第13章一次函数单元测试卷(含答案)[1]2

合集下载

人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)人教版一次函数单元测试题(含答案)一、选择题1.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x0时,y随x的增大而减小D.不论x如何变化,y不变2.表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()A。

m=,n=-B。

m=,n=-1C。

m=-1,n=-D。

m=-3,n=-23.若直线y=1x+n与曲线y=x2-2x-3有且仅有一个公共点,则n的取值范围是()A。

n<-3或n>1B。

n>-3且n<1C。

n≥-3且n≤1D。

n=-3或n=14.点A(-5,y1)和B(-2,y2)都在直线y=-1x上,则y1和y2的关系是()A。

y1≤y2B。

y1=y2C。

y1<y2D。

y1>y25.若ab>0,bc<0,则函数y=1(ax-c)的图象不经过第()象限。

A。

一B。

二C。

三D。

四6.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A。

k>0B。

k<0C。

0<k<1D。

k>17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟8.在函数y=3x+2的图像上的点是()A。

(-1,1) B。

(-1,-1) C。

(2,8) D。

(0,-1.5)9.下列函数中,自变量的取值范围选取错误的是()A。

y=x-2中,x取x≥2B。

y=2/(x+1)中,x取x≠-1C。

y=2x中,x取全体实数D。

y=(x+3)/1中,x取x≥-310.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像可能是()ABCD11.如图(1)所示的是实验室中常用的仪器,向以下内均匀注水,最后把注满,在注水过程中,的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个是三棱柱。

人教版八年级下册数学《一次函数》单元测试卷合集(含答案)

人教版八年级下册数学《一次函数》单元测试卷合集(含答案)

人教版八年级下册数学《一次函数》单元测试卷(一)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.函数y =的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<2.下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =(0x >) D.y(x <3.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里. 图中表示小红爷爷离家的时间与外出的距离之间的关系是 ( )A B C D4.甲、乙两个工程队完成某项工程,首先是甲队单独做10天,然后是乙队加入合作,完成剩下的全部工程,设工程总量是1,工程进度满足如图所示的函数图象,那么实际完成这项工程比甲单独完成这项工程的时间少( ) A.12天 B.13天 C.14天 D.15天分)分)分)分)5.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s (km )与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如图所示,你认为正确的是( )6.如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A.4B.4-C.14D.14-7.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是( )A B C D8.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )9.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,10.如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D→→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )二 、填空题(本大题共5小题,每小题3分,共15分)11.函数2113y x =+的自变量x 的取值范围是 .12.已知一次函数的图象过点与,则这个一次函数随的增大而 .13.函数1x y x-=的自变量x 的取值范围是 .14.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <()0,3()2,1y x D C P BAO31 1 3 Sx A .O1 1 3 Sx O3 Sx 3O1 1 3 SxB .C .D .2BAOA .B .C .D .S t S tS tStOOOO15.已知直线123141535y x y x y x ==+=+,,的图象如图所示,若无论x 取何值,y 总取12y y ,,3y ,中的最小值,则y 的最大值为 .三 、解答题(本大题共7小题,共55分)16.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x .⑴写出y 关于x 的函数关系式; ⑵求x 的取值范围; ⑶求y 的取值范围.17.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.18.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点. ②a 为何值时,一次函数的图象与y 轴交于点()0,9.19.右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.20.判断下列式子中y是否是x的函数.⑴22(35)y x=-⑵y=⑶12y x=-⑷8y x=-21.等腰三角形的周长为30,写出它的底边长y与腰长x之间的函数关系,并写出自变量的取值范围?22.甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物X元.(X>300)试比较顾客到哪家超市购物更实惠?说明理由人教版八年级下册数学《一次函数》单元测试卷答案解析一、选择题1.A2.A3.D4.A5.C6.B;由题意得:16(4)y k x-=+,将y kx=带入等式,即16(4)kx k x-=+,所以解出4k=-7.B8.C9.B10.B;【解析】了解P点的运动路线,根据已知矩形的长和宽求出当点P运动到C点时的S值为1,即当x为1时的S值为1,之后面积保持不变.二、填空题11.x为任意实数12.减小13.0x>14.16;【解析】分别将点()8m,代入两个一次函数解析式,得8m a=-+和8m b=+,联立方程得88m a m b+=-+++,所以16a b+=15.3717;【解析】如图,分别求出123y y y,,交点的坐标3322A⎛⎫⎪⎝⎭,;252599B⎛⎫⎪⎝⎭,;60371717C ⎛⎫ ⎪⎝⎭, 当32x <,1y y =;当232529x y y =,;当2560917x <,2y y = 当36017x y y =,.看图象可得到C 点最高, ∴6017x =,16037=+1=31717y ⨯最大.三 、解答题16.⑴102y x =-;⑵2.55x <<;⑶05y <<【解析】⑴由题意,得10x x y ++=,即102y x =-⑵因为x 、y 为线段,所以0x >,0y >.所以1020x ->,即05x <<;又因为x 、y 为三角形的边长,所以x x y +>,即2102x x >-,所以 2.5x >.所以2.55x << ⑶由2.55x <<,得5210x <<,所以1025x -<-<-,所以01025x <-<.因此y 的取值范围是05y <<.17.①2a =-;②a =18.①2a =-;②a =19.⑴4/min 3km ;⑵7分钟;⑶()3022016t S t =-≤≤. 20.⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”.21.⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 22.设在甲超市所付的购物费用为y 甲元,在乙超市所付的购物费用为y 乙元,由题意可得,y 甲=300+0.8(x-300)=60+0.8x ,y 乙=20090%200)0.920(300)x x x +⨯-=+>(当y 甲=y 乙时0.9200.860x x +=+,解得400x =; 当y 甲<y 乙,时0.9200.860x x +<+,解得400x >;当y甲>y乙,时0.9200.860x x+>+,解得400x<.所以当购买多于300元而少于400元的商品时,选择乙超市比较优惠,当购买400元的商品时,两个超市费用相同,选择哪个都可以,当购买商品大于400元时,选择甲超市比较优惠.人教版八年级下册数学《一次函数》单元测试卷(二)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

一次函数单元测试卷及答案

一次函数单元测试卷及答案

《一次函数》单元测验题班级:班级: 姓名:姓名: 座号:座号: 成绩:________一.选择题(每小题3分,共30分)1.在平面直角坐标系中,点(-1,-2)所在的象限是所在的象限是 ( ) A 、第一象限、第一象限 B 、第二象限、第二象限 C 、第三象限、第三象限 D 、第四象限、第四象限2. 2.函数函数1y x =-中,自变量x 的取值范围是的取值范围是 ( ) ( ) A . x < 1 B . x ≤ 1 C . x > 1 D . x ≥13. 3. 在函数在函数在函数 y y y==3x 3x--2,y =1xx +3,y =-=-2x 2x 2x,,y =-=-x x 2+7 7 是正比例函数的有是正比例函数的有( ) A . 0 . 0 个个 B . 1 . 1 个个 C . 2 . 2 个个 D . 3 . 3 个个4.点M (1,2)关于x 轴对称点的坐标为(轴对称点的坐标为( )A 、(-1,2)B 、(-1,-2)C 、(1,-2)D 、(2,-1)5. 如图,所示的象棋盘上,若○帅位于点(1,-2)上,○相 位于点(3,-2)上,则○炮位于点(位于点() A. (-1,1) B. (-1,2)C. (-2,1)D. (-2,2)6. 一次函数y=y=--2x+3的图像不经过的象限是(的图像不经过的象限是( )).A A 第一象限第一象限第一象限B B B 第二象限第二象限第二象限C C C 第三象限第三象限第三象限D D D 第四象限第四象限第四象限7.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( )A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶.小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后分钟后登山的速度比小军快登山的速度比小军快8.下列函数中,y 随x 的增大而减小的有(的增大而减小的有( )①12+-=x y ② x y -=6③ 31xy +-= ④x y )21(-=A.1个B.2个C.3个D.4个9.直线.直线 y=43 x +4与 x 轴交于轴交于 A,与y 轴交于B, O 为原点,则为原点,则图3相帅炮ab a k= ,b= .k= ,b= . 0 9 9 16 16 30 t /min S /km 40 12 19.(8分) 已知正比例函数x k y 1=的图像与一次函数92-=x k y 的图像交于点P (3,-6)。

一次函数单元测试卷含答案

一次函数单元测试卷含答案

一次函数单元测试卷含答案一次函数单元测试卷班级:___________ 座号:___________ 姓名:___________ 评分:___________一、选择题(每小题5分,共25分)1、下列函数中,是一次函数的有()A、y=πxB、y=2x-1C、y=D、y=x2-12、下列哪个点在一次函数y=3x-4上().A、(2,3)B、(-1,-1)C、(0,-4)D、(-4,0)3、若一次函数y=kx-4的图象经过点(–2,4),则k等于()A、–4B、4C、–2D、24、点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+ 3图象上的两个点,且x1<x2,则y1与y2的大小关系是().A、y1>y2B、y1>y2>C、y1<y2D、y1=y25、2012年“国际攀岩比赛”在重庆举行.XXX从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时XXX也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设XXX从家出发后所用时间为t,XXX与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()二、填空题(每小题5分,共50分)6、当k=-1时,y=(k+1)xk+k是一次函数;当m=2时,y=(m-1)xm是正比例函数。

7、若一次函数y=(m-3)x+(m-1)的图像经过原点,则m=4,此时y随x的增大而增大。

8、一个函数的图象经过点(1,2),且y随x的增大而增大,则这个函数的解析式是y=2x。

9、一次函数y=-3x-1的图像经过点(1,-4)和(-2,5)。

10、一次函数y=-2x+4的图象与x轴交点坐标是(2,0),与y轴交点坐标是(0,4),图象与坐标轴所围成的三角形面积是4.11、一次函数y=-2x+3的图像不经过第三象限。

12、若三点(1,2),(2,P),(3,1)在一条直线上,则P的值为-3.13、已知函数y x m与y mx4的图象的交点在x 轴的负半轴上,则m=3.14、某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程x(x≥3)的费用为y=1.2(x-3)+5.15、根据收费标准,XXX有19元钱只能乘坐公里数为38的出租车。

八年级数学上册 第12章 一次函数 单元测试卷(沪科版 2024年秋)

八年级数学上册 第12章 一次函数 单元测试卷(沪科版 2024年秋)

八年级数学上册第12章一次函数单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1. 司机王师傅到加油站加油,如图是所用的加油机上的数据显示牌,其中的常量是()(第1题)A.金额B.数量C.单价D.金额和数量2.下列不能表示y是x的函数的是()A. B.C.D.y=2x+13.函数y=x+1x中的自变量x的取值范围是()A.x>0 B.x≥-1C.x>0且x≠-1 D.x≥-1且x≠04.某登山队大本营所在地的气温为5 ℃,海拔每升高1 km气温下降6 ℃,登山队员由大本营向上登高x km时,他们所在位置的气温为y℃,则y与x的函数关系式为()A.y=5+6x B.y=5-6x C.y=5-x6D.y=5-6 x5.要得到函数y=3x+5的图象,只需将函数y=3x的图象() A.向左平移5个单位B.向右平移5个单位C.向下平移5个单位D.向上平移5个单位6.点A(-2,y1),B(-1,y2)都在直线y=-x+b上,则y1与y2的大小关系为()A.y1=y2B.y1>y2 C.y1<y2D.不能确定7.下列关于一次函数y=-4x-8的说法中,正确的是()A.该函数图象不经过第三象限B.该函数图象经过点(2,0)C.该函数值y随x的增大而增大D.该函数图象与坐标轴围成的三角形面积为88.已知直线y=kx+b不经过第二象限,那么k,b的取值范围分别是() A.k>0,b<0 B.k<0,b<0 C.k>0,b≤0 D.k<0,b≤0 9.若直线y=-x+m与直线y=2x+4的交点在第二象限,则m的取值范围是()A.-2<m<4 B.-2<m<3 C.-1<m<3 D.1<m<4 10.如图,在长方形OABC中,已知B(8,6), 动点P从点A出发,沿A-B -C-O的路线匀速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()(第10题) (第12题) (第13题) 二、填空题(本大题共4小题,每小题5分,满分20分)11.若正比例函数y=(m-1)x的图象从左到右逐渐上升,则m的取值范围是______________.12.如图,一次函数y=kx+b与y=-x+4的图象相交于点P(m,1),则关于x,y的二元一次方程组{x+y=4,kx-y+b=0的解是____________.13.李老师开车从甲地到相距240 km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________L.14.已知一次函数y=ax+8-2a(a为常数,且a≠0).(1)若该一次函数图象经过点(-1,2),则a=________;(2)当-2≤x≤5时,y有最大值11,则a的值为________.三、(本大题共2小题,每小题8分,满分16分)15.小明从家出发骑单车去上学,他骑了一段路时想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校,如图是他本次上学离家距离s(m)与所用的时间t(min)的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是________m,本次上学途中,小明一共行驶了________m.(2)小明在书店停留了________min,本次上学,小明一共用了________min.(3)在整个上学的途中哪个时间段小明骑车速度最快?最快的速度是多少?(第15题)16.已知y与3x-2成正比例,且当x=2时,y=8.(1)求y与x的函数关系式;(2)求当x=-2时,y的值.四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=2kx+b的图象与直线y=-3x-7平行,且经过点(2,-11).(1)求一次函数y=2kx+b的表达式;(2)判断点A ⎝ ⎛⎭⎪⎫16,-112是否在一次函数y =2kx +b 的图象上.18.水是生命之源,节约用水是每位公民应尽的义务.水龙头关闭不严会造成滴水,为了调查漏水量V (mL)与漏水时间t (min)的关系,某同学在滴水的水龙头下放置了一个能显示水量的容器,每5 min 记录一次容器中的水量,如下表:漏水时间t /min 0 5 10 15 20 … 漏水量V /mL255075100…(1)请在图中描出以表中数据为坐标的各点;(2)根据(1)中各点的分布规律,求出V 关于t 的函数表达式; (3)请估算这种漏水状态下一天的漏水量.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.如图,直线l 2:y =kx +b 与x 轴交于点A ,且经过点B (3,1),直线l 1:y =2x -2与l 2交于点C (m ,2). (1)求m 的值;(2)求直线l2的表达式;(3)根据图象,直接写出关于x的不等式组1<kx+b<2x-2的解集.(第19题)20.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮一年内来此游泳馆游泳的次数为x,选择方式一的总费用为y1元,选择方式二的总费用为y2元.(1)请分别写出y1,y2与x之间的函数表达式;(2)请根据小亮一年内的游泳次数确定选择哪种方式比较划算;(3)若小亮计划拿出1 400元用于一年内在此游泳馆游泳,采用哪种方式比较划算?六、(本题满分12分)21.如图,直线l 1的表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A (4,0),B ⎝ ⎛⎭⎪⎫3,-32,直线l 1,l 2交于点C .(1)点D的坐标为________,直线l 2的表达式为_____________________________________________; (2)求三角形ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得三角形ADP 与三角形ADC 的面积相等,请直接写出点P 的坐标.(第21题)七、(本题满分12分)22.某商店购进A ,B 两种礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该商店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15 000元,求最大利润;(3)在(2)的条件下,该商店对A 种礼盒以每个优惠m (0<m <20)元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且m -n =4,若最大利润为4 900元,请直接..写出m 的值.八、(本题满分14分)23.甲、乙两车分别从相距480 km的A,B两地相向而行,乙车比甲车先出发1 h,并以各自的速度匀速行驶,途经C地,甲车到达C地后停留1 h,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车到各自出发地的距离y(km)与甲车出发后所用的时间x(h)之间的关系如图,结合图象信息解答下列问题.(1)乙车的速度是________km/h,t=________,a=________;(2)求甲车到它出发地的距离y(km)与它出发后所用的时间x(h)之间的函数表达式,并写出自变量x的取值范围;(3)求乙车出发多久后两车相距120 km.(第23题)答案一、1.C 2.A 3.D 4.B 5.D 6.B 7.D 8.C 9.A 10.C二、11.m >1 12.⎩⎨⎧x =3,y =113.2014.(1)2 (2)1或-34 点拨:当a >0时,y 随x 增大而增大,则当x =5时,y有最大值,所以5a +8-2a =11,解得a =1;当a <0时,y 随x 增大而减小,则当x =-2时,y 有最大值,所以-2a +8-2a =11,解得a =-34.综上所述,a 的值为1或-34.三、15.解:(1)1 500;2 700 (2)4;14(3)折回之前的速度为1 200÷6=200(m/min),折回去书店时的速度为(1 200-600)÷(8-6)=300(m/min),买书后从书店到学校的速度为(1 500-600)÷(14-12)=450(m/min),经过比较可知,小明在买书后从书店到学校的时间段速度最快,最快的速度是450 m/min.16.解:(1)由题意知,y 与3x -2成正比例,则设出关系式为y =k (3x -2)(k ≠0),把x =2,y =8代入,得8=k (3×2-2),所以k =2.所以y 与x 之间的函数关系式为y =2(3x -2)=6x -4.(2)把x =-2代入y =6x -4,得y =6×(-2)-4=-16. 四、17.解:(1)由题意可知⎩⎨⎧2k =-3,4k +b =-11,所以⎩⎨⎧2k =-3,b =-5.所以所求一次函数的表达式为y =-3x -5. (2)当x =16时,y =-3x -5=-112.所以点A ⎝ ⎛⎭⎪⎫16,-112在此一次函数的图象上.18.解:(1)如图所示.(第18题)(2)根据(1)中各点的分布规律,可知V 是关于t 的正比例函数,设所求函数表达式为V =kt (k ≠0).因为当t =5时,V =25,所以5k =25,解得k =5.所以V 关于t 的函数表达式为V =5t .(3)由(2)可知,在这种状态下一天的漏水量为5×60×24=7 200(mL). 五、19.解:(1)把C (m ,2)的坐标代入y =2x -2,得2m -2=2,解得m =2.(2)把C (2,2),B (3,1)的坐标代入y =kx +b ,得⎩⎨⎧2k +b =2,3k +b =1,解得⎩⎨⎧k =-1,b =4,所以直线l 2的表达式为y =-x +4. (3)解集是2<x <3.20.解:(1)y 1=30x +200,y 2=40x .(2)当y 1<y 2,即30x +200<40x 时,解得x >20,所以当小亮一年内的游泳次数大于20时,选择方式一比较划算;当y 1=y 2,即30x +200=40x 时,解得x =20,所以当小亮一年内的游泳次数等于20时,选择两种方式的总费用相同;当y 1>y 2,即30x +200>40x 时,解得x <20,所以当小亮一年内的游泳次数小于20时,选择方式二比较划算.(3)当y 1=1 400时,1 400=30x +200,解得x =40;当y 2=1 400时,1 400=40x ,解得x =35,40>35,故采用方式一比较划算. 六、21.解:(1)(1,0);y =32x -6(2)解⎩⎪⎨⎪⎧y =-3x +3,y =32x -6,得⎩⎨⎧x =2,y =-3,所以C (2,-3).因为AD =4-1=3,所以S 三角形ADC =12×3×|-3|=92. (3)P (6,3).七、22.解:(1)根据题意得,购进A 种礼盒x 个,且x ≥60,则购进B 种礼盒(100-x )个,且100-x >0,故y =(220-160)x +(160-120)(100-x ),整理得,y =20x +4 000.故y 与x 之间的函数关系式为y =20x +4 000(60≤x <100).(2)根据题意得,160x +120(100-x )≤15 000,整理得,x ≤75,故60≤x ≤75,因为y =20x +4 000,且20>0,所以y 随着x 的增大而增大,所以当x =75时,y 取得最大值,此时y =20×75+4 000=5 500.所以最大利润为5 500元. (3)m =10.八、23.解:(1)60;3;7(2)①当0≤x ≤3时,设y =k 1x ,把点(3,360)的坐标代入,可得3k 1=360,解得k 1=120,所以y =120x . ②当3<x ≤4时,y =360.③当4<x ≤7时,设y =k 2x +b ,把点(4,360)和(7,0)的坐标分别代入,可得⎩⎨⎧4k 2+b =360,7k 2+b =0,解得⎩⎨⎧k 2=-120,b =840, 所以y =-120x +840.综上可得,y =⎩⎨⎧120x (0≤x ≤3),360(3<x ≤4),-120x +840(4<x ≤7).(3)①当甲车朝B 地,乙车朝A 地行驶时,(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(h).②当甲车停留在C 地时,(480-360+120)÷60=240÷60=4(h).③两车都朝A 地行驶时,设乙车出发m h 后两车相距120 km ,则60m -{480-[-120(m -1)+840]}=120, 解得m =6.综上可得,乙车出发83h ,4 h ,6 h 后两车相距120 km.。

一次函数单元测试卷(含答案)

一次函数单元测试卷(含答案)

一次函数单元测试卷班级___________座号______________________评分___________一、选择题(每小题5分,共25分)1、下列函数(1)y =πx (2)y =2x -1 (3)y =1x(4)y =2-1-3x (5)y =x 2-1中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、下列哪个点在一次函数43-=x y 上( ).A 、(2,3)B 、(-1,-1)C 、(0,-4)D 、(-4,0)3、若一次函数y =kx -4的图象经过点(–2,4),则k 等于 ( )A 、–4B 、4C 、–2D 、24、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是( ).A 、y 1>y 2B 、y 1>y 2 >0C 、y 1<y 2D 、y 1=y 25、2012年“国际攀岩比赛”在举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是( )二、填空题(每小题5分,共50分)6、当k =________时,y =(k +1)x 2k +k 是一次函数;当m =_______时,y =(m -1)x 2m 是正比例函数。

7、若一次函数y =(m -3)x +(m -1)的图像经过原点,则m = ,此时y 随x 的增大而 .8、一个函数的图象经过点(1,2),且y 随x 的增大而增大,则这个函数的解析式是(只需写一个)9、一次函数y =-3x -1的图像经过点(0, )和( ,-7).10、一次函数y = -2x +4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 , 图象与坐标轴所围成的三角形面积是 .11、一次函数y =-2x +3的图像不经过的象限是_________12、若三点)1,0(),,2(),0,1(-P 在一条直线上,则P 的值为_________13、已知函数4-=+-=mx y m x y 与的图象的交点在x 轴的负半轴上,则=m ______.14、某市出租车的收费标准是:3千米以(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程x (x ≥3)时,车费y (元)与路程x (千米)之间的关系式为: .15、我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此出租车最远能到达 公里处三、解答题(每小题9分,共45分)16、某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元,“神州行”:不缴纳月租费,每通话1分钟,付话费0.6元。

一次函数单元测试题(含答案)

一次函数单元测试题(含答案)

第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=2x - C .y=24x - D .y=2x +·2x -2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:xy1234-2-1CA-14321O(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

第12章 一次函数单元测试一、二(含答案)

第12章 一次函数单元测试一、二(含答案)

第12章 一次函数单元测试一一、 填空1、已知点(3,m )与点(n ,-2)关于坐标系原点对称,则mn =_______.2、点A 为直线y=-2x +2上的一点,且到两坐标轴距离相等,那么A 点坐标为_____.3、已知y=3x+4当x_______时,函数值为正数.4、函数 与x 轴交点坐标为_________.5、直线y=-3x -1与坐标轴围成三角形面积为________.6、在函数 的表达式中,自变量x 取值范围__________.7、若函数b ax y +=图象如图所示,则不等式0≥+b ax 解集为_____8.直线 不经过第 象限. 9.函数y=kx-4的图象平行于直线y=-2x ,则函数的表达式为 . 二、 选择题 1、如果直线)1()2(-+-=m x m y 经过第一、二、四象限,则m 的取值范围是( ).A 、m<2B 、m>1C 、m≠2 D、1<m<22、一次函数4+-=x y 和12+=x y 的图象的交点个数为( ).A 、没有B 、一个C 、两个D 、无数个3、汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s (千米)与行驶时间t (小时)的函数关系用图象表示为( ).A B C D 4、已知函数13+=x y ,当自变量x 增加m 时,相应函数值增加( ). A 、3m+1 B 、3m C 、m D 、3m -15、若点A (-2,n )在x 轴上,则B (n -1,n+1)在( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6、m 为整数,点P (3m -9,3-3m )是第三象限的点,则P 点的坐标为( ). A 、(-3,-3) B 、(-3,-2) C 、(-2,-2) D 、(-2,-3) 7.过点(2,3)的正比例函数解析式是 ( ) A. B. 21y x =- C. D. 8.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( ) A. (2,0) B. (-2,0) C. (0,2) D. (0,-2)9.下列函数中,当x>0时,y 随x 的增大而减小的是 ( ) A.x y = B.2+=x y C.2+-=x y D.2x y =10.一次函数y=ax+b 的图像如图所示,则下面结论中正确的是 ( ) (第10题)A .a <0,b <0B .a <0,b >0C .a >0,b >0D .a >0,b <011.直线 y= x +4与 x 轴交于 A ,与y 轴交于B, O 为原点,则△AOB 的面积为( ) A .12 B .24 C .6 D .1012.关于正比例函数y=-2x,下列结论正确的是 ( )A .图像必经过点(-1,-2)B .图像经过第一、三象限C .y 随x 的增大而减小D.不论x 取何值,总有y<013.一次函数y=kx+6,y 随x 的增大而减小,则一次函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 14. 无论m 取任何非零实数,一次函数y=mx-(3m+2)的图象过定点( )A 、(3,2)B 、(3,-2)C 、(-3,2)D 、(-3,-2) 15.一次函数a x y +=2,b x y +-=的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( ) A.4 B.5 C.6 D.7 三、解答题1、某校需要刻录一批电脑光盘,若电脑公司刻录,每张需要8元(含空白光盘费);若学校自刻,除租用刻录机需120元外每张还需成本费4元(含空白光盘费),问刻录这批电脑光盘,到电脑公司刻录费用少?还是自刻费用少?说明你的理由.2、有两条直线b ax y +=1,c cx y 52+=,学生甲解出它们的交点坐标为(2,-3),学生乙因把c 抄错了而解出它们的交点坐标为(1,3),求这两条直线解析式.3.已知y 是x 的一次函数,根据下表求出函数表达式,并填空.4.已知函数1)32(-++=m x m y , ⑴若函数图象经过原点,求m 的值;⑵若函数图象在y 轴上的截距为3-,求m 的值; ⑶若函数图象平行于直线1+=x y ,求m 的值; ⑷若该函数的值y 随自变量x 的增大而减小,求m 的取值范围.5.一次函数y=(2a+4)x —(3—b ),当a ,b 为何值时:(1)y 随x 的增大而增大? (2)图象经过二、三、四象限?(3)图象与y 轴交点在x 轴上方? (4)图象过原点?x 1 3 4 9 31 y1522212xy 24204t S24204t S24204tS24204tS21+=x y 8141+=x y 23y x =6y x =32y x =432132y x =-+第12章 一次函数水平测试二一、填空题1、若函数 是正比例函数,则常数m 的值是 。

一次函数单元测试题(含答案)

一次函数单元测试题(含答案)

一次函数测试题一、选择题(每小题3分,共24分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<36.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-17.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、填空题(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方. 13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、应用题(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?xy1234-2-1CA-14321O答案:411.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

一次函数_单元测试含答案

一次函数_单元测试含答案

二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。

4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。

12、一次函数y=kx+5的图象过点A(-2,-1),则k=________.13、正比例函数y=2x的图象经过第________象限.14、两港相距600千米,轮船以10千米/小时的速度航行,t小时后剩下的距离y与t的函数关系式________.15、已知一次函数的图象与y轴的交点的纵坐标为-2,且经过点(5,3),则此函数的表达式为________.16、当b为________时,直线与直线的交点在x轴上.17、已知函数y=的图象经过点B(m,),则m=________。

一次函数单元测试卷

一次函数单元测试卷

一次函数单元测试卷新人教版八年级下册《第19章一次函数》单元测试卷一、选择题(每小题3分,共24分)1.下列各图给出了变量x与y之间的函数是(B)。

2.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有(B)m>,n<0.3.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是(C)y1<y2.4.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为(B)y=﹣x﹣6.5.一次函数y=﹣5x+3的图象经过的象限是(B)二,三,四。

6.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠)的图象的是(D)。

7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为(A)。

8.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是(B)甲,乙两人中先到达终点的是乙。

二、填空题(每小题3分,共24分)9.函数的自变量的取值范围是(未给出)。

10.已知y﹣3与x+1成正比例函数,当x=1时,y=6,则y与x的函数关系式为(y=3x+3)。

11.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b=(0)。

12.据如图的程序,计算当输入x=3时,输出的结果y=(11)。

13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是(m>﹣2)。

14.如图,若直线y=kx+b经过A,B两点,直线y=mx经过A点,则关于x的不等式kx+b>mx的解集是(x<b/(m﹣k))。

15.已知函数 $y=2x+b$ 和 $y=ax-3$ 的图象交于点 $P(-2,-5)$,根据图象可得方程$2x+b=ax-3$ 的解是$\frac{1}{2}x-1$。

一次函数综合测试卷试题及含答案.docx

一次函数综合测试卷试题及含答案.docx

精品文档一次函数测试题一、填空(10× 3′=30′)1、已知一个正比例函数的图象经过点(- 2, 4),则这个正比例函数的表达式是。

2、若函数y= - 2x m+2是正比例函数,则m 的值是。

3、已知一次函数y=kx+5的图象经过点( - 1,2),则 k=。

4、已知 y 与 x 成正比例,且当 x=1 时, y=2,则当 x=3 时, y=____。

5、点 P(a,b)在第二象限,则直线y=ax+b 不经过第象限。

6、已知一次函数 y=kx-k+4 的图象与 y 轴的交点坐标是 (0 , -2) ,那么这个一次函数的表达式是 ______________。

7、已知点 A(-1 , a), B(2 ,b) 在函数 y=-3x+4 的象上 , 则 a 与 b 的大小关系是____。

8、地面气温是 20℃,如果每升高 1000m,气温下降 6℃,则气温(t℃)与高度 h(m)的函数关系式是 __________。

9 、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。

10 、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。

( 1) y 随着 x 的增大而减小,( 2)图象经过点( 1,-3 )。

二、选择题 (10×3′=30′)11、下列函数( 1)y=πx (2)y=2x-1(3)y=1(4) y=2-1-3x中,是一次xy函数的有()( A) 4 个( B) 3 个(C)2 个( D) 1 个112、下面哪个点不在函数 y 2 x 3 的图像上()O2x ( A)(-5 ,13)(B)( 0.5 ,2)( C)(3,0)(D)(1,1)13、直线 y=kx+b 在坐标系中的位置如图,则 ()(第13题图)( A)1111 2222 14、下列一次函数中,随着增大而减小而的是()( A)y 3x(B)y 3x 2( C)y 3 2x(D)y3x 215、已知一次函数y=kx+b的图象如图所示,则 k,b的符号是 ()(A) k>0 ,b>0(B) k>0,b<0(C) k<0,b>0(D) k<0,b<0(第 15 题图)16、函数 y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么 m的取值范围是 ()( A)3()3()()1 m B 1 m C m 1 D m4417、一支蜡烛长 20 厘米 ,点燃后每小时燃烧 5 厘米 ,燃烧时剩下的高度 h (厘米 )与燃烧时间 t (时)的函数关系的图象是 ()(A)(B)(C)(D)18、下图中表示一次函数y= mx+n与正比例函数 y= mnx(m ,n 是常数,且 mn<0)图像的是 ( ).19. 一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于113A. 2B.2C.2D.以上答案都不对20. 某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示 .由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.280三、计算题(21、22、25 各 8 分, 23、24、26 各 12 分)21、已知一个正比例函数和一个一次函数的图象相交于点A(1,4) ,且一次函数的图象与 x 轴交于点 B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;22、已知 y - 2 与 x 成正比,且当 x=1 时, y= - 6(1)求 y 与 x 之间的函数关系式(2)若点 (a,2)在这个函数图象上,求a 的值1 23、已知一次函数y=kx+b的图象经过点 (- 1, - 5),且与正比例函数y=2 x 的图象相交于点 (2, a),求(1)a 的值(2)k, b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。

(完整版)一次函数单元测试题(含答案)(最新整理)

(完整版)一次函数单元测试题(含答案)(最新整理)

9.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3), 那么这个一次函数的解析式为( A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=x-312价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t 之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米, 现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1. 1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0. 9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

沪科版数学八年级上册 第十二章 一次函数 单元测试(含答案)

沪科版数学八年级上册  第十二章 一次函数 单元测试(含答案)

第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。

数学九年级上学期《一元二次方程》单元检测卷附答案

数学九年级上学期《一元二次方程》单元检测卷附答案

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题(每小题3分,共36分)1、若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是DC BA OO O Ox yxyx yyx2.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A . 1011)1(2=+x B . 910)1(2=+x C . 101121=+x D . 91021=+x 3、根据下列表格中代数式c bx ax ++2与x 的对应值,判断方程)0(02≠=++a c bx ax 的一个根x的大致范围是( )x6.17 6.18 6.19 6.20 c bx ax ++2-0.03-0.010.020.06A .6< x <6.17B .6.17< x <6.18C .6.18< x <6.19D .6.19< x <6.20 4.已知2是关于x 的方程x 2﹣2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形A B C 的两条边长,则三角形A B C 的周长为( ) A . 10 B . 14C . 10或14D . 8或105.已知分别是三角形的三边长,则一元二次方程的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6、方程9733322=-+-+x x x x 的全体实数根之积为( )A 、60B 、60-C 、10D 、10- 7、若方程()()02=-+-+-a c x c b x b a 是关于x 的一元二次方程,则必有( ).A .A =B =C B .一根为1 C .一根为-1D .以上都不对8、我们解一元二次方程3x 2﹣6x =0时,可以运用因式分解法,将此方程化为3x (x ﹣2)=0,从而得到两个一元一次方程:3x =0或x ﹣2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( ) A . 转化思想 B . 函数思想 C . 数形结合思想 D . 公理化思想9、定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(0)ax bx c a ++=≠ 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是A .a c =B .a b =C .b c =D . a b c ==10、小刚在解关于x 的方程A x 2+B x +C =0(A ≠0)时,只抄对了A =1,B =4,解出其中一个根是x =–1.他核对时发现所抄的C 比原方程的C 值小2,则原方程的根的情况是A .不存在实数根B .有两个不相等的实数根C .有一个根是x =–1D .有两个相等的实数根11、有两个一元二次方程:M :20ax bx c ++=,N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是( )A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根; B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同; C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =. 12、已知实数m ,n 满足020092=-+m m ,()102009112-≠=--mn n n ,则1n m-=( ). A 、12009 B 、2009 C 、-2009 D 、12009- 二、填空题(每小题3分,共18分)13.如图,在一块长12m,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为x m,则根据题意,可列方程为__________.14、等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为 .15、对于实数A ,B ,定义运算“﹡”:A ﹡B =()()22a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,则x 1﹡x 2=16、已知关于x 的方程02=++c bx ax 的两根分别为3-和1,则方程02=++a cx bx 的两根为 . 17、如果m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,那么代数式2n 2﹣mn +2m +2020= . 18、如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=; ③2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,且,则方程20ax bx c ++=的一个根为54. 三、解答题(共46分)19.(6分)如图,四边形 A C D E 是证明勾股定理时用到的一个图形,A 、B 、C 是 Rt ∆A B C 和 Rt ∆B ED 的边长,已知2=AE c ,这时我们把关于 x 的形如220++=ax cx b 二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”220ax cx b的一++= ++=ax cx b,必有实数根;(3)若x=-1是“勾系一元二次方程” 220个根,且四边形A C D E的周长是62,求∆A B C 的面积.20、(8分)某网店准备销售一种多功能旅行背包,计划从厂家以每个120元的价格进货.(1)经过市场调查发现,当每个背包的售价为140元时,月均销量为980个,售价每增长10元,月均销量就相应减少30个,若使这种背包的月均销量不低于800个,每个背包售价应不高于多少元?(2)在实际销售过程中,由于原材料涨价和生产成本增加的原因,每个背包的进价为150元,而每个背包的售价比(1)中最高售价减少了A %(A >0),月均销量比(1)中最低月均销量800个增加了5A %,结果该店销售该背包的月均利润达到了40000元,求在实际销售过程中每个背包售价为多少元?21、(8分)阅读下面例题的解答过程,体会、理解其方法,并借鉴该例题的解法解方程. 例:解方程2110x x ---=解:(1)当10x -≥即1x ≥时.11x x -=-,原方程化为2(1)10x x ---=,即20x x -=,解得1201x x ==,.∵1x ≥,故0x =舍去,1x =是原方程的解 (2)当10x -<即1x <时.1(1)x x -=--,原方程化为2(1)10x x +--=,即220x x +-=,解得1212x x ==-,.∵1x <,故1x =舍去,2x =-是原方程的解. 综上所述,原方程的解为1212x x ==-,. 解方程:22240x x ++-=22. (8分)关于x 的一元二次方程x 2﹣3x +k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根,求此时m 的值.23.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=A 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解. (1)问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程23x x +=的解;(3)应用:如图,已知矩形草坪A B C D 的长A D =8m ,宽A B =3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿B A ,A D 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、D C 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求A P 的长.24.(8分)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①所取的2个整数1,21,3,2,3如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果. (4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有___ 种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额. 拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.参考答案一、选择题(每小题3分,共36分)1、若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是DC BA[答案]B[分析]根据一元二次方程x 2﹣2x +kB +1=0有两个不相等的实数根, 得到判别式大于0,求出kB 的符号,对各个图象进行判断即可. [解析]∵x 2﹣2x +kB +1=0有两个不相等的实数根, ∴△=4﹣4(kB +1)>0,解得kB <0,A .k >0,B >0,即kB >0,故A 不正确;B .k >0,B <0,即kB <0,故B 正确;C .k <0,B <0,即kB >0,故C 不正确;D .k >0,B =0,即kB =0,故D 不正确; 故选:B .[考点]根的判别式;一次函数的图象..[点评]本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A . 1011)1(2=+x B . 910)1(2=+x C . 101121=+x D . 91021=+x [答案]B[分析]我们可以将整个原价假设为1(如果你觉得不放心,也可以假设为a 或m 等与现有字母不冲突的任何字母),那么跌停后的价格就是0.9.之后两天中的第一天,是在0.9的基础上增加了x ,那么就是到了)1(9.0x +;接下去要注意的是:虽然第二天增长率同样为x ,但是起步价变了,已经不是0.9,而是前一天收市之后的)1(9.0x +,它是在)1(9.0x +的基础上增加到了)1(x +倍(请注意增加和增加到的区别),因此,现在的股价是)1()]1(9.0[x x +⋅+,也就是2)1(9.0x +.[解析]跌停后,股价为0.9,连续两天按照x 的增长率增长后,股价为2)1(9.0x +,根据题意,得方程1)1(9.02=+x ,那么正确选项为B .[考点]本题考查了增长率的概念和方程的基本性质[点评]首先必须要分清楚增加(或减少)的这一部分的量和原来的基础“1”有没有关系? 其次,这个基础“1”前后是否发生了变化.3、根据下列表格中代数式c bx ax ++2与x 的对应值,判断方程)0(02≠=++a c bx ax 的一个根x的大致范围是( )A .6< x <6.17B .6.17< x <6.18C .6.18< x <6.19D .6.19< x <6.20 [答案]C[解析]当6.18< x <6.19时,2ax bx c ++的值由负连续变化到正, 说明在6.18< x <6.19范围内一定有一个x 的值,使20ax bx c ++=, 即是方程20ax bx c ++=的一个解.故选C . [考点]利用夹逼法求近似解4.已知2是关于x 的方程x 2﹣2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形A B C 的两条边长,则三角形A B C 的周长为( ) A . 10 B . 14C . 10或14D . 8或10[答案]B[分析]先将x =2代入x 2﹣2mx +3m =0,求出m =4,则方程即为x 2﹣8x +12=0, 利用因式分解法求出方程的根x 1=2,x 2=6,分两种情况: ①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论. 注意两种情况都要用三角形三边关系定理进行检验. [解析]∵2是关于x 的方程x 2﹣2mx +3m =0的一个根,∴22﹣4m +3m =0,m =4,∴x 2﹣8x +12=0,解得x 1=2,x 2=6. ①当6是腰时,2是等边,此时周长=6+6+2=14; ②当6是底边时,2是腰,2+2<6,不能构成三角形. 所以它的周长是14.故选B .[考点]解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形性质. [点评]此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验. 5.已知分别是三角形的三边长,则一元二次方程的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 [答案]A 解析:因为又因为分别是三角形的三边长,所以所以所以方程没有实数根.故答案选A[考点]一元二次方程根的判别式. 6、方程9733322=-+-+x x x x 的全体实数根之积为( ) A 、60 B 、60- C 、10 D 、10- [答案]A[分析]设y x x =-+732,原方程化成23=-yy ,再整理成整式方程求解即可. [解析]设y x x =-+732,则23=-yy ∴0322=--y y ,解得11-=y ,32=y 当11-=y 时,1732-=-+x x ,解得2333±-=x 当32=y 时,3732=-+x x ,解得2=x 或5- ∴()605223332333=-⨯⨯--⨯+- [考点]换元法解分式方程.[点评]本题考查了用换元法解分式方程,解次题的关键是把732-+x x 看成一个整体来计算,即换元法思想.7、若方程()()02=-+-+-a c x c b x b a 是关于x 的一元二次方程,则必有( ).A .A =B =C B .一根为1 C .一根为-1D .以上都不对[答案]B .[解析]A 、当A =B =C 时,A -B =0,B -C =0,则式子不是方程,故错误;B 、把x =1代入方程的左边:A -B +B -C +C -A =0.方程成立,所以x =1是方程(A -B )x 2+(B -C )x +(C -A )=0的解;C 、把x =-1代入方程的左边:A -B +C -B +C -A =2(C -B )=0不一定成立,故选项错误;故选B .[考点]一元二次方程的解8、我们解一元二次方程3x 2﹣6x =0时,可以运用因式分解法,将此方程化为3x (x ﹣2)=0,从而得到两个一元一次方程:3x =0或x ﹣2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A . 转化思想B . 函数思想C . 数形结合思想D . 公理化思想[答案]A[解析]我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为3x (x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是转化思想.(即将我们不熟悉的一元二次方程转化为熟悉的一元一次方程),故选A .[考点]数学思想9、定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(0)ax bx c a ++=≠ 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是A .a c =B .a b =C .b c =D . a b c == [答案]B . [分析]由条件可知A +B +C =0,再根据方程根的判别式得到到B 2-4A C =0,整理可得出结论.[解析]由条件可知A +B +C =0,所以B =-(A +C ),又因为方程有两个相等的实数根,所以△=0,即B 2-4A C =0,所以(A +C )2-4A C =0,整理可得(A -C )2=0,所以A =C ,故选B .[考点]根的判别式[点评]本题主要考查一元二次方程判别式与根的情况的判定,由条件到到知A +B +C =0和B 2-4A C =0是解题的关键.10、小刚在解关于x 的方程A x 2+B x +C =0(A ≠0)时,只抄对了A =1,B =4,解出其中一个根是x =–1.他核对时发现所抄的C 比原方程的C 值小2,则原方程的根的情况是A .不存在实数根B .有两个不相等的实数根C .有一个根是x =–1D .有两个相等的实数根[答案]A[解析]∵小刚在解关于x 的方程A x 2+B x +C =0(A ≠0)时,只抄对了A =1,B =4,解出其中一个根是x =–1,∴(–1)2–4+C =0,解得:C =3,故原方程中C =5,则B 2–4A C =16–4×1×5=–4<0,则原方程的根的情况是不存在实数根.故选A .[点睛]此题主要考查了根的判别式,正确得出C 的值是解题关键.11、有两个一元二次方程:M :20ax bx c ++=,N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是( )A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =.[答案]D .[解析]根据一元二次方程根的判别式和根与系数的关系对各选项逐一分析作出判断:A 、∵M 有两个不相等的实数根,∴△>0,即240b ac ->.∴此时N 的判别式△=240b ac ->,故它也有两个不相等的实数根.B 、∵M 的两根符号相同:即120c x x a⋅=>,∴N 的两根之积=a c >0,故N 两个根也是同号的. C 、如果5是M 的一个根,则有:2550a b c ++=①,我们只需要考虑将15代入N 方程看是否成立,代入得:110255c b a ++=②,比较①与②,可知②式是由①式两边同时除以25得到,故②式成立. D 、比较方程M 与N 可得:将M -N 得到: ()2a c x a c -=-,∴1x =±. 故可知,它们如果有根相同的根可是1或1-.故选D .[考点]一元二次方程根的判别式和根与系数的关系.12、已知实数m ,n 满足020092=-+m m ,()102009112-≠=--mn n n ,则1n m -=( ). A 、12009 B 、2009 C 、-2009 D 、12009- [考点]一元二次方程根与系数的关系.[分析]根据题意:由020092=-+m m 得:011120092=-+⎪⎭⎫ ⎝⎛m m ;由02009112=--n n 得:()()0120092=--+-n n ,又因为1-≠mn ,即n m -≠1,因此可以把m1,n -作为一元二次方程0120092=-+x x 的两根,由根与系数的关系得:200911-=-n m . [解析]∵020092=-+m m ,02009112=--n n ∴011120092=-+⎪⎭⎫ ⎝⎛m m ,()()0120092=--+-n n ∵1-≠mn ∴n m -≠1 ∴把m 1,n -作为一元二次方程0120092=-+x x 的两根 ∴()2009111-=-+=-n m n m [点评]本题考查的是用构造一元二次方程,利用根与系数的关系解答问题,本题的关键是利用已知进行变形是关键所在,不要忽视了1-≠mn 这个条件隐含的题意.二、填空题(每小题3分,共18分)13.如图,在一块长12m,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为x m,则根据题意,可列方程为__________.[答案](12–x )(8–x )=77[解析]∵道路的宽应为x 米,∴由题意得,(12–x )(8–x )=77,故答案为:(12–x )(8–x )=77.[点睛]此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.14、等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为 .[答案]10.[解析]由题意可知,等腰三角形有两种情况:当A , B 为腰时,A =B ,由一元二次方程根与系数的关系,可得A +B =6 ,所以A =B =3,A B =9=n -1, 解得n =10;当2为腰时,A =2 (或B =2),此时2+B =6 (或A +2=6),解得B =4 (A =4),这时三边为2, 2, 4,不符合三角形三边关系,故不合题意.所以n 只能为10.故选B[考点]1.等腰三角形,2.一元二次方程根与系数的关系.15、对于实数A ,B ,定义运算“﹡”:A ﹡B =()()22a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,则x 1﹡x 2=[答案]3或﹣3[分析]首先解方程x 2﹣5x+6=0,再根据A ﹡B =()()22a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<,求出x 1﹡x 2的值即可. [解析]∵x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,∴(x ﹣3)(x ﹣2)=0,解得:x=3或2,①当x 1=3,x 2=2时,x 1﹡x 2=32﹣3×2=3;②当x 1=2,x 2=3时,x 1﹡x 2=3×2﹣32=﹣3.故答案为:3或﹣3.[考点]解一元二次方程-因式分解法.[点评]此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.16、已知关于x 的方程02=++c bx ax 的两根分别为3-和1,则方程02=++a cx bx 的两根为 .[答案]211=x ,12=x [分析]因为方程的两个根为3-和1,所以方程可以方程因式为()()013=-+x x a ,用含A 的式子表示B 和C ,代入后面的方程可以用因式分解求出方程的根.[解析]∵02=++c bx ax 的两根为3-和1 ∴()()013=-+x x a整理得:0322=-+a ax ax ∴a b 2=,a c 3-=把B ,C 代入方程02=++a cx bx ,得:0322=+-a ax ax()()0112=--x x a ∴211=x ,12=x [考点]解一元二次方程-因式分解法;一元二次方程的解.[点评]本题考查的是用因式分解法解一元二次方程,把方程的两根代入方程,整理后用含A 的式子表示B 和C ,然后把B ,C 代入后面的方程,用因式分解法可以求出方程的根.17、如果m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,那么代数式2n 2﹣mn +2m +2020= .[答案]2031[分析]由于m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,可知m ,n 是x 2﹣x ﹣3=0的两个不相等的实数根.则根据根与系数的关系可知:m +n =2,mn =﹣3,又n 2=n +3,利用它们可以化简2n 2﹣mn +2m +2020=2(n +3)﹣mn +2m +2020=2n +6﹣mn +2m +2020=2(m +n )﹣mn +2026,然后就可以求出所求的代数式的值.[解析]由题意可知:m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,所以m ,n 是x 2﹣x ﹣3=0的两个不相等的实数根,则根据根与系数的关系可知:m +n =1,mn =﹣3,又n 2=n +3,则2n 2﹣mn +2m +2020=2(n +3)﹣mn +2m +2020=2n +6﹣mn +2m +2020=2(m +n )﹣mn +2026=2×1﹣(﹣3)+2026=2+3+2026=2031.故答案为:2031.[考点]根与系数的关系..[点评]本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.18、如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,且5b a =-,则方程20ax bx c ++=的一个根为54. [答案]②③.[解析]研究一元二次方程20ax bx c ++=是倍根方程的一般性结论,设其中一根为t ,则另一个根为2t ,因此222()(2)32ax bx c a x t x t ax atx t a ++=--=-+, 所以有2902b ac -=;我们记292K b ac =-,即0K =时,方程20ax bx c ++=为倍根方程; 下面我们根据此结论来解决问题: 对于①, 29102K b ac =-=,因此本选项错误; 对于②,2(2)20mx n m x n +--=,而29K (2)(2)02n m m n =---=, ∴22450m mn n ++=,因此本选项正确; 对于③,显然2pq =,而29K 302pq =-=,因此本选项正确; 对于④,由倍根方程的结论知2902b ac -=,又5b a =-,从而有509c a =,所以方程变为:250509ax ax a -+=,∴2945500x x -+=,∴1103x =,253x =,因此本选项错误. 故答案为:②③.[考点]1.新定义;2.根与系数的关系.三、解答题(共46分)19.(6分)如图,四边形 A C D E 是证明勾股定理时用到的一个图形,A 、B 、C 是 Rt ∆A B C 和 Rt ∆B ED 的边长,已知2=AE c ,这时我们把关于 x 的形如220++=ax cx b 二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于 x 的“勾系一元二次方程”220++=ax cx b ,必有实数根;(3)若 x = -1是“勾系一元二次方程” 220++=ax cx b 的一个根,且四边形 A C D E 的周长是2,求∆A B C 的面积.[答案](1)235240x x++=(答案不唯一)(2)见解析(3)1.[分析](1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出A ,B ,C 的关系,再根据完全平方公式的变形进行求解.[解析](1)当A =3,B =4,C =5时,勾系一元二次方程为235240x x++=;(2)依题意得△=(2c)2-4A B =2C 2-4A B ,∵A 2+B 2=C 2,∴2C 2-4A B =2(A 2+B 2)-4A B =2(A -B )2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得A +B =2C ;∵四边形A C D E 的周长是62,即2(A +B )+ 2C =62,故得到C =2,∴A 2+B 2=4,A +B =22∵(A +B )2= A 2+B 2+2A B ∴A B =2,故∆A B C 的面积为12A B =1.[点睛]此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.20、(8分)某网店准备销售一种多功能旅行背包,计划从厂家以每个120元的价格进货.(1)经过市场调查发现,当每个背包的售价为140元时,月均销量为980个,售价每增长10元,月均销量就相应减少30个,若使这种背包的月均销量不低于800个,每个背包售价应不高于多少元?(2)在实际销售过程中,由于原材料涨价和生产成本增加的原因,每个背包的进价为150元,而每个背包的售价比(1)中最高售价减少了A %(A >0),月均销量比(1)中最低月均销量800个增加了5A %,结果该店销售该背包的月均利润达到了40000元,求在实际销售过程中每个背包售价为多少元?[答案](1) 200元;(2) 190元[分析](1)设每个售价应为x元,根据月销量=980-30×14010x-,结合月销量不低于800个,即可得出关于x的一元一次不等式;(2)根据总利润=每个利润×销售数量,即可得出关于A 的一元二次方程,解之取其正值即可得出结论.[解析](1)设使背包的月销量不低于800个,每个售价是x 元,980﹣30×14010x -≥800,解得x ≤200, 故要使背包的月销量不低于800个,每个售价应不高于200元.(2)由题意可得:[200(1﹣A %)﹣150]•800(1+5A %)=40000,整理,得:A %﹣20 (A %)2=0, 解得:A 1=5,A 2=0(不合题意,舍去).故200(1﹣A %)=190(元)答:在实际销售过程中每个背包售价为190元.…[点睛]本题考查了一元一次不等式、一元二次方程在实际问题中的应用---销售利润问题,解题关键是利润问题中数量关系,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.21、(8分)阅读下面例题的解答过程,体会、理解其方法,并借鉴该例题的解法解方程.例:解方程2110x x ---=解:(1)当10x -≥即1x ≥时.11x x -=-,原方程化为2(1)10x x ---=,即20x x -=,解得1201x x ==,. ∵1x ≥,故0x =舍去,1x =是原方程的解(2)当10x -<即1x <时.1(1)x x -=--,原方程化为2(1)10x x +--=,即220x x +-=,解得1212x x ==-,. ∵1x <,故1x =舍去,2x =-是原方程的解.综上所述,原方程的解为1212x x ==-,.解方程:22240x x ++-=[分析]把22240x x ++-=中的绝对值去号求解,分别讨论即可.[解析](1)当20x +≥即2x ≥-时.22x x +=+,原方程化为22(2)40x x ++-=,即220x x +=,解得1202x x ==-,. ∵2x ≥-,故1202x x ==-,是原方程的解.(2)当20x +<即2x <-时.2(2)x x +=-+,原方程化为22(2)40x x -+-=,即2280x x --=,解得1242x x ==-,. ∵2x <-,故1242x x ==-,不是原方程的解.综上所述,原方程的解为1202x x ==-,.[考点]绝对值,解一元二次方程.22. (8分)关于x 的一元二次方程x 2﹣3x +k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根,求此时m 的值.[分析](1)利用判别式的意义得到△=(﹣3)2﹣4k ≥0,然后解不等式即可;‘(2)利用(1)中的结论得到k 的最大整数为2,解方程x 2﹣3x +2=0解得x 1=1,x 2=2,把x =1和x =2分别代入一元二次方程(m ﹣1)x 2+x +m ﹣3=0求出对应的m ,同时满足m ﹣1≠0.[解答]解:(1)根据题意得△=(﹣3)2﹣4k ≥0,解得k ≤;(2)k 的最大整数为2,方程x 2﹣3x +k =0变形为x 2﹣3x +2=0,解得x 1=1,x 2=2,∵一元二次方程(m ﹣1)x 2+x +m ﹣3=0与方程x 2﹣3x +k =0有一个相同的根,∴当x =1时,m ﹣1+1+m ﹣3=0,解得m =;当x =2时,4(m ﹣1)+2+m ﹣3=0,解得m =1,而m ﹣1≠0,∴m 的值为.[点评]本题考查了根的判别式:一元二次方程A x 2+B x +C =0(A ≠0)的根与△=B 2﹣4A C 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.23.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=A 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.。

沪科版八年级数学上册《12.3一次函数与二元一次方程》单元测试卷-附答案

沪科版八年级数学上册《12.3一次函数与二元一次方程》单元测试卷-附答案

沪科版八年级数学上册《12.3一次函数与二元一次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.直线y =3x -1与y =x+3的交点坐标是 ( ) A .(2,5)B .(1,4)C .(-2,1)D .(-3,0)2.如图,已知函数y =ax -3和y =kx 的图象交于点P(2,-1),则关于x ,y 的方程组3y ax y kx =-⎧⎨=⎩的解是( )A .21x y =⎧⎨=-⎩B .12x y =-⎧⎨=⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩3.无论实数m 为何值,直线y x m =-与直线23y x =-+的交点都不可能出现在平面直角坐标系中的( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在直角坐标系中A (2,0)、B (-3,-4)、O (0,0),则△AOB 的面积( ) A .4B .6C .8D .35.一次函数()50y kx k =+≠的图象与正比例函数()0y mx m =≠的图象都经过点(-3,2),则方程组5y kx y mx =+⎧⎨=⎩的解为( ) A .32x y =⎧⎨=⎩B .32x y =-⎧⎨=-⎩C .23x y =⎧⎨=-⎩D .32x y =-⎧⎨=⎩6.如图所示,在平面直角坐标系中,直线124y x =+分别与x 轴,y 轴交于A ,B 两点,以线段OB 为一条边向右侧作矩形OCDB ,且点D 在直线2y x b =-+上,若矩形OCDB 的面积为20,直线124y x =+与直线2y x b =-+交于点P .则P 的坐标为( )A .522,33⎛⎫ ⎪⎝⎭B .1731,33⎛⎫ ⎪⎝⎭C .()2,8D .()4,127.如图,一次函数y kx b =+的图象与x 轴交于点()2,0,与1y x =+的图象交于点()1,2P ,则下列说法正确的是( )A .关于x ,y 的方程组1y x y kx b =+⎧⎨=+⎩的解是1,2x y =⎧⎨=⎩ B .方程0kx b +=的解是2x =- C .方程1kx b x +=+的解是2x = D .不等式1kx b x +<+的解集是1x <8.函数y kx =与1y x =-的图象交点坐标为()2,a ,则关于x ,y 的方程组01kx y x y -=⎧⎨-=⎩的解为( )A .23x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .33x y =⎧⎨=⎩9.《九章算术》中记载了如何用算筹来表示二元一次方程组的解法,可以用图象法来解方程组.如图,一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点P ,则方程组1122,y k x b y k x b =+⎧⎨=+⎩的解是( )A .32x y =-⎧⎨=-⎩B .2,3x y =⎧⎨=-⎩C .3,2x y =⎧⎨=⎩D .3,2x y =-⎧⎨=⎩10.若用图象法解二元一次方程组y kx by mx n =+⎧⎨=+⎩时所画的图象如图所示,则该方程组的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .22x y =⎧⎨=⎩二、填空题11.若直线y =x +h 与y =2x +3的交点在第二象限,则h 的取值范围是 .12.如图,直角坐标系中,直线2y x =+和直线y ax c =+相交于点P (m ,3),则方程组2y x y ax c =+⎧⎨=+⎩的解为 .13.直线13y ax =+与2y x b =-+的图象如图所示,则方程组3y ax y x b =+⎧⎨=-+⎩的解是 .14.已知32x y =⎧⎨=-⎩和21x y =⎧⎨=⎩是二元一次方程3ax by +=-的两个解.则一次函数y ax b =+的图象与y 轴交点坐标是 .15.两条直线y=11k x b +和y=22k x b +相交于点A(-2,3),则方程组1122y k x b y k x b =+⎧⎨=+⎩的解是16.在平面直角坐标系内,若两条直线1:2l y x =--和2:2l y x b =-的交点在第三象限的角平分线上,则b 的值为 .17.若直线2y x =-向上平移a 个单位后,与直线1y x =+的交点在第一象限,则符合条件的a 值可以是 .(写出满足题意的一个值)18.已知直线1l :y 3x b =-+与直线2l :y kx 1=+在同一坐标系中的图象交于点()1,2-,那么方程组3x y by kx 1+=⎧-=⎨⎩的解是 .19.如图,函数y ax =和y kx b =+的图象相交于点()21A -,,可知关于x 的不等式ax kx b <+的解集为2x >-,那么关于x 、y 的二元一次方程组00ax y kx y b -=⎧⎨-+=⎩的解为 .20.在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =-2x 交于点A ,B ,则△AOB 的面积为 .三、解答题21.已知学校、文具店、图书馆依次在同一条直线上,学校离图书馆2300m ,文具店离图书馆1800m .某天小华步行从学校出发去图书馆,当他匀速走了12min 后,想起要去买彩笔,于是按原路匀速返回,走了8min到达刚经过的文具店,在文具店停留了10min ,买彩笔后,匀速走了18min 到达图书馆.下面图中x 表示时间,y 表示离图书馆的距离.图像反映了这个过程中小华离图书馆的距离与时间之间的对应关系.请根据相关信息,回答下列问题: (1)△填表:小华离开学校的时间/min 6 10 20 26 小华离图书馆的距离/m18501800△填空:学校到文具店的距离为______m ;小华从文具店出发到图书馆的速度为______m /min . △当2048x ≤≤时,请直接写出小华离图书馆的距离y 关于时间x 的函数解析式;(2)有同学小强与小华同时从学校出发去图书馆,小强匀速走了46min 到达图书馆,那么小强去图书馆的途中遇到小华时离图书馆的距离是多少?(直接写出结果即可)22.临汾市某公园翻修后,推出了游船项目,为大众提供了一个可以玩桌游、商业等活动的场合.这个项目有甲、乙两种消费卡,已知甲、乙两种消费卡的费用y (元)与消费次数x (次)的函数关系如图所示.根据图中信息,解答下列问题:(1)分别求出选择甲、乙两种消费卡y关于x的函数解析式;(2)点B的坐标为______,点B表示的实际意义为____________.23.2024年4月18日,西安市教育局召开全市践行“三个课堂”现场推进会.为了加强“三个课堂”建设,使“立德树人”在课堂深耕厚植,某校建成了一处劳动实践基地,计划将其全部用来种植蔬菜.经调查发现,某种蔬菜的种植成本y(元/平方米)与其种植面积x(平方米)之间的函数关系如图所示,请根据图中信息,解答下列问题:(1)请求出图中AB段y与x之间的函数关系式;(2)当这种蔬菜每平方米的种植成本不超过26元时,种植蔬菜的面积最大为多少平方米?24.某校为迎接县中学生篮球比赛,计划购买A 、B 两种篮球共20个供学生训练使用.若购买A 种篮球6个,则购买两种篮球共需费用720元;若购买A 种篮球12个,则购买两种篮球共需费用840元. (1)A 、B 两种篮球共需单价各多少元?(2)设购买A 种篮球x 个且A 种篮球不少于8个,所需费用为y 元,试确定y 与x 的关系式.25.一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 和2y 关于x 的函数图像如图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数图像关系式; (2)试计算:何时两车相距300千米?参考答案1.A2.A 3.C 4.A 5.D 6.A 7.A 8.B 9.D 10.A 11.32<h <312.13x y =⎧⎨=⎩13.21x y =-⎧⎨=⎩14.30,7⎛⎫- ⎪⎝⎭15.16.-117.2(答案不唯一) 18.{x 1y 2==- 19.21x y =-⎧⎨=⎩20.321.(1)△1550,1800;△500,100;△()()1800203010048003048x y x x ⎧≤≤⎪=⎨-+<≤⎪⎩(2)1550m22.(1)20y x =甲 10100y x =+乙(2)()10,200;当消费10次时,两种消费卡消费一样,都是200元23.(1)图中AB段y与x之间的函数关系式为1625y x=+(2)种植蔬菜的面积最大为500平方米24.(1)A种篮球每个50元,B种篮球每个30元;(2)y=20x+600(8≤x≤20)25.(1)1100(08)y x x=≤≤2160800y x=-+(05)x≤≤(2)2513h或5513h。

(完整版)(一次函数单元测试题含答案)

(完整版)(一次函数单元测试题含答案)

一次函数单元测试题(分数120分时间:120分钟)一、选择题(本大题共10小题,共30分)1.一次函数y=(k+2)x+k2−4的图象经过原点,则k的值为()A. 2B. −2C. 2或−2D. 32.已知一次函数y=kx+b−x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<03.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.4.已知直线y=(m−3)x−3m+1不经过第一象限,则m的取值范围是()A. m≥13B. m≤13C. 13≤m<3 D. 13≤m≤35.下列函数关系式中:①y=2x+1;②y=1x ;③y=x+12−x;④s=60t;⑤y=100−25x,表示一次函数的有()A. 1个B. 2个C. 3个D. 4个6.如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A. (−3,0)B. (−6,0)C. (−32,0) D. (−52,0)7.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A. 乙前4秒行驶的路程为48米B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等D. 在4至8秒内甲的速度都大于乙的速度8.如图,△ABC是等腰直角三角形,∠A=90∘,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )A. B. C. D.9.小明、小华从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小华骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小明出发时间t(分)之间的函数关系如图所示.下列说法:①小华先到达青少年宫;②小华的速度是小明速度的2.5倍;③a=24;④b=480.其中正确的是()A. ①②④B. ①②③C. ①③④D. ①②③④10.已知一次函数y=ax+4与y=bx−2的图象在x轴上相交于同一点,则ba的值是( )A. 4B. −2C. 12D. −12二、填空题(本大题共10小题,共30分)11.函数y=√x+2−√3−x中自变量x的取值范围是______.12.如果直线y=−2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .13.已知y−2与x成正比例,当x=1时,y=5,那么y与x的函数关系式是______ .14.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是 .15.已知一次函数y=(−3a+1)x+a的图象经过一、二、三象限,不经过第四象限,则a的取值范围是______ .16.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是______ .17.如图,在平面直角坐标系中,直线y=−√52x+2√5与x轴,y轴分别交于点A,B,将△AOB沿过点A的直线折叠,使点B落在x轴的负半轴上,记作点C,折痕与y轴交于点D,则点D的坐标为______ 。

新北师大版八年级上册一次函数单元测试试题以及答案

新北师大版八年级上册一次函数单元测试试题以及答案

八年级上册一次函数练习试题1、一次函数的图象过点M(3,2),N(—1,—6)两点.(1)求函数的表达式;⑵画出该函数的图象•(3)与x、y交点坐标分别是多少?(4)与坐标轴围成三角形面积是多少?2、在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.3、已知一次函数的图象过点A(2,—1)和点B,其中点B是另一条直线y=—x+3与y轴的交点,求这个一次函数的表达式4、已知直线I与直线y=2x+1的交点的横坐标为2,与直线y=—x+8的交点的纵坐标为—7,求直线的表达式。

5、某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)(2)当x>2时,求y与x之间的函数关系式;((3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?6、小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?7、已知y与x+1成正比例关系,当x=2时,y=1,求当x=-3时y的值?8、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.9、某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?10、已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.11、已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=﹣x?(4)k为何值时,y随x的增大而减小?12、判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.13、一次函数y=kx+b的自变量x的取值范围是﹣3≤x≤6,相应函数值的取值范围是﹣5≤y≤﹣2,确定这个函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档