初中数学校本教材

合集下载

初中数学校本教材(完整版)

初中数学校本教材(完整版)

初中数学校本教材《生活与数学》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学能够协助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又使用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与相关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,协助学生更好的理解和掌握数学基础知识,并使用学到的数学知识去解决实际生活中的数学问题。

二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

”美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就能够表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维水平。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称相关的。

对称给人协调,平稳的感觉,像圆,正方体等,它们的形式是如此的匀称优美。

初中数学校本教材(完整版)

初中数学校本教材(完整版)

初中数学校本教材————《生活与数学》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。

对称给人协调,平稳的感觉,像圆,正方体等,它们的形式是如此的匀称优美。

初中数学校本教材

初中数学校本教材

初中数学校本教材数学是科学的基础知识,也是解决生活问题的关键。

为了培养学生的兴趣和正确的科学态度,我们开发了数学校本课程。

这个课程要尊重学生的实际和兴趣,让学生在生活中实践体验,提高他们的观察和分析能力,培养创造性和解决问题的能力。

同时,我们也注重学生的动手操作能力的训练,鼓励他们展示自己的研究成功,培养成功心态,使学生的心理得到健康的发展。

本课程由八年数学教师具体负责实施,主要内容包括让学生体会数学在我们的生活中的应用,让他们在课堂上多设情景,应用数学解决问题,感受到数学的乐趣。

我们希望在愉快、轻松的研究过程中,让学生掌握数学知识,培养良好的研究惯,观察事物的能力,形成正确的人生观、价值观。

在课程内容和活动安排上,我们选取了一些学生生活实践中的鲜活材料,如几何、归纳、勾股定理、纳税、节能等问题,让学生在解决问题的过程中,充分发挥自己的创造性,感受到数学的乐趣。

我们的目标是让每位学生都能充分体现自己的能力,培养成功心态。

第一节课我们将讨论生活中的数学问题,例如钟面上的数字问题。

我们将引导学生思考如何在某些数的前面添加负号,使它们的代数和为零。

通过这个问题,我们希望让学生了解到数学来源于生活,同时也可以服务于生活。

1、数学问题1)10撕5次,共有多少张纸片?答:10撕5次,共有32张纸片。

2)撕8次、10次各有多少张纸片?答:撕8次共有256张纸片,撕10次共有1024张纸片。

3)撕n次,共有多少张纸片?答:撕n次,共有2的n次方张纸片。

4)撕成22张,需撕几次?答:撕成22张,需撕4次。

5)能否将纸片撕成1993片?为什么?答:不能将纸片撕成1993片,因为1993不是2的幂次方。

2、机器人问题在一条直线的流水线上,依次在A1、A2、A3、A4、A5有5个机器人在工作,现欲设一零件供应点,问应设于何处,可使5个机器人与它的距离总和为最小。

如果是6个机器人,则怎样?一般地,n个机器人的情况下,又应如何设置?答:对于5个机器人,零件供应点应设在A3处,使得5个机器人与它的距离总和为最小。

九年级数学校本教材

九年级数学校本教材

第一讲:反证法反证法:在证明一个命题时,人们有时先假设命题的结论不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与已知的定理、公理等矛盾,从而得出假设的结论不成立,即所求证的命题的结论正确.这种证明方法叫做反证法.反证法证题的基本步骤:1.假设命题的结论的反面是正确的;(反设)2.从这个假设出发,经过逻辑推理,推出与已知条件或者与已知的定理、公理等矛盾;(归缪)3.由推理判定假设不正确,从而推出命题的结论是正确的.(结论)疑惑:思考:在△ABC中,已知AB=c,BC=a,CA=b,且∠C≠90°.求证;a2+b2≠c2.有些命题想从已知条件出发,经过推理,得出结论是很困难的,因此,人们想出了一种证明这种命题的方法,即反证法.假设a2+b2=c2,则由勾股定理的逆定理可以得到∠C=90°,这与已知条件∠C≠90°产生矛盾,因此,假设a2+b2=c2是错误的.所以a2+b2≠c2是正确的.什么叫反证法?学以至用已知:在△ABC中,AB≠AC求证:∠B ≠∠ C证明:假设,则()这与矛盾.假设不成立.∴.例题例1.求证:两条直线相交只有一个交点.已知:;求证:;证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点”矛盾,所以假设不成立,则.例2.试证明:如果两条直线都与第三条直线平行,那么这两条直线也平行.已知:;求证:;证明:假设,则可设它们相交于点A。

那么过点A 就有条直线与直线c平行,这与“过直线外一点”。

矛盾,则假设不成立。

∴。

例3.求证:在一个三角形中,至少有一个内角小于或等于60°。

已知:;求证:;证明:假设,则。

∴,即。

这与矛盾.假设不成立.∴.随堂练习1、用反证法证明:一个三角形中不能有两个角是直角。

(1)已知:(2)求证:(3)三角形的内角和等于(4)这个命题如果不成立,那么其“反面”2.求证:在一个三角形中,如果两个角不等,那么他们所对的边也不等.3.否定下列命题的结论:(1)在⊿ABC中如果AB=AC,那么∠B=∠C。

初中《数学》校本课程教材

初中《数学》校本课程教材

初中《数学》校本课程教材初中《数学》校本课程教材的开发与实践初中阶段是学生数学学习的重要阶段,这一时期的学生不仅需要掌握基本的数学知识,还需要培养数学思维和解决问题的能力。

然而,传统的数学教材有时难以满足不同学生的学习需求,因此,开发适合学生实际情况的校本课程教材显得尤为重要。

一、确定教材定位和目标初中《数学》校本课程教材的定位应为辅助性教材,旨在补充传统教材的不足,满足学生多元化的学习需求。

教材的目标应包括以下几个方面:1、拓展数学知识,加深学生对教材内容的理解。

2、培养学生的数学思维和解决问题的能力。

3、提高学生的学习兴趣和积极性。

二、分析学生需求和学习内容在校本课程教材的开发过程中,学生需求和学习内容是两个关键因素。

首先,我们需要了解学生的学习需求,包括学生对数学学习的兴趣、学习难点以及对数学知识的需求等。

其次,我们需要分析学习内容,确定教材的知识点、难度和趣味性。

三、设计教材结构和内容在分析了学生需求和学习内容后,我们需要设计教材的结构和内容。

结构上,教材可以包括基础知识、拓展知识、练习和实践等部分。

内容上,可以选择与生活实际相关的案例和问题,引导学生运用数学知识解决实际问题。

此外,还可以设计一些趣味性的数学游戏和活动,提高学生的学习兴趣。

四、深入剖析重难点在校本课程教材的开发过程中,深入剖析重难点是至关重要的。

对于数学教材中的重难点内容,我们需要通过多种方式进行讲解和练习,帮助学生理解和掌握。

例如,可以设计一些探究性问题,引导学生自主探究和解决数学问题。

五、实践运用与反思总结实践是检验真理的唯一标准。

在校本课程教材的使用过程中,我们需要密切关注学生的反馈,了解他们对教材的使用情况。

对于教材中的不足之处,需要及时进行调整和改进。

还需要对教材的使用效果进行反思和总结,以便更好地服务于学生。

总之,初中《数学》校本课程教材的开发与实践是一项具有挑战性的任务。

通过明确教材定位和目标、分析学生需求和学习内容、设计教材结构和内容、深入剖析重难点以及实践运用与反思总结等环节,我们可以逐步完善教材,使其更加符合学生的学习需求。

初一数学校本课程教材

初一数学校本课程教材

初一数学校本课程走进数学世界晋江市磁灶中学涂友利1、数学伴我们成长2、人类离不开数学3、4、5、6、目录人人都能学会数学让我们来做数学(1)让我们来做数学(2)让我们来做数学(3)7、第7课自测题(A卷)8、第8课自测题(B卷)第1课数学伴我们成长宇宙之大(海王星、流星雨),粒子之微(被原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表), 大千世界,天上人间,无处不有数学的页献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

出生一一学前一一小学,我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。

2. 进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?数与式:认识、计算、方程、解应用题;图形:图形的认识、图形的画法、图形的计算;统计知识。

4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。

发挥一下我们的聪明才智,尝试解决下面的2个问题:(1)计算并观察下列三组算式:/8X 8 = 64, X 5 = 25,V7X 9 = 63; l4X 6 = 24;/12X 12 =…-'ll X 13 =---(2)已知25X25=625,则24X26=.(不要计算)(3)你能举出一个类似的例子吗?(4)更一般地,若axa=m,则(a+1)(a —1)=•通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,数学对促进人类社会发展的重大作用。

习题A组1、猜谜语(各打数学中常用字)①千人分在北上下;②1人立在口上边.2、在与伙伴玩“24点”游戏中,使数1, 5, 5, 5通过运算得24?3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1, 2, 3,4, 5, 6, 7, 8, 9这九个数字连成结果为100的算式:1 2 3 4 5 6 7 8 9 =1004、把长方形剪去一个角,它可能是儿边形?5、有一个正方形池塘如图,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?B组1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的L,再加上4班上学生的最后连你也算过去,就该有100个了那么小冯班上有多少学生?4第2课人类离不开数学我们已经知道,数学伴随我们的一生,实际上整个人类社会都离不开数学。

初中数学校本教材

初中数学校本教材

初中数学校本教材第一章兴趣数学1 Konigsberg 七桥问题(一笔画问题)18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。

如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。

当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。

七桥问题引起了著名数学家欧拉(1707—1783)的关注。

他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图是不能一笔画出的图形。

这就是说,七桥问题是无解的。

这个结论是如何产生呢?如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。

如果画笔经过一个n次,那么就有2n条线与该点相连结。

因此,这个图形中除起点与终点外的各点,都与偶数条线相连。

如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。

综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。

图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。

欧拉定理如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。

练习:[你能笔尖不离纸,一笔画出下面的每个图形吗?试试看。

(不走重复线路)图例1图例2图例3图例42四色问题人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。

初中《数学》校本课程教材

初中《数学》校本课程教材

校本课程目录数学与美----------------------------------------第2页中学数学与数学美--------------------------------第6页数学与文化--------------------------------------第8页数学文化欣赏-----------------------------------第14页从《数学与文化》中感受数学之美-----------------第17页三角函数历史-----------------------------------第19页解析几何建立的故事-----------------------------第28页数学生活---------------------------------------第32页半生痴迷数学著书立说---------------------------第36页山沟里的数学家---------------------------------第38页数学家们的生活趣事-----------------------------第40页牛顿与莱布尼茨的数学微积分之争-----------------第43页怎样才能学好数学呢-----------------------------第46页高中数学学习方法-------------------------------第50页华罗庚谈学数学方法-----------------------------第54页怎样才可以学好数学呢---------------------------第55页数学与美数字,在人们生活中广泛应用;数字,创造了许多如诗如画的篇章。

值此第24届国际数学家大会在北京召开之际,南京大学教授方延明写一篇妙趣横生的关于数字的文章,今转载于此,以飨读者。

我们国家是一个数学大国,也是一个数学古国,早在2000多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。

七年级数学校本课程教材

七年级数学校本课程教材

初一数学校本课程走进数学世界市磁灶中学涂友利目录1、第 1 课数学伴我们成长……………………………2、第2 课人类离不开数学……………………………3、第 3 课人人都能学会数学……………………………4、第 4 课让我们来做数学(1)……………………………5、第 5 课让我们来做数学(2)……………………………6、第6 课让我们来做数学(3)……………………………7、第7课自测题(A卷)……………………………8、第8课自测题(B卷)……………………………第 1 课数学伴我们成长宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

出生——学前——小学,我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。

2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?数与式:认识、计算、方程、解应用题;图形:图形的认识、图形的画法、图形的计算;统计知识。

4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。

发挥一下我们的聪明才智,尝试解决下面的2个问题:(1)计算并观察下列三组算式:(2)已知25×25=625,则24×26=_______ .(不要计算)(3)你能举出一个类似的例子吗?(4)更一般地,若a×a=m,则(a+1)(a-1)= _______ .通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,数学对促进人类社会发展的重大作用。

练习1、下列图形中,阴影部分的面积相等的是( ).2、三个连续奇数的和是21,它们的积为_______ .3、计算:7+27+377+4777= _______ .习题A组1、猜谜语(各打数学中常用字)①千人分在北上下;②1人立在口上边.2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:1 2 3 4 5 6 7 8 9 =1004、把长方形剪去一个角,它可能是几边形?5、有一个正方形池塘如图,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?A B CB组1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?2、在操场上,小华遇到小,交谈中顺便问道:“你们班有多少学生?”小说:“如果我们班上的学生像悟空那样一个能变两个,然后再来这么多学生的14,再加上班上学生的14,最后连你也算过去,就该有100个了.”那么小班上有多少学生?1819第2 课人类离不开数学我们已经知道,数学伴随我们的一生,实际上整个人类社会都离不开数学。

(完整word版)中学《生活中的数学》校本课程教材

(完整word版)中学《生活中的数学》校本课程教材

《生活中的数学》校本课程目录第一讲:生活中的趣味数学第二讲:数学中的悖论第三讲:对称——自然美的基础第四讲:斐波那契数列第五讲:龟背上的学问第六讲:巧用数学看现实第七讲:运用数学函数方程解决生活中的问题第八讲:生活中的优化问题举例第一讲:生活中的趣味数学1.'‘荡秋千”问题:我国明朝数学家程人位(1533〜1606年)写过一本数学著作叫做《直指算法统宗》,其中有-道与荡秋「冇关的数学问题是用《西江月》词牌写的:平地秋V未起,踏板一尺离地;送行二步与人齐,五尺人高曾记:仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语人意是:右一架秋「,当它静止时,踏板离地1尺,将它往前推送10尺(每5 尺为一步),秋千的踏板就和人一样高,这个人的身高为5尺,如果这时秋千的绳索拉得很直,试问它有多长?A卜•面我们用勾股定理知识求出答案:如图,设绳索AC=AD=X (尺),则AB= (x+l) -5 (尺),BD=IO (尺)在Rt∆ABD l∣',由勾股定理得AB⅛D=AD∖即(χ-4) '+10⅛Λ解得x=14.5,即绳索长为14.5尺.2.方程的应用:小青去植物园春游,回來以后爸爸问他春游花掉多少钱。

小青并不直接回答,却调皮地说:“我带出去的钱正好花了一半,剰卜•的元数是带出去角数的一半,剩卞的角数与带出去元数相同。

”爸爸踌躇一下,有些为难。

你能否帮助他把钱数算出來,小青到底带了多少钱?花了多少钱?还剰多少钱?方法一:设带出左X元,y角.根据”剩下的元数是带出玄•角数的一半”知道y是偶数花了的钱分X为奇数与偶数情况(1)X是奇数时候,花一半就是花了=剩b=(×-1)∕2元,(y∕2+5)角根据后面两句话知道,剩下=y∕2元,x角有二元一次方程m:(x-1)/2=y/2,y/2+5=x 解得x=9,y=8(2)X是偶数时候,花一半就足花了二剩F=x∕2元,(y∕2+5)角剩下的同上面情况有二元一次方f¥m:x/2=y/2,y/2+5=x解得x=y=10但是没有10角钱说法不符合实际(舍)・・・答案是9元8角方法二:设带出去X元Y角,还剩a元b角按照用掉一半还剩一半的等式:IOa + b = ( IOX ÷ y)/ 2又因为:a = y/2b ≡ X带入等式化简即町得:x∕y = 9∕8因为V只能是小于10的整数所以,小青带了9元8角!用了4元9角,还剩4元9角!3.工资的选择:假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:(A)工资以年薪计,第一年为4000美元以后每年加800美元:(B)工资以半年薪计,第一个半年为2000美元,以后每半年增加200美元。

【校本课程】初二数学校本教材

【校本课程】初二数学校本教材

初中数学校本教材前言《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

”美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?第一部分最完美的数完美数又称为完全数,最初是由毕达哥拉斯(Pythagoras)的信徒发现的,他们注意到:数6有一个特性,它等于它自己的因子(不包括它自身)的和: 6=1+2+3,下一个具有同样性质的数是28, 28=1+2+4+7+14接着是496和8128.他们称这类数为完美数.欧几里德在大约公元前350-300年间证明了:若2n-1是素数,则数2n-1[2n-1] (1) 是完全数.两千年后,欧拉证明每个偶完全数都具有这种形式.这就在完全数与梅森数(形式为12n的素数)之间建立了紧密的联系,到1999年6月1日为止,共发现了38个梅森素数,这就是说已发现了38个完全数.1:完全数是非常奇特的数,它们有一些特殊性质,例如每个完全数都是三角形数,即都能写成n(n+1)/2.6=1+2+3=3*4/228=1+2=3+4+5+6+7=7*8/2496=1+2+3+4+...+31=31*32/2 ....2n-1(2n-1)=1+2+3+...+(2n-1)=(2n-1)2n/22:把它们(6除外)的各位数字相加,直到变成一位数,那么这个一位数一定是1;它们都是连续奇数的立方和(6除外),22(23-1)=28=13+3324(25-1)=496=13+33+53+7326(27-1)=8128=13+33+53+73+93+113+133+153....2n-1(2n-1)=13+33+53+...+(2(n+1)/2-1)33:除了因子1之外,每个完全数的所有因子(包括自身)的倒数和等于1,比如:1/2+1/3+1/6=11/2+1/4+1/7+1/14+1/28=1 ....4:完全数都是以6或8结尾的,如果以8结尾,那么就肯定是以28结尾.注意以上谈到的完全数都是偶完全数,至今仍然不知道有没有奇完全数,如果真的存在奇完全数.第二部分归纳与发现归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.第一层有点数:1;第二层有点数:1×6;第三层有点数:2×6;第四层有点数:3×6;……第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有多少个交点?分析与解 (1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.由表18.1易知S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,……由此,不难推测S n-S n-1=n.把上面(n-1)个等式左、右两边分别相加,就得到S n-S1=2+3+4+…+n,因为S1=2,所以下面对S n-S n-1=n,即S n=S n-1+n的正确性略作说明.因为S n-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在S n-1上,所以有S n=S n-1+n.(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.由表18.2容易发现a1=1,a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,……a n-1-a n-2=n-2,a n-a n-1=n-1.n个式子相加注意请读者说明a n=a n-1+(n-1)的正确性.例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a ≤b≤c,如果 b=n(n是自然数),试问这样的三角形有多少个?分析与解我们先来研究一些特殊情况:(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.(2)设b=n=2,类似地可以列举各种情况如表18.3.这时满足条件的三角形总数为:1+2=3.(3)设b=n=3,类似地可得表18.4.这时满足条件的三角形总数为:1+2+3=6.通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:例4设1×2×3×…×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+…+n!×n.分析与解先观察特殊情况:(1)当n=1时,原式=1=(1+1)!-1;(2)当n=2时,原式=5=(2+1)!-1;(3)当n=3时,原式=23=(3+1)!-1;(4)当n=4时,原式=119=(4+1)!-1.由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.1+原式=1+(1!×1+2!×2+3!×3+…+n!×n)=1!×2+2!×2+3!×3+…+n!×n=2!+2!×2+3!×3+…+n!×n=2!×3+3!×3+…+n!×n=3!+3!×3+…+n!×n=…=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5设x>0,试比较代数式x3和x2+x+2的值的大小.分析与解本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有x3<x2+x+2.①设x=10,则有x3=1000,x2+x+2=112,所以x3>x2+x+2.②设x=100,则有x3>x2+x+2.观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则x3-x2-x-2=0,(x3-x2-2x)+(x-2)=0,(x-2)(x2+x+1)=0.因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样(1)当x=2时,x3=x2+x+2;(2)当0<x<2时,因为x-2<0,x2+x+2>0,所以 (x-2)(x2+x+2)<0,即x3-(x2+x+2)<0,所以 x3<x2+x+2.(3)当x>2时,因为x-2>0,x2+x+2>0,所以 (x-2)(x2+x+2)>0,即x3-(x2+x+2)>0,所以 x3>x2+x+2.综合归纳(1),(2),(3),就得到本题的解答.练习七1.试证明例7中:2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n条直线把平面分割为多少块区域?然后做出证明.)3.求适合x5=656356768的整数x.(提示:显然x不易直接求出,但可注意其取值范围:505<656356768<605,所以502<x<602.)第三部分生活中的数学(储蓄、保险与纳税)储蓄、保险、纳税是最常见的有关理财方面的数学问题,几乎人人都会遇到,因此,我们在这一讲举例介绍有关这方面的知识,以增强理财的自我保护意识和处理简单财务问题的数学能力.1.储蓄银行对存款人付给利息,这叫储蓄.存入的钱叫本金.一定存期(年、月或日)内的利息对本金的比叫利率.本金加上利息叫本利和.利息=本金×利率×存期,本利和=本金×(1+利率经×存期).如果用p,r,n,i,s分别表示本金、利率、存期、利息与本利和,那么有i=prn,s=p(1+rn).例1设年利率为0.0171,某人存入银行2000元,3年后得到利息多少元?本利和为多少元?解 i=2000×0.0171×3=102.6(元).s=2000×(1+0.0171×3)=2102.6(元).答某人得到利息102.6元,本利和为2102.6元.以上计算利息的方法叫单利法,单利法的特点是无论存款多少年,利息都不加入本金.相对地,如果存款年限较长,约定在每年的某月把利息加入本金,这就是复利法,即利息再生利息.目前我国银行存款多数实行的是单利法.不过规定存款的年限越长利率也越高.例如,1998年3月我国银行公布的定期储蓄人民币的年利率如表22.1所示.用复利法计算本利和,如果设本金是p元,年利率是r,存期是n 年,那么若第1年到第n年的本利和分别是s1,s2,…,s n,则s1=p(1+r),s2=s1(1+r)=p(1+r)(1+r)=p(1+r)2,s3=s2(1+r)=p(1+r)2(1+r)=p(1+r)3,……,s n=p(1+r)n.例2小李有20000元,想存入银行储蓄5年,可有几种储蓄方案,哪种方案获利最多?解按表22.1的利率计算.(1)连续存五个1年期,则5年期满的本利和为20000(1+0.0522)5≈25794(元).(2)先存一个2年期,再连续存三个1年期,则5年后本利和为20000(1+0.0558×2)·(1+0.0522)3≈25898(元).(3)先连续存二个2年期,再存一个1年期,则5年后本利和为20000(1+0.0558×2)2·(1+0.0552)≈26003(元).(4)先存一个3年期,再转存一个2年期,则5年后的本利和为20000(1+0.0621×3)·(1+0.0558×2)≈26374(元).(5)先存一个3年期,然后再连续存二个1年期,则5年后本利和为20000(1+0.0621×3)·(1+0.0522)2≈26268(元).(6)存一个5年期,则到期后本利和为20000(1+0.0666×5)≈26660(元).显然,第六种方案,获利最多,可见国家所规定的年利率已经充分考虑了你可能选择的存款方案,利率是合理的.2.保险保险是现代社会必不可少的一种生活、生命和财产保护的金融事业.例如,火灾保险就是由于火灾所引起损失的保险,人寿保险是由于人身意外伤害或养老的保险,等等.下面举两个简单的实例.例3 假设一个小城镇过去10年中,发生火灾情况如表22.2所示.试问:(1)设想平均每年在1000家中烧掉几家?(2)如果保户投保30万元的火灾保险,最低限度要交多少保险费保险公司才不亏本?解 (1)因为1+0+1+2+0+2+1+2+0+2=11(家),365+371+385+395+412+418+430+435+440+445=4096(家).11÷4096≈0.0026.(2)300000×0.0026=780(元).答(1)每年在1000家中,大约烧掉2.6家.(2)投保30万元的保险费,至少需交780元的保险费.例4财产保险是常见的保险.假定A种财产保险是每投保1000元财产,要交3元保险费,保险期为1年,期满后不退保险费,续保需重新交费.B种财产保险是按储蓄方式,每1000元财产保险交储蓄金25元,保险一年.期满后不论是否得到赔款均全额退还储蓄金,以利息作为保险费.今有兄弟二人,哥哥投保8万元A种保险一年,弟弟投保8万元B种保险一年.试问兄弟二人谁投的保险更合算些?(假定定期存款1年期利率为5.22%)解哥哥投保8万元A种财产保险,需交保险费80000÷1000×3=80×3=240(元).弟弟投保8万元B种财产保险,按每1000元交25元保险储蓄金算,共交80000÷1000×25=2000(元),而2000元一年的利息为2000×0.0522=104.4(元).兄弟二人相比较,弟弟少花了保险费约240-104.4=135.60(元).因此,弟弟投的保险更合算些.3.纳税纳税是每个公民的义务,对于每个工作人员来说,除了工资部分按国家规定纳税外,个人劳务增收也应纳税.现行劳务报酬纳税办法有三种:(1)每次取得劳务报酬不超过1000元的(包括1000元),预扣率为3%,全额计税.(2)每次取得劳务报酬1000元以上、4000元以下,减除费用800元后的余额,依照20%的比例税率,计算应纳税额.(3)每次取得劳务报酬4000元以上的,减除20%的费用后,依照20%的比例税率,计算应纳税额.每次取得劳务报酬超过20000元的(暂略).由(1),(2),(3)的规定,我们如果设个人每次劳务报酬为x元,y为相应的纳税金额(元),那么,我们可以写出关于劳务报酬纳税的分段函数:例5小王和小张两人一次共取得劳务报酬10000元,已知小王的报酬是小张的2倍多,两人共缴纳个人所得税1560元,问小王和小张各得劳务报酬多少元?解根据劳务报酬所得税计算方法(见函数①),从已知条件分析可知小王的收入超过4000元,而小张的收入在1000~4000之间,如果设小王的收入为x元,小张的收入为y元,则有方程组:由①得y=10000-x,将之代入②得x(1-20%)20%+(10000-x-800)20%=1560,化简、整理得0.16x-0.2x+1840=1560,所以0.04x=280,x=7000(元).则 y=10000-7000=3000(元).所以答小王收入7000元,小张收入3000元.例6如果对写文章、出版图书所获稿费的纳税计算方法是其中y(x)表示稿费为x元应缴纳的税额.那么若小红的爸爸取得一笔稿费,缴纳个人所得税后,得到6216元,问这笔稿费是多少元?解设这笔稿费为x元,由于x>4000,所以,根据相应的纳税规定,有方程x(1-20%)· 20%×(1-30%)=x-6216,化简、整理得0.112x=x-6216,所以 0.888x=6216,所以 x=7000(元).答这笔稿费是7000元.练习八1.按下列三种方法,将100元存入银行,10年后的本利和各是多少?(设1年期、3年期、5年期的年利率分别为5.22%,6.21%,6.66%保持不变)(1)定期1年,每存满1年,将本利和自动转存下一年,共续存10年;(2)先连续存三个3年期,9年后将本利和转存1年期,合计共存10年;(3)连续存二个5年期.2.李光购买了25000元某公司5年期的债券,5年后得到本利和为40000元,问这种债券的年利率是多少?3.王芳取得一笔稿费,缴纳个人所得税后,得到2580元,问这笔稿费是多少元?4.把本金5000元存入银行,年利率为0.0522,几年后本利和为6566元(单利法)?第四部分了解中外著名数学家1、韦达(1540-1603),法国数学家。

初中数学校本教材(完整版)

初中数学校本教材(完整版)

初中数学校本教材(完整版)第一篇:初中数学校本教材(完整版)初中数学校本教材————《生活与数学》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。

初中数学校本教材

初中数学校本教材

初中数学校本教材————《校本课程》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。

对称给人协调,平稳的感觉,象圆,正方体等,它们的形式是如此的匀称优美。

初中数学校本教材.

初中数学校本教材.

初中数学校本教材高兰徐春梅第二章最完美的数完美数又称为完全数,最初是由毕达哥拉斯(Pythagoras)的信徒发现的,他们注意到:数6有一个特性,它等于它自己的因子(不包括它自身)的和: 6=1+2+3,下一个具有同样性质的数是28, 28=1+2+4+7+14接着是496和8128.他们称这类数为完美数.欧几里德在大约公元前350-300年间证明了:若2n-1是素数,则数2n-1[2n-1] (1) 是完全数.两千年后,欧拉证明每个偶完全数都具有这种形式.这就在完全数与梅森数(形式为12n的素数)之间建立了紧密的联系,到1999年6月1日为止,共发现了38个梅森素数,这就是说已发现了38个完全数.1:完全数是非常奇特的数,它们有一些特殊性质,例如每个完全数都是三角形数,即都能写成n(n+1)/2.6=1+2+3=3*4/228=1+2=3+4+5+6+7=7*8/2496=1+2+3+4+...+31=31*32/2 ....2n-1(2n-1)=1+2+3+...+(2n-1)=(2n-1)2n/22:把它们(6除外)的各位数字相加,直到变成一位数,那么这个一位数一定是1;它们都是连续奇数的立方和(6除外),22(23-1)=28=13+3324(25-1)=496=13+33+53+7326(27-1)=8128=13+33+53+73+93+113+133+153....2n-1(2n-1)=13+33+53+...+(2(n+1)/2-1)33:除了因子1之外,每个完全数的所有因子(包括自身)的倒数和等于1,比如: 1/2+1/3+1/6=11/2+1/4+1/7+1/14+1/28=1 ....4:完全数都是以6或8结尾的,如果以8结尾,那么就肯定是以28结尾.注意以上谈到的完全数都是偶完全数,至今仍然不知道有没有奇完全数,如果真的存在奇完全数.第四章归纳与发现归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.第一层有点数:1;第二层有点数:1×6;第三层有点数:2×6;第四层有点数:3×6;……第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有多少个交点?分析与解(1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n 个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.由表18.1易知S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,……由此,不难推测S n-S n-1=n.把上面(n-1)个等式左、右两边分别相加,就得到S n-S1=2+3+4+…+n,因为S1=2,所以下面对S n-S n-1=n,即S n=S n-1+n的正确性略作说明.因为S n-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P 时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在S n-1上,所以有S n=S n-1+n.(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.由表18.2容易发现a1=1,a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,……a n-1-a n-2=n-2,a n-a n-1=n-1.n个式子相加注意请读者说明a n=a n-1+(n-1)的正确性.例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果b=n(n 是自然数),试问这样的三角形有多少个?分析与解我们先来研究一些特殊情况:(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.(2)设b=n=2,类似地可以列举各种情况如表18.3.这时满足条件的三角形总数为:1+2=3.(3)设b=n=3,类似地可得表18.4.这时满足条件的三角形总数为:1+2+3=6.通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:例4设1×2×3×…×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+…+n!×n.分析与解先观察特殊情况:(1)当n=1时,原式=1=(1+1)!-1;(2)当n=2时,原式=5=(2+1)!-1;(3)当n=3时,原式=23=(3+1)!-1;(4)当n=4时,原式=119=(4+1)!-1.由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.1+原式=1+(1!×1+2!×2+3!×3+…+n!×n)=1!×2+2!×2+3!×3+…+n!×n=2!+2!×2+3!×3+…+n!×n=2!×3+3!×3+…+n!×n=3!+3!×3+…+n!×n=…=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5设x>0,试比较代数式x3和x2+x+2的值的大小.分析与解本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有初一英语竞赛题型解题指导及训练范丽君第一章听力全日制义务教育普通高级中学《英语课程标准》明确规定:初中一年级(七年级)听的能力要求达到:1.能识别不同句式的语调,如:陈述句、疑问句和指令等;2.能根据语调变化,判断句子意义的变化;3.能辨认歌谣中的韵律;4.能识别语段中句子间的联系;5.能听懂学习活动中的连续的指令和问题,并作出适当的反应;6.能听懂有关熟悉话题的语段;7.能借助提示听懂教师讲述的故事。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学校本教材————《校本课程》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。

对称给人协调,平稳的感觉,象圆,正方体等,它们的形式是如此的匀称优美。

正是由于几何图形中有这些点对称、线对称、面对称,才构成了美丽的图案,精美的建筑,巧夺天工的生活世界,也才给我们带来丰富的自然美,多彩的生活美。

中学数学的美育性,除了上述一些方面,还有其它美妙的地方,只要我们用心挖掘和捕捉,就会发现数学蕴涵着如此丰富的美的因素,教师要善于挖掘美的素材,在学生感受美的同时既提高教学质量,又使教学韵味深厚。

第一章兴趣数学第一节七桥问题(一笔画问题)18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。

如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。

当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。

七桥问题引起了著名数学家欧拉(1707—1783)的关注。

他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图是不能一笔画出的图形。

这就是说,七桥问题是无解的。

这个结论是如何产生呢?如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。

如果画笔经过一个n次,那么就有2n条线与该点相连结。

因此,这个图形中除起点与终点外的各点,都与偶数条线相连。

如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。

综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。

图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。

欧拉定理:如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。

练习:你能笔尖不离纸,一笔画出下面的每个图形吗?试试看。

(不走重复线路)图例1图例2图例3图例42四色问题人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。

这个地图着色问题,是一个著名的数学难题。

大家不妨用一张中国政区图来试一试,无论从哪里开始着色,至少都要用上四种颜色,才能把所有省份都区别开来。

所以,很早的时候就有数学家猜想:“任何地图的着色,只需四种颜色就足够了。

”这就是“四色问题”这个名称的由来。

四色问题又称四色猜想,是世界近代三大数学难题之一。

四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。

”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。

”(右图)这里所指的相邻区域,是指有一整段边界是公共的。

如果两个区域只相遇于一点或有限多点,就不叫相邻的。

因为用相同的颜色给它们着色不会引起混淆。

数学史上正式提出“四色问题”的时间是在1852年。

当时伦敦的大学的一名学生法朗西斯向他的老师、著名数学家、伦敦大学数学教授莫根提出了这个问题,可是莫根无法解答,求助于其它数学家,也没有得到答案。

于是从那时起,这个问题便成为数学界的一个“悬案”。

一直到二十年前的1976年9月,《美国数学会通告》正式宣布了一件震撼全球数学界的消息:美国伊利诺斯大学的两位教授阿贝尔和哈根,利用电子计算机证明了“四色问题”这个猜想是完全正确的!他们将普通地图的四色问题转化为2000个特殊图的四色问题,然后在电子计算机上计算了足足1200个小时,作了100亿判断,最后成功地证明了四色问题,轰动了世界。

这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。

2麦比乌斯带每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。

这是德国数学家麦比乌斯(Möbius.A.F 1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带。

有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。

3分割图形分割图形是使我们的头脑灵活,增强观察能力的一种有趣的游戏。

我们先来看一个简单的分割图形的题目──分割正方形。

在正方形内用4条线段作“井”字形分割,可以把正方形分成大小相等的9块,这种图形我们常称为九宫格。

用4条线段还可以把一个正方形分成10块,只是和九宫格不同的是,每块的大小不一定都相等。

那么,怎样才能用4条线段把正方形分成10块呢?请你先动脑筋想想,在动脑的同时还要动手画一画其实,正方形是不难分割成10块的,下面就是其中两种分割方法。

练习:想一想,用4条线段能将正方形分成11块吗?应该怎样分?5数学故事(1)奇特的墓志铭在大数学家阿基米德的墓碑上,镌刻着一个有趣的几何图形:一个圆球镶嵌在一个圆柱内。

相传,它是阿基米德生前最为欣赏的一个定理。

在数学家鲁道夫的墓碑上,则镌刻着圆周率π的35位数值。

这个数值被叫做。

”鲁道夫数”。

它是鲁道夫毕生心血的结晶。

大数学家高斯曾经表示,在他去世以后,希望人们在他的墓碑上刻上一个正17边形。

因为他是在完成了正17边形的尺规作图后,才决定献身于数学研究的……不过,最奇特的墓志铭,却是属于古希腊数学家丢番图的。

他的墓碑上刻着一道谜语般的数学题:“过路人,这座石墓里安葬着丢番图。

他生命的1/6 是幸福的童年,生命的1/12是青少年时期。

又过了生命的1/7他才结婚。

婚后5年有了一个孩子,孩子活到他父亲一半的年纪便死去了。

孩子死后,丢番图在深深的悲哀中又活了4年,也结束了尘世生涯。

过路人,你知道丢番图的年纪吗?” 丢番图的年纪究竟有多大呢?设他活了X岁,依题意可列出方程。

这样,要知道丢番图的年纪,只要解出这个方程就行了。

这段墓志铭写得太妙了。

谁想知道丢番图的年纪,谁就得解一个一元一次方程;而这又正好提醒前来瞻仰的人们,不要忘记了丢番图献身的事业。

在丢番图之前,古希腊数学家习惯用几何的观点看待遇到的所有数学问题,而丢番图则不然,他是古希腊第一个大代数学家,喜欢用代数的方法来解决问题。

现代解方程的基本步骤,如移项、合并同类项、,方程两边乘以同一因子等等,丢番图都已知道了。

他尤其擅长解答不定方程,发明了许多巧妙的方法,被西方数学家誉为这门数学分支的开山鼻祖。

丢番图也是古希腊最后一个大数学家。

遗憾的是,关于他的生平。

后人几乎一无所知,既不知道他生于何地,也不知道他卒于何时。

幸亏有了这段奇特的墓志铭,才知道他曾享有84岁的高龄。

(2)希腊十字架问题图上那只巨大的复活节彩蛋上有一个希腊十字架,从它引发出许多切割问题,下面是其中的三个。

(a)将十字架图形分成四块,用它们拼成一个正方形;有无限多种办法把一个希腊十字架分成四块,再把它们拼成一个正方形,下图给出了其中的一个解法。

奇妙的是,任何两条切割直线,只要与图上的直线分别平行,也可取得同样的结果,分成的四块东西总是能拼出一个正方形。

(b)将十字架图形分成三块,用它们拼成一个菱形;(c)将十字架图形分成三块,用它们拼成一个矩形,要求其长是宽的两倍。

第二章最完美的数完美数又称为完全数,最初是由毕达哥拉斯(Pythagoras)的信徒发现的,他们注意到:数6有一个特性,它等于它自己的因子(不包括它自身)的和: 6=1+2+3,下一个具有同样性质的数是28, 28=1+2+4+7+14接着是496和8128.他们称这类数为完美数.欧几里德在大约公元前350-300年间证明了:若2n-1是素数,则数2n-1[2n-1] (1) 是完全数.两千年后,欧拉证明每个偶完全数都具有这种形式.这就在完全数与梅森数(形式为12n的素数)之间建立了紧密的联系,到1999年6月1日为止,共发现了38个梅森素数,这就是说已发现了38个完全数.1:完全数是非常奇特的数,它们有一些特殊性质,例如每个完全数都是三角形数,即都能写成n(n+1)/2.6=1+2+3=3*4/228=1+2=3+4+5+6+7=7*8/2496=1+2+3+4+...+31=31*32/2 ....2n-1(2n-1)=1+2+3+...+(2n-1)=(2n-1)2n/22:把它们(6除外)的各位数字相加,直到变成一位数,那么这个一位数一定是1;它们都是连续奇数的立方和(6除外),22(23-1)=28=13+3324(25-1)=496=13+33+53+7326(27-1)=8128=13+33+53+73+93+113+133+153.... 2n-1(2n-1)=13+33+53+...+(2(n+1)/2-1)33:除了因子1之外,每个完全数的所有因子(包括自身)的倒数和等于1,比如:1/2+1/3+1/6=11/2+1/4+1/7+1/14+1/28=1 ....4:完全数都是以6或8结尾的,如果以8结尾,那么就肯定是以28结尾.注意以上谈到的完全数都是偶完全数,至今仍然不知道有没有奇完全数,如果真的存在奇完全数.第三章有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2 计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b 代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例4计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例5计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例6计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例7计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1) =264-1.例8 计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例9计算:我们用一个字母表示它以简化计算.1.观察算式找规律例10某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例11计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(1000个2000)=2000×1000.从而有 S=1000 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第四章归纳与发现归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.第一层有点数:1;第二层有点数:1×6;第三层有点数:2×6;第四层有点数:3×6;……第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有多少个交点?分析与解(1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.由表18.1易知S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,……由此,不难推测S n-S n-1=n.把上面(n-1)个等式左、右两边分别相加,就得到S n-S1=2+3+4+…+n,因为S1=2,所以下面对S n-S n-1=n,即S n=S n-1+n的正确性略作说明.因为S n-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在S n-1上,所以有S n=S n-1+n.(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.由表18.2容易发现a1=1,a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,……a n-1-a n-2=n-2,a n-a n-1=n-1.n个式子相加注意请读者说明a n=a n-1+(n-1)的正确性.例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果b=n(n是自然数),试问这样的三角形有多少个?分析与解我们先来研究一些特殊情况:(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.(2)设b=n=2,类似地可以列举各种情况如表18.3.这时满足条件的三角形总数为:1+2=3.(3)设b=n=3,类似地可得表18.4.这时满足条件的三角形总数为:1+2+3=6.通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:例4设1×2×3×…×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+…+n!×n.分析与解先观察特殊情况:(1)当n=1时,原式=1=(1+1)!-1;(2)当n=2时,原式=5=(2+1)!-1;(3)当n=3时,原式=23=(3+1)!-1;(4)当n=4时,原式=119=(4+1)!-1.由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.1+原式=1+(1!×1+2!×2+3!×3+…+n!×n)=1!×2+2!×2+3!×3+…+n!×n=2!+2!×2+3!×3+…+n!×n=2!×3+3!×3+…+n!×n=3!+3!×3+…+n!×n=…=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5设x>0,试比较代数式x3和x2+x+2的值的大小.分析与解本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有x3<x2+x+2.①设x=10,则有x3=1000,x2+x+2=112,所以x3>x2+x+2.②设x=100,则有x3>x2+x+2.观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则x3-x2-x-2=0,(x3-x2-2x)+(x-2)=0,(x-2)(x2+x+1)=0.因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样(1)当x=2时,x3=x2+x+2;(2)当0<x<2时,因为x-2<0,x2+x+2>0,所以(x-2)(x2+x+2)<0,即x3-(x2+x+2)<0,所以x3<x2+x+2.(3)当x>2时,因为x-2>0,x2+x+2>0,所以(x-2)(x2+x+2)>0,即x3-(x2+x+2)>0,所以x3>x2+x+2.综合归纳(1),(2),(3),就得到本题的解答.练习七1.试证明例7中:2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n条直线把平面分割为多少块区域?然后做出证明.)3.求适合x5=656356768的整数x.(提示:显然x不易直接求出,但可注意其取值范围:505<656356768<605,所以502<x<602.)第五章生活中的数学(储蓄、保险与纳税)储蓄、保险、纳税是最常见的有关理财方面的数学问题,几乎人人都会遇到,因此,我们在这一讲举例介绍有关这方面的知识,以增强理财的自我保护意识和处理简单财务问题的数学能力.1.储蓄银行对存款人付给利息,这叫储蓄.存入的钱叫本金.一定存期(年、月或日)内的利息对本金的比叫利率.本金加上利息叫本利和.利息=本金×利率×存期,本利和=本金×(1+利率经×存期).如果用p,r,n,i,s分别表示本金、利率、存期、利息与本利和,那么有i=prn,s=p(1+rn).例1设年利率为0.0171,某人存入银行2000元,3年后得到利息多少元?本利和为多少元?解i=2000×0.0171×3=102.6(元).s=2000×(1+0.0171×3)=2102.6(元).答某人得到利息102.6元,本利和为2102.6元.以上计算利息的方法叫单利法,单利法的特点是无论存款多少年,利息都不加入本金.相对地,如果存款年限较长,约定在每年的某月把利息加入本金,这就是复利法,即利息再生利息.目前我国银行存款多数实行的是单利法.不过规定存款的年限越长利率也越高.例如,1998年3月我国银行公布的定期储蓄人民币的年利率如表22.1所示.用复利法计算本利和,如果设本金是p元,年利率是r,存期是n 年,那么若第1年到第n年的本利和分别是s1,s2,…,s n,则s1=p(1+r),s2=s1(1+r)=p(1+r)(1+r)=p(1+r)2,s3=s2(1+r)=p(1+r)2(1+r)=p(1+r)3,……,s n=p(1+r)n.例2小李有20000元,想存入银行储蓄5年,可有几种储蓄方案,哪种方案获利最多?解按表22.1的利率计算.(1)连续存五个1年期,则5年期满的本利和为20000(1+0.0522)5≈25794(元).(2)先存一个2年期,再连续存三个1年期,则5年后本利和为20000(1+0.0558×2)·(1+0.0522)3≈25898(元).(3)先连续存二个2年期,再存一个1年期,则5年后本利和为。

相关文档
最新文档