化至残渣中无炭粒,稍冷,加10ml盐酸(1+11),溶解残渣并移入500ml容量瓶中定容至刻度。

取与样品相同量的混合酸和盐酸(1+11)按同一操作方法做试剂空白。

食品中铅的测定

食品中铅的测定

式中 X----样品中铅的含量,mg/kg(或mg/L); m1----测定用样品消化液中铅的质量, μg ; m2----试剂空白液中铅的质量,μg; m----样品质量(或体积),g(或mL); V1----样品消化液的总体积,mL; V2----测定用样品消化液体积,mL。
6、说明
(1)三氯甲烷不应含氧化物。 (2)淀粉指示液需临时配制。 (3)本方法最低检出浓度为0.25mg/kg。
闽北职业技术学院食品与生物工程系
食品安全检验技术(理化部分) 食品中Pb含量的测定
5、结果计算
X
( 0 ) V 1000 m 1000
式中 X----样品的铅含量,mg/kg或mg/L; ρ----测定用样品液中铅的浓度,μg/mL; ρ0----试剂空白液中铅的浓度,μg/mL; m----样品的质量或体积,g或mL; V----样品处理液总体积,mL。
闽北职业技术学院食品与生物工程系
食品安全检验技术(理化部分) 食品中Pb含量的测定 食品中铅的测定有石墨炉原子吸收光谱法、二硫 腙比色法、氢化物-原子荧光光谱法、火焰原子吸收光 谱法四种国家标准方法。以下对前两种方法进行阐述。
(一)石墨炉原子吸收光谱法
1、原理
样品经消化处理后,导入原子吸收分光光度计的石墨炉 经原子化后,吸收波长283.3nm的共振线,其吸收量与铅含 量成正比,与标准系列比较定量分析。
4、操作方法
样品处理(湿法或干法)→系列标准溶液的制备→仪器 参考条件的选择→ 标准曲线的绘制→样品测定
仪器参考条件:波长510nm;其他按仪器说明调至最佳状态。
闽北职业技术学院食品与生物工程系
食品安全检验技术(理化部分) 食品中Pb含量的测定

3-2 食品中铅的测定(NO2)

3-2 食品中铅的测定(NO2)

关键点
• (4)样品建议采用0.5mol/L 硝酸溶液溶解后,以 0.5mol/L硝酸溶液定容,以保证样品用酸量与标准 系列相同。或采用 2mL 浓硝酸溶解灰化,加水定 容 • (5)如采用了混合酸消解残渣,记录混合酸用量 ,以便在做空白试验时加入等体积的试剂。
4.2 试样消解
称样
4.2.3 过硫酸铵灰化法:称取1.00g~5.00g试 样于瓷坩埚中,加2mL~4mL硝酸浸泡1h 小火炭化 以上,先小火炭化,冷却后加2.00g~ 3.00g过硫酸铵盖于上面,继续炭化至不 过硫酸铵 冒烟,转入马弗炉,500℃恒温2h,再升 500 ℃灰化 至800℃,保持20min,冷却,加2mL~ 3mL硝酸(1.0mol/L),用滴管将试样消 化液洗入或过滤入(视消化后试样的盐分 而定)10mL~25mL容量瓶中,用水少量 800 ℃灰化 多次洗涤罐,洗液合并于容量瓶中并定容 至刻度,混匀备用;同时作试剂空白。
食品类别(名称)
限量(以 Pb 计) mg/kg 1.0 调味品(食用盐、香辛料类除外) 2.0 食用盐 3.0 香辛料类 0.5 食糖及淀粉糖 0.2 淀粉及淀粉制品 食用淀粉 0.5 淀粉制品 0.5 焙烤食品 0.01 mg/L 饮料类 包装饮用水 0.05 mg/L 果蔬汁类(浓缩果蔬汁(浆)除外) 0.5 mg/L 浓缩果蔬汁(浆) 0.3 mg/L 蛋白饮料类(含乳饮料除外) 0.05 mg/L 含乳饮料 0.3 mg/L 碳酸饮料类、茶饮料类 1.0 固体饮料类 0.3 mg/L 其他饮料类 0.2 酒类(蒸馏酒、黄酒除外) 0.5 蒸馏酒、黄酒
一、概述 • 引起血管痉挛:铅绞痛 • 破坏大脑皮质兴奋和抑制的平衡,并导致植物神 经功能紊乱
食品中铅限量指标(GB2762-2012)

液体饮料等食品中铅含量的简易测定法

液体饮料等食品中铅含量的简易测定法

液体饮料等食品中铅含量的简易测定法
1、准备试剂:氢氟酸、碳酸钠、乙二醇、硫酸铅2%
2、将灌装过程中取得的液体饮料(或者食品)等样品,每种样品取10ml,加到
50ml的容量瓶中,每瓶加入10ml 的氢氟酸,搅拌均匀
3、采用滴定法测定铅含量,将每瓶中加入10ml的碳酸钠溶液,缓慢滴加乙二醇,直至出现稳定的淡黄色,用滴定管表读取液体的铅含量
4、比较读数,比较每种样品的铅含量,最后得出测定结果
5、将结果记录在实验结果表中,并将测得的铅含量与国家标准值进行比较。

6、如果国家标准值超出,应立即淘汰样品,把符合国家标准值的样品放入储存,
以便将来使用。

7、将最后结果记录在实验报告书中,并上报相关主管部门。

8、经过实验结果,确定零售商品的铅含量是否超标,对超出排放标准的产品,应
及时处理并记录处理情况。

9、定期对测定的液体饮料(或者食品)样品进行复核,以复核结果表明是否处理
正确。

10、及时做好日常使用样品的样品收集,及时归档,以做好后续实验或者复核工作。

食品中铅的测定国标

食品中铅的测定国标

食品中铅的测定国标
植物性食品(指蔬菜、水果类)中铅的检测是国家质量检验检疫总局规定的餐饮食品
中外源污染指标之一,国家标准的检侧体系为:GB/T5009.191-1996植物性食品中铅的测定。

1 样品的制备
根据样品的大小或特殊性,用藤签把物料蘸取称量,放入50ml四口烧杯中,加入3g
洗衣粉,把容量补充到20〜25ml,加热至沸,煮沸半小时,收放备用。

2 样品的沉淀
取四口烧杯中上清液,蒸馏以去除盐酸,然后再加热,拉延放凉,等待沉淀完全,待
沉淀完毕后取出视外清洗干净,置于烧杯中,加水把残留物洗涤,洗涤液称量备用。

3 混合溶液制备
将洗涤液滴定至pH=7,加入3.2ml硫酸亚铁液,稀释至容量的20ml,搅拌均匀。

4 热风石墨炉分解
把混合溶液均匀添加到玻璃分离管内,在热风石墨炉中加热,保持855℃,时间为1
小时。

5 干化分析
热风石墨炉分析完毕后,转入现场小型野外煤烟分析仪中(xrf1801型),同步进行
湿分析和干化分析,Pb的测定在波长178.0nm处。

其中,干化分析时将分离管置干化机中,干化温度在165℃,时间为10分钟;湿化分析时将分离管置在野外小型煤烟分析仪中,用层析对Pb进行测定。

6 检测结果
检测结果采用SPSS17.0进行数据统计,餐饮食品中铅检测值与国家标准值
(GB/T5009.191-1996)比较,如果测定值低于 or 等于国家标准,表明合格,否则不
合格。

食品安全中铅测定

食品安全中铅测定
7
2)压力罐消解法
称取1g ~ 5g (精确到
0.001g)试样于聚四氟乙烯压力消解内罐中,加 入5ml硝酸,盖上内盖,旋紧外罐置于恒温干燥
箱中消解(消解参考条件参见表1),消解完毕
冷却后,取出内罐,赶酸,将消化液转移至10ml
或25ml容量瓶中,并用少量水多次洗涤消解内罐,
合并洗涤液定容至刻度,混匀备用,同时做试剂
个样品用铅标准溶液检查仪器的稳定性。
12
五、计算
试样测定结果按公式计算
式中:
(c c 0 ) V X f m 1000
X ——试样中铅的含量,单位为毫克每千克(mg/kg); c ——测定样液中铅的含量,单位为纳克每毫升(ng/ml); c0 ——空白液中铅的含量,单位为纳克每毫升(ng/ml); V ——样品消化液的定容总体积,单位为毫升(mL); m ——试样质量或体积,单位为克或毫升(mL);
6
表1 消解参考条件
消解方式 步骤 1 微波消解 2 3 控制温度℃ 140 170 190 升温时间 10min 5min 5min 恒温时间 5min 10min 20min
1 压力罐消解
2 3 1 湿式消解 2 3
80
120 160 120 180 200
/
/ / / / /
2h
2h 4h 1h 3h 2h
31
■ 冻鱼类:室温解冻,取鱼样的可食部分四分法分 成二份,一份留样(>100g),另一份(>50g)用捣碎 机捣碎后供分析用。
( 2 )冻禽畜肉类:包括冻鸡肉、冻鸭肉、冻猪肉、
冻 羊肉、冻牛肉等
■ 冻禽肉类:室温解冻,在每一块样上取出可食
部分四分法分成二份,一份留样( >100g), 另一份

GB-T 500912-2003 食品中铅的测定

GB-T 500912-2003 食品中铅的测定

0mg/mL),逐级稀释至1.0pg/mL.
仪器
双道原于荧光光度计或同类仪器
计算机系统及编码铅空心阴极灯。
电热板。..
1
11.
11分析步骤..
1试样消化
2.
湿消解:称取固体试样0 0g^
0.
2
0g,液体试样2
)
0.
0g(或mL
10.00g(或mL),置于50mL10
化温度170
00'-1,s5,
C230
00C持续4-s背景校正为氖灯或塞曼效应。..
5.3.2标准曲线绘制:吸取上面配制的铅标准使用液10.0,20.0,40.0,60.0,80.0ng/mL(或Rg/L)各..
10fL注人石墨炉,测得其吸光值并求得吸光值与浓度关系的一元线性回归方程。
3.9混合酸:硝酸+高氯酸(
((4+1)。取4份硝酸与1份高氯酸混合。..
3.10铅标准储备液:准确称取1.00
00g金属铅(9
99.9
990
00),分次加少量硝酸(
((1+1),加热溶解,总量不
超过37mL,移人10
000mL容量瓶,加水至刻度,混匀。此溶液每毫升含1.0mg铅。..
9.3草酸溶液(10g/L):称取1.0g草酸,加人溶解至100mL,混匀。..
9.4铁氰化钾[K
(CF,
eN)
9.5氢氧化钠溶液(2g/L):称取2.0g氢氧化钠,溶于1L水中,混匀。..
6」
溶液(10
00g/L):称取10.0g铁氰化钾,加水溶解并稀释至100mL,混匀。..

食品中的铅的测定

食品中的铅的测定

食品中的铅的测定
国标中规定了谷类、豆类、薯类、蔬菜、水果、肉类、水产类、蛋类、乳、茶叶及果酒等食品中的铅含量卫生标准。

分别是:
谷类不高于0.2mg/kg,豆类不高于0.2mg/kg,薯类不高于0.2mg/kg,禽畜肉类不高于0.2mg/kg,可食用禽畜不高于0.5mg/kg,鱼类不高于0.5mg/kg,甲壳类不高于0.5mg/kg,软体贝类不高于1.0mg/kg,水果不高于0.1mg/kg,小水果、浆果、葡萄不高于0.2mg/kg,蔬菜(球茎、叶菜、食用菌类除外)不高于0.1mg/kg,球茎蔬菜不高于0.3mg/kg,叶菜类不高于0.3mg/kg,鲜乳不高于0.05mg/kg,婴儿配方粉(乳为原料,以冲调后乳汁计)不高于0.02mg/kg,鲜蛋不高于0.2mg/kg,果酒不高于0.2mg/kg,果汁不高于0.2mg/kg,茶叶不高于
5mg/kg。

食品中铅的测定

食品中铅的测定
详细描述
中国根据国内实际情况和科学风险评估,对多种食品中的铅含量制定了严格的限量标准。这些标准不仅规定了不 同食品的铅含量上限,还明确了检测方法和判定依据。
05
食品中铅测定的实际应用
蔬菜中铅的测定
蔬菜是人们日常饮食中重要的组成部分,铅含量 过高会对人体健康造成危害。因此,测定蔬菜中 铅的含量对于保障食品安全具有重要意义。
06
结论
食品中铅的测定意义
保障食品安全
准确测定食品中的铅含量,有助于确 保食品的安全性,防止铅含量超标的 食品流入市场,保障消费者的健康。
指导食品加工
测定食品中的铅含量,有助于了解食品 加工过程中铅的来源和污染情况,为改 进加工工艺和降低铅含量提供指导。
评估环境污染
食品中的铅含量可以反映环境污染状况, 通过测定食品中的铅含量,可以评估环境 铅污染的程度,为环境保护提供依据。
详细描述
CAC对不同食品中的铅含量制定了严格 的限量标准,旨在保护消费者的健康。 这些标准基于科学的风险评估,并考虑 到不同国家和地区的实际情况。
欧盟标准
总结词
欧盟对食品中铅的限量标准制定得较为 严格,旨在确保食品的安全性和可靠性 。
VS
详细描述
欧盟对多种食品中的铅含量进行了限制, 包括谷物、蔬菜、水果、肉类、乳制品等 。这些标准不仅基于科学风险评估,还考 虑了欧盟成员国的实际情况和消费者需求 。
测定肉类中铅的常用方法包括原子吸收光谱法、 原子荧光法、电感耦合等离子体质谱法和分光光 度法等。这些方法同样具有较高的灵敏度和准确 性,能够满足测定要求。
在肉类中铅的测定中,可以采用不同的前处理方 法,如湿法消解、干法消解和微波消解等,将肉 类样品中的铅元素提取出来。
测定肉类中铅的含量时,同样需要注意控制实验 条件,以保证实验结果的准确性和可靠性。

食品中铅的测定方法

食品中铅的测定方法

食品中铅的测定方法石墨炉原子吸收光谱法1.原理样品经灰化或酸消解后,样液注入原于吸收分光光度计石墨炉中原子化,铅原子吸收283.3nm共振线,在一定浓度范围,其吸收值与铅含量成正比,可与标准系列比较定量。

2.试剂实验用水为亚沸蒸馏水或电阻率80万欧姆以上的去离子水。

所有试剂要求使用优级纯或处理后不含铅的试剂。

(1)过硫酸铵。

(2)过氧化氢(30%)。

(3)高氯酸、硝酸。

(4)硝酸溶液 (1+1)。

(5)硝酸溶液 (0.5mol/L):取3.2ml硝酸,加入水中稀释至l 00ml。

(6)硝酸溶液 (1.0mol/L):取6.4ml硝酸,加入水中稀绎至100ml。

(7)磷酸氢二铵溶液 (20g/L)。

取2.0g特纯磷酸氢二铵溶于双蒸水中定容至100ml。

(8)混合酸:硝酸 + 高氯酸 (4+1)。

(9)铅标准溶液 (自己配制或由国家标准局标准物质研究中心购买铅标准溶液)A. 铅标准贮备液:精密称取1.000g 金属铅 (99.99%) 分次加少量硝酸 (1+1) 加热溶解,总量不超过37ml,移入l000ml容量瓶,加水至刻度。

此溶液每毫升含1.0mg铅。

B. 铅标准贮备液:精密称取0.1598g硝酸铅(优级纯),加10ml l.0mol/L硝酸,全部溶解后,移入100ml容量瓶中,加水稀释至刻度,此溶液每毫升相当于1.0mg铅。

C. 铅标准使用液:火焰法铅标准使用液浓度为10mg/ml (用亚沸蒸馏水逐级稀释);石墨炉法铅标准使用液浓度为100ng/ml,用0.5mol/L 硝酸逐级稀释。

3.仪器(1)原子吸收分光光度计 (附石墨炉及铅空心阴极灯)。

(2)所用玻璃仪器均需以硝酸 (1+5) 浸泡过夜,用水反复冲洗,最后用去离子水冲洗干净。

(3)马弗炉或恒温干燥箱(4)瓷坩埚或压力消化器(5)微波消解装置4.操作方法4.1 样品预处理:采样和制备过程中,应注意不使样品污染。

粮食、豆类去壳去杂物后,磨碎过20目筛,储于塑料瓶中.保存备用;蔬菜、水果洗净,晾干,取可食部分捣碎备用:鱼、肉等用水洗净,取可食部分捣碎,备用。

石墨炉原子吸收光谱法测定食品中铅的方法分析

石墨炉原子吸收光谱法测定食品中铅的方法分析

石墨炉原子吸收光谱法测定食品中铅的方法分析摘要:伴随社会经济的不断发展,人们生活质量的大幅提升,其对食品安全越发重视。

在此背景下,与食品安全检测有关的技术得到快速发展。

本文以食品当中的铅为研究对象,采用石墨炉原子吸收光谱法进行测定,现就其具体方法作一探讨。

关键词:食品;铅;石墨炉原子吸收光谱法铅是一种比较常见的重金属,有着很强的毒性,并非是人体当中所需微量元素;在食品当中,之所以会含铅,主要受生产工艺、原料污染及运输、储存、包装等环节遭受污染所致;另外,在较早之前,世界卫生组织(WHO)便将铅当作污染食品的重要物质,而对其施加控制。

需要指出的是,当人体当中铅含量达0.04g以上时,便会造成铅中毒,且其还具有持久性、蓄积性特点,尤其是会损害儿童的认知发育,且所造成的损伤具有不可逆转性。

现在检测食品中铅所采取的前处理方法通常为微波消解,此方法通常存在样品难消化完全的缺点,针对此情况,采取可行方法或技术,优化食品中铅含量检测,预防铅中毒发生,尤为重要。

本文优化前处理等方法,采用石墨炉原子吸收光谱法行此操作,现对此作一剖析。

1.资料与方法1.1试剂与仪器(1)仪器。

石墨炉原子吸收光谱仪:美国 Per-kinElmer PinAAcle900z;超纯水仪:德国 Thermo UV-TOC/UF;电子天平:分岛津AEL-120型;马福炉:SRTX-4-8型。

仪器的工作条件为:波长:283.31nm;夹缝宽度:0.7nm;灯电流:10 mA;测量方式为峰面积;氩气出口压力为 0.35MPa~0.40 MPa,进样体积20μL。

(2)试剂。

铅标准储备液(1000mg/L);磷酸二氢铵溶液(2.5g/L);铅标准工作液(50μg/L),硝酸(超级纯)溶液(2%)。

实验用水为超纯水。

1.2试验方法(1)样品处理方法。

精取0.3~0.5g食品样品,充分混匀,经消酸(20%)浸泡处理;取瓷坩埚50ml,冲洗洁净,且保持干燥状态,实施炭化,然后置入马福炉(550℃±5℃),进行灰化处理,时间为8h,充分消解;采用移液管(10ml)取10ml浓度为2%的硝酸溶液(内含磷酸二氢铵2.5g/L),置入到各个样品坩埚当中,溶解灰分,混匀并备用。

食品中铅、镉、砷的测定(国标)只是分享

食品中铅、镉、砷的测定(国标)只是分享

食品中铅的测定:第一法石墨炉原子吸收光谱法3原理试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收283.3 nm共振线,在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。

4试剂和材料硝酸:优级纯。

4.2过硫酸铵。

4.3过氧化氢(30% )。

4.4高氯酸:优级纯。

4.5硝酸(1 + 1):取50 mL硝酸慢慢加入50 mL水中。

4.6硝酸(0.5 mol/L ):取3.2 mL硝酸加入50 mL水中,稀释至100 mL。

4.7硝酸(I mo1/L):取6.4 mL硝酸加入50 mL水中,稀释至100 mL。

4.8磷酸二氢铵溶液(20 g/L ):称取2.0 g磷酸二氢铵,以水溶解稀释至100 mL。

4.9混合酸:硝酸十高氯酸(9+ 1)。

取9份硝酸与1份高氯酸混合。

4.10铅标准储备液:准确称取1.000 g金属铅(99.99%),分次加少量硝酸(4.5),加热溶解,总量不超过37 mL ,移入1000 mL容量瓶,加水至刻度。

混匀。

此溶液每毫升含1.0 mg 铅。

4.11铅标准使用液:每次吸取铅标准储备液 1.0 mL于100 mL容量瓶中,加硝酸(4.6)至刻度。

如此经多次稀释成每毫升含10.0 ng, 20.0 ng, 40.0 ng, 60.0 ng, 80.0 ng铅的标准使用液。

5仪器和设备5.1原子吸收光谱仪,附石墨炉及铅空心阴极灯。

5.2马弗炉。

5.3天平:感量为1 mg。

5.4干燥恒温箱。

5.5瓷坩埚。

5.6压力消解器、压力消解罐或压力溶弹。

5.7可调式电热板、可调式电炉。

6分析步骤6.2试样消解(可根据实验室条件选用以下任何一种方法消解)6.2.1湿式消解法:称取试样 1 g〜5 g (精确到0.001 g )于锥形瓶或高脚烧杯中,放数粒玻璃珠,加10 mL混合酸(4.9),加盖浸泡过夜,加一小漏斗于电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷,用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10 mL〜25 mL容量瓶中,用水少量多次洗涤锥形瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用;同时作试剂空白。

最新食品中铅、镉、砷的测定(国标)

最新食品中铅、镉、砷的测定(国标)

食品中铅的测定:第一法石墨炉原子吸收光谱法3 原理试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收283.3 nm 共振线,在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。

4 试剂和材料硝酸:优级纯。

4.2 过硫酸铵。

4.3 过氧化氢(30%)。

4.4 高氯酸:优级纯。

4.5 硝酸(1+1):取50 mL 硝酸慢慢加入50 mL 水中。

4.6 硝酸(0.5 mol/L):取3.2 mL 硝酸加入50 mL 水中,稀释至100 mL。

4.7 硝酸(l mo1/L):取6.4 mL 硝酸加入50 mL 水中,稀释至100 mL。

4.8 磷酸二氢铵溶液(20 g/L):称取2.0 g 磷酸二氢铵,以水溶解稀释至100 mL。

4.9 混合酸:硝酸十高氯酸(9+1)。

取9 份硝酸与1 份高氯酸混合。

4.10 铅标准储备液:准确称取1.000 g 金属铅(99.99%),分次加少量硝酸(4.5),加热溶解,总量不超过37 mL,移入1000 mL 容量瓶,加水至刻度。

混匀。

此溶液每毫升含 1.0 mg 铅。

4.11 铅标准使用液:每次吸取铅标准储备液1.0 mL 于100 mL 容量瓶中,加硝酸(4.6)至刻度。

如此经多次稀释成每毫升含10.0 ng,20.0 ng,40.0 ng,60.0 ng,80.0 ng 铅的标准使用液。

5 仪器和设备5.1 原子吸收光谱仪,附石墨炉及铅空心阴极灯。

5.2 马弗炉。

5.3 天平:感量为1 mg。

5.4 干燥恒温箱。

5.5 瓷坩埚。

5.6 压力消解器、压力消解罐或压力溶弹。

5.7 可调式电热板、可调式电炉。

6 分析步骤6.2 试样消解(可根据实验室条件选用以下任何一种方法消解)6.2.1 湿式消解法:称取试样1 g~5 g(精确到0.001 g)于锥形瓶或高脚烧杯中,放数粒玻璃珠,加10 mL 混合酸(4.9),加盖浸泡过夜,加一小漏斗于电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷,用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10 mL~25 mL 容量瓶中,用水少量多次洗涤锥形瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用;同时作试剂空白。

石墨炉原子吸收法测定食品中铅的分析

石墨炉原子吸收法测定食品中铅的分析

石墨炉原子吸收法测定食品中铅的分析食品中铅的测定有石墨炉原子吸收法、火焰原子吸收法、比色法、原子荧光法以及近几年来发展起来的ICP-MS法。

其中石墨炉原子吸收法灵敏度高,适合于食品中微量铅的测定。

但石墨炉原子吸收法重现性稍差,为了提高其重现性,本文对铅的石墨炉原子吸收法的测定条件及影响因素进行研究,确定了仪器的最佳工作条件。

1 材料及样品预处理1.1 主要仪器与试剂:美国CEM公司MARS_5型微波消化系统;Varian220型原子吸收光谱仪;普通涂层石墨管;1 000 mg/L铅标准储备液;120 g/L磷酸氢二铵溶液;优级纯硝酸双氧水;18.2Ω去离子水。

1.2 样品预处理:向微波消化罐中称取食品鲜样0.5000 g~1.0000 g,加8 ml 硝酸和2 ml双氧水,盖紧消化罐,放入微波消化系统中按程序消解,同时做空白及质量控制试验。

消解液完全冷却后,在通风橱中转移至50 ml烧杯,低温加热赶酸,并定容至25 ml待测。

1.3 微波消解条件:见表1。

2 测定2.1 仪器条件:波长:283.3 nm;光谱带宽:0.2 nm;灯电流:7.0 mA;干燥温度及时间:85~120℃,55 s;灰化温度及时间:600℃,10.8 s;原子化温度及时间:2 200℃,5 s;背景较正为氘灯。

2.2 标准工作曲线:将铅标准储备液用1%硝酸溶液稀释为40 μg/L的铅标准工作液备用。

2.3 测定:确定母液、制备液、基体改进剂及样品液杯位后,分别取各液于各测定杯中,按设定的仪器工作条件测定。

3 结果与讨论3.1 微波消解条件的优化3.1.1 消解试剂的选择:使用硝酸、硝酸+双氧水(4∶1)两种试剂对食品进行消解试验。

实验表明,两者均能较快消解完全,但用硝酸+双氧水(4∶1)消解完全后基体干扰较硝酸小,故选择硝酸+双氧水(4∶1)作为消解试剂。

3.1.2 消解条件的选择:在0.5 g食品试样中加入8.0 ml硝酸、2.0 ml过氧化氢,在额定功率下,设定不同的温度和加热时间进行试验,最佳微波消解条件的选定见表1。

GB 5009.75-2003 食品添加剂中铅的测定

GB 5009.75-2003 食品添加剂中铅的测定
I S 7 0 0 C 6.4
C 53
督昌
G / 5 0 . -2 0 B T 9 5 0 3 0 7
代替 GB 8 9 -9 7 T 4 - 18 / 4
中 华 人 民 共 和 国 国 家 标 准
食 品添加剂 中铅的测定
Dee mi to o la i f o a d tv s tr na in f d o d d iie e n
本标准与G / 84-18 相比主要修改如下: B T 9 97 4 - 修改了标准的中文名称, 一 一 标准中文名称改为《 食品添加剂中铅的测定》 ; — 按照G / 2014 01标准编写规则 第 4 BT 0. 0《 0 -2 部分: 化学分析方法》 对原标准的结构进行了
修改。
双硫踪使用液 : 吸取 10 . mL双硫腺储备溶液 , 9 加 mL三抓甲烷 , 混匀 。用 1 比色杯, c m 以三抓甲
烷调节零点, 于波长 50 1n m处测吸光度( )用式() A, 1算出配制 10 0m L双硫踪使用液(0 7%透光率) 所
需双硫踪储备溶液的毫升数( , V) 1 ( 一l7 ) 0 2 g0
称取 2 g 盐酸经胺, 4 mL水溶解, 2 0 加 0 加 滴酚红指示液, 加氨水(+1调节 p ( ) 1 H至 85 .( .-90 由
黄变红, 再多加2 , 滴)用双硫踪三抓甲 烷溶液提取数次, 1 m -2 m , 每次 0 0 至三抓甲 L L 烷层绿色不变
为止, 再用三抓甲烷洗两次, 每次 5 , m 弃去三抓甲烷层, L 水层加盐酸(+”呈酸性, ( 1 加水至 10 , 0 mL 39 氛化钾:0 gL溶液。 . 10 / 31 二苯基硫巴踪( .0 双硫踪):. 00 %三氯甲烷溶液, 5 保存于冰箱中, 必要时按下述方法纯化。称取 05 . g 研细的双硫踪, 5 m 溶于 0 L三氯甲烷中, 如有残渣, 可用滤纸过滤于 20 5 mL分液漏斗中, 用氨水 0+9) 9提取三次, 10 . 每次 0 m , l 将提取液用棉花过滤至 50 0 mL分液漏斗中, 用盐酸(+1调至酸性, ( ) 1 将沉淀出的双硫踪用 202010 . 0 , ,0 ml三氯甲烷提取三次, 0 合并三氯甲烷层为双硫腺储备溶液。

实验十三食品中铅的测定

实验十三食品中铅的测定

实验十三、食品中铅的测定1、目的与要求1.1 掌握双硫腙比色法测定铅含量的原理与方法。

1.2 熟悉721或722型分光光度计的工作原理和使用方法。

2、原理 样品经消化后,在pH8.5~9.0时,铅离子与双硫腙生成红色螯合物,可被三氯甲烷、四氯化碳等有机溶剂萃取,颜色的深浅与铅离子浓度成正比。

加入盐酸 羟胺、氰化钾、柠檬酸铵等,可防止铁、铜、锌等离子干扰。

3、仪器与试剂3.1 仪器721或722型可见分光光度计3.2 试剂3.2.1 酚红指示剂:称取0.1g 酚红,溶于100mL95%乙醇中,过滤。

3.2.2 20%柠檬酸铵溶液:称取50克柠檬酸铵,溶于100毫升水中,加2滴酚红指示液,用1:1氨水调至微红色(pH8.5~9.0),置于分液漏斗中,用双硫腙-三氯甲烷溶液分次提取,每次10mL ~20mL ,至溶剂层绿色不变为止。

弃去双硫腙三氯甲烷层,再用三氯甲烷洗二次,每次5mL ,弃去三氯甲烷层,加水稀释至250mL 。

3.2.3 20%盐酸羟胺溶液:称取20克盐酸羟胺,加水溶解至约50mL ,加2滴酚红指示液,用1:1氨水调至pH8.5~9.0(由黄变红,再多加2滴),置于分液漏斗中,同试剂2处理除铅和除去残余双硫腙,将盐酸羟胺溶液用盐酸酸化(呈黄色),加水至100mL 。

3.2.4 10%氰化钾溶液:称取10g 氰化钾,溶于100mL 水中。

如需除铅,称取20g 溶于100mL 水中,同试剂2处理除铅和残余双硫腙,最后稀释至200mL 。

3.2.5 0.05%双硫腙贮备液:称取精制的双硫腙0.05g ,加100mL 三氯甲烷溶解,贮备于冰箱中。

3.2.6 双硫腙使用液:吸取1.0mL 双硫腙贮备液,加三氯甲烷至10mL ,混匀,用1cm 比色杯,以三氯甲烷调节仪器零点,于波长510nm 处测吸光度(A),用下式算出配制100mL 双硫腙使用液(70%透光率)所需双硫腙贮备液的毫升数。

)(AA V 55.170lg 210=-= 3.2.7 铅标准溶液:精密称取0.1598g 硝酸铅,加10mL1%硝酸,全部溶解后,移入100mL容量瓶中,加水稀释至刻度。

实验八食品中铅的测定火焰原子吸收法

实验八食品中铅的测定火焰原子吸收法

实验八食品中铅的测定(火焰原子吸收法)(-)目的意义通过本方法的学习掌握该测定方法的原理、步骤并根据测定结果判定受检样品是否符合国家规定的卫生标准。

(二)原理样品经过处理后,导人原子吸收分光光度计中,经原子化以后,吸收283.3nm 共振线,其吸收量与铅量成正比,可与标准系列比较定量。

(三)仪器与试剂1.原子吸收分光光度计2.硝酸,过硫酸铵,石油醚。

3.6N硝酸量取38ml硝酸,加水稀释至100ml。

4.0.5%硝酸量取lml硝酸,加水稀释至200ml。

5.10%硝酸量取10.0ml硝酸,加水稀释至100ml。

6.0.5%硫酸钠称0.5g无水硫酸钠,加水至100m1溶解。

7.铅标准溶液准确称取1.000g金属铅(99.99%),分次加入6N硝酸溶解,总量不超过37ml,移入1000ml容量瓶中加水稀释至刻度。

此溶液每毫升相当于1mg铅。

8.铅标准使用液吸取10.0ml铅标准溶液,置于100ml容量瓶中,加0.5%硝酸稀释至刻度,如此多次稀释至每毫升相当于ug铅。

(四)操作步骤1.样品处理下述样品可以根据仪器灵敏度增减样品量。

(1)谷类:除去外壳,磨碎,过20目筛,混匀。

称取1.0~5.0g样品,置于石英或瓷坩埚中,加5ml硝酸,放置0.5h,小火蒸干,继续加热炭化,移入高温炉中,500℃灰化1h,取出放冷,再加lml硝酸浸湿灰分,小火蒸干。

称取2g 过硫酸铵,覆盖灰分,再移入高温炉中,800℃灰化20min,冷却后取出,以0.5%硝酸溶液少量多次洗入10m1容量瓶中,稀释至刻度,备用。

取与消化样品相同量的硝酸、过硫酸铵,按同一方法做试剂空白试验。

(2)水产类:取可食部分捣成匀浆。

称取 1.0~5.0g,以下按(1)自“置于石英或瓷坩祸中”起依法操作。

(3)乳、炼乳、乳粉、茶、咖啡:称取2g混匀或磨碎样品,置于瓷坩埚中,加热炭化后,置高温炉,420℃灰化3h,放冷后加水少许,稍加热,然后加lml l:1硝酸,加热溶解后,移人10ml容量瓶中,加水稀释至刻度,备用。

食品中铅的测定

食品中铅的测定

食品中铅的测定
1.采用原子吸收光谱法测定铅含量:将样品经过适当处理后,加入原子吸收灯,在一定的温度和压力条件下,测定样品中原子吸收的光谱强度,从而确定样品中铅的含量。

2.采用电感耦合等离子体质谱法测定铅含量:将样品经过适当处理后,加入电感耦合等离子体质谱仪,在一定的温度和压力条件下,测定样品中离子的质谱,从而确定样品中铅的含量。

3.采用X射线荧光光谱法测定铅含量:将样品经过适当处理后,加入X射线荧光光谱仪,在一定的温度和压力条件下,测定样品中X射线荧光的光谱强度,从而确定样品中铅的含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档