八年级数学上册 期中精选试卷专题练习(解析版)
八年级(上)期中数学试卷(含答案解析)
八年级(上)期中数学试卷一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.3.五边形的内角和是()A.180°B.360°C.540°D.600°4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠27.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.2812.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.16.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.17.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.参考答案与试题解析一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.五边形的内角和是()A.180°B.360°C.540°D.600°【考点】多边形内角与外角.【专题】常规题型.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°【考点】平行线的性质.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故选C.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.7.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点评】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.故选D.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=6.【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是65°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.16.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.【解答】解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.17.如图,AC=AD,BC=BD,则△ABC≌△ABD;应用的判定方法是(简写)SSS.【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS.【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形全等的判定,熟练掌握各判定定理是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.【点评】本题考查了全等三角形的判定及性质;证明两边相等时,如果这两边不在同一个三角形中,通常是证明它们所在的三角形全等来证明它们相等,是一种很重要的方法.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.【考点】全等三角形的判定.【专题】证明题.【分析】根据已知得出Rt△CEB和Rt△AED,利用HL定理得出即可.【解答】证明:∵BE⊥CD,∴∠CEB=∠AED=90°,∴在Rt△CEB和Rt△AED中,∴Rt△CEB≌Rt△AED(HL).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.【考点】作图-轴对称变换.【分析】根据关于坐标轴对称的点的坐标特点画出图形即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据OC=OD得,△ODC是等腰三角形;根据AB∥DC,得出对应角相等,求得△AOB是等腰三角形,证明最后结果.【解答】证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.【点评】本题主要考查了等腰三角形的判定和平行线的性质:两直线平行,内错角相等.。
八年级(上)期中数学试卷含答案解析
八年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC 的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C 的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC ≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE ﹣S△BOD=1,∴S△ABE =S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).。
八年级(上)期中数学试卷含答案解析
八年级(上)期中数学试卷一、选择题:每小题3分,共30分1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.若三角形三个内角度数的比为1:2:3,则这个三角形的最小角是()A.15°B.30°C.45°D.60°3.下列图形中,不是运用三角形的稳定性的是()A.屋顶支撑架 B.自行车三脚架C.伸缩门D.旧木门钉木条4.三角形的重心是三角形()的交点.A.三条高B.三条中线C.三条角平分线D.三条边的垂直平分线5.电信部门要再S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在()A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处6.点P(﹣a,b)关于y轴对称的点P′的坐标为()A.(a,b) B.(a,﹣b)C.(﹣a,b)D.(﹣a,﹣b)7.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.135°B.270° C.300° D.315°8.如图,在△ABE中,∠A=108°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.48°C.50°D.72°9.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°10.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是()A.3 B.5 C.6 D.8二、填空题:共6道小题,每小题3分,共18分11.一个n边形的内角和是它外角和的3倍,则边数n=.12.点P(﹣2,3)关于x轴的对称点P′的坐标为.13.在等腰三角形中,它的一边长等于5,一边长等于6,则它的周长为.14.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.15.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.16.如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为.三、解答题(本大题共8小题,满分72分)17.如图,M,N为两个居民小区,公交部门要在公路l上建一个公共汽车站P(尺规作图,不写作法,保留作图痕迹).(1)如图1,请问这个公共汽车站P建在什么位置,能使两个小区到车站的路程一样长?(2)如图2,请问这个公共汽车站P建在什么位置,能使两个小区到车站的总路程最短?18.如图,已知△ABC的周长为24cm,AD是BC边上的中线,AD=AB,AD=5cm,△ABD的周长是18cm,求AC的长.19.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的数是多少?20.如图,在正五边形ABCDE中,连接AC,求∠CAE的度数.21.如图,在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,DM=DN,过D作DF⊥AC于F,证明:AM+AN=2AF.22.在平面直角坐标系中,已知点A(1,0),B(4,2),C(2,3).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)△A1B1C1三个顶点的坐标;(3)画出△ABC关于直线l(l上各点纵坐标都为1)的对称图形△A2B2C2,写出点C关于直线l的对称点C2的坐标.23.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?24.如图,在△ABC中,AD平分∠BAC,DF⊥AB,DM⊥AC,AB=18cm,AF=12cm,AC=16cm,动点E 以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.(1)求的值;(2)求证:在运动过程中,无论t取何值,都有=2;(3)当t取何值时,△DFE≌△DMG.参考答案与试题解析一、选择题:每小题3分,共30分1.下列交通标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.若三角形三个内角度数的比为1:2:3,则这个三角形的最小角是()A.15°B.30°C.45°D.60°【考点】三角形内角和定理.【分析】设这三个内角分别为x,2x,3x,根据三角形的内角和为180°,列方程求出角的度数即可.【解答】解:设这三个内角分别为x,2x,3x,由题意得,x+2x+3x=180°,解得:x=30°,即最小角为30°.故选B.3.下列图形中,不是运用三角形的稳定性的是()A.屋顶支撑架 B.自行车三脚架C.伸缩门D.旧木门钉木条【考点】三角形的稳定性.【分析】利用三角形的稳定性进行解答.【解答】解:伸缩的拉闸门是利用了四边形的不稳定性,A、B、D都是利用了三角形的稳定性,故选:C4.三角形的重心是三角形()的交点.A.三条高B.三条中线C.三条角平分线D.三条边的垂直平分线【考点】三角形的重心.【分析】根据三角形的重心的定义解答.【解答】解:三角形的重心是三角形的三条中线的交点.故选B5.电信部门要再S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在()A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据角平分线的性质:角平分线上的点到角两边的距离相等;线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,可得答案.【解答】解:作∠COD的角平分线,作AB的垂直平分线,得∠COD的角平分线与AB的垂直平分线的交点即为所求得点.故选D.6.点P(﹣a,b)关于y轴对称的点P′的坐标为()A.(a,b) B.(a,﹣b)C.(﹣a,b)D.(﹣a,﹣b)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:∵平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数,纵坐标不变,可得:点P(﹣a,b)关于y轴对称的点P′的坐标是(a,b).故选:A.7.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.135°B.270° C.300° D.315°【考点】多边形内角与外角;三角形内角和定理.【分析】利用了四边形内角和为360°和直角三角形的性质求解.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选B.8.如图,在△ABE中,∠A=108°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.48°C.50°D.72°【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据三角形内角和定理计算即可.【解答】解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=CE,∴AB=AC,∴∠B=∠ACB=2∠E,∵∠BAE=108°,∴∠B+∠E=72°,∴∠B=48°,故选B.9.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.10.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是()A.3 B.5 C.6 D.8【考点】旋转的性质;等边三角形的性质.【分析】先计算出OC=6,根据等边三角形的性质得∠A=∠C=60°,再根据旋转的性质得OD=OP,∠POD=60°,根据三角形内角和和平角定义得∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,利用等量代换可得∠2=∠3,然后根据“AAS”判断△AOP≌△CDO,则AP=CO=6.【解答】解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60゜得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,∵,∴△AOP≌△CDO,∴AP=CO=6,故选:C.二、填空题:共6道小题,每小题3分,共18分11.一个n边形的内角和是它外角和的3倍,则边数n=8.【考点】多边形内角与外角.【分析】利用多边形的外角和是360度,一个n边形的内角和等于它外角和的5倍,则内角和是5×360°,而n边形的内角和是(n﹣2)180°,则可得到方程,解之即可.【解答】解:根据题意列方程,得:(n﹣2)180°=3×360°,解得:n=8,即边数n等于8.故答案为8.12.点P(﹣2,3)关于x轴的对称点P′的坐标为(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】让点P的横坐标不变,纵坐标互为相反数即可得到点P关于x轴的对称点P′的坐标.【解答】解:∵点P(﹣2,3)关于x轴的对称点P′,∴点P′的横坐标不变,为﹣2;纵坐标为﹣3,∴点P关于x轴的对称点P′的坐标为(﹣2,﹣3).故答案为:(﹣2,﹣3).13.在等腰三角形中,它的一边长等于5,一边长等于6,则它的周长为17或16.【考点】等腰三角形的性质;三角形三边关系.【分析】分别从若底边长为5,腰长为6与若底边长为6,腰长为5,去分析求解即可求得答案.【解答】解:若底边长为5,腰长为6,则它的周长为:5+6+6=17;若底边长为6,腰长为5,则它的周长为:6+5+5=16;故它的周长为17或16,故答案为17或16.14.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是2+n.【考点】规律型:图形的变化类.【分析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.【解答】解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为:2+n.16.如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为8.【考点】轴对称﹣最短路线问题.【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.△PMN的周长=P1P2,∴P1P2=OP1=OP2=OP=8.故答案为:8.三、解答题(本大题共8小题,满分72分)17.如图,M,N为两个居民小区,公交部门要在公路l上建一个公共汽车站P(尺规作图,不写作法,保留作图痕迹).(1)如图1,请问这个公共汽车站P建在什么位置,能使两个小区到车站的路程一样长?(2)如图2,请问这个公共汽车站P建在什么位置,能使两个小区到车站的总路程最短?【考点】作图—应用与设计作图;线段垂直平分线的性质;轴对称﹣最短路线问题.【分析】(1)点P是线段MN的垂直平分线与直线l的交点.(2)先作点M关于直线l的对称点M′,再连接M′N,与直线l交于点P.【解答】解:(1)如图1,点P即为所求;(2)如图2,点P即为所求.18.如图,已知△ABC的周长为24cm,AD是BC边上的中线,AD=AB,AD=5cm,△ABD的周长是18cm,求AC的长.【考点】三角形的角平分线、中线和高.【分析】由AD=AB、AD=5cm,可求出AB的长度,结合△ABD的周长是18cm,可求出BD的长度,进而可求出BC的长度,再根据△ABC的周长为24cm,即可求出AC的长.【解答】解:∵AD=AB,AD=5cm,∴AB=8cm.又∵△ABD的周长是18cm,∴BD=5cm.又∵D是BC的中点,∴BC=2BD=10cm.又∵△ABC的周长为24cm,∴AC=24﹣8﹣10=6cm.19.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的数是多少?【考点】线段垂直平分线的性质.【分析】由∠BAC=110°,即可求得∠B+∠C=70°,又由MP和NQ分别垂直平分AB和AC,即可得AP=BP,AQ=CQ,则可求得∠BAP+∠CAQ=∠B+∠C=70°,继而求得答案.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=∠B+∠C=70°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=40°.20.如图,在正五边形ABCDE中,连接AC,求∠CAE的度数.【考点】多边形内角与外角.【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAE的度数,易得∠CAE.【解答】解:正五边形内角和:(5﹣2)×180°=3×180°=540°∴∠ABC=∠BAE==108°,∴∠BAE===36°,∴∠CAE=∠BAE﹣∠BAC=108°﹣36°=72°.21.如图,在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,DM=DN,过D作DF⊥AC于F,证明:AM+AN=2AF.【考点】全等三角形的判定与性质;角平分线的性质.【分析】过点D作DG⊥AB于G,由HL分别证明Rt△ADG≌Rt△ADF和Rt△DFN≌Rt△DGM,得MG=NF,AG=AF,再把AM+AN变形即可得出结论.【解答】证明:过点D作DG⊥AB于G,如图所示:∵AD平分∠BAC,DF⊥AC,∴DF=DG,在Rt△ADG和Rt△ADF中,,∴Rt△ADG≌Rt△ADF(HL),∴AG=AF,在Rt△DFN和Rt△DGM中,,∴Rt△DFN≌Rt△DGM(HL),∴MG=NF又∵AG=AF,∴AM+AN=AG+MG+AN=AF+NF+AN=2AF.22.在平面直角坐标系中,已知点A(1,0),B(4,2),C(2,3).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)△A1B1C1三个顶点的坐标;(3)画出△ABC关于直线l(l上各点纵坐标都为1)的对称图形△A2B2C2,写出点C关于直线l的对称点C2的坐标.【考点】作图﹣轴对称变换.【分析】(1)分别作出点A、B、C关于y轴的对称点,顺次连接即可;(2)根据(1)中所画图象可得;(3)分别作出点A、B、C关于直线x=﹣1的对称点,顺次连接即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)由图可知点A1(﹣1,0)、B1(﹣4,2)、C1(﹣2,3);(3)如图,△A2B2C2即为所求,点C2(2,﹣5).23.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据AB=AC可得∠B=∠C,即可求证△BDE≌△CEF,即可解题;(2)根据全等三角形的性质得到∠CEF=∠BDE,于是得到∠DEF=∠B,根据等腰三角形的性质即可得到结论.(3)由(1)知:△DEF是等腰三角形,DE=EF,由(2)知,∠DEF=∠B,于是得到结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△BDE和△CEF中,∵∴△BDE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)解:∵∠DEC=∠B+∠BDE,即∠DEF+∠CEF=∠B+∠BDE,∵△BDE≌△CEF,∴∠CEF=∠BDE,∴∠DEF=∠B,又∵在△ABC中,AB=AC,∠A=50°,∴∠B=65°,∴∠DEF=65°;(3)解:由(1)知:△DEF是等腰三角形,DE=EF,由(2)知,∠DEF=∠B,而∠B不可能为直角,∴△DEF不可能是等腰直角三角形.24.如图,在△ABC中,AD平分∠BAC,DF⊥AB,DM⊥AC,AB=18cm,AF=12cm,AC=16cm,动点E 以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.(1)求的值;(2)求证:在运动过程中,无论t取何值,都有=2;(3)当t取何值时,△DFE≌△DMG.【考点】三角形综合题;三角形的面积;全等三角形的性质;角平分线的性质.【分析】(1)根据角平分线的性质,得出DF=DM ,再根据S △ABD =×AB ×DF ,S △ACD =×AC ×DM ,即可得出的值;(2)根据动点E 以2cm/s 的速度从A 点向F 点运动,动点G 以1cm/s 的速度从C 点向A 点运动,可得AE=2t ,CG=t ,而DF=DM ,再根据=进行计算求解即可;(3)分两种情况进行讨论:①当点G 在线段CM 上时,②当点G 在线段MA 上时,分别根据△DFE ≌△DMG ,得出EF=GM ,据此列出关于t 的方程,进行求解即可.【解答】解:(1)∵AD 平分∠BAC ,DF ⊥AB ,DM ⊥AC∴DF=DM ,又∵S △ABD =×AB ×DF ,S △ACD =×AC ×DM ,∴===;(2)证明:∵动点E 以2cm/s 的速度从A 点向F 点运动,动点G 以1cm/s 的速度从C 点向A 点运动, ∴AE=2t ,CG=t ,而DF=DM ,∴====2;(3)①如图1,当点G 在线段CM 上时,EF=AF﹣AE=12﹣2t,AM=AF=12,GM=CM﹣CG=(16﹣12)﹣t=4﹣t,∵△DFE≌△DMG,∴EF=GM,∴12﹣2t=4﹣t,∴t=8(舍去);②如图2,当点G在线段MA上时,EF=AF﹣AE=12﹣2t,GM=CG﹣CM=t﹣4,∵△DFE≌△DMG,∴EF=GM,∴12﹣2t=t﹣4,∴t=,综上所述:t=.第21页(共21页)。
八年级(上)期中数学试卷(含解析答案)
八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分)1.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个2.以下列数组作为三角形的三条边长,其中能构成直角三角形的是()A.1,,3 B.,,5 C.1.5,2,2.5 D.,,3.无理数的大小在以下两个整数之间()A.1与2 B.2与3 C.3与4 D.4与54.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+ B.2+C.2﹣1 D.2+15.下列各曲线中表示y是x的函数的是()A.B.C.D.6.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积是()A.8π cm2B.12π cm2C.16π cm2D.18π cm27.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)8.点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为()A.(0,﹣9)B.(﹣6,﹣1)C.(1,﹣2)D.(1,﹣8)9.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是()A.(2,1)B.(1,2) C.(,1 )D.(1,)10.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10二、填空题(共6小题,每小题3分,计18分)11.﹣的相反数是;倒数是;绝对值是.12.若a、b为实数,且b=+4,则a+b的值为.13.已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2015的值为.14.在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为.15.已知A(2,0),B(0,2),在x轴上确定点M,使三角形MAB 是等腰三角形,则M点的坐标为(任写一个).16.如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、解答题:(共8小题,计72分)17.(8分)计算:(1)×(9)(2)﹣×.18.(10分)计算:(1)2×(3﹣4﹣3)(2)(1+)(1﹣)+(+2)0+|2﹣|+.19.(6分)在数轴上画出表示的点.(要画出作图痕迹)20.(8分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(9分)△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.22.(9分)已知,如图在平面直角坐标系中,S△ABO=6,OA=OB,BC=12,求△ABC三个顶点的坐标.23.(10分)如图,D为△ABC的BC边上的一点,AB=10,AD=6,DC=2AD,BD=DC.(1)求BD的长;(2)求△ABC的面积.24.(12分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?参考答案与试题解析一、1.【考点】无理数.【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.【解答】解:根据判断无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,属于π类是无理数,因此无理数有2个.故选:C.【点评】本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻.2.【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、12+()2≠32,不能构成直角三角形,故选项错误;B、()2+()2≠52,不能构成直角三角形,故选项错误;C、1.52+22=2.52,能构成直角三角形,故选项正确;D、()2+()2≠()2,不能构成直角三角形,故选项错误.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.【考点】估算无理数的大小.【分析】先化简,然后再依据被开方数越大对应的算术平方根越大求解即可.【解答】解: =2=.∵1<3<4,∴1<<2.故选A.【点评】本题主要考查的是估算无理数的大小和二次根式化简与合并,依据夹逼法求得的大致范围是解题的关键.4. A.1+B.2+C.2﹣1 D.2+1【考点】实数与数轴.【分析】根据两点关于中点对称,可得线段的中点,根据线段中点的性质,可得答案.【解答】解:设C点坐标为x,由点B与点C关于点A对称,得AC=AB,即x﹣=+1,解得x=2+1.故选:D.【点评】本题考查了实数与数轴,利用两点关于中点对称得出线段的中点是解题关键.5.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.6.【考点】勾股定理.【分析】先根据已知条件利用勾股定理可得三角形的直角边(即半圆的直径),再得出半径的值,然后求出圆的面积即可得出答案.【解答】解:由勾股定理可得,三角形的直角边(即半圆的直径)为: =12,所以半径r=6,故S半圆=πr2=18π,故选:D.【点评】此题主要考查了学生对勾股定理和圆面积的理解和掌握,解决问题的关键是掌握半圆面积的算法,以及勾股定理的运用.7.【考点】全等三角形的判定与性质;坐标与图形性质;正方形的性质.【分析】过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.【点评】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.8.【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可.【解答】解:点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为(﹣3+3,﹣5﹣4),即(0,﹣9),故选:A.【点评】坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.9.【考点】等边三角形的性质;坐标与图形性质.【分析】过点A做AC⊥x轴于点C,根据等边三角形的性质结合点B的坐标即可找出OA、OC的长度,再利用勾股定理即可求出AC的长度,进而可得出点A的坐标,此题得解.【解答】解:过点A做AC⊥x轴于点C,如图所示.∵△AOB是等边三角形,若B点的坐标是(2,0),∴OA=OB=2,OC=BC=OB=1,在Rt△ACO中,OA=2,OC=1,∴AC==,∴点A的坐标为(1,).故选D.【点评】本题考查了等边三角形的性质.勾股定理以及坐标与图形性质,利用勾股定理求出AC的长度是解题的关键.10.【考点】勾股定理.【分析】分两种情况考虑,如图所示,分别在直角三角形ABC与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.二、11.【考点】分母有理化;实数的性质.【分析】根据相反数、倒数、绝对值的概念列出算式,再进行分母有理化即可得.【解答】解:﹣的相反数是==﹣2(),倒数为﹣=,绝对值为==2(),故答案为:﹣2(),,2().【点评】本题主要考查相反数、倒数、绝对值及分母有理化,熟练掌握相反数、倒数、绝对值的概念和分母有理化的方法是解题的关键.12.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,求出a、b的值,根据平方根的概念解答即可.【解答】解:由题意得,a2﹣1≥0,1﹣a2≥0,a﹣1≠0,解得,a=﹣1,则b=4,则a+b=3,故答案为:3.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.13.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的性质,横坐标相等,纵坐标互为相反数,进而求出即可.【解答】解:∵P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣5,解得:a=3,b=﹣4,∴(a+b)2015=(﹣1)2015=﹣1.故答案为:﹣1.【点评】此题主要考查了关于x轴对称点的性质,得出a,b的值是解题关键.14.【考点】点的坐标.【分析】根据角平分线上的点到脚的两边距离相等以及第一象限内点的横坐标与纵坐标都是正数求出m,第四象限内点的纵坐标是负数求出n,然后相加计算即可得解.【解答】解:∵点P(m,3)在第一象限的角平分线上,∴m=3,∵点Q(2,n)在第四象限角平分线上,∴n=﹣2,∴m+n=3+(﹣2)=1.故答案为:1.【点评】本题考查了各象限内点的坐标的符号特征以及角平分线上的点到脚的两边距离相等的性质,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.【考点】等腰三角形的判定;坐标与图形性质.【分析】①画AB的垂直平分线交x轴于一点;②以A为圆心,AB长为半径交x轴于两点;③以B为圆心,AB长为半径交交x轴于一点,再分别写出坐标即可.【解答】解:如图所示:M1(0,0),M4(﹣2,0),∵A(2,0),B(0,2),∴AB=,∵M2,M3是以A为圆心,AB长为半径交x轴于两点,∴M2(2+2,0),M3(﹣2+2,0).故所有满足条件点M的坐标是:(0,0)(﹣2,0)(2+2,0),(﹣2+2,0).【点评】此题主要考查了等腰三角形的判定与性质.注意分类讨论与数形结合思想的应用是解此题的关键.16.【考点】勾股定理.【分析】根据勾股定理求出AB的长,即可用减法求出阴影部分的面积.【解答】解:由勾股定理AB==13,根据题意得:S阴影=π()2+π()2﹣[π()2﹣×5×12]=30.【点评】观察图形的特点,用各面积相加减,可得出阴影部分的面积.三、17.【考点】二次根式的混合运算.【分析】(1)利用二次根式的乘法法则运算;(2)先把各二次根式化简为最简二次根式,然后进行二次根式的除法和乘法运算.【解答】解:(1)原式=×9×=45;(2)原式=﹣=1﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.【考点】二次根式的混合运算;零指数幂.【分析】先进行二次根式的化简,再根据二次根式混合运算的运算法则进行求解即可.【解答】解:(1)原式=4×(12﹣﹣9)=4×(3﹣)=36﹣4.(2)原式=1﹣2+1+(2﹣)+()=2﹣++=2+.【点评】本题考查了二次根式的混合运算,解答本题的关键在于熟练掌握二次根式的化简及二次根式混合运算的运算法则.19.【考点】勾股定理;实数与数轴.【分析】因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.再以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可.【解答】解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.【点评】考查了勾股定理,实数与数轴.能够正确运用数轴上的点来表示一个无理数.20.【考点】勾股定理的应用;一元一次方程的应用.【分析】根据题意可构造出直角三角形,根据勾股定理列出方程,便可得出答案.【解答】解:设秆长x米,则城门高(x﹣1)米,根据题意得x2=(x﹣1)2+32,解得x=5答:秆长5米.【点评】本题考查的是勾股定理在实际生活中的运用,比较简单.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.21.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)观察平面直角坐标系,根据点与坐标系的关系,即可求得A、B、C的坐标;(2)根据关于y轴对称的图形的特点,首先求得各对称点的坐标,继而画出△A1B1C1;(3)根据关于原点对称的图形的特点,首先求得各对称点的坐标,继而画出△A2B2C2.【解答】解:(1)A(0,3);B(﹣4,4);C(﹣2,1);(2)如图:B1的坐标为:(4,4);(3)如图:A2(0,﹣3).【点评】此题考查了轴对称变换与关于原点对称的图形的性质.此题难度不大,注意掌握数形结合思想的应用.22.【考点】三角形的面积;坐标与图形性质.【分析】先根据三角形面积求出OA的长,再根据OA=OB可得OB,最后由BC=10可得OC,继而可得答案.【解答】解:∵S△ABO=OB•OA=6,OA=OB,∴OA=OB=2,∴A(0,2)、B(﹣2,0).∵BC=12,∴OC=BC﹣OB=12﹣2,∴C(12﹣2,0).综上所述,A(0,2)、B(﹣2,0)、C(12﹣2,0).【点评】此题考查的知识点是三角形的面积、等腰直角三角形,关键是写三角形顶点的坐标时,要特别注意根据点所在的位置来确定坐标正负情况.23.【考点】勾股定理的逆定理.【分析】(1)由DC=2AD,根据AD的长求出DC的长,进而求出BD的长即可;(2)在直角三角形ABD中,由AB,AD以及BD的长,利用勾股定理的逆定理判断得到三角形为直角三角形,即可求出三角形ABC面积.【解答】解:(1)∵AD=6,DC=2AD,∴DC=12,∵BD=DC,∴BD=8;(2)在△ABD中,AB=10,AD=6,BD=8,∵AB2=AD2+BD2,∴△ABD为直角三角形,即AD⊥BC,∵BC=BD+DC=8+12=20,AD=6,∴S△ABC=×20×6=60.【点评】此题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.24.【考点】一次函数的应用.【分析】(1)当0<x≤6时,根据“水费=用水量×2”即可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×5+(用水量﹣6)×3”即可得出y与x的函数关系式;(3)经分析,当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x﹣6中,求出x值,此题得解.【解答】解:(1)根据题意可知:当0<x≤6时,y=2x;(2)根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6;(3)∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据数量关系列出函数关系式;(3)代入y=27求出x值.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.。
人教版2024-2025学年八年级数学上册期中试卷(解析版)
2024-2025八年级上册期中模拟试卷一、填空题(本题满分30分,每小题3分)1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】利用轴对称图形的概念可得答案.【详解】解:A .不是轴对称图形,故此选项不合题意;B .不是轴对称图形,故此选项不合题意;C .不是轴对称图形,故此选项不合题意;D .是轴对称图形,故此选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2. 已知长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形.若7a =,9b =,则c 的取值范围是( ) A. 2>cB. 16c <C. 216c ≤≤D. 216c <<【答案】D【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,进行求解即可.【详解】解:∵长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形,7a =,9b =, ∴b a c a b −<<+,即:9779c −<<+,∴216c <<;故选D .【点睛】本题考查三角形的三边关系.熟练掌握两边之和大于第三边,两边之差小于第三边,是解题的关键.3. 如图,ACE △≌DBF ,若11cm AD =,5cm =BC ,则AB 长为( )A. 6cmB. 7cmC. 4cmD. 3cm【答案】D【解析】 【分析】根据全等三角形的性质得到AC BD =,结合图形计算,得到答案.【详解】解:ACE ≌DBF ,AC BD ∴=,AC BC BD BC ∴−=−,即AB CD =,11cm AD = ,5cm =BC ,()11523cm AB ∴=−÷=,故选D .【点睛】本题考查全等三角形的性质,线段的和与差.掌握全等三角形的对应边相等是解题的关键. 4. 下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据直线、线段垂直平分线的性质、三角形全等的判定、等腰三角形的性质逐个判断即可得.【详解】解:①经过一点有无数条直线;则这个命题是假命题;②线段垂直平分线上的点到这条线段两端的距离相等;则这个命题是真命题;③有两边及其夹角对应相等的两个三角形全等;则这个命题是假命题;④等腰三角形底边上的高线和中线重合;则这个命题是真命题;综上,是真命题的有2个,故选:B .【点睛】本题考查了直线、线段垂直平分线的性质、三角形全等的判定、等腰三角形的性质,熟练掌握各判定定理与性质是解题关键.5. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6 cm AB =, 2.3 cm CD =,则四边形ABCD 的周长为( )A. 3.9cmB. 7.8cmC. 4cmD. 4.6cm【答案】B【解析】 【分析】本题考查了轴对称的性质,熟记性质得到相等的边是解题的关键.根据轴对称图形的性质得出 1.6cm AB BC ==, 2.3cm CD AD ==,进而求出即可.【详解】∵四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6cm AB =, 2.3cm CD =, ∴ 1.6cm AB BC ==, 2.3cm CDAD ==, 则四边形ABCD 的周长为:1.6 1.6 2.3 2.37.8cm +++=.故选:B .6. 如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是( )A. 2AB BF =B. 12ACE ACB ∠=∠C. AE BE =D. CD BE ⊥【答案】C【解析】 【分析】本题考查了三角形的角平分线、中线和高,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线,依此即可求解,熟悉它们的定义和性质是解题的关键.【详解】解:∵CD ,CE ,CF 分别是ABC 的高、角平分线、中线,∴CD BE ⊥,12ACE ACB ∠=∠,2AB BF =,无法确定AE BE =,故选:C .7. 如图90B C ∠=∠=°,AD AE =,添加下列条件后不能..使ABD ECA △≌△的是( )A. 2AD BD =B. BD AC =C. =90DAE ∠°D. AB EC =【答案】A【解析】 【分析】要判断能不能使ABD ECA △≌△,主要看添加上条件后能否符合全等三角形判定方法所要求的条件即可.【详解】解:A .添加2AD BD =,无法证明ABD ECA △≌△,故此选项符合题意;B .添加BD AC =,可以利用HL 证明ABD ECA △≌△,故此选项不符合题意;C .添加=90DAE ∠°,可以利用AAS 证明ABD ECA △≌△,故此选项不符合题意;D .添加AB EC =,可以利用HL 证明ABD ECA △≌△,故此选项不符合题意;故选:A .AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等.8. 一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是( )A. 12B. 15C. 18D. 21【答案】D【解析】【分析】由n 边形从一个顶点出发可引出()3n −条对角线,可求出多边形的边数即可解答.【详解】解:∵经过多边形的一个顶点有4条对角线,∴这个多边形有437+=条边, ∴此正多边形的周长为3721×=,故选:D .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.熟记n 边形从一个顶点出发可引出()3n −条对角线是解题的关键.9. 如图,在ABC 中,AB AC =,AB 的垂直平分线交AC 于点P ,若10cm AB =,6cm BC ,则PBC △的周长等于( )A. 16cmB. 12cmC. 8cmD. 20cm【答案】A【解析】 【分析】先求出10cm AC =,再根据线段垂直平分线的性质可得PA PB =,从而可得PB PC BC PA PC BC AC BC ++=++=+,由此即可得.【详解】解:AB AC = ,10cm AB =,10cm AC ∴=,AB 的垂直平分线交AC 于点P ,PA PB ∴=,6cm BC = ,PBC ∴△的周长为16cm PB PC BC PA PC BC AC BC ++=++=+=,故选:A .【点睛】本题主要考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题关键. 10. 如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A. 17B. 23C. 25D. 28【答案】A【解析】 【分析】根据三角形中线的性质可得AD CD =,进而根据三角形周长可得12BD AD +=,进而即可求解.【详解】解:∵在ABC 中,BD 为AC 边上的中线,∴AD CD =,8BC =,5AB =,BCD △的周长为20,20812BD AD ∴+−,∴ABD △的周长为51217AB BD AD ++=+=.故选A【点睛】本题考查了三角形中线的性质,掌握三角形中线的性质是解题的关键.11. 四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是()1,1−−,()1,1-,()2,1−,()3.2,1−,平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A. 将B 向左平移4.2个单位B. 将C 向左平移4个单位C. 将D 向左平移5.2个单位D. 将C 向左平移4.2个单位【答案】C【解析】 【分析】注意到A ,B 关于y 轴对称,只需要C ,D 关于y 轴对称即可,可以将点()2,1C −向左平移到()3.2,1−−,平移5.2个单位,或可以将()3.2,1D −向左平移到()2,1−−,平移5.2个单位.【详解】解:∵A ,B ,C ,D 这四个点的纵坐标都是1−,∴这四个点在一条直线上,这条直线平行于x 轴,∵()1,1A −−,()1,1B −,∴A ,B 关于y 轴对称,只需要C ,D 关于y 轴对称即可,∵()2,1C −,()3.2,1D −,∴可以将点()2,1C −向左平移到()3.2,1−−,平移5.2个单位,或可以将()3.2,1D −向左平移到()2,1−−,平移5.2个单位,故选:C .【点睛】本题考查了生活中的平移现象,关于y 轴对称的点的坐标,注意关于y 轴对称的点的坐标,横坐标互为相反数,纵坐标不变.12. 如图,在ABC ∆中,90A ∠=°,4AB =,3AC =,点O 为AB 的中点,点M 为ABC 内一动点且2OM =,点N 为OM 的中点,当BN CM +最小时,则ACM ∠的度数为( )A 15°B. 30°C. 45°D. 60°【答案】C【解析】 【分析】取OB 的中点D ,连接DM ,证明BON MOD ≌可得BN DM =,从而可判断当点D ,M ,C 共线时BN CM DM CM +=+最短,然后证明ACD 是等腰直角三角形即可.【详解】如图1,取OB 的中点D ,连接DM .∵4AB =,点O 为AB 中点,∴2AO BO ==,∵2OM =,∴OB OM =.∵D 是OB 的中点,点N 为OM 的中点,∴1ODON ==, ∵BON MOD ∠=∠,∴()SAS BON MOD ≌,∴BN DM =,∴BN CM DM CM +=+,∴当点D ,M ,C 共线时BN CM DM CM +=+最短.如图2,.的∵2,1OA OD ==, ∴3AD =,∵3AC =∴AD AC =.∵90A ∠=°,∴ACD 是等腰直角三角形,∴45ACD ∠=°. 故选C .【点睛】本题考查了全等三角形的判定与性质,两点之间线段最短,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.二.填空题(本题满分24分,每小题3分)13. 正五边形每个内角的度数为______.【答案】108°##108度【解析】分析】本题主要考查了正多边形内角和定理,外角和定理:方法一:先根据多边形的内角和公式()2180n −⋅°求出内角和,然后除以5即可;方法二:先根据正多边形的每一个外角等于外角和除以边数,再根据每一个内角与相邻的外角是邻补角列式计算即可得解.【详解】解:方法一:正五边形的内角和为()52180540−×°=°, ∴正五边形的一个内角度数为5405108°÷=°;方法二:正五边形一个外角的度数为360572°÷=°,∴正五边形的一个内角度数为18072108°−°=°;∴正五边形每个内角的度数为108°.故答案为:108°.【点评】本题考查了正多边形的内角与外角的关系,注意两种方法的使用,通常利用外角和与每一个外角的关系先求外角的度数更简单一些.【14. 若等腰三角形的一个内角为36°,则这个等腰三角形顶角的度数为_____________.【答案】36°或108°【解析】【分析】等腰三角形的一个内角是36°,则该角可能是底角,也可能是顶角,注意分情况讨论.【详解】解:分两种情况:当36°的角是底角时,则顶角度数为180°−36°×2=108°;当36°的角是顶角时,则顶角为36°.故答案为:36°或108°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,也是解答问题的关键.15. 点P (1,-2)关于y 轴的对称点的坐标是_________.【答案】()1,2−−【解析】【分析】根据若点(),a b 关于y 轴对称的点的坐标为(),a b −,据此可求解.【详解】解:点P (1,-2)关于y 轴的对称点的坐标是()1,2−−;故答案为()1,2−−.关键.16. 过12边形的一个顶点可以画对角线的条数是____.【答案】9【解析】【分析】根据对角线的定义,得出过多边形的一个顶点可以画对角线的条数的规律,代入求解即可.【详解】解:根据对角线的定义可知,多边形的一个顶点可以与自身以及相邻的两个点以外的()3n − 个点形成对角线当12n = ,31239n −=−=故答案:9.【点睛】本题考查了多边形的对角线问题,掌握过多边形的一个顶点的对角线条数与边数的关系是解题的关键.17. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____. 为【答案】108°##108度【解析】【分析】本题考查了等边对等角、三角形外角的定义及性质、三角形内角和定理,由等边对等角得出ABC ACB BAD ∠=∠=∠,结合三角形外角的定义及性质得出2CAD CDA ABD ∠=∠=∠,再由三角形内角和定理计算得出36ABC ACB BAD ∠=∠=∠=°,从而推出272DAC BAD ∠=∠=°,即可得解.【详解】解:∵AD BD =,∴ABD BAD ∠=∠,∵AB AC CD ==,∴A ABC CB =∠∠,CAD CDA ∠=∠,∴ABC ACB BAD ∠=∠=∠,∵2CDA BAD ABD ABD ∠=∠+∠=∠,∴2CAD CDA ABD ∠=∠=∠, ∵225180CAD CDA ACD ABD ABD ACD ABD ∠+∠+∠∠+∠+∠∠°,∴ABC ACB BAD ∠=∠=∠=°∴272DAC BAD ∠=∠=°,∴108BAC DAC BAD ∠=∠+∠=°,故答案为:108°.18. 如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN ,分别交边AB BC ,于点D 和E ,连接CD .若90BCA ∠=°,8AB =,则CD 的长为_______.【答案】4【解析】【分析】本题考查了基本作图−作线段的垂直平分线,线段垂直平分线的性质“线段垂直平分线上点到线段两端点的距离相等”,直角三角形斜边中线的性质“直角三角形斜边中线等于斜边的一半”.根据线段垂直平分线的性质即可得到BD CD =,再利用直角三角形斜边中线的性质求解即可.【详解】解:连接CD .由作图知,MN 是线段BC 的垂直平分线,∴BD CD =,∴B BCD ∠=∠,∵90BCA ∠=°,∴90B A BCD ACD ∠+∠=°=∠+∠,∴ACD A ∠=∠,∴CD AD =,∵8AB =, ∴142CD AB ==. 故答案为:4.三. 解答题(本大题满分62分)19. 如图,B D BC DC ∠=∠=,.求证:AB AD =.【答案】见解析【解析】【分析】连接BD ,根据等腰三角形的性质得CBD CDB ∠=∠,再根据等腰三角形的判定定理,即可得到结论.本题主要考查等腰三角形的判定和性质定理,添加辅助线,构造等腰三角形,是解题的关键.【详解】证明:连接BD ,∵BC DC =,∴CBD CDB ∠=∠, ∵ABC ADC ∠=∠,∴ABC CBD ADC CDB ∠−∠=∠−∠,∴ABD ADB ∠=∠,∴AB AD =.20. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.21. 如图,ABC 中,16cm AC =,DE 为AB 的垂直平分线,交AC 于点E ,BCE 的周长为26cm ,求BC 的长.【答案】10cm BC =【解析】【分析】本题考查了线段垂直平分线的性质、三角形的周长,由线段垂直平分线的性质得出AE BE =,由BCE 的周长为26cm 得出()26cm BC AC +=,即可得解,熟练掌握线段垂直平分线的性质是解此题的关键.【详解】解:∵DE 垂直平分AB∴AED BED ≌,∴AE BE =,∵BCE 的周长为26cm ,∴()26cm BC CE BE BC CE AE BC AC ++=++=+=,∵16cm AC =,∴10cm BC =.22. 如图所示,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=°,求ACE ∠的度数.【答案】15ACE ∠=°.【解析】【分析】此题考查了等边三角形的性质、线段垂直平分线的性质等知识.根据等边三角形的性质可得ACB ∠的度数,并证得AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE CE =,再由等腰三角形的性质可求得ECB ∠的度数,即可求得结论.【详解】解:∵ABC 是等边三角形,AD BC ⊥,∴60ACB ∠=°,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上,∴BE CE =.∵45EBC ∠=°,∴45ECB EBC ∠=∠=°,∴604515ACE ACB ECB ∠=∠−∠=°−°=°.23. 在 ABC 中,CD ⊥AB 于D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°.求∠BCD 和∠ECD 的度数.【答案】∠BCD =30°,∠ECD =20°【解析】【分析】由CD ⊥AB 与∠B =60°,根据两锐角互余,即可求得∠BCD 的度数,又由∠A =20°,∠B =60°,求得∠ACB 的度数,由CE 是∠ACB 的平分线,可求得∠ACE 的度数,然后根据三角形外角的性质,求得∠CEB 的度数.【详解】∵CD ⊥AB ,∴∠CDB =90°,∵∠B =60°,∴∠BCD =90°﹣∠B =90°﹣60°=30°;∵∠A =20°,∠B =60°,∠A+∠B+∠ACB =180°,∴∠ACB =100°,∵CE 是∠ACB 的平分线,∴∠ACE =12∠ACB =50°, ∴∠CEB =∠A+∠ACE =20°+50°=70°,∠ECD =90°﹣70°=20°,∴∠BCD =30°,∠ECD =20°.【点睛】本题考查了三角形的外角性质,角平分线,直角三角形两锐角互余等知识点,灵活运用外角定理是快速解题的关键.24. ABC 在平面直角坐标系中的位置如图所示.(1)将ABC 先向下平移4个单位长度,再向右平移3个单位长度,画出平移后的111A B C △,并写出顶点1A ,1B ,1C 的坐标;(2)计算111A B C △的面积.【答案】(1)见解析,()11,1A −,()10.2B −,()12,3C −(2)1.5【解析】【分析】(1)利用点平移的坐标变换规律写出点1A ,1B ,1C 的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算111A B C △的面积.【小问1详解】∵将ABC 先向下平移4个单位长度,再向右平移3个单位长度,且()2,3A −,()3,2B −,()1,1C −∴()11,1A −,()10.2B −,()12,3C −,111A B C △如下图所示,【小问2详解】111A B C △的面积为:11122112112 1.5222×−××−××−××=. 【点睛】本题考查了作图与平移变换:作图时要先找到图形关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.25. 如图(1) ABC 和 DEC 都是等腰直角三角形,其中∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在 ABC 内部,直线AD 与BE 交于点F ,线段AF 、BF 、CF 之间存在怎么样的数量关系?(1)先将问题特殊化如图2,当点D 、F 重合时,直接写出线段AF 、BF 、CF 之间的数量关系式: ;(2)再探究一般情况如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立.(3)如图3,若 ABC 和 DEC 都是含30°的直角三角形,若∠ACB =∠DCE =90°,∠BAC =∠EDC =30°,点E 在 ABC 内部,直线AD 、BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.【答案】(1)BF -AFCF的(2)见解析 (3)BF 【解析】【分析】(1)证明△ACD ≌△BCE (SAS ),则△CDE 为等腰直角三角形,故DE =EF CF ,进而求解; (2)由(1)知,△ACD ≌△BCE (SAS ),再证明△BCG ≌△ACF (ASA ),得到△GCF 为等腰直角三角形,则GF ,即可求解;问题拓展:证明△BCE ∽△CAD 和△BGC ∽△AFC ,得到BGBC GC AF AC CF ===,则,BG AF GC FC =,进而求解. 【小问1详解】结论:BF -AF ;理由:∵∠ACD +∠ACE =90°,∠ACE +∠BCE =90°,∴∠BCE =∠ACD ,∵BC =AC ,EC =DC ,∴△ACD ≌△BCE (SAS ),∴BE =AD ,∠EBC =∠CAD ,而点D 、F 重合,故BE =AD =AF ,而△CDE 为等腰直角三角形,故DE =EF CF ,则BF =BD =BE +ED =AF CF ;即BF -AF CF ;故答案为:BF -AF CF ;【小问2详解】如图(1),由(1)知,△ACD ≌△BCE (SAS ),∴∠CAF =∠CBE ,BE =AD ,过点C 作CG ⊥CF 交BF 于点G ,∵∠ACF +∠ACG =90°,∠ACG +∠GCB =90°,∴∠ACF =∠BCG ,∵∠CAF =∠CBE ,BC =AC ,∴△BCG ≌△ACF (ASA ),∴GC =FC ,BG =AF ,故△GCF 为等腰直角三角形,则GF CF ,则BF =BG +GF =AF CF ,即BF -AF CF ;【小问3详解】结论:BF AF FC =+. 理由:∵△ABC 和△DEC 都是含30°的直角三角形,∴,BC AC EC =,∴BCEC ACCD == ∵∠ACB =∠DCE ,∴∠BCE =∠ACD ,∴△BCE ∽△ACD ,∴∠CAD =∠CBE ,过点C 作CG ⊥CF 交BF 于点G ,由(2)知,∠BCG =∠ACF ,∴△BGC ∽△AFC ,∴BGBC GC AF AC CF===,则,,BG AF GC FC =,在Rt △CGF 中,GF ==,FG =则=+=+BF BG GF AF FC ,即BF AF FC =+. 理等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题.26. 在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,∠ABC =90°,且AB BC =.(1)如图(1),(5,0)A ,(0,2)B ,点C 在第三象限,请直接写出点C 的坐标;(2)如图(2),BC 与x 轴交于点D ,AC 与y 轴交于点E ,若点D 为BC 的中点,求证:ADB CDE ∠=∠;(3)如图(3),(,0)A a ,M 在AC 延长线上,过点(,)M m a −作MN x ⊥轴于点N ,探究线段BM ,AN ,OB 之间的关系,并证明你的结论.【答案】(1)(2,3)C −−; (2)证明见解析; (3)AN BM OB =+.证明见解析.【解析】【分析】(1)过C 作CR y ⊥轴于R ,证明(AAS)AOB BRC ≌,得到5,2BRAO CR OB ====,即可得到答案;(2)作BF 平分ABC ∠交AD 于F 点,证明(SAS)CED BFD ≌即可得到结论; (3)在ON 上取一点H ,使NH BO =,证明(SAS)ABM MHA ≌,根据全等三角形的性质即可得出结论.【小问1详解】解:过C 作CR y ⊥轴于R ,如图1所示:则90BRC ∠=°, (5,0)A ,(0,2)B ,5,2OA OB ∴==,90AOB ABC BRC ∠=∠=∠=° , 90ABO CBR ∴∠+∠=°, 90CBR BCR ∠+∠=°, ABO BCR ∴∠=∠,AB BC = ,(AAS)AOB BRC ∴ ≌, 5,2BR AO CR OB ∴====, 3OR BR OB ∴=−=, (2,3)C ∴−−;【小问2详解】解:证明:作BF 平分ABC ∠交AD 于F 点,,90AB BC CBA =∠=° ,45C BAC DBF ABF ∴∠=∠=∠=∠=°,90CBE ABO BAF ABO ∠+∠=∠+∠=° ,CBE BAF ∴∠=∠,在BCE 和ABF △中,CBE BAF BC BABCE ABF ∠=∠ = ∠=∠, (ASA)BCE ABF ∴ ≌,CE BF ∴=,点D 为BC 的中点,CD BD ∴=,在CED △和BFD △中,CD BD C DBF CE BF = ∠=∠ =, (SAS)CED BFD ∴ ≌,CDE ADB ∴∠=∠;【小问3详解】解:AN BM OB =+.证明:在ON 上取一点H ,使NH BO =,如图3所示:(,0)A a ,AO a ∴=,MN x ⊥ 轴于G ,(,)M m a −,ON m MN a ∴=−=,AO MN ∴=,90AOB HNM ∠=∠=° ,(SAS)ABO MHN ∴ ≌,,BAO NMH AB HM ∴∠=∠=,AHG MHN ∠=∠ ,90ANM AGM ∴∠=∠=°,90,ABC BC AB ∠=°= ,45BAC ∴∠=°,AGM ∴ 是等腰直角三角形,45BAM GMA ∴∠=∠=°,又,AB HMAM MA == , (SAS)ABM MHA ∴ ≌,BM HA ∴=,AN AH NH =+ ,AN BM OB ∴=+.【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定和性质,坐标与图形性质,直角三角形的性质,熟练掌握等腰直角三角形的判定与性质,正确做出辅助线,构造全等三角形是解题的关键.。
人教版八年级上册数学期中考试试题附答案解析
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.下列各组线段,不能组成三角形的是()A .1,2,3B .2,3,4C .3,4,5D .5,12,133.等腰三角形两边长分别是3和8,则它的周长是()A .14B .19C .11D .14或194.如图,已知BE CF =,A D ∠=∠,添加下列条件,不能..证明ABC DEF △≌△的是()A .//AB DE B .//DF AC C .E ABC ∠=∠D .AB DE=5.已知点P(-2,1),那么点P 关于x 轴对称的点P′的坐标是()A .(-2,1)B .(-2,-1)C .(-1,2)D .(2,1)6.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为()A .50°B .70°C .75°D .80°7.已知a ,b ,c 是△ABC 的三条边长,化简|a +b ﹣c |+|b ﹣a ﹣c |的结果为()A .2a +2b B .2a +2b ﹣2c C .2b ﹣2c D .2a8.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:①△△CDE BDF ≅,②CE AB AE =+,③BDC BAC ∠=∠,④DAF CBD ∠=∠,其中正确的结论有()A .1个B .2个C .3个D .4个9.如图,△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列等式不一定正确的是()A .AB =AC B .∠BAD =∠CAE C .BE =CD D .AD =DE10.如图,△ABC 中,∠A=90°,AB=AC ,BD 平分∠ABE ,DE ⊥BC ,如果BC=10cm ,则△DEC 的周长是()A .8cmB .10cmC .11cmD .12cm二、填空题11.在△ABC 中,AB =AC ,∠A =100°,则∠B =_______°.12.如图,△ABD ≌△ACE ,AD=8cm ,AB=3cm ,则BE=_____cm13.如图,ABC 中,46A ∠=︒,74C ∠=︒,BD 平分ABC ∠交AC 于点D ,那么BDC ∠的度数是______.14.如图,在ABC 中,8AB AC ==,D 是BC 上的任一点,//DE AB 交AC 于点E ,//DF AC交AB 于点F 那么四边形AFDE 的周长是________.15.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x+2y ,若这两个三角形全等,则x+y 的值是_.16.如图,用3根火柴棒可以拼出1个等边三角形,用9根火柴棒可以拼出4小等边三角形,用18根火柴棒可以拼出9个小等边三角形,……,照此规律,要拼出36个小等边三角形,共需要火柴________根.三、解答题17.如图,在平面直角坐标系中,△ABC 位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC 向右平移4个单位长度得到的△A 1B 1C 1;(2)再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2.18.如图,AB=CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,AE=CF ,求证:AB ∥CD .19.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.20.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于M ,交AC 于N .(1)若∠ABC=70°,求∠MNA 的度数.(2)连接NB ,若AB=8cm ,△NBC 的周长是14cm .求BC 的长;21.如图,已知ABC 中BC 边的垂直平分线DE 与BAC ∠的平分线交于点E ,EF AB ⊥交AB 的延长线于点F ,BG AC ⊥交AC 于点G .求证.(1)BF CG =.(2)若6AB =,8AC =,求AF 的长度.22.如图,已知△ABC ≌△DBE ,点D 在AC 上,BC 与DE 交于点P ,若AD=DC=2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE 的度数;(2)求△DCP 与△BPE 的周长和.23.如图,在△ABC 中,∠ACB=90°,AC=BC=AD(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.24.如图,在直角ABC ,90C ∠=︒,BD 平分ABC ∠交AC 于点D ,AP 平分BAC ∠交BD 于点P .(1)APD ∠的度数为______.(2)若58BDC ∠=︒,求BAP ∠的度数.25.如图1在平面直角坐标系中,(),0A a 、()0,B b ,a b 、|0a -=,C 为AB 的中点,P 是线段AB 上一动点,D 是x 轴正半轴上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)如图2,设6AB =,当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值;(3)如图3,设6AB =,若45OPD ∠=︒,求点D 的坐标.参考答案1.A【解析】如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.【详解】解:A:不是轴对称图形;B、C、D是轴对称图形.故选A.【点睛】本题考查了轴对称图形的定义.2.A【解析】试题分析:A、∵1+2=3,∴1,2,3不能组成三角形,故本选项正确;B、∵2+3=5>4,∴2,3,4能组成三角形,故本选项错误;C、∵3+4=7>5,∴3,4,5能组成三角形,故本选项错误;D、∵5+12=17>13,∴5,12,13能组成三角形,故本选项错误.故选A.考点:三角形的三边关系.3.B【解析】①若3是腰,则另一腰也是3,底是8,但是3+3<8,故不构成三角形,舍去.②若3是底,则腰是8,8.3+8>8,符合条件.成立.故周长为:3+8+8=19.故选B.点睛:本题考查了三角形三遍的额关系和等腰三角形的计算,根据题意,要分情况讨论:①3是腰;②3是底.必须符合三角形三边的关系,即任意两边之和大于第三边.4.D【分析】由BE=CF,可得出EF=BC,又有∠A=∠D,具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF.【详解】解:∵BE=CF,∴BE+BF=CF+FB,即EF=BC,AB DE,可得∠ABC=∠DEF,根据AAS能证明△ABC≌△DEF,故A选项不符合A、添加//题意;DF AC可得∠ACB=∠DFE,根据AAS能证明△ABC≌△DEF,故B选项不符合题B、添加//意;∠=∠,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;C、添加E ABCD、添加AB DE=,与原条件满足SSA,不能证明△ABC≌△DEF,故D选项符合题意;故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.B【详解】试题分析:点的坐标关于x轴对称,则对称点坐标也关于x轴对称,横坐标不变,纵坐标变为相反数.故P'坐标为(-2,-1),选B.6.B【详解】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.D【分析】先根据三角形三条边的关系判断a+b-c和b-a-c的正负,然后根据绝对值的定义化简即可.【详解】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,b﹣a﹣c<0,∴原式=a+b﹣c﹣(b﹣a﹣c)=a+b﹣c+c+a﹣b=2a.故选:D.【点睛】本题考查了三角形三条边的关系,以及绝对值的定义,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.8.D【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”可证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF=∠DCE,根据三角形内角和是180°和∠AOB=∠COD (设AC交BD于点O),得到∠BDC=∠BAC;根据三角形内角和是180°易得∠DAE=∠CBD,再根据角平分线可得∠DAE=∠DAF,然后求出∠DAF=∠CBD.【详解】∵AD平分∠CAF,DE⊥AC,DF⊥AB∴DE=DF在Rt△CDE和Rt△BDF中BD CD DE DF⎧⎨⎩==∴Rt △CDE ≌Rt △BDF (HL ),故①正确;∴CE =AF在Rt △ADE 和Rt △ADF 中AD AD DE DF==⎧⎨⎩∴Rt △ADE ≌Rt △ADF (HL )∴AE =AF∴CE =AB +AF =AB +AE ,故②正确;∵Rt △CDE ≌Rt △BDF∴∠DBF =∠DCE∵∠AOB=∠COD (设AC 交BD 于点O )∴∠BDC =∠BAC ,故③正确;∵∠BAC+∠ABC+∠ACB=180°∠BDC+∠DBC+∠DCB=180°∠DBF =∠DCE∴∠DAE =∠CBD ,∵∠DAE =∠DAF ,∴∠DAF =∠CBD ,故④正确;综上所述,正确的结论有①②③④.故选D【点睛】本题考查了角平分线上的点到角的两边距离相等的性质、全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.9.D【分析】由全等三角形的性质可求解.【详解】解:∵△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,∴AB=AC,AD=AE,BE=CD,∠BAE=∠CAD,∴∠BAD=∠CAE故选D.【点睛】本题考查了全等三角形的性质,灵活运用全等三角形的性质是本题的关键.10.B【分析】根据角平分线的性质,得AD=DE,利用HL判定△BAD≌△BED,得出AB=BE,进而得出BC=DE+DC+EC=10cm.【详解】解: BD平分∠ABE,DE⊥BC,DA⊥AB∴AD=DE又 BD=BD,∴△BAD≌△BED(HL)∴AB=BE又 AB=AC∴BE=AC∴BC=BE+EC=AC+EC=AD+DC+EC=DE+DC+EC=10cm∴△DEC的周长是10cm,故选B.【点睛】本题主要考查了角平分线的性质、全等三角形的判定及其性质等知识.要通过全等把相等的线段转到转到一个三角形中.11.40【解析】试题分析:∵AB=AC,∴∠B=∠C,∵∠A=100°,∴∠B=1801002︒-︒=40°.考点:等腰三角形的性质.12.5【解析】∵△ABD ≌△ACE∴AD=AE=8cm∴BE=AE-AB=8-3=5cm13.76°【分析】根据三角形内角和是180°求出∠ABC 的度数,再根据=BDC A ABD ∠∠+∠,即可求得.【详解】解:根据三角形内角和是180°得180ABC A C∠=︒∠∠--=180︒︒︒-46-74=60°∴∠ABD=30°∴=BDC A ABD∠∠+∠=4630︒+︒=76°故答案为:76°【点睛】本题考查三角形角平分线、三角形内角和是360°和三角形的外角等于与它不相邻的两个内角和,掌握三角形的内角和外角关系是解题的关键.14.16【分析】由于DE ∥AB ,DF ∥AC ,则可以推出四边形AFDE 是平行四边形,然后利用平行四边形的性质可以证明▱AFDE 的周长等于AB +AC .【详解】解:∵DE ∥AB ,DF ∥AC ,则四边形AFDE 是平行四边形,∠B =∠EDC ,∠FDB =∠C∵AB =AC ,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDF∴BF=FD,DE=EC,所以:▱AFDE的周长等于AB+AC=16.故答案为:16.【点睛】本题考查了平行四边形的性质,等腰三角形的性质,掌握这些知识点是解题关键.15.5或4【分析】根据全等三角形的性质可得方程组32527x yx y-=⎧⎨+=⎩,或25327x yx y+=⎧⎨-=⎩,解方程组可得答案.【详解】解:由题意得32527x yx y-=⎧⎨+=⎩,或25327x yx y+=⎧⎨-=⎩,解得:32xy=⎧⎨=⎩或31xy=⎧⎨=⎩,x+y=5或x+y=4,故答案为5或4【点睛】此题考查全等三角形的性质,解题关键在于根据题意列出方程.16.63【分析】拼1个等边三角形所用的火柴数为3根,3×1=3根;拼4个等边三角形所用的火柴数为9根,3×(1+2)=9根;拼9个等边三角形所用的火柴数为9根,3×(1+2+3)=18根;照此规律,即可推得.【详解】1=123×1=3根4=223×(1+2)=9根9=323×(1+2+3)=18根16=423×(1+2+3+4)=30根25=523×(1+2+3+4+5)=45根36=623×(1+2+3+4+5+6)=63根故答案为:63【点睛】本题考查整式的规律,解题关键是随着序号的变化,比较后一个图与前一个图,在数量上增加情况的变化,找出变化规律,推出一般性结论.17.(1)作图见解析;(2)作图见解析.【分析】(1)利用平移的性质可画出图形;(2)利用关于x轴对称的点的性质画出图形即可.【详解】(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点睛】本题考查了平移的性质及轴对称的性质,解题的关键是掌握变换的规律.18.证明见解析【分析】欲证明AB∥CD,只需证得∠C=∠A,所以通过Rt△ABF≌Rt△CDE(HL)证得∠C=∠A 即可.【详解】∵AE=CF,∴AE+EF=CF+EF,即AF=EC.又∵BF⊥AC,DE⊥AC,∴∠AFB=∠CED=90°.在Rt△ABF与Rt△CDE中,∵AF CEAB CD=⎧⎨=⎩,∴Rt△ABF≌Rt△CDE(HL),∴∠C=∠A,∴AB∥CD.【点睛】本题考查了全等三角形的判定与性质、平行线的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.∠DAC=20°,∠ADC=80°【分析】设∠1=∠2=x,再用x表示出∠3的度数,由三角形内角和定理得出∠2+∠4的度数,进而可得出x的值,由此得出结论.【详解】设∠1=∠2=x,则∠3=∠4=2x,∵∠BAC=60°,∴∠2+∠4=180°-60°=120°,即x+2x=120°,∴x=40°,即∠ADC=80°,∴∠DAC=∠BAC-∠1=60°-40°=20°.【点睛】本题考查的是三角形内角和外角的相关知识,熟知三角形内角和是180°是解答此题的关键.20.(1)50°;(2)6cm.【解析】试题分析:(1)由AB=AC可得∠C=∠ABC=70°,从而可得∠A=40°;由MN垂直平分AB可得AN=BN,可得∠ABN=∠A=40°,从而可得∠ANB=100°,再由等腰三角形的三线合一可得∠MNA=12∠ANB=50°;(2)由(1)可知BN=AN,由此可得BN+NC=AN+NC=AC=AB=8cm,再由C△BNC=BN+CN+BC=14cm,可得BC=14-8=6(cm).试题解析:(1)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=40°,∵MN是AB的垂直平分线,∴AN=BN,∴∠ABN=∠A=40°,∴∠ANB=100°,∴∠MNA=50°.(2)由(1)可知:AN=BN,∴BN+CN=AN+CN=AC,∵AB=AC=8cm,∴BN+CN=8cm,=BN+CN+BC=14(cm),∵C△BNC∴BC=14﹣8=6(cm).21.(1)见解析(2)7【分析】(1)连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG;(2)根据(1)中的条件证得Rt△AFE≌Rt△AGE,根据全等三角形的性质得到AG=AF,于是得到结论.【详解】(1)如图,连接BE和CE,∵DE是BC的垂直平分线,∴BE=CE.∵AE 平分∠BAC ,EF ⊥AB ,EG ⊥AC ,∴∠BFE =∠EGC =90°,EF =EG.在Rt △BFE 和Rt △CGE 中,BE=CE ,EF=EG ,∴Rt △BFE ≌Rt △CGE(HL),∴BF =CG.(2)∵AE 平分∠BAC ,EF ⊥AB ,EG ⊥AC ,∴∠AFE =∠AGE =90°,∠FAE =∠GAE.在△AFE 和△AGE 中,∠FAE =∠GAE ,∠AFE =∠AGE ,AE=AE ,∴△AFE ≌△AGE ,∴AF =AG.∵BF =CG ,∴AB +AC =AF -BF +AG +CG =2AF ,∵6AB =,8AC =,∴1(86)72AF =+=.【点睛】点睛:本题考查了全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.关键在于结合题意熟练运用相关性质.22.(1)66°;(2)15.4【分析】(1)根据全等三角形的性质得到∠ABC=∠DBE ,计算即可;(2)根据全等三角形的性质求出BE 、DE ,根据三角形的周长公式计算即可.【详解】解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AD+DC=4.8,BE=BC=4.1,△DCP和△BPE的周长和=DC+DP+CP+BP+PE+BE=DC+DE+BC+BE=15.4.故答案是:(1)66°;(2)15.4【点睛】本题考查的是全等三角形的性质、角的和差倍分,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.23.(1)作图见试题解析;(2)作图见试题解析;(3)△ACE≌△ADE,△ACE≌△CFB.【详解】试题分析:(1)利用角平分线的作法得出∠A的平分线;(2)利用钝角三角形高线的作法得出BF;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE即为所求;(2)如图所示:BF即为所求;(3)如图所示:△ACE≌△ADE,△ACE≌△CFB,∵AC=AD,AE平分∠CAD,∴AE⊥CD,EC=DE,在△ACE和△ADE中,∵AE=AE,∠AEC=∠AED,EC=ED,∴△ACE≌△ADE(SAS).考点:1.作图—复杂作图;2.全等三角形的判定.24.(1)45°;(2)∠BAP=13°.【分析】(1)根据三角形内角和为180°可得∠BAC+∠ABC=90°,再根据角平分线的定义可得∠PAB+∠PBA=45°,然后根据三角形的外角性质即可得解;(2)因为∠BDC 是△ADP 的外角,由(1)可求得∠DAP ,根据角平分线的定义即可得解.【详解】(1)∵90C ∠=︒,∴∠BAC+∠ABC=90°,∵BD 平分ABC ∠,AP 平分BAC ∠,∴∠PAB+∠PBA=12(∠BAC+∠ABC )=45°,∴APD ∠=∠PAB+∠PBA=45︒;(2)∵58BDC ∠=︒,∴5813DAP APD ∠=︒-∠=︒.∵AP 平分BAC ∠,∴13BAP DAP ∠=∠=︒.【点睛】本题主要考查角平分线的定义,三角形外角的性质等,解此题的关键在于熟练掌握知识点.25.(1)∠OAB=45°;(2)PE 的值不变.理由见解析;(3),0).【分析】(1)根据非负数的性质即可求得a ,b 的值,从而得到△AOB 是等腰直角三角形,据此即可求得;(2)根据等腰三角形的性质以及三角形的外角的性质可以得到∠POC=∠DPE ,即可证得△POC ≌△DPE ,则OC=PE ,OC 的长度根据等腰直角三角形的性质可以求得;(3)利用等腰三角形的性质,以及外角的性质证得∠POC=∠DPE ,即可证得△POC ≌△DPE ,根据全等三角形的对应边相等,即可求得OD 的长,从而求得D 的坐标.【详解】(1)根据题意得:0a b a ⎧⎪⎨-⎪⎩=,解得:,∴OA=OB ,又∵∠AOB=90°∴△AOB 为等腰直角三角形,∴∠OAB=45°.(2)PE 的值不变.理由如下:∵△AOB 为等腰直角三角形,且AC=BC ,∴∠AOC=∠BOC=45°又∵OC ⊥AB 于C ,∵PO=PD∴∠POD=∠PDO当P 在BC 上时,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE在△POC 和△DPE 中,POC DPE OCP PED PO PD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△POC ≌△DPE ,∴OC=PE又OC =12AB =3∴PE=3;当P 在AC 上时,∠POD=45°-∠POC ,∠PDO=45°-∠DPE ,则∠POC=∠DPE .同理可得PE=3;(3)∵OP=PD ,∴∠POD=∠PDO=1801804522OPD -∠︒-︒==67.5°,则∠PDA=180°-∠PDO=180°-67.5°=112.5°,∵∠POD=∠A+∠APD ,∴∠APD=67.5°-45°=22.5°,∴∠BPO=180°-∠OPD-∠APD=112.5°,∴∠PDA=∠BPO则在△POB 和△DPA 中,PDA BPOPAD OBP OP PD∠∠⎧⎪∠∠⎨⎪⎩===,∴△POB ≌△DPA (AAS ).∴∴,∴(-6∴,0).【点睛】此题考查全等三角形的判定与性质,证明△POB ≌△DPA 是解题的关键.。
八年级数学上期中试卷练习(含答案和解释)【可修改文字】
可编辑修改精选全文完整版2019年八年级数学上期中试卷练习(含答案和解释)期中考试马上就要开始了,很多学生都在为期中考试的复习忙活不停,期中考试复习有一个很好的规划也是必不可少的。
2019年八年级数学上期中试卷一文为同学们讲诉了期中考试前复习方法及复习计划安排。
一、选择题(每小题3分,共30分)1.9的算术平方根是( )A. 3B. ﹣3C.D. ﹣2.已知点A(4,﹣3),则它到y轴的距离为( )A. ﹣3B. ﹣4C. 3D. 43.下列各式不是二元一次方程的是( )A. x﹣3y=0B. x+C. y=﹣2xD.4.估算的值在( )A. 2和3之间B. 3和4之间C. 6和7之间D. 7和8之间5.下面哪个点不在函数y=﹣2x+3的图象上( )A. (﹣5,13)B. (0.5,2)C. (3,0)D. (1,1)6.下列计算正确的是( )A. B. C. 2 D.7.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A. Q=0.2tB. Q=20﹣0.2tC. t=0.2QD. t=20﹣0.2Q8.已知正比例函数y=kx(k0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是( )A. B. C. D.9.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是( )A. (2,1)B. ( 1,2)C. ( ,1)D. (1,)10.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是( )A. 3B. 5C. 7D. 9二、填空题(每小题3分,共24分)11. = ; 的平方根是.12.已知一次函数y=kx﹣3,请你补充一个条件,使y随x 的增大而减小.13.如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是.14.点P(m+2,2m﹣1)在y轴上,则点P的坐标是.15.某市电脑上网每月向用户收取费用y(元)与上网时间x(时)的函数关系如下图,当客户每月上网121时,需付费元. 16.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为.17.如果a2b3与﹣ax+1bx+y是同类项,则x= ,y= .18.小明爸爸骑着摩托车带着小明在公路上匀速行驶,下面是每隔1小时看到的里程情况,在12:00时小明看到的数是一个两位数,它的两个数字之和为7;在13:00时小明看到的数的十位与个位数字与12:00时所看到的正好互换了;在14:00时比12:00时看到的两位数中间多了个0.请问小明在12:00时看到的里程碑上的数是.三、解答题(共46分,要求写出必要的解题步骤)19.计算(1)(2) .20.解下列方程组(1)(2) .21.已知一次函数y=kx﹣3的图象与正比例函数的图象相交于点(2,a).(1)求a的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△ABC(3)写出点B的坐标.23.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?24.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图.(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间.参考答案与试题解析一、选择题(每小题3分,共30分)1.9的算术平方根是( )A. 3B. ﹣3C.D. ﹣考点:算术平方根.分析:根据平方运算,可得一个正数的算术平方根.2.已知点A(4,﹣3),则它到y轴的距离为( )A. ﹣3B. ﹣4C. 3D. 4考点:点的坐标.分析:根据点到y轴的距离是点的横坐标的绝对值,可得答案.解答:解:∵点A(4,﹣3),3.下列各式不是二元一次方程的是( )A. x﹣3y=0B. x+C. y=﹣2xD.考点:二元一次方程的定义.分析:二元一次方程满足的条件:为整式方程;只含有2个未知数;未知数的最高次数是1.解答:解:经过观察可发现只有B选项不是整式方程,不符合二元一次方程的定义.4.估算的值在( )A. 2和3之间B. 3和4之间C. 6和7之间D. 7和8之间考点:估算无理数的大小.分析:先求出式子的值,再求出的范围,即可得出答案.5.下面哪个点不在函数y=﹣2x+3的图象上( )A. (﹣5,13)B. (0.5,2)C. (3,0)D. (1,1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.解答:解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;6.下列计算正确的是( )A. B. C. 2 D.考点:实数的运算.分析:根据实数的运算法则对各选项进行逐一解答即可. 解答:解:A、= ,故本选项正确;B、与不是同类项,不能合并,故本选项错误;C、2与不是同类项,不能合并,故本选项错误;7.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A. Q=0.2tB. Q=20﹣0.2tC. t=0.2QD. t=20﹣0.2Q考点:函数关系式.分析:利用油箱中存油量20升﹣流出油量=剩余油量,根据等量关系列出函数关系式即可.解答:解:由题意得:流出油量是0.2t,8.已知正比例函数y=kx(k0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是( )A. B. C. D.考点:一次函数的图象;正比例函数的性质.专题:数形结合.分析:根据自正比例函数的性质得到k0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.解答:解:∵正比例函数y=kx(k0)的函数值y随x的增大而减小,k0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.9.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是( )A. (2,1)B. (1,2)C. ( ,1)D. (1,)考点:等边三角形的性质;坐标与图形性质.分析:首先过点A作ACOB于点C,由△AOB是等边三角形,若B点的坐标是(2,0),可求得OA=OB=2,OC=1,然后由勾股定理求得AC的长,则可求得答案.解答:解:过点A作ACOB于点C,∵B点的坐标是(2,0),OB=2,∵△AOB是等边三角形,OA=OB=2,OC= OB=1,10.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是( )A. 3B. 5C. 7D. 9考点:解三元一次方程组.分析:先用含a的代数式表示x,y,即解关于x,y的方程组,再代入3x﹣5y﹣7=0中可得a的值.解答:解:由①+②,可得2x=4a,x=2a,将x=2a代入①,得y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,将代入方程3x﹣5y﹣7=0,二、填空题(每小题3分,共24分)11. = ﹣4 ; 的平方根是.考点:立方根;平方根;算术平方根.分析:根据立方根和算术平方根、平方根的定义进行计算即可.解答:解:∵(﹣4)3=﹣64,观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
人教版八年级上学期期中考试数学试卷及详细答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(每小题3分,共36分)1.下列图形中被虚线分成的两部分不是全等形的是()A. B. C D.2.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.3.下列各式﹣2a,,, a2﹣ b2,,中,分式有()A.1个B.2个C.3个D.4个4.如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC5.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.6.当△ABC和△DEF具备()条件时,△ABC≌△DEF.A.所有的角对应相等B.三条边对应相等C.面积相等D.周长相等7.下列分式是最简分式的是()A.B.C.D.8.若点O是△ABC三边垂直平分线的交点,则有()A.OA=OB≠OC B.OB=OC≠OA C.OC=OA≠OB D.OA=OB=OC9.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°10.如图,把两个一样大的含30度的直角三角板,按如图方式拼在一起,其中等腰三角形有()A.1个B.2个C.3个D.4个11.已知两个分式:A=﹣,B=,其中x≠3且x≠0,则A与B的关系是()A.相等B.互为倒数C.互为相反数 D.不能确定12.如图,用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是()A.SAS B.SSS C.ASA D.AAS二、填空题(本大题共8小题,每小题3分,共计24分)13.已知=,则的值为.14.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是.15.分式,,﹣的最简公分母是.16.已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为.17.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你再补充一个条件,使△ABC≌△DEF,你补充的条件是.18.已知点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,则(a+b)2016= .19.若x:y=1:3,且2y=3z,则的值是.20.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为.三、解答题(本大题满分60分)21.作图题小明不小心在一个三角形上撒一片墨水,请用尺规帮小明重新画一个三角形使它与原来的三角形完全相同.(保留作图痕迹,不写作法)22.已知﹣=4,求的值.23.如图所示,△DEF是等边三角形,且∠1=∠2=∠3,试问:△ABC是等边三角形吗?请说明理由.24.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.25.如图,在△ABC中,BD=CD,∠1=∠2,小颖说:“AD⊥BC”,你认为她说的对吗?说明你的理由.26.计算:(1)÷(2)÷(﹣x﹣2)(3)(4)(1﹣)÷.27.已知△ABC的两条高AD,BE相交于点H,且AD=BD,试问:(1)∠DBH与∠DAC相等吗?说明理由.(2)BH与AC相等吗?说明理由.参考答案与试题解析一、选择题(每小题3分,共36分)1.下列图形中被虚线分成的两部分不是全等形的是()A. B.C.D.【考点】K9:全等图形.【分析】根据全等形的概念进行判断即可.【解答】解:长方形被对角线分成的两部分是全等形;平行四边形被对角线分成的两部分是全等形;梯形被对角线分成的两部分不是全等形;圆被对角线分成的两部分是全等形,故选:C.2.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.【考点】P1:生活中的轴对称现象.【分析】认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C 是符合要求的.【解答】解:观察选项可得:只有C是轴对称图形.故选:C.3.下列各式﹣2a,,, a2﹣b2,,中,分式有()A.1个B.2个C.3个D.4个【考点】61:分式的定义.【分析】根据分式的定义,可得答案.【解答】解:,,,是分式,故选:D.4.如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC【考点】KB:全等三角形的判定.【分析】已知两边相等,要使两三角形全等必须添加这两边的夹角,即∠BAD=∠CAE,因为∠CAD是公共角,则当∠1=∠2时,即可得到△ABD≌△ACE.【解答】解:∵AB=AC,AD=AE,∠B=∠C不是已知两边的夹角,A不可以;∠D=∠E不是已知两边的夹角,B不可以;由∠1=∠2得∠BAD=∠CAE,符合SAS,可以为补充的条件;∠CAD=∠DAC不是已知两边的夹角,D不可以;故选C.5.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的性质对各选项分析判断即可得解.【解答】解:A、是轴对称图形,B、不是轴对称图形,C、是轴对称图形,D、是轴对称图形,所以,B与其他三个不同.故选B.6.当△ABC和△DEF具备()条件时,△ABC≌△DEF.A.所有的角对应相等B.三条边对应相等C.面积相等D.周长相等【考点】KB:全等三角形的判定.【分析】由SSS证明三角形全等即可.【解答】解:∵三条边对应相等的两个三角形全等,∴B选项正确;故选:B.7.下列分式是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】根据最简分式的定义分别对每一项进行判断,即可得出答案.【解答】解:A、=,不是最简分式,故本选项错误;B、=,不是最简分式,故本选项错误;C、,是最简分式,故本选项正确;D、=,不是最简分式,故本选项错误;故选C.8.若点O是△ABC三边垂直平分线的交点,则有()A.OA=OB≠OC B.OB=OC≠OA C.OC=OA≠OB D.OA=OB=OC【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质判断即可.【解答】解:∵点O是△ABC三边垂直平分线的交点,∴OA=OB,OA=OC,∴OA=OB=OC,故选:D.9.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】K7:三角形内角和定理;K8:三角形的外角性质;PB:翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.10.如图,把两个一样大的含30度的直角三角板,按如图方式拼在一起,其中等腰三角形有()A.1个B.2个C.3个D.4个【考点】KI:等腰三角形的判定.【分析】由于图形是由两个一样大的含30°角的直角三角板按如图的方式拼在一起,故有AB=AE,AD=AC,∠B=∠E=30°,∠ACE=∠ADB=60°,则∠DAE=∠CAB=30°,所以得到等腰三角形△ABE,△ACD,△ACB,△ADE.【解答】解:根据题意△ABE,△ACD都是等腰三角形,又由已知∠ACE=∠ADB=60°,∴∠DAE=∠CAB=30°,已知∠B=∠E=30°,∴又得等腰三角形:△ACB,△ADE,所以等腰三角形4个.故选:D.11.已知两个分式:A=﹣,B=,其中x≠3且x≠0,则A与B的关系是()A.相等B.互为倒数C.互为相反数 D.不能确定【考点】6B:分式的加减法.【分析】将两个分式化简即可判断.【解答】解:A===B故选(A)12.如图,用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是()A.SAS B.SSS C.ASA D.AAS【考点】N3:作图—复杂作图;KB:全等三角形的判定.【分析】直接利用基本作图方法结合全等三角形的判定方法得出答案.【解答】解:用尺规作图“过点C作CN∥OA”的实质就是作∠DOM=∠NCE,其作图依据是,在△DOM和△NCE中,,∴△DOM≌△NCE(SSS),∴∠DOM=∠NCE,∴CN∥OA.故选:B.二、填空题(本大题共8小题,每小题3分,共计24分)13.已知=,则的值为﹣.【考点】S1:比例的性质.【分析】根据两内项之积等于两外项之积可得x=3y,然后代入比例式进行计算即可得解.【解答】解:∵=,∴x=3y,∴==﹣.故答案为:﹣.14.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是(﹣2,0).【考点】KA:全等三角形的性质;D5:坐标与图形性质.【分析】根据全等三角形对应边相等可得OD=OB,然后写出点D的坐标即可.【解答】解:∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(﹣2,0).故答案为:(﹣2,0).15.分式,,﹣的最简公分母是36a4b2.【考点】69:最简公分母.【分析】找出系数的最小公倍数,字母的最高次幂,即可得出答案.【解答】解:分式,,﹣的最简公分母是36a4b2,故答案为36a4b2.16.已知线段a,b,c,d成比例线段,且a=4,b=2,c=2,则d的长为 1 .【考点】S2:比例线段.【分析】根据四条线段成比例,列出比例式,再把a=4,b=2,c=2,代入计算即可.【解答】解:∵线段a、b、c、d是成比例线段,∴=,∵a=4,b=2,c=2,∴=,∴d=1.故答案为:1.17.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你再补充一个条件,使△ABC≌△DEF,你补充的条件是FD=AC(答案不唯一).【考点】KB:全等三角形的判定.【分析】已知△ABC与△DEF中有一组边与一组角相等,根据全等三角形的判定可知,只需要添加一组边或一组角即可全等.【解答】解:添加FD=AC,∵BF=EC,∴BF﹣CF=EC﹣CF∴BC=EF在△ABC与△DEF中,∴△ABC≌△DEF(SAS)故答案为:FD=AC(答案不唯一)18.已知点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,则(a+b)2016= 1 .【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵点A(a﹣1,5)和点B(2,b﹣1)关于x轴成轴对称,∴a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,所以,(a+b)2016=(3﹣4)2016=1.故答案为:1.19.若x:y=1:3,且2y=3z,则的值是﹣5 .【考点】64:分式的值.【分析】用含y的代数式表示x、z,代入分式,计算即可.【解答】解:∵x:y=1:3,2y=3z,∴x=y,z=y,∴==﹣5,故答案为:﹣5.20.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为7.5 .【考点】KF:角平分线的性质.【分析】如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.【解答】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,=BC•DE=×5×3=7.5.∴S△BCD故答案为:7.5.三、解答题(本大题满分60分)21.作图题小明不小心在一个三角形上撒一片墨水,请用尺规帮小明重新画一个三角形使它与原来的三角形完全相同.(保留作图痕迹,不写作法)【考点】N4:作图—应用与设计作图;KE:全等三角形的应用.【分析】先画出线段BA,然后从B,A两点,以线段BA为一边作∠A=∠E,∠F=∠B,两角另一边的交点就是就是第三点的位置,顺次连接即可.【解答】解:按尺规作图的要求,正确作出△ABC的图形:22.已知﹣=4,求的值.【考点】6D:分式的化简求值.【分析】先根据﹣=4求出ab与a﹣b之间的关系,再代入原式进行计算即可.【解答】解:∵﹣=4,∴=4,即a﹣b=﹣4ab,∴原式====6.23.如图所示,△DEF是等边三角形,且∠1=∠2=∠3,试问:△ABC是等边三角形吗?请说明理由.【考点】KM:等边三角形的判定与性质.【分析】由△DEF是等边三角形,得到∠DEF=60°,由邻补角的定义得到∠BEC=120°,得到∠BCE+∠2=120°,推出∠ACB=60°,于是得到结论.【解答】解:△ABC是等边三角形,理由:∵△DEF是等边三角形,∴∠DEF=60°,∴∠BEC=120°,∴∠BCE+∠2=120°,∵∠2=∠3,∴∠BCE+∠3=60°,∴∠ACB=60°,同理∠ABC=∠BAC=60°,∴△ABC是等边三角形.24.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.25.如图,在△ABC中,BD=CD,∠1=∠2,小颖说:“AD⊥BC”,你认为她说的对吗?说明你的理由.【考点】KD:全等三角形的判定与性质.【分析】由BD=DC,可得∠DBC=∠DCB,点D在BC的垂直平分线,继而可得AB=BC,则可证得AD是BC的垂直平分线,即可得AD⊥BC.【解答】解:小颖说的对,理由如下:∵BD=DC,∴∠DBC=∠DCB,点D在BC的垂直平分线,∵∠1=∠2,∴∠ABC=∠ACB,∴AB=AC,∴点A在BC的垂直平分线,∴AD是BC的垂直平分线,即AD⊥BC.26.计算:(1)÷(2)÷(﹣x﹣2)(3)(4)(1﹣)÷.【考点】6C:分式的混合运算.【分析】根据因式分解和分式的基本性质即可进行化简运算.【解答】解:(1)原式=•﹣×=﹣==(2)原式=÷=﹣×=﹣(3)原式=﹣==(4)原式=÷=×a(a﹣1)=﹣a27.已知△ABC的两条高AD,BE相交于点H,且AD=BD,试问:(1)∠DBH与∠DAC相等吗?说明理由.(2)BH与AC相等吗?说明理由.【考点】KD:全等三角形的判定与性质.【分析】(1)相等.根据同角的余角相等即可证明.(2)相等.只要证明△BDH≌△ADC即可.【解答】解:(1)相等.理由如下:∵AD、BE是△ABC的高,∴∠ADB=∠AEB=90°,∴∠DBH+∠C=90°,∠DAC+∠C=90°,∠DBH=∠DAC.(2)相等.理由如下:在△BDH和△ADC中,,∴△BDH≌△ADC,∴BH=AC.人教版八年级上学期期中考试数学试卷(二)一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.123.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是.10.若正n边形的每个内角都等于150°,则n= ,其内角和为.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE= .12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为cm.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A 1B1C1,平移后点A的对应点A1的坐标是.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)参考答案与试题解析一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】K6:三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.3.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故选:C.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形【考点】K7:三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】KJ:等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则从而求解.依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C△ODE【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,=10cm.BC=BD+DE+EC=OD+DE+OE=C△ODE故选C.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;KI:等腰三角形的判定;KW:等腰直角三角形;M6:圆内接四边形的性质.【分析】求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.【解答】解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,∵M为EF的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴②正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴③正确;即正确的有4个,故选D.二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是两点之间线段最短.【考点】K6:三角形三边关系.【分析】三角形三边关系定理:三角形两边之和大于第三边,可以运用两点之间线段最短的性质进行判断.【解答】解:“三角形任意两边之和大于第三边”,得到这个结论的理由是:两点之间线段最短.故答案为:两点之间线段最短.10.若正n边形的每个内角都等于150°,则n= 12 ,其内角和为1800°.【考点】L3:多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE= 125°.【考点】KD:全等三角形的判定与性质.【分析】在△ADC和△ABE中,由∠C=∠E,∠A=∠A和AD=AB证明△ADC≌△ABE,得到∠ADC=∠ABE,由∠CDE=55°,得到∠ADC=125°,即可求出∠ABE的度数.【解答】解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=55°,∴∠ADC=125°,∴∠ABE=125°,故答案为125°.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5 .【考点】KF:角平分线的性质;KQ:勾股定理.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM 的周长最短为8 cm.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,解得AD=6cm,∴S△ABC∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为 4 .【考点】KI:等腰三角形的判定;D5:坐标与图形性质.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P 是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;P是OA的中垂线与x轴的交点,有1个,共有4个.【解答】解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故填:4.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.【考点】K7:三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.【考点】KD:全等三角形的判定与性质.【分析】可证明△ABC≌△DBE,得到AC=BE DE=BC,即可证明AC+DE=CE.【解答】证明:∵∠ABD=90°,AC⊥CB,DE⊥BE,∴∠ABC+∠DBE=∠ABC+∠A,∴∠A=∠DBE;在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴AC=BE,BC=DE,∴AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,解:∵∠B=∠ACB=15°,∴∠CAD=∠B+∠A CB=15°+15°=30°,∵AC=4cm,CD是AB边上的高,∴CD=AC=×2=1.∴AB边上的高是1.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.【考点】KD:全等三角形的判定与性质;K6:三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=2,在△ABE中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=2,在△ABE中,AB﹣BE<AE<AB+BE,∴4﹣2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2,22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A 1B1C1,平移后点A的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5 .【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:13.5.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)【考点】KY:三角形综合题.【分析】(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=。
八年级(上)期中数学试卷附答案解析
八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个 D.1个6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.107.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠310.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=.12.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是.13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD=cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是(填序号).三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.23.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、直角三角形有三条高,故本选项错误;C、三角形的中线一定在三角形的内部,故本选项正确;D、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确.故选:B.2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个【解答】解:①7边形有=14条对角线,故正确;②外角和大于内角和的多边形只有三角形,故正确;③多边形外角和=360°,设这个多边形是n边形,根据题意得(n﹣2)•180°=360°×4,解得n=10.故错误.故选:C.3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对【解答】解:∵AB∥CD,∴∠A=∠D,∵AB=CD,AE=FD,∴△ABE≌△DCF(SAS),∴BE=CF,∠BEA=∠CFD,∴∠BEF=∠CFE,∵EF=FE,∴△BEF≌△CFE(SAS),∴BF=CE,∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∴△ABF≌△CDE(SSS),∴全等三角形共有三对.故选:C.4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm【解答】解:∵O是AB,CD的中点,AB=CD,∴OA=OB=OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD=15cm,故选:D.5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个D.1个【解答】解:第一个图形是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,故选:A.6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.10【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BD是中线,∴∠ABD=30°,∵CE=CD,∴∠CDE=∠E=30°,∴∠BFE=90°,∴BE=2BF,∵EF=12,∴BE2=BF2+EF2,即4BF2=BF2+144,解得BF=4,在Rt△BDF中,cos30°=,∴BD=BF÷cos30°=4÷=8.故选:C.7.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【解答】解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D.8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC和△AB′C′关于直线L对称,∴(1)△ABC≌△AB′C′,正确;(2)∠B′AC=∠B′AC正确;(3)直线L一定垂直平分线段C C′,故本小题正确;(4)根据对应线段或其延长线的交点在对称轴上可知本小题错误;综上所述,正确的结论有3个.故选:B.9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠3【解答】解:如图,由三角形外角的性质可得∠1+∠4=∠5,∠2=∠5+∠3,∴∠1+∠4=∠2﹣∠3,故选:D.10.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选:B.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=(b﹣a)7.【解答】解:原式=[﹣(b﹣a)]2•(b﹣a)5=(b﹣a)2•(b﹣a)5=(b﹣a)7故答案为:(b﹣a)712.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【解答】解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.=×7×7=(cm2).故S△ACF故答案为:.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD= 2.5cm.【解答】解:在△ABC中,∠C=90°,∠B=2∠A,所以,∠A=30°,∠B=60°,BC=sin∠A×AB=×10=5cm;∵CD⊥AB∴∠B+∠BCD=∠A+∠B=90°即:∠BCD=∠A又∵∠CDB=∠ACB=90°∴△ACB∽△CDB∴=即:DB===2.5cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为45°.【解答】解:∵AB=AC,∴∠C=∠ABC,∵BD=BC,∴∠C=∠CBD,∵∠A=30°,∴∠C=∠ABC=∠CBD=75°,∴∠CBD=30°,∴∠ABD=75°﹣30°=45°.故答案为45.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为110°.【解答】解:等腰三角形一个外角为70°,那相邻的内角为110°三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以110°只可能是顶角.故答案为:110°.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为6.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是②③④(填序号).【解答】解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;∵AD是△ABC的角平分线,∴∠EAD=∠FAD,在△AED和△AFD中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,故④正确;∵在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,故②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,故③正确.综上可得:正确的是:②③④,故答案为:②③④.三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.【解答】解:如图所示:点B′即为所求,∵A(0,2),B(3,﹣2),∴B点到AC的距离为4,则B′点到AC的距离也为4,且两点横坐标相等,∴B′(3,6).20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.【解答】解:∵AF平分∠CAE,∴∠CAF=∠DAF在△CAF与△DAF中,∴△CAF≌△DAF(SAS)∴∠ACF=∠ADF∵∠ACB=∠CAE=90°,∴∠ACE+∠CAE=∠B+∠CAE=90°∴∠ACE=∠B,∴∠ADF=∠B∴FD∥BC21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.【解答】解:数量关系为:BE=EC,位置关系是:BE⊥EC.证明如下:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC﹣∠EDA=180°﹣45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中,∴△EAB≌△EDC(SAS),∴EB=EC,且∠AEB=∠DEC,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE⊥EC.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.【解答】解:∵+(4a﹣b﹣2)2=0,∴≥0,(4a﹣b﹣2)2≥0,∴,解得,∴(﹣3ab2)2=(﹣3×1×4)2=3623.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.【解答】解:原式=6x2+3x﹣2x2+10x﹣3x+15=4x2+10x+15,当x=﹣2时,原式=16﹣20+15=11.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.【解答】(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,∴BG>CE.21。
八年级上学期数学期中试卷(解析版)
河北省邯郸市邯山区扬帆初中学校2022--2023学年八年级上学期数学期中试卷一、选择题(本题有14个小题,每题4分,共56分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列交通指示标志中,不是轴对称图形的是()A. B. C. D.【答案】D 【解析】【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,逐项分析判断即可求解.【详解】解:A .是轴对称图形,故该选项不符合题意;B .是轴对称图形,故该选项不符合题意;C .是轴对称图形,故该选项不符合题意;D .不是轴对称图形,故该选项符合题意;故选D【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的定义是解题的关键.2.下列运算中,结果正确的是()A.426a a aB.246()a a C.246a a a D.44(2)8a a 【答案】C 【解析】【分析】直接利用同底数幂的乘法法则,幂的乘方法则,积的乘方法则分别计算进行判断即可.【详解】解:A.42a a 不能合并,故此项错误,不合题意;B .248()a a ,故此项错误,不合题意;C.246a a a 故此项正确,符合题意;D.44(2)16a a 故此项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法运算,幂的乘方运算,积的乘方运算,解题的关键是掌握相关的运算法则.3.如图,在A B C 中,90C ,30B ,6A B .则A C长度是()A.3B.3.5C.2.5D.2【答案】A 【解析】【分析】根据含30度角的直角三角形的性质即可求解.【详解】解:∵在A B C 中,90C ,30B ,6A B .∴132A C A B.故选:A .【点睛】本题考查了含30度角的直角三角形的性质,掌握直角三角形中30度角所对的直角边等于斜边的一半是解题的关键.4.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是()A.AM =BMB.AP =BNC.∠MAP =∠MBPD.∠ANM =∠BNM【答案】B 【解析】【分析】根据直线MN 是四边形AMBN 的对称轴,得到点A 与点B 对应,根据轴对称的性质即可得到结论.【详解】解:∵直线MN 是四边形AMBN 的对称轴,∴点A 与点B 对应,∴AM =BM ,AN =BN ,∠ANM =∠BNM ,∵点P 是直线MN 上的点,∴∠MAP =∠MBP ,∴A ,C ,D 正确,而B 错误,故选:B .【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.5已知102,103x y ,则3210x y 等于()A.36B.72C.108D.24【答案】B 【解析】【分析】利用同底数幂的乘法法则及幂的乘方的法则对所求的式子进行整理,再代入相应的值进行运算.【详解】解:323210(10)(10)x yx y ,当102,103xy时,原式3223 8972 ;故选:B .【点睛】本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是熟练掌握相关的运算法则.6.已知等腰三角形的周长为16,一边长为4,则此等腰三角形的底边长是()A.4B.6C.4或10D.4或6【答案】A 【解析】【分析】分4为腰和底两种情况进行分类讨论即可.【详解】解:当4为等腰三角形的腰时,则底边为16448 ,此时三边分别为4、4、8,不满足三角形的三边关系,则不能构成三角形;当4为等腰三角形的底边时,则腰为(164)26 ,此时三边分别为6、6、4,满足三角形的三边关系,能构成三角形;故选:A .【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系,解题的关键是在题目没有明确已知边长的情况时,需进行分类讨论.7.下列各式,4n x 可以写成()A.4n x xB.3n n x xC.22n x D.4nx x 【答案】C 【解析】【分析】根据同底数幂的乘法以及幂的乘方解决此题.详解】解:A .44n n x x x ,那么A 不符合题意.B .34n n n x x x ,那么B 不符合题意.C .根据幂的乘方,224()n n x x ,那么C 符合题意.D .根据同底数幂的乘法,44n n x x x ,那么D 不符合题意.故选:C .【点睛】本题主要考查同底数幂的乘法、幂的乘方,熟练掌握同底数幂的乘法、幂的乘方解决此题.8.如图,在锐角A B C 中,边AB ,AC 的垂直平分线交于点P .连结BP ,CP .若100B P C ,则A ()A.40B.50C.60D.80【答案】B 【解析】【分析】连结AP 并延长到D ,先根据线段垂直平分线的性质可得P A P B P C ,从而利用等腰三角形的性质可得,A B P B A P C A P A C P,然后利用三角形的外角性质可得2,2B P D B A P C P D C A P ,最后根据已知可得100B P D C P D ,从而可得22100B A PC A P ,进行计算即可解答.【详解】解:连结A P 并延长到D ,∵边,A B A C 的垂直平分线交于点P ,∴P A P B P C ,∴,A B P B A P C A P A C P ,∴2,2B P D B A P A B P B A P C P D C A P A C P C A P ,∵100B P C ,∴100B P D C P D ,∴22100B A P C A P ,∴50B A P C A P ,∴50B A C ,故选:B .【点睛】本题考查了线段垂直平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.若计算22(321)(3)4x a x x x 的结果中不含有2x 项,则a 的值为()A.23B.0C.2D.32【答案】A 【解析】【分析】利用单项式乘多项式的法则进行求解,再结合不含2x 项,则其2x 项的系数为0,从而求解.【详解】解:22(321)(3)4x a x x x3229634x a x x x 329(64)3x a x x ,结果中不含有2x 项,640a ,解得23a ,故选:A .【点睛】本题主要考查了单项式乘多项式,合并同类项,解题的关机是熟练掌握相应的运算法则.10.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D 【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】解:Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选:D .【点睛】本题主要考查了尺规作图,正确掌握基本作图方法是解题关键.11.若k 为正整数,则34()k 的意义为()A.4个3k 相加B.3个4k 相加C.4个3k 相乘D.7个k 相乘【答案】C【解析】【分析】根据幂的乘方的含义即可解答.【详解】解:根据幂的乘方的含义,可得34k表示4个3k相乘,()故选:C.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方的含义是解题的关键.12.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB 中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A.利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B.过线段外一点作已知线段垂线,不能保证也平分此条线段,不符合题意;C.利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D.利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.,宽为a b 的长方形,需要B类卡13.用如图所示的正方形和长方形卡片若干张,拼成一个长为32a b片()张.A.3B.4C.5D.6【答案】C 【解析】【分析】根据长方形的面积公式22(32)()352S a b a b a ab b 即可得出结果.【详解】解:∵长方形长为32a b ,宽为a b ∴长方形的面积:22(32)()352S a b a b a ab b∴需要B 内卡片5张.故选C .【点睛】本题考查多项式的乘法,灵活运用多项式乘法法则和数形结合思想是解题的关键.14.如图,等边A B C 的边长为8,A D 是B C 边上的中线,F 是A D 边上的动点,E 是A C 边上一点,若4A E ,则当E F C F 取得最小值时,E C F 的度数为()A.22.5B.30C.45D.15【答案】B 【解析】【分析】根据对称性和等边三角形的性质,作B E A C 于点E ,交A D 于点F ,此时B F C F ,E F C F最小,进而求解.【详解】解:如图:过点B 作B EA C于点E ,交A D 于点F ,连接C F ,A B C 是等边三角形,边长为8,若4A E ,4A E E C ,A F F C ,F A C F C A ,A D 是等边ABC 的B C 边上的中线,30B A D C A D ,30E C F .故选:B .【点睛】本题考查了轴对称 最短路线问题、等边三角形的性质,解决本题的关键是准确找到点E 和F 的位置.二、填空题(本大题共3个小题,每空3分,共12分)15.平面直角坐标系中,与点 4,8 关于y 轴对称的点的坐标是_____.【答案】 4,8 【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点 4,8 关于y 轴对称的点的坐标是 4,8 .故答案为:4,8 【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16.若350x y ,求28x y _____.【答案】32【解析】【分析】由350xy 得到35x y ,再代入 3332822222yx y x x y x y 中即可求解答案.【详解】解:∵350x y ,∴35x y ,∴ 33352822222232yxyxx yx y ,故答案为:32【点睛】此题主要考查了幂的乘方的逆运算、同底数幂的乘法等知识,熟练掌握运算法则是解题的关键.17.如果一条线段将一个三角形分割成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”;如果两条线段将一个三角形分割成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.(1)如图,在A B C 中,A B A C ,点D 在A C 边上,且A D B D B C ,则A _____度;(2)在A B C 中,33B A D ,和D E 是A B C 的“好好线”,点D 在B C 边上,点E 在A C 边上,且A D B D ,D E C E ,则C 的度数为____________.【答案】①.36②.22 或38 .【解析】【分析】(1)利用等边对等角得到三对角相等,设A A B D x ,表示出B D C 与C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出A 的度数;(2)设C x ,①当A D A E 时,利用三角形外角的性质得到23333x x ,解得22x ,②当A D D E 时,利用三角形内角和定理得到23803313x x ,解得38x .【详解】解:(1)A B A C ,A B C C ,B D BC A D,A AB D ,C BD C ,设A A B D x ,则2B D C x ,1802x C,即18022xx ,解得36x ,则36A ,故答案为:36;(2)设C x ,①当A D A E 时,如图:23333x x ,22x ;②当A D D E 时,如图:23333180x x ,38x ,所以C 的度数为22 或38 ;故答案为:22 或38 .【点睛】此题考查了等腰三角形的性质,三角形外角的性质以及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.三、解答题(本大题共3个小题,共32分.解答应写出文字说明、证明过程或演算步骤)18.计算:(1)已知2528322n n ,求n 的值;(2)已知n 是正整数,且32n x ,求3223(3)(2)n n x x 的值.【答案】(1)3;(2)4.【解析】【分析】(1)由3535812528322(2)(2)22222n n n n n n n ,得到一元一次方程8125n ,即可求解;(2)把3223(3)(2)n n x x 变形为2323(3)8()n n x x ,再把32n x 代入计算即可.【小问1详解】解:35358125)(2)2832222222(2n n n n n n n ,8125n ,解得3n .【小问2详解】解:32233223(3)(2)()8)3(n n n n x x x x ,当32n x 时,原式22(32)82 36324 .【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解题的关键.19.如图,某市有一块长为(3)a b 米,宽为(2)a b 米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)则绿化的面积是多少平方米?(用a ,b 的代数式表示)(2)若a ,b 满足2(1)(3)x x x ax b 时,求该绿化面积.【答案】(1) 253a ab 平方米(2)116平方米【解析】【分析】(1)用长方形的面积减去正方形的面积即可;(2)把等式的左边化简,求出a 和b 的值,代入(1)中结果计算.【小问1详解】解:长方形面积:(3)(2)a b a b ,正方形面积:()()a b a b ,∴绿化面积:(3)(2)()()a b a b a b a b22226322a ab ab b a ab b 22226322a ab ab b a ab b 253a ab答:绿化的面积是 253a ab 平方米.【小问2详解】解:∵2(1)(3)x x x ax b∴2243x x x a x b ,∴4,3a b 时,∴225354343a ab 8036116答:绿化的面积是116平方米,【点睛】本题考查了整式的混合运算,正确列出算式是解答(1)的关键,根据多项式乘以多项式求出a 和b 的值是解(2)的关键.20.如图,在A B C 中,B C ,过B C 的中点D 作D E A B ,D F A C ,垂足分别为点E 、F .(1)求证:D E D F ;(2)若55B D E ,求B A C 的度数.(3)若30B ,2A E ,则A B .【答案】(1)见解析(2)110(3)8【解析】【分析】(1)根据D E A B ,D F A C ,可得90B E D C F D ,由于B C ,D 是B C 的中点,根据全等三角形的判定和性质即可得出结论.(2)根据三角形的内角和定理求出35B ,根据三角形的内角和定理即可求解.(3)由等腰三角形的性质得到90A D B ,30B ,得到2A B A D ,再求得30A D E A D B B D E ,得到30A D E A D B B D E ,即可得到24A D A E ,即可得到答案.【小问1详解】∵D E A B ,D F A C ,∴90B E D C F D ,∵D 是B C 的中点,∴B D C D ,在B E D 与C F D ♀中,B E DC F DB C B D C D,∴B E D C F D A A S ≌(),∴D E D F ;【小问2详解】∵90B E D ,55,B D E ∴18035C B ED B DE ,∴=35B C ,∴1803535110B A C .【小问3详解】连接A D,∵B C ,∴A B C 是等腰三角形,∵D 是B C 的中点,∴A D B C ,∴90A D B ,∵30B ,∴2A B A D ,∵D E A B ,∴90B D E A E D ,∵90B E D ,55,B D E ∴18060B D E B E D B ,∴30A D E A D B B D E ,∴24A D A E ,∴28A B A D ,故答案为:8【点睛】此题主要考查了等腰三角形的判定和性质、全等三角形的判定与性质、直角三角形的性质等知识点的理解和掌握.。
八年级上册数学期中数学试卷(附解析)
八年级数学上册期中测试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列线段长能构成三角形的是()A.3、7、5 B.2、3、5C.5、6、11D.1、2、4 2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.3.(3分)下列图形中,不是运用三角形的稳定性的是()A.房屋顶支撑架B.自行车三脚架C.拉闸门D.木门上钉一根木条4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.(3分)如图所示,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠B的度数是()A.33°B.47°C.53°D.100°6.(3分)已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4C.2:3D.4:97.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为()A.16cm B.28cm C.26cm D.18cm8.(3分)如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为()A.60°B.67.5°C.72°D.75°9.(3分)如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE =()A.10°B.15°C.20°D.30°10.(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,共18分)11.(3分)点P(1,3)关于y轴对称点的坐标为.12.(3分)已知△ABC中的∠B=∠A+10°,∠C=∠B+10°,则∠A =,∠B=,∠C=.13.(3分)小华要从长度分别为5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为cm.14.(3分)如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)15.(3分)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC =3,则BE=.16.(3分)在△ABC中,AD是高,∠BAD=60°,∠CAD=20°,AE平分∠BAC,则∠EAD的度数为.参考答案与试题解析一、选择题1.A;2.C;3.C;4.B;5.A;6.A;7.D;8.B;9.A;10.A;二、填空题11.(﹣1,3);12.50°;60°;70°; 13.33; 14.BC=BD;15.1.5;16.20°或40°;三、解答题(共8小题,共72分)17.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC 异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.18.(8分)已知等腰三角形的周长是22,一边长为5,求它的另外两边长.19.(8分)如图,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向.求∠C的度数.20.(8分)如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF (A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.21.(8分)如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.22.(10分)如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.23.(10分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC 上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=时,AQ=2BD.24.(12分)如图1,A(m,0),B(0,n),且m,n满足(m ﹣2)2+=0.(1)求S△ABO;(2)点C为y轴负半轴上一点,BD⊥CA交CA的延长线于点D,若∠BAD=∠CAO,求的值;(3)点E为y轴负半轴上一点,OH⊥AE于H,HO,AB的延长线交于点F,G为y轴正半轴上一点,且BG=OE,FG,EA的延长线交于点P,求证:点P的纵坐标是定值.参考答案与试题解析三、解答题(共8小题,共72分)17.(8分)【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.18.(8分)【解答】解:若底边为5,设腰长为x,则5+2x=22,解得x=8.5,若腰为5,设底边为xcm,则2×5+x=22,解得x=12,∵5+5<12,∴不合题意.所以等腰三角形另外两边长分别为8.5和8.5.19.(8分)【解答】解:过A沿南向做射线AD交BC于D,由题意∠BAD=57°,∠CAD=15°,∠EBC=82°,∵AD∥BE,∴∠EBA=∠BAD=57°.∴∠ABC=∠EBC﹣∠EBA=25°.△ABC中,∠ABC=25°,∠BAC=72°,∴∠C=180°﹣25°﹣72°=83°.即:∠C的度数为83°.20.(8分)【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)21.(8分)【解答】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD =∠CAD,∠EAD=∠EDA,∴∠EAC=∠B.22.(10分)【解答】解:(1)∠C=2∠D即:∠D=45°,∵BD平分∠CBA,AG平分∠EAB,∴∠EAB=2∠GAB,∠ABC=2∠DBA,∵∠CAB=180°﹣2∠GAB,∠BAC+∠ABC=90°,即180°﹣2∠GAB+2∠DBA=90°,整理得出∠GAB﹣∠DBA=45°,∴∠D=∠C=45°;(2)当A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立,∵∠CAB+∠ABC=∠C=90°,不论A在CE上如何运动,只要不与C点重合,这个关系式都是不变的,整理这个式子:∠CAB=180°﹣2∠GAB,∠ABC=2∠DBA,得:180°﹣2∠GAB+2∠DBA=90°,整理得∠GAB﹣∠DBA=45度,恒定不变,即:∠D=45°的结论不变,∴∠C=2∠D恒成立.23.(10分)【解答】(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ;(2)解:如图2所示:∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ,在△AQC和△BPC中,∴△AQC≌△BPC(ASA),∴QC=CP,∵∠QCD=90°,∴∠CQP=∠CPQ=45°;(3)解:当∠DBA=22.5°时,AQ=2BD;∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠P=22.5°,∴∠DBA=∠P,∴AP=AB,∵AD⊥BP,∴AD=DP,∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,∴∠P=∠Q,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ,∴此时AQ=BP=2BD.故答案为:22.5°.24.(12分)【解答】解:(1)∵(m﹣2)2+=0.∴m=n=2,∴A(2,0),B(0,2),∴OA=2,OB=2,∴S△AOB=OA×OB=2;(2)如图1,在OC上取一点E,使OE=OA=2,由(1)知,OA=OB=2,∴∠OAB=45°,∴AE=2,∵∠BAD=∠CAO,∴∠BAD=∠CAO=67.5°,∵∠ADB=∠AOC=90°,∴∠ABD=∠ACO=22.5°,∴CE=AE=2,∴OC=OE+CE=2(+1),∴AC2=OA2+OC2=4+4(+1)2=8(2+),tan∠ACO==﹣1,在Rt△ABD中,tan∠ABD=tan22.5°=tan∠ACO==﹣1,∴AD=(﹣1)BD,在Rt△AOB中,OA=OB=2,∴AB=2,根据勾股定理得,AD2+BD2=AB2,∴[(﹣1)BD]2+BD2=8,∴BD2=2(2+),==,∴=;(3)如图2,由(1)知,A(2,0),B(0,2),∴直线AB解析式为y=﹣x+2①,设E(0,a),∴OE=|a|=﹣a,∵BG=OE,∴BG=﹣a,∴OG=2﹣a,∴G(0,2﹣a),∵A(0,2),E(0,a),∴直线AE解析式为y=﹣x+a②,∵OH⊥AE,∴直线OH解析式为y=x③,联立①③得,x=,y=,∴F(,),∵G(0,2﹣a),∴直线FG的解析式为y=x+2﹣a④,联立②④得,x=,y=1,∴P(,1),∴点P的纵坐标是定值,定值为1.。
(北师大版)2024-2025学年八年级数学上学期期中押题测试卷(一)(解析版)
2024-2025学年八年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:(北师版)八年级上册第一章~第四章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.实数16的平方根是( )A.4B.-4C.±4D.16【答案】C【详解】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.详解:∵(±4)2=16,∴实数16的平方根是±4.故选C.点睛:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列4个数中,3.1415926,22,π7C.πDA.3.1415926B.227故选:C .【点睛】本题主要考查了无理数的实数的分类,熟练地掌握无理数的定义是解题的关键.常见的无理数有:含π的数、开不尽方的数、有规律但是不循环的数.3.下列运算中正确的是( )A B .2+C .2=12D =−24.下列各组数据中的三个数,可以作为直角三角形三边长的是( )A .1,2,3B .2,4,7C .6,8,10D .13,14,155.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m6.在平面直角坐标系中,点5,−2所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据各象限内的点的坐标符号规律即可得.【详解】解:因为点5,−2的横坐标为5>0,纵坐标为−2<0,所以点5,−2所在的象限是第四象限,故选:D.【点睛】本题考查了点所在的象限,熟练掌握各象限内的点的坐标符号规律是解题关键.7.关于直线l:y=−2x+4,下列说法不正确的是()A.函数的图象经过第一、二、四象限B.y随x的增大而减小C.函数的图象是由y=−2x的图象向上平移4个单位长度得到的D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【答案】D【分析】由k=−2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵y =−2x +4,k =−2<0,b =4>0,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;∵y =−2x +4函数的图象是由y =−2x 的图象向上平移4个单位长度得到的,故C 不符合题意;当x =0时,y =4,∴A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,且x 1<x 2,则y 1>y 2,故D 符合题意;故选:D .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.8.一次函数y =kx +b 与y =x−2的图象如图所示,则关于x ,y 的方程组y =kx +b y =x−2 的解是( )A .x =4y =2B .x =4y =−2C .x =2y =1D .x =2y =−1【答案】A 【分析】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.先利用y =x−2确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:对于y =x−2,当x =4时,y =4−2=2,∴两直线交点坐标为(4,2),∴方程组y =kx +b y =x−2 的解x =4y =2 ,故选:A .9.若kb >0,则正比例函数y =kx 与一次函数y =bx +k 在同一坐标系中的图象可能是( )A .B .C .D .【答案】A 【分析】本题考查一次函数的图象,解答本题的关键是明确一次函数的性质,由kb >0,得k 、b 同号,再分k >0,b >0及k <0,b <0,两种情况讨论即可得答案.【详解】解:∵kb >0,∴k 、b 同号,若k >0,b >0,y =kx 图象经过第一、三象限,y =bx +k 经过第一、二、三象限,若k <0,b <0,y =kx 图象经过第二、四象限,y =bx +k 经过第二、三、四象限,只有选项A 符合,故选:A .10.如图,一次函数交x 轴于点A (4,0),交y 轴于点B (0,3),过点A 作AC ⊥AB ,且AC =AB .连接BC ,当点C在第一象限时,直线BC 的解析式为( )A .y =17x +3B .y =16x +3C .y =15x−3D .y =14x +3【答案】A【分析】根据点A 和B 的坐标求出线段OA 和OB 的长,过点C 作CD ⊥x 轴于D ,由全等三角形的判定可得出△ABO≌△CAD ,由全等三角形的性质可得AD =OB =3,CD =OA =4,从而求出点C 的坐标,继而可求出直线BC 的解析式.【详解】过点C 作CD ⊥x 轴于D ,二、填空题(本题共6小题,每小题3分,共18分.)11.若电影院的5排3号记为(5,3),则4排7号记为.【答案】(4,7)【分析】根据题意明确对应关系,排在前,号在后,然后进行分析解答.【详解】解:电影院中的5排3号记为(5,3),则4排7号记为(4,7).故答案为:(4,7).【点睛】本题主要考查坐标确定位置,掌握在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件.12.如图,已知RtΔABC中,∠C=90°,BC=20,AC=15,CD是斜边AB上的高,求AD的长度为.13.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.【答案】y=﹣x+3【分析】将点(1,2)代入一次函数解析式为y=kx+b,得到k+b=2,又因为y随x的增大而减小,可得出k小于0,取k=-1,可得出b=3,确定出满足题意的一次函数解析式,本题答案不唯一.【详解】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=-1,可得出b=3,则一次函数为y=-x+3.故答案为y=-x+3【点睛】此题考查了一次函数的性质,一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.此外本题的答案不唯一,只要满足k为负数,且k+b=2即可.14.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.15.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF=.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=1008×2+1即可找出点A2017的坐标.【详解】由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案是:(21008,21009)【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)求下列各式中的x:(1)1(x−1)3=−4;2(2)(2x+1)2=9.题的关键.18.(8分)计算(2)(3+÷19.(8分)平面直角坐标系中,△ABC各顶点坐标分别为A0,1、B2,0、C4,3.(1)若△A′B′C′与△ABC关于y轴对称,请在平面直角坐标系中画△A′B′C′;(2)△A′B′C′的面积是________;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)见解析(2)4(3)P10,0或−6,0【分析】本题考查了作轴对称图形、三角形的面积、坐标与图形,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据轴对称的性质得出点A、B、C的对应点A′、B′、C′,再顺次连接即可;(2)利用割补法求三角形面积即可;(3)根据三角形的面积求出BP=8,进而即可得出点P的坐标.【详解】(1)解:△A′B′C′如图所示:;20.(8分)如图,直线y=−3x+6交x轴和y轴于点A和点B,点C(0,−3)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△BCP的面积为18,求点P的坐标;【答案】(1)点A坐标为(2,0),点B坐标为(0,6)(2)点P的坐标为(4,−6)或(−4,18)【分析】本题考查一次函数图像上点的坐标特征,熟知一次函数的图像和性质是解题的关键.(1)根据坐标轴上的点的坐标特征即可解决问题.(2)由△BCP的面积为18可求出点P的横坐标,据此可解决问题.【详解】(1)将y=0代入y=−3x+6得,−3x+6=0,解得x=2,∴点A坐标为(2,0).将x=0代入y=−3x+6得,21.(8分)如图,在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A,H,B在一条直线上),并修一条路CH.测得CB=2千米,CH=1.6千米,HB=1.2千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.22.(10分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对A、B两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院共检测______人,甲乙两家医院检测的速度差是______.(2)求出两家医院的y与x的函数关系式;(3)甲医院开始检测多长时间两家医院检测人数相差200人?【答案】(1)6000,8人/分(2)y甲=20x−1000;y乙=12x(3)甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【分析】(1)由图象直接可得答案;(2)在图象上找两点或一点,利用待定系数法可得答案;(3)有甲检测人数比乙多200和乙检测人数比甲多200两种情况,列出含绝对值的方程即可解得答案.【详解】(1)解:两家医院共检测3000+3000=6000(人),甲医院速度是3000÷(200−50)=20(人/分),乙医院速度是3000÷250=12(人/分),∴甲乙两家医院检测的速度差是8(人/分),故答案为:6000,8人/分;(2)解:设y 甲=kx +b ,将(50,0),(200,3000)代入得:50k +b =0200k +b =3000 ,解得k =20b =−1000,∴y 甲=20x−1000;设y 乙=k′x ,将(250,3000)代入得:250k ′=3000,解得k ′=12,∴y 乙=12x ;所以甲医院的y 与x 的函数关系式为:y =20x−1000;乙医院的y 与x 的函数关系式为:y =12x ;(3)解:根据题意得:|20x−1000−12x |=200,解得x =100或x =150,∴x−50=50或x−50=100,答:甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【点睛】本题考查一次函数的应用,解题的关键是正确识图,熟练应用待定系数法列出函数关系式.23.(10简:2−12=以上这种化简的步骤叫做分母有理化.也可以用如下方法化简.(1)请化简:2;(2)选择合适的方法化简1(n 为正整数);(3)++++⋯+24.(12分)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(a,2),与y轴交于点B(0,5),与x轴交于点C.(1)求直线l1的函数表达式;(2)在y轴上存在一点P,使得S△AOP=S△AOC,求出点P的坐标;(3)点E为直线l1上的动点,过点E作x轴的垂线,交于l2点F,点H为y轴上一动点,且△EFH为等腰直角三角形,求满足条件的点E的坐标.。
2023-2024学年全国初中八年级上数学人教版期中考卷(含答案解析)
20232024学年全国初中八年级上数学人教版期中考卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题3分,共15分)1. 下列选项中,哪个是勾股定理的逆定理?A. 直角三角形两直角边的平方和等于斜边的平方B. 任意三角形两边的平方和等于第三边的平方C. 直角三角形斜边的平方等于两直角边的平方和D. 任意三角形两边的平方和等于第三边的平方2. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是?A. P(2,3)B. P(2,3)C. P(2,3)D. P(2,3)3. 下列哪个是等差数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,254. 下列哪个是等比数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,255. 在一个等差数列中,首项为5,公差为3,第10项是多少?A. 32B. 35C. 38D. 406. 在一个等比数列中,首项为2,公比为3,第4项是多少?A. 18B. 27C. 36D. 457. 下列哪个是勾股数?A. 3,4,5B. 5,6,7C. 8,9,10D. 12,13,14二、填空题(每题4分,共20分)1. 下列数列中,第n项是__________。
2. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是__________。
3. 在一个等差数列中,首项为5,公差为3,第10项是__________。
4. 在一个等比数列中,首项为2,公比为3,第4项是__________。
5. 下列数列中,第n项是__________。
三、判断题(每题3分,共15分)1. 直角三角形两直角边的平方和等于斜边的平方是勾股定理。
()2. 任意三角形两边的平方和等于第三边的平方是勾股定理的逆定理。
()3. 等差数列的任意两项之差是常数。
八年级上学期期中考试数学试卷(附参考答案与解析)
八年级上学期期中考试数学试卷(附参考答案与解析)班级:___________姓名:___________考号:___________一、选择题(每题3分,共36分)1.9的平方根为()A.3B.﹣3C.±3D.2.在给出的一组数中,无理数有()A.1个B.2个C.3个D.5个3.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.∠C=90°B.a2=b2﹣c2C.c2=2a2D.a=b4.若点P关于x轴的对称点为P1(﹣2,3),则点P关于原点的对称点P2的坐标()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.6.在△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A.15B.16C.17D.187.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x﹣1C.y=﹣3x+1D.y=﹣2x+48.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.39.若表示a、b两个实数的点在数轴上的位置如图所示,则化简|a﹣b|+的结果为()A.2a B.2b C.﹣2a D.﹣2b10.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,﹣b )在第二象限,则点B(﹣a,b)在第四象限D.若点P的坐标为(a,b),且a•b=0,则点P一定在坐标原点11.已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.1512.一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为()A.B.C.D.二、填空题(每题3分,共3×5=15分)13.的算术平方根是,﹣=.14.已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第象限.15.若a<<b,且a,b为连续正整数,则b2﹣a2=.16.已知点P在第四象限,且到x轴的距离是5,到y轴的距离是4,则P点坐标为.17.函数y=3x+m的图象与两坐标轴围成的三角形面积为24,则m=.三、解答题(共69分)18.计算题(1)+(1﹣)0(2)已知:x=,y=,求的值.19.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积.21.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数)则有:a+b=m2+2n2+2mn,所以a=m2+2n2,b=2mn.这样小明就找到了一种把a+b的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=,b=(2)若a+4=(m+n)2(其中a、b、m、n均为正整数),求a的值.22.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费,甲乙两厂所收取的费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)甲厂的制版费,其证书印刷单价,y与x的函数解析式.甲与x的函数解析式.(2)请求出印刷数量x≥2时,y乙(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(4)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?24.正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与x轴交与点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.参考答案与解析一、选择题(每题3分,共3×12=36分)1.9的平方根为()A.3B.﹣3C.±3D.【考点】平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.2.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,和共有3个.故选C.3.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.∠C=90°B.a2=b2﹣c2C.c2=2a2D.a=b【考点】勾股定理.【分析】首先根据△ABC角度之间的比,可求出各角的度数.∠C为90度.根据勾股定理可分别判断出各项的真假.【解答】解:由∠A:∠B:∠C=1:1:2;得:∠A=∠B=45°,∠C=90°;所以A正确.由勾股定理可得:c2=a2+b2,所以B错误.因为∠A=∠B=45°,则a=b,同时c2=a2+b2=2a2.所以C、D正确.故选B.4.若点P关于x轴的对称点为P1(﹣2,3),则点P关于原点的对称点P2的坐标()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点P关于x轴的对称点为P1(﹣2,3),得P(﹣2,﹣3)则点P关于原点的对称点P2的坐标(2,3)故选:A.5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选B.6.在△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A.15B.16C.17D.18【考点】全等三角形的判定与性质;勾股定理的逆定理.【分析】延长AD至E使ED=AD,利用好AD是中线这个条件,再根据题中的数据的特点正好符合勾股定理逆定理,得到直角三角形,根据直角三角形斜边上的中线的性质就可以求出BD 的长度了,再根据BC=2BD,所以BC的长也就求出了.【解答】解:延长AD至E,使DE=AD;连接BE,如图∵AD=8.5∴AE=2×8.5=17在△ACD和△BED中∵∴△ACD≌△BED(SAS)∴BE=AC=8BE2+AB2=82+152=289AE2=172=289所以∠ABE=90°∵在Rt△BED中,BD是中线∴BD=AE=8.5∴BC=2BD=2×8.5=17.故选:C.7.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x﹣1C.y=﹣3x+1D.y=﹣2x+4【考点】一次函数的性质.【分析】设一次函数关系式为y=kx+b,y随x增大而减小,则k<0;图象经过点(1,2),可得k、b之间的关系式.综合二者取值即可.【解答】解:设一次函数关系式为y=kx+b∵图象经过点(1,2)∴k+b=2;∵y随x增大而减小∴k<0.即k取负数,满足k+b=2的k、b的取值都可以.故选D.8.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3【考点】二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1∴x=1,y=﹣1∴=﹣(﹣1)=1.故选:C.9.若表示a、b两个实数的点在数轴上的位置如图所示,则化简|a﹣b|+的结果为()A.2a B.2b C.﹣2a D.﹣2b【考点】二次根式的性质与化简;实数与数轴.【分析】由数轴可判断出a<0,b<0,|a|<|b|,得出a﹣b>0,a+b<0,然后再根据这两个条件对式子化简.【解答】解:∵由数轴可得a<0,b<0,|a|<|b|∴a﹣b>0,a+b<0∴|a﹣b|+=|a﹣b|+|a+b|=a﹣b﹣(a+b)=﹣2b.故选:D.10.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,﹣b )在第二象限,则点B(﹣a,b)在第四象限D.若点P的坐标为(a,b),且a•b=0,则点P一定在坐标原点【考点】点的坐标.【分析】根据各象限内点的坐标特征、有序实数对与平面的关系,解答即可.【解答】解:A、点(0,0)是坐标原点,故A不符合题意;B、对于坐标平面内的任一点,都有唯一的一对有序实数与它对应,故B不符合题意;C、点A(a,﹣b )在第二象限,得a<0,﹣b>0﹣a>0,b<0,则点B(﹣a,b)在第四象限,故C不符合题意;D、若点P的坐标为(a,b),且a•b=0,则点P一定在坐标轴上,故D符合题意;故选:D.11.已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.15【考点】勾股定理.【分析】根据两直角边的比为3:4,这个直角三角形的面积等于96.可设两直角边的长度分别为3a、4a,那么根据以上两个等量关系可以列出一个关于a的方程,求出a的值,再根据勾股定理求出斜边的长.【解答】解:设两直角边的长度分别为3a、4a,则3a•4a÷2=96解得a2=16则这个三角形的斜边为=20.故选B.12.一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系,有由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0;一次函数y=k的图象可知kb<0,两函数解析式均成立;B、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与次函数y=k的图象可知kb>0矛盾;C、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与次函数y=k的图象可知kb>0矛盾;D、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与次函数y=k的图象可知kb<0矛盾.故选A.二、填空题(每题3分,共3×5=15分)13.的算术平方根是3,﹣=.【考点】算术平方根.【分析】(1)先将原数化简,然后根据算术平方根的性质即可求出答案.(2)根据二次根式的性质进行化简,然后根据二次根式加法法则即可求出答案.【解答】解:∵==9∴9的算术平方根是3原式=2﹣=故答案为:3;14.已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第一、三象限.【考点】正比例函数的性质;一次函数的性质.【分析】根据已知条件可知k>0,则正比例函数y=(k+1)x中,k+1必定大于0,所以必经过第一、三象限.【解答】解:∵一次函数y=kx﹣1的图象经过第一、三、四象限∴k>0∴k+1>0∴正比例函数y=(k+1)x必定经过第一、三象限.15.若a<<b,且a,b为连续正整数,则b2﹣a2=7.【考点】估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42∴3<<4即a=3,b=4∴b2﹣a2=7.故答案为:7.16.已知点P在第四象限,且到x轴的距离是5,到y轴的距离是4,则P点坐标为(4,﹣5).【考点】点的坐标.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,点到x轴的距离是纵坐标的绝对值,点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:由到x轴的距离是5,到y轴的距离是4,得|x|=4,|y|=5.由点位于第四象限,得则P点坐标为(4,﹣5)故答案为:(4,﹣5).17.函数y=3x+m的图象与两坐标轴围成的三角形面积为24,则m=±12.【考点】一次函数图象上点的坐标特征.【分析】根据题意确定与x轴与y轴的交点,利用三角形的面积公式求出m的值.【解答】解:直线y=3x+m与x轴的交点坐标是(﹣,0),与y轴的交点坐标是(0,m)根据三角形的面积是24,得到|﹣|•|m|=24,即=24解得:m=±12.故答案为±12.三、解答题(共69分)18.计算题(1)+(1﹣)0(2)已知:x=,y=,求的值.【考点】二次根式的化简求值;零指数幂.【分析】(1)首先分母有理化,计算0次幂,然后进行加减即可;(2)首先对x和y进行分母有理化,然后把所求的分式约分,然后代入x和y的数值计算即可.【解答】解:(1)原式=+1=5+1=6;(2)x=(+)2=5+2,y=(﹣)2=5﹣2则原式==则当x=5+2,y=5﹣2时,原式===.19.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣平移.【分析】(1)根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减:可得A、C点的坐标;(2)根据点的坐标,在Rt△ACD中,AD=OA+OD=3,CD=2,借助勾股定理可求得AC的长.【解答】解:(1)点A的坐标是(﹣2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2∴AC2=CD2+AD2=22+32=13∴AC=.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积.【考点】作图﹣轴对称变换.【分析】(1)根据C点坐标确定原点位置,然后作出坐标系即可;(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(3)利用长方形的面积剪去周围多余三角形的面积即可.【解答】解:(1)如图所示:(2)如图所示:(3)△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4.21.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数)则有:a+b=m2+2n2+2mn,所以a=m2+2n2,b=2mn.这样小明就找到了一种把a+b的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=m2+3n2,b=2mn(2)若a+4=(m+n)2(其中a、b、m、n均为正整数),求a的值.【考点】二次根式的混合运算.【分析】(1)利用完全平方公式把(m+n)2展开即可得到a、b的值;(2)利用(1)中结论得到a=m2+3n2,2mn=4,即mn=2,利用有理数的整除性确定m和n的值,然后计算a的值.【解答】解:(1)(m+n)2=m2+3n2+2mn所以a=m2+3n2,b=2mn;故答案为m2+3n2,2mn;(2)由(1)得a=m2+3n2,2mn=4而a、b、m、n均为正整数所以m=2,n=1或m=1,n=2.所以当m=2,n=1时,a=22+3×12=7.当m=1,n=2时,a=12+3×22=13.22.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费,甲乙两厂所收取的费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)甲厂的制版费1千元,其证书印刷单价0.5元/张,y甲与x的函数解析式y甲=x+1.(2)请求出印刷数量x≥2时,y乙与x的函数解析式.(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(4)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?【考点】一次函数的应用.【分析】(1)当x=0时,y=1,由此即可得出甲厂的制版费为1千元,设y甲与x间的函数解析式为y甲=kx+b(k≠0),根据函数图象找出点的坐标,再利用待定系数法即可求出函数解析式;根据“单价=总价÷印刷数量”即可求出甲厂的印刷单价;(2)设y乙与x间的函数解析式为y乙=mx+n(m≠0),观察函数图象找出点的坐标,利用待定系数法即可求出函数解析式;(3)代入x=8,分别求出y甲与y乙的值,比较做差即可得出结论;(4)结合(2)的结论,根据“减少的单价=减少费用÷印刷数量”算出结果即可.【解答】解:(1)当x=0时,y甲=1∴甲厂的制版费为1千元.设y甲与x间的函数解析式为y甲=kx+b(k≠0)将点(0,1)、(6,4)代入y甲=kx+b中得:,解得:∴y甲与x间的函数解析式为y甲=x+1.证书印刷单价为:(4﹣1)÷6=0.5(元/张).答:甲厂的制版费为1千元,y甲与x间的函数解析式为y甲=x+1,证书印刷单价为0.5元/张.(2)设y乙与x间的函数解析式为y乙=mx+n(m≠0)当x≥2时,将点(2,3)、(6,4)代入y乙=mx+n中得:,解得:∴y乙=x+.(3)当x=8时,y甲=×8+1=5;当x=8时,y乙=×8+=.∵5>,且5﹣=(千元)=500(元).∴当印制证书8千个时,选择乙厂,节省费用500元.(4)每个证书降低费用为:500÷8000==0.0625(元).答:如果甲厂想把8千个证书的印制费用不大于乙厂,在不降低制版费的前提下,每个证书最少降低0.0625元.23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的判定与性质;全等三角形的判定与性质.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC∴CO=CD,∠OCD=60°∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2∴△AOD是直角三角形,且∠ADO=90°∵△COD是等边三角形∴∠CDO=60°∴∠ADC=∠ADO+∠CDO=90°+60°=150°根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°∴∠ADO=α﹣60°又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α∴∠DAO=180°﹣﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°∵△AOD是等腰三角形∴①∠AOD=∠ADO时,190°﹣α=α﹣60°解得α=125°②∠AOD=∠DAO时,190°﹣α=50°解得α=140°③∠ADO=∠DAO时,α﹣60°=50°解得α=110°综上所述,α为125°或140°或110°时,△AOD是等腰三角形.24.正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与x轴交与点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.【考点】一次函数综合题.【分析】(1)求得C的坐标,以及E的坐标,则求得AE的长,根据直角梯形的面积公式即可求得四边形的面积;(2)经过点E且将正方形ABCD分成面积相等的两部分的直线与CD的交点F到C的距离一定等于AE,则F的坐标可以求得,利用待定系数法即可求得直线EF的解析式;(3)根据直线l1经过点F(﹣,0)且与直线y=3x平行,知k=3,把F的坐标代入即可求出b的值即可得出直线11,同理求出解析式y=2x﹣3,进一步求出M、N的坐标,利用三角形的面积公式即可求出△MNF的面积..【解答】解:(1)在y=x中令y=4,即x=4解得:x=5,则B的坐标是(5,0);令y=0,即x=0解得:x=2,则E的坐标是(2,0).则OB=5,OE=2,BE=OB﹣OA=5﹣2=3∴AE=AB﹣BE=4﹣3=1边形AECD=(AE+CD)•AD=(4+1)×4=10;(2)经过点E且将正方形ABCD分成面积相等的两部分,则直线与CD的交点F,必有CF=AE=1,则F的坐标是(4,4).设直线的解析式是y=kx+b,则解得:.则直线l的解析式是:y=2x﹣4;(3)∵直线l1经过点F(﹣,0)且与直线y=3x平行设直线11的解析式是y1=kx+b则:k=3代入得:0=3×(﹣)+b解得:b=∴y1=3x+已知将(2)中直线l沿着y轴向上平移个单位,则所得的直线的解析式是y=2x﹣4+即:y=2x﹣3当y=0时,x=∴M(,0)解方程组得:即:N(﹣7,﹣19)S△NMF=×[﹣(﹣)]×|﹣19|=.答:△NMF的面积是.第21页共21页。
八年级(上)期中数学试卷含解析
八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.123.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180° D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是.10.若正n边形的每个内角都等于150°,则n=,其内角和为.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A 的对应点A1的坐标是.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)参考答案与试题解析一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】K6:三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.3.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故选:C.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【考点】K7:三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180° D.140°【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】KJ:等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C从而求解.△ODE【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,BC=BD+DE+EC=OD+DE+OE=C△ODE=10cm.故选C.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;KI:等腰三角形的判定;KW:等腰直角三角形;M6:圆内接四边形的性质.【分析】求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.【解答】解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,∵M为EF的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴②正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴③正确;即正确的有4个,故选D.二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是两点之间线段最短.【考点】K6:三角形三边关系.【分析】三角形三边关系定理:三角形两边之和大于第三边,可以运用两点之间线段最短的性质进行判断.【解答】解:“三角形任意两边之和大于第三边”,得到这个结论的理由是:两点之间线段最短.故答案为:两点之间线段最短.10.若正n边形的每个内角都等于150°,则n=12,其内角和为1800°.【考点】L3:多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=125°.【考点】KD:全等三角形的判定与性质.【分析】在△ADC和△ABE中,由∠C=∠E,∠A=∠A和AD=AB证明△ADC≌△ABE,得到∠ADC=∠ABE,由∠CDE=55°,得到∠ADC=125°,即可求出∠ABE的度数.【解答】解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=55°,∴∠ADC=125°,∴∠ABE=125°,故答案为125°.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【考点】KF:角平分线的性质;KQ:勾股定理.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8cm.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,解得AD=6cm,∴S△ABC∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为4.【考点】KI:等腰三角形的判定;D5:坐标与图形性质.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;P是OA的中垂线与x轴的交点,有1个,共有4个.【解答】解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故填:4.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.【考点】K7:三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.【考点】KD:全等三角形的判定与性质.【分析】可证明△ABC≌△DBE,得到AC=BE DE=BC,即可证明AC+DE=CE.【解答】证明:∵∠ABD=90°,AC⊥CB,DE⊥BE,∴∠ABC+∠DBE=∠ABC+∠A,∴∠A=∠DBE;在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴AC=BE,BC=DE,∴AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,解:∵∠B=∠ACB=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°,∵AC=4cm,CD是AB边上的高,∴CD=AC=×2=1.∴AB边上的高是1.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.【考点】KD:全等三角形的判定与性质;K6:三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=2,在△ABE中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=2,在△ABE中,AB﹣BE<AE<AB+BE,∴4﹣2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2,22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A 的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:13.5.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)【考点】KY:三角形综合题.【分析】(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.(3)根据①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°(4)根据②∠BFC=∠BAC,所以∠BFC=α【解答】解:(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),(2)BD与CE相互垂直,BD=CE.由(1)知,△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,∵∠BAC=90°,∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°∴BD⊥CE.(3)由题①得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=60°,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=60°.(4)由题(1)得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=α,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=α.。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
2023-2024学年人教新版八年级上册数学期中复习试卷(含解析)
2023-2024学年人教新版八年级上册数学期中复习试卷一.选择题(共12小题,满分36分,每小题3分)1.下列图形中,是轴对称图形的是( )A.B.C.D.2.如果一个三角形的三边长分别为5,8,a.那么a的值可能是( )A.2B.9C.13D.153.下列运算中正确的是( )A.x2•x5=x10B.(a4)4=a8C.(xy2)2=xy4D.x8÷x2=x6 4.下列图形中,不具有稳定性的是( )A.等腰三角形B.平行四边形C.锐角三角形D.等边三角形5.若△ABC≌△DEF,且∠A=50°,∠B=60°,则∠F的度数为( )A.50°B.60°C.70°D.80°6.高为3,底边长为8的等腰三角形腰长为( )A.6B.5C.4D.37.若mx+6y与x﹣3y的乘积中不含有xy项,则m的值为( )A.0B.2C.3D.68.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( )A.8B.9C.10D.119.如图,在边长为3的等边△ABC中,过点C作垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )A.B.C.D.10.如图,在△ABC中,点D在BC上,AD=BD,∠B=40°,将△ABD沿着AD翻折得到△AED,则∠CDE的度数是( )A.20°B.25°C.30°D.35°11.合肥市2014年3月5日的温差为8℃,最高气温为t℃,则最低气温可表示为( )A.(8+t)℃B.(8﹣t)℃C.(t﹣8)℃D.(﹣t﹣8)℃12.如图,△ABC中,BD平分∠CBA,CE平分∠ACB的外角,AD垂直BD于D,AE垂直CE于E,AB=c,AC=b,BC=a,则DE=( )A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.若(x﹣10)0=1,则x的取值范围是 .14.如图,AB与CD相交于点O,OC=OD.若要得到△AOC≌△BOD,则应添加的条件是 .(写出一种情况即可)15.用直尺和圆规作一个已知角的角平分线.示意图如图,要说明∠AOC=∠BOC,需要证明△CON和△COM全等,则这两个三角形全等的依据是 .16.如图,在4×4的正方形网格中,求α+β= 度.17.如图,已知EF⊥CD,EF⊥AB,MN⊥AC,M是EF的中点,只需添加 ,就可使CM,AM分别为∠ACD和∠CAB的平分线.18.已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC 的对称点为点E.(1)如图1,连接AD,AE,DE,当BC=2BD时,根据边的关系,可判定△ADE的形状是 三角形;(2)如图2,当点D在BC延长线上时,连接AD,AE,CE,BE,延长AB到点G,使BG=CD,连接CG,交BE于点F,F为BE的中点,若AE=12,则CF的长为 .三.解答题(共8小题,满分66分)19.(1)图中所示为一家住房的结构图,若要将卫生间以外的部分都铺上木地板,木地板价格是a元/m2,那么购买所需木地板至少需要多少元?(2)已知房屋的高度为hm,现需要在卫生间和厨房的墙壁上贴瓷砖,瓷砖的价格是b 元/m2,那么购买所需瓷砖至少需要多少元?20.作图:如图,请按要求在8×8的正方形网格中作图(1)请在图1中画一个钝角△ABC,使它有一边与该边上的高线长度相等;(2)请在图2画一个五边形ABCDE,是轴对称图形,且∠ABC=90°.21.先化简,再求值:(a+3b)2﹣2(a+3b)(a﹣3b)+(a﹣3b)2,其中a=﹣,b=﹣.22.已知:如图,AC、BD相交于点E,AB=DC,∠B=∠C.求证:(1)△ABE≌△DCE;(2)∠BDA=∠CAD.23.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.24.如图,在Rt△ABC中,∠C=90°,DE⊥AB垂足为点D,BC=BD,求证:DE=CE.(提示:连接BE)25.如图,在△ABC中,AC=BC,∠ACB=90°.点D在线段AB上运动(不与A、B重合),连接CD,CE在CD右侧,且∠DCE=45°.当点E不与点A重合时,AE⊥AB.连接DE.(1)当点D是AB中点时,∠ACD的度数是 .(2)当∠ADE=45°时,探究DE与AC的位置关系,并证明.(3)线段BD、AE、DE三者之间在数量上满足怎样的等量关系?请证明.26.如图,△ABC中,∠B=60°,∠ACB=90°,BC=6,点D、E分别是边AB、BC上的一个动点,且BD=BE,过点D作DG⊥AB交射线BC于点G,交线段AC于点F,设BD=x.(1)如图1,当点G与点C重合时,求△DCE的面积;(2)如图2,设当点G在BC的延长线上时,FC=y,求y关于x的解析式,并写出定义域;(3)若△DEF为直角三角形,求x的值.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:A.是轴对称图形,故本选项符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项不符合题意.故选:A.2.解:根据三角形的三边关系,得3<a<13.9在第三边长的取值范围内.故选:B.3.解:A、x2•x5=x7,故此选项错误;B、(a4)4=a16,故此选项错误;C、(xy2)2=x2y4,故此选项错误;D、x8÷x2=x6,故此选项正确.故选:D.4.解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故B符合题意;故选:B.5.解:∵△ABC≌△DEF,∠A=50°,∠B=60°,∴∠D=∠A=50°,∠E=∠B=60°,∴∠F=180°﹣∠D﹣∠E=180°﹣50°﹣60°=70°,故选:C.6.解:如图,∵AD⊥BC,∴BD=CD,∵BC=8,∴BD=4,又∵AD=3,在Rt△ABD中,AB===5.故选:B.7.解:由题意得:(mx+6y)(x﹣3y)=mx2﹣3mxy+6xy﹣18y2=mx2+(﹣3m+6)xy﹣18y2,∵不含有xy项,∴﹣3m+6=0,解得:m=2.故选:B.8.解:1500÷180=8,则多边形的边数是8+1+2=11.故选:D.9.解:∵在边长为3的等边△ABC中,过点C作垂直于BC的直线交∠ABC的平分线于点P,∴BP交AC于点D,且BD⊥AD,AD=DC,∴BC=3,∠PBC=30°,∠PBC=90°,∠ACP=30°,∴BP=2,PC=,连接AP,则△BAP≌△BCP,∴∠PAC=∠PCB=90°,∴点P到边AB所在直线的距离为AP的长,又∵PC=,∴PA=PC=,故选:D.10.解:∵AD=BD,∴∠BAD=∠B=40°,∴∠ADC=∠B+∠BAD=40°+40°=80°,∴∠ADB=180°﹣80°=100°,由折叠的性质得:∠ADE=∠ADB=100°,∴∠CDE=∠ADE﹣∠ADC=100°﹣80°=20°,故选:A.11.解:∵肥市2014年3月5日的温差为8℃,最高气温为t℃,∴最低气温可表示为:(t﹣8)℃.故选:C.12.解:延长AE交BC的延长线于点M,延长AD交BC于F,∵CE⊥AE,CE平分∠ACM,∴∠AEC=∠MEC=90°,∠ACE=∠MCE,在△ACE和△MCE中,,∴△ACE和△MCE(ASA),∴AC=MC=b,AE=EM,同理,AB=BF=c,AD=DF,∴DE=FM,∵CF=BC﹣BF=a﹣c,∴FM=MC+CF=b+(a﹣c)=a+b﹣c.∴DE=(a+b﹣c).故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:由(x﹣10)0=1,得x﹣10≠0,解得x≠10.故答案为:x≠10.14.解:已知OC=OD,∠AOC=∠BOD,添加OA=OB,利用SAS可得△AOC≌△BOD,添加∠A=∠B,利用AAS可得△AOC≌△BOD,添加∠C=∠D,利用ASA可得△AOC≌△BOD,故答案为:OA=OB(或∠A=∠B或∠C=∠D).15.解:由作法可得,OM=ON,MC=NC,∵OC=OC,∴△CON≌△COM(SSS),∴∠AOC=∠BOC.故答案为:SSS.16.解:连接BC,∵AB=BC==,AC==,∴AB2+BC2=AC2,∴∠ABC=90°,∴∠BAC=∠ACB=45°,∵AB=BC=,AE=BD=1,BE=CD=2,∴△ABE≌△BCD,∴∠ACD=∠ABE=α,∵AE∥CD,∴∠DCA=∠CAE=β,∴α+β=∠BCA=45°,故答案为:45.17.解:添加MN=ME,理由如下:∵EF⊥CD,MN⊥AC,∴∠MEC=∠MNC=90°,在Rt△MEC和Rt△MNC中,,∴Rt△MEC≌Rt△MNC(HL),∴∠MCE=∠MCN,∴CM平分∠ACD,∵EF⊥AB,MN⊥AC,∴∠MFA=∠MNA=90°,∵M是EF的中点,∴ME=MF,∴MN=MF,在Rt△MFA和Rt△MNA中,,∴Rt△MFA≌Rt△MNA(HL),∴∠MAF=∠MAN,∴AM平分∠CAB,∴CM,AM分别为∠ACD和∠CAB的平分线,故答案为:ME=MN.18.解:(1)∵BC=2BD,∴BD=CD,∵△ABC是等边三角形,∴∠BAD=∠DAC=30°,∵点D关于直线AC的对称点为点E,∴AD=AE,∠DAC=∠EAC=30°,∴∠DAE=60°,∴△ADE是等边三角形.故答案为:等边;(2)∵点D关于直线AC的对称点为点E.∴△ACD≌△ACE,∴CE=CD,∠ACD=∠ACE,∵BG=CD,∴CE=BG,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AC=CB,∴∠ACD=∠GBC=120°,∴∠ACE=∠GBC=120°,∴△ACE≌△CBG(SAS),∴AE=CG,∵∠BCE=∠ACE﹣∠ACB=60°,∴∠BCE+∠BGC=180°,∴BG∥CE,∴∠G=∠FCE,∵F为BE的中点,∴BF=EF,∵∠BFG=∠CFE,∴△CEF≌△GBF(AAS),∴CF=GF,∴CF=CG=AE=6.故答案为:6.三.解答题(共8小题,满分66分)19.解:(1)由题意得,卫生间以外的部分为:x×2y+2x×2y+2x×4y=2xy+4xy+8xy=14xy(m2)∵木地板价格是a元/m2,∴购买所需木地板至少需要14xya元;(2)由题意得,需要贴瓷砖的面积为:(2x+2y+2x+4y)h=(4xh+6yh)(m2);瓷砖的价格是b元/m2,∴购买所需瓷砖至少需要(4xh+6yh)b=(4xhb+6yhb)(元).20.解:(1)(2)21.解:原式=a2+6ab+9b2﹣2a2+18b2+a2﹣6ab+9b2=18b2,当a=﹣,b=﹣时,原式=.22.(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS),(2)由(1)得:△ABE≌△DCE∴AE=DE,∴∠CAD=∠BDA.23.解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.24.证明:连接BE,如图,∵DE⊥AB,∴∠BDE=90°,在Rt△BDE和△BCE中,,∴Rt△BDE≌Rt△BCE(HL),∴DE=CE.25.解:(1)∵AC=BC,D是AB中点,∴∠ACD=∠BCD,∵∠ACB=90°,∴∠ACD=45°,故答案为:45°.(2)分两种情况:①如图1,当CE在CA左侧时,∵AC=BC,∠ACB=90°,∴∠B=∠CAB=45°,∵∠ADE=45°,∴∠CAB=∠ADE,∴DE∥AC;②如图2,当CE在CA右侧时,设DE与AC交于点G,∵∠ADE=45°,∠CAB=45°,∴∠AGD=180°﹣∠ADE﹣∠CAB=90°,∴DE⊥AC.综上所述,当∠ADE=45°时,DE∥AC或DE⊥AC.(3)分两种情况:①如图3,当CE在CA左侧时,过点C作CF⊥CE,交AB延长线于点F,∴∠ECF=∠ACB=90°,∴∠ACE=∠BCF,∵AE⊥AB,∴∠EAB=90°,∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=135°,在△CBF和△CAE中,,∴△CBF≌△CAE(ASA),∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°,在△DCE和△DCF中,,∴△DCE≌△DCF(SAS),∴DE=DF.∵BD+BF=DF,∴BD+AE=DE;②如图4,当CE在CA右侧时,过点C作CF⊥CE,交AB于点F,同①得:△CBF≌△CAE(ASA),△DCE≌△DCF(SAS),∴BF=AE,DE=DF.∵DF=BD﹣BF,∴BD﹣AE=DE;综上所述,当CE在CA左侧时,BD+AE=DE;当CE在CA右侧时,BD﹣AE=DE.26.解:(1)∵DG⊥AB,∴∠BDC=90°,∵∠B=60°,BC=6,∴∠BCD=90°﹣∠B=30°,∴BD=BC=3,∴CD===3,∵BE=BD=3,∴CE=BC﹣BE=3,∴BE=CE,∴△DCE的面积=△BCD的面积=×BD×CD=×3×3=;(2)∵DG⊥AB,∴∠BDG=90°,∵∠B=60°,∴∠G=90°﹣∠B=30°,∴BG=2BD=2x,∵∠ACB=90°,∴∠GCF=180°﹣∠ACB=90°,∴FG=2CF=2y,∴CG===y,∴BG=BC+CG=6+y,∴6+y=2x,∴y=x﹣2,∵点G在BC的延长线上,∴点G不与点C重合,∴x>3,∵点E是边BC上的一个动点,BE=BD=x,∴x≤6,∴3<x≤6,即y关于x的解析式为y=x﹣2(3<x≤6);(3)分两种情况:①当∠DFE=90°时,如图3所示:则EF⊥DG,∵DG⊥AB,∴EF∥AB,∴∠FEC=∠B=60°,∵∠ACB=90°,∴∠EFC=90°﹣∠FEC=30°,∴EF=2CE,∵BE=BD=x,∴CE=BC﹣BE=6﹣x,∴EF=2CE=2(6﹣x)=12﹣6x,∴CF===(6﹣x),由(2)得:CF=y=x﹣2,∴x﹣2=(6﹣x),解得:x=;②当∠DEF=90°时,如图4所示:∵BD=BE=x,∠B=60°,∴△BDE是等边三角形,∴∠BED=60°,∴∠FEC=180°﹣∠DEF﹣∠BED=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴EF=2CF,∴CE===CF,∴6﹣x=(x﹣2),解得:x=4;综上所述,若△DEF为直角三角形,x的值为或4.。
人教八年级上册期中提升精选30题(重点突围)(解析版)
人教版八年级期数学上学期中提升精选30题一、选择题(共8小题)1.(2022·山东·滨州市滨城区教学研究室八年级期中)下列所给的各组线段,能组成三角形的是:() A.2,11,13B.5,12,7C.5,5,11D.5,12,13【答案】D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.2.(2021·重庆市璧山中学校八年级期中)下列四幅图案中,不是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形的定义逐项判断即可.【详解】解:A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项符合题意.故本题选:D.【点睛】本题主要考查了轴对称图形的识别.掌握轴对称图形的定义是解答本题的关键.轴对称:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.3.(2022·黑龙江双鸭山·七年级阶段练习)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是()A.3cm B.4cm C.5cm D.14cm【答案】C【分析】直接根据“三角形第三边大于两边之差小于两边之和”判断即可.【详解】解:设三角形的第三边长为acm,5+9=14,9-5=4,则4<a<14,故选C【点睛】本题考查了三角形三边的关系,解题的关键是熟记“三角形第三边大于两边之差小于两边之和”.4.(2022·江苏扬州·七年级期末)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高,判断即可.【详解】解:在四个图形中,只有第一个图形是过点B作线段AC所在直线的垂线段,其它三个都不是,故选:C.【点睛】本题考查的是三角形的高的概念,读懂题意是解题的关键.5.(2021·重庆·巴川初级中学校八年级期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.三边的垂直平分线的交点上C.三条高线的交点上【点睛】本题考查了角平分线性质的实际应用,角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.7.(2022·四川·渠县第二中学七年级阶段练习)如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为 E , //BF AC 交 ED 的延长线于点 F ,若 BC 恰好平分∠ABF .下 列结论:①DE =DF ;②DB =DC ;③AD ⊥BC ,其中正确的是( )A .①②B .①③C .②③D .①②③【答案】D 【分析】证明△ABC 为等腰三角形,根据等腰三角形的三线合一判断②③,证明△CDE ≌△BDF ,根据全等三角形的性质判断①.【详解】解:∵BC 平分∠ABF ,∴∠ABC =∠FBC ,∵BF AC ∥,∴∠ACB =∠FBC ,∴∠ABC =∠ACB ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴DB =DC ,AD ⊥BC ,②、③结论正确;在△CDE 和△BDF 中,C DBF DC DBCDE BDF Ð=Ðìï=íïÐ=Ðî,∴△CDE ≌△BDF (ASA ),∴DE =DF ,①结论正确;故①②③均正确,【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角即可得到边数【详解】解:∵多边形的每一个内角都等于160°∴ 多边形的每一个外角都等于180°-160°=20°∴ 边数n =360°÷20°=18故答案为:18【点睛】本题主要考查了多边形的内角与外角关系,求出每一个外角的度数是解题关键.10.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的___________.【答案】稳定性【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机,这是利用了三角形的稳定性,故答案为:稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是掌握三角形具有稳定性.11.(2020·北京·垂杨柳中学八年级期中)已知点()2x , 和点()3y ,关于y 轴对称,则()2011x y + =________.【答案】1【分析】根据关于y 轴对称的点的特征:横坐标互为相反数,纵坐标相同,进行求解即可.【详解】解:∵点()2x ,和点()3y ,关于y 轴对称,∴y =﹣2,x =3,∴x +y =1,∴()20111x y += .故答案为:1.【点睛】本题考查已知字母的值,求代数式的值.熟练掌握关于y轴对称的点的特征是解题的关键.12.(2022·山东泰安·七年级期末)如图,AD为∠BAC的平分线,请你添加一个适当的条件______,使得△≌△.ABD ACD【答案】AB=AC(答案不唯一)【分析】根据角平分线定义推出∠BAD=∠CAD,进而利用全等三角形的判定解答即可.【详解】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AD=AD,添加AB=AC,利用SAS可得△ABD≌△ACD;添加∠B=∠C,利用AAS可得△ABD≌△ACD;添加∠ADB=∠ADC,利用ASA可得△ABD≌△ACD;故答案为:AB=AC(答案不唯一).【点睛】本题考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.13.(2022·黑龙江大庆·七年级期末)琪琪画了一个等腰三角形,量得两条边长分别为12cm和5cm,那么它的周长为______.【答案】29cm##29厘米【分析】因为三角形为等腰三角形,应分两种情况:①12cm是底边时;②5cm是底边时分别求解.【详解】解:应分两种情况:当12cm是底边,5cm是腰时,此时等腰三角形的三边长分别为:12cm,5cm,5cm,∵5512+<,∴此时不能构成三角形;当5cm 是底边,12cm 是腰时,等腰三角形的三边长分别为:12cm ,12cm ,5cm ,此时51212+>,满足三角形的任意两边之和大于第三边,能构成三角形,∴三角形的周长为:12cm +12cm +5cm =29cm ,综上可得三角形的周长为29cm .故答案为:29cm .【点睛】本题考查了三角形的三边之间的关系,等腰三角形的定义及分类讨论的思想,熟记三角形任意两边之和大于第三边是解题的关键.14.(2022·辽宁·丹东市第十九中学八年级期末)如图,在△ABC 中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,这两条垂直平分线分别交BC 于点D 、E .已知△ADE 的周长为13cm .分别连接OA 、OB 、OC ,若△OBC 的周长为27cm ,则OA 的长为______cm .【答案】7【分析】根据线段垂直平分线的性质得DA DB =,EA EC =,OA OB OC ==,从而可得求出13BC =cm ,然后根据OBC V 的周长为27cm ,即可求出解.【详解】解:连接OB ,OC ,∵OM 是线段AB 的垂直平分线,∴DA DB =,OA OB =,∵ON 是AC 的垂直平分线,∴EA EC =,OA OC = ,∴OA OB OC ==.∵ADE V 的周长13cm ,∴13AD DE EA ++=cm ,∴13BC DB DE EC AD DE EA =++=++=cm .∵OBC V 的周长为27cm ,∴2714OB OC BC +=-=cm ,∴7OB OC ==cm ,∴7OA OC ==cm .故答案为:7.【点睛】本题主要考查了垂直平分线的性质,熟记线段垂直平分线上的点到线段两端点的距离相等是解决问题的关键.15.(2022·河南·漯河市第三中学八年级期末)如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ =PQ ,PR =PS ,那么下面四个结论:①AS =AR :②QP ∥AR ;③△BRP ≌△QSP :④BR =QS ,其中一定正确的是(填写编号)________.【答案】①②##②①【分析】通过证明△APR ≌△APS ,可得AS =AR ,∠BAP =∠PAS ,可证QP ∥AR ,可求解.【详解】解:如图,连接AP ,①∵PR ⊥AB ,PS ⊥AC ,PR =PS ,∴点P 在∠BAC 的平分线上,∠ARP =∠ASP =90°,∴∠SAP =∠RAP ,又AP =AP ,∠ARP =∠ASP =90°,【答案】见解析【分析】根据轴对称图形的概念作图即可.【详解】解:如图所示:.【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形沿某条直线折叠,直线两旁的部分能完全重合.20.(2022·河南·上蔡县第一初级中学七年级阶段练习)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD 沿AD 折叠得到△AED ,AE 与BC 交于点F .(1)填空:∠AFC =______度;(2)求∠EDF 的度数.【答案】(1)110(2)∠EDF 的度数为20°【分析】(1)根据折叠求出BAD DAF Ð=Ð,根据三角形外角性质求出即可;(2)根据三角形内角和定理求出ADB Ð,求出ADE Ð,根据三角形外角性质求出ADF Ð,即可求出答案.(1)解:∵ABD △沿AD 折叠得到AED V ,∴30BAD DAF Ð=Ð=°,∵50B Ð=°,30BAD Ð=°,∴110AFC B BAD DAF Ð=Ð+Ð+Ð=° .故答案为:110.(2)解:∵50B Ð=°,30BAD Ð=°,∴1805030100ADB Ð=°-°-°=°,503080ADC Ð=°+°=°,∵ABD △沿AD 折叠得到AED V ,∴100ADE ADB Ð=Ð=°,∴1008020EDF ADE ADC Ð=Ð-Ð=°-°=°.【点睛】本题考查了三角形内角和定理,三角形外角性质和折叠的性质,能根据定理求出各个角的度数,是解此题的关键.21.(2022·河南·金明中小学九年级阶段练习)如图,在平面直角坐标系中,已知△ABC 的顶点坐标分别是()5,2A -,()2,4B -,()1,1C -.(1)在图中作出111A B C △,使111A B C △和△ABC 关于x 轴对称,并写出点1A 的坐标;(2)在x 轴上求作一点P ,使得△APC 的周长最小.(不写作法,请保留作图痕迹)【答案】(1)见解析,()15,2A --(2)见解析【分析】(1)找出ABC V 各顶点关于x 轴的对称点111A B C 、、,再顺次连接即可.根据关于x 轴对称的点的坐标横坐标不变,纵坐标互为相反数即得出1A 点坐标;(2)连接1AC ,1AC 与x 轴的交点即为P 点.(1)如图,111A B C △为所求,()152A --,.(2)如图,点P 为所求.【点睛】本题考查作图—轴对称,轴对称的性质,两点之间线段最短.利用数形结合的思想是解题的关键.22.(2022·全国·八年级期中)如图,△ABC 中,AD ⊥BC ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD =DE .(1)若3x y ==,经过1秒后,此时(2)若x y ¹,当3x =,y (3)是否存在点P ,使BPD △【答案】(1)见解析(2)154,理由见解析(3)解:存在点P ,使BPD △ABC Q V 中,AB AC =,180472B C °-°\Ð=Ð==①当66.5B BPD Ð=Ð=(1)运动 秒时,AE =13DC (2)运动多少秒时,△ABD ≌△DCE (3)若△ABD ≌△DCE ,∠BAC =α27.(2021·甘肃·甘州区思源实验学校七年级期末)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.【答案】(1)证明见解析(2)点P、Q在运动的过程中,∠QMC不变.∠QMC=60°(3)点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.∠QMC=120°【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAPAP BQ=ìïÐ=Ðíï=î,(1)发现问题如图①当点D在边BC上时.①请写出BD和CE之间的数量关系为,位置关系为;②求证:CE+CD=BC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、立?若成立,请证明:若不成立,请写出新的数量关系,说明理由;(3)拓展延伸如图③,当点D 在边CB 的延长线上且其他条件不变时,若BC =6,CE =2,求线段CD 的长.【答案】(1)①BD =CE ,BD ⊥CE ;②见解析(2)不成立,存在的数量关系为CE =BC +CD ,理由见解析(3)8【分析】(1)①根据条件AB =AC ,∠ABC =∠ACB =45°,AD =AE ,∠ADE =∠AED =45°,判定△ABD ≌△ACE (SAS ),即可得出BD 和CE 之间的关系;②根据全等三角形的性质,即可得到CE +CD =BC ;(2)根据已知条件,判定△ABD ≌△ACE (SAS ),得出BD =CE ,再根据BD =BC +CD ,即可得到CE =BC +CD ;(3)根据条件判定△ABD ≌△ACE (SAS ),得出BD =CE ,进而得到CD =BC +BD =BC +CE ,最后根据BC =6,CE =2,即可求得线段CD 的长.(1)①如图1,∵AB =AC ,∠ABC =∠ACB =45°,AD =AE ,∠ADE =∠AED =45°,∴∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠B =∠ACE =45°,∴∠BCE =90°,即BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;②由①得△ABD ≌△ACE (SAS ),∴BD =CE ,∴BC =BD +CD =CE +CD ;(2)不成立,存在的数量关系为CE =BC +CD .理由:如图2,由(1)同理可得,【答案】证明见解析,证明见解析,5【分析】(1)根据图②,求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根据AAS证两三角形全等即可;(2)根据图③,运用三角形外角性质求出∠ABE=∠CAF,∠BAE=∠FCA,根据ASA证两三角形全等即可;(3)根据图④,由CD=2BD,△ABC的面积为15,可求出△ABD的面积为5,根据△ABE≌△CAF,得出△ACF与△BDE的面积之和等于△ABD的面积,据此即可得出答案.【详解】解:特例探究:∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,∵ADB CFAABD CAFAB CAÐ=ÐìïÐ=Ðíï=î,∴△ABD≌△CAF(AAS);归纳证明:∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,∵ABE CAFAB CABAE ACFÐ=Ðìï=íïÐ=Ðî,∴△ABE≌△CAF(ASA);拓展应用:性质等知识点的综合应用,判断出两三角形全等是解本题的关键.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,归纳猜想:当点E为AB的中点时,如图1,确定线段AE与AE DB(填“>”,“<”或“=”).论:_____(2)特例启发,演绎证明:如图2,当点E为AB边上任意一点时,线段AE与∥,交AC于点F,请帮助小敏和小聪完成接下来的证(填“>”,“<”或“=”),小敏和小聪过点E作EF BC则CEF ECD Ð=Ð,AEF ÐAEF AFE A \Ð=Ð=Ð,AEF \D 是等边三角形,AE EF AF \==,F ,同(2)得:EBD EFC D D ≌32BD CF AE \===,31CD BD BC \=-=-=同(2)得:(EBD CFE AAS D D ≌。
八年级(上)期中数学试卷答案解析版
八年级(上)期中数学试卷一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.66.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120° D.150°8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:29.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;(2)添加了条件后,证明△ABC≌△EFD.21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:条条条条条.(2)一个正n边形有条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)25.(12分)如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D 点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段A E、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?参考答案与试题解析一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D说法错误;故选:D.5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.6【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.6.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120° D.150°【解答】解:∵∠A与∠B互余,∴∠A+∠B=90°,在△ABC中,∠C=180°﹣(∠A+∠B)=180°﹣90°=90°.故选:B.8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.9.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=6.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,﹣4),∴a=4,b=2,∴a+b=6.故答案为6.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:K62897.【解答】解:实际车牌号是K62897.故答案为:K62897.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为70°或40°.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故填70°或40°.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.【解答】解:(1);(2)A′(1,5),B′(1,0),C′(4,3);(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB=5,AB边上的高为3,=.∴S△ABC18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.【解答】解:∵AB∥CD,∴∠1=∠A,∵∠A+∠1=74°,∴∠1=×74°=37°,∴∠ECD=∠1=37°,∵DE⊥AE,∴∠DEC=90°,∴∠D=90°﹣37°=53°.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.【解答】证明:在△ACB与△DCE中,∵∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BDE和△CFD中,,∴△BDE≌△CDF(AAS),∴DE=DF,∴点D在∠BAC的平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.【解答】解:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABE=∠ACD,∴∠ABC﹣∠ABE=∠ACB﹣∠ACD,∴∠PBC=∠PCB,∴PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:3条4条5条6条7条.(2)一个正n边形有n条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)【解答】解:(1)三角形有3条对称轴;正方形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正七边形有7条对称轴;正八边形有8条对称轴;(2)一个正n边形有n条对称轴;(3)①所作图形如图所示:②所作图形如图所示.故答案为:3,4,5,6,7;n.25.(12分)如图1,△ABC和△DBE中,AB=C B,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠A BE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;②线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.。
八年级数学上册 期中精选试卷测试卷(含答案解析)
八年级数学上册期中精选试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF 和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.2.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC=∠=︒45B ACB∴∠=∠=︒,45ACF,∠=︒90.BCF∴∠=︒设.DE x=,9.DF DE x CD x===- 3.FC BE==222,FC DC DF+=()22239.x x∴+-=解得: 5.x=故 5.DE=()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=22217AD AH DH=+=或65.22234DE AD==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.3.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF 与△BDE 中BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BDE (SAS )∴DE=DF(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN ≌△BDM (AAS )∴DN=DM当S △ADF =2S △BDE .∴12×AF×DN=2×12×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.4.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM =∠BPN =60°∴∠MPB =∠APN =120°,又∵PM =PA ,PB =PN ,∴△MPB ≌△APN (SAS )∴MB =AN .(Ⅲ)如图3中,取PB 的中点C ,连接AC ,AB .∵△APM ,△PBN 都是等边三角形∴∠APM =∠BPN =60°,PB =PN∵点C 是PB 的中点,且PN =2PM ,∴2PC =2PA =2PM =PB =PN ,∵∠APC =60°,∴△APC 为等边三角形,∴∠PAC =∠PCA =60°,又∵CA =CB , ∴∠CAB =∠ABC =30°,∴∠PAB =∠PAC +∠CAB =90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.二、八年级数学 轴对称解答题压轴题(难)6.某数学兴趣小组开展了一次活动,过程如下:设(090BAC θθ∠=︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB 、AC 上.活动一、如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(12A A 为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答: (填“能”或“不能”)(2)设11223AA A A A A ==,求θ的度数;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第一根小棒,且121A A AA =.数学思考:(3)若已经摆放了3根小棒,则213A A A ∠= ,423A A A ∠= ,43 A A C ∠= ;(用含θ的式子表示)(4)若只能摆放5根小棒,则θ的取值范围是 .【答案】(1)能;(2)θ=22.5°;(3)2θ,3θ,4θ;(4)15°≤θ<18°.【解析】【分析】(1)由小棒与小棒在端点处互相垂直,即可得到答案;(2)根据等腰直角三角形的性质和三角形外角的性质,即可得到答案; (3)由121A A AA =,得∠AA 2A 1=∠A 2AA 1=θ,从而得213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,同理得423 A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,43 A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ; (4)根据题意得:5θ<90°且6θ≥90°,进而即可得到答案.【详解】(1)∵小棒与小棒在端点处互相垂直即可,∴小棒能无限摆下去,故答案是:能;(2)∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3,∴∠A 2A 1A 3=45°,∴∠AA 2A 1+θ=45°,∵AA 1=A 1A 2∴∠AA 2A 1=∠BAC=θ,∴θ=22.5°;(3)∵121A A AA =,∴∠AA 2A 1=∠A 2AA 1=θ,∴213A A A ∠=∠AA 2A 1+∠A 2AA 1=2θ,∵3122A A A A =,∴213A A A ∠=231A A A ∠=2θ,∴423A A A ∠=∠A 2AA 1+231A A A ∠=θ+2θ=3θ,∵3342A A A A =, ∴423A A A ∠=243 A A A ∠=3θ, ∴43A A C ∠=∠A 2AA 1+243 A A A ∠=θ+3θ=4θ, 故答案是:2θ,3θ,4θ;(4)由第(3)题可得:645A A A ∠=5θ,65 A A C ∠=6θ, ∵只能摆放5根小棒,∴5θ<90°且6θ≥90°,∴15°≤θ<18°.故答案是:15°≤θ<18°.【点睛】本题主要考查等腰三角形的性质以及三角形外角的性质,掌握等腰三角形的底角相等且小于90°,是解题的关键.7.如图,△ABC 中,AB =BC =AC =12cm ,现有两点M 、N 分别从点A .点B 同时出发,沿三角形的边运动,已知点M 的速度为2cm /s ,点N 的速度为3cm /s .当点N 第一次到达B 点时,M 、N 同时停止运动.(1)点M 、N 运动 秒后,△AMN 是等边三角形?(2)点M 、N 在BC 边上运动时,运动 秒后得到以MN 为底边的等腰三角形△AMN ?(3)M 、N 同时运动几秒后,△AMN 是直角三角形?请说明理由.【答案】(1)125;(2)485;(3)点M 、N 运动3秒或127秒或10秒或9秒后,△AMN 为直角三角形.【解析】(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒则有:2t=12﹣3t解得t=12 5故点M、N运动125秒后,△AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN则有:2t﹣12=36﹣3t解得t=48 5故运动485秒后得到以MN为底边的等腰三角形△AMN;(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图∵∠A=60°∴∠AMN=30°∴AM=2AN则有2t=2(12﹣3t)∴t=3;②当M在AC上,N在AB上,∠AMN=90°时,如图∵∠A=60°∴∠ANM=30°∴4t =12﹣3t∴t =127; ③当M 、N 都在BC 上,∠ANM =90°时,如图CN =3t ﹣24=6解得t =10;④当M 、N 都在BC 上,∠AMN =90°时,则N 与B 重合,M 正好处于BC 的中点,如图此时2t =12+6解得t =9;综上所述,点M 、N 运动3秒或127秒或10秒或9秒后,△AMN 为直角三角形. 【点睛】本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.8.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解; (2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE ,得出△BCE ≌△QDE 就可以得出结论.【详解】解:如图1,作FP ∥BC 交AB 于点P ,∵ABC ∆是等边三角形,∴∠ABC=∠A=60°,∵FP ∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF ∆是等边三角形,∴PF=AF,∵FH AB ⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI ∆和BGI ∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC是等边三角形,∴AB=BC=AC,∠B=60°.∵AE=BD,DQ=AB,∴AE+AB=BD+DQ,∴BE=BQ.∵∠B=60°,∴△BEQ为等边三角形,∴∠B=∠Q=60°,BE=QE.∵DQ=AB,∴BC=DQ.∴在△BCE和△QDE中,BC DQB QBE QE=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△QDE(SAS),∴EC=ED.∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.9.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.10.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)【答案】(1)4cm;(2)PB=PC,理由见解析;(3)4【解析】【分析】(1)根据AAS定理证明△ABP≌△PCD,可得BP=CD;(2)延长线段AP、DC交于点E,分别证明△DPA≌△DPE、△APB≌△EPC,根据全等三角形的性质解答;(3)根据等腰直角三角形的性质计算.【详解】解:(1)∵BC=5cm,BP=4cm,∴PC=1cm,∴AB=PC,∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,B CBAP CPDAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD,∴BP=CD=4cm;(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DPA=∠DPE=90°,在△DPA和△DPE中,ADP EDPDP DPDPA DPE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPA≌△DPE(ASA),∴PA=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=Rt∠.在△APB和△EPC中,ABP ECPAPB EPCPA PE∠=∠⎧⎪∠=⎨⎪=⎩,∴△APB≌△EPC(AAS),∴PB=PC;(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=1cm,∴PC=BC﹣BP=4cm,∴CD=CP=4cm,故答案为:4.【点睛】本题考查了三角形的全等的证明、全等三角形的性质以及等腰三角形的性质.做出辅助线证明三角形全等是本题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.【答案】(1)1;(2)3.【解析】【分析】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x、y的值,从而可以得到2x+y的值;(2)根据a-b=4,ab+c2-6c+13=0,可以得到a、b、c的值,从而可以得到a+b+c的值.【详解】解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=−1,∴2x+y=2×1+(−1)=1;(2)∵a−b=4,∴a=b+4,∴将a=b+4代入ab+c2−6c+13=0,得b2+4b+c2−6c+13=0,∴(b2+4b+4)+(c2−6c+9)=0,∴(b+2)2+(c−3)2=0,∴b+2=0,c−3=0,解得,b=−2,c=3,∴a=b+4=−2+4=2,∴a+b+c =2−2+3=3.【点睛】此题考查了因式分解方法的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.此题解答的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.12.若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为22521=+.再如,()222222M x xy y x y y =++=++(x ,y 是整数),所以M 也是“完美数”. (1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知224412S x y x y k =++-+(x ,y 是整数,是常数),要使S 为“完美数”,试求出符合条件的一个2200-0=值,并说明理由.(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”..【答案】(1)8、29是完美数(2)S 是完美数(3)mn 是完美数【解析】【分析】(1)利用“完美数”的定义可得;(2)利用配方法,将S 配成完美数,可求k 的值(3)根据完全平方公式,可证明mn 是“完美数”;【详解】(1) 22228,8+=∴是完美数;222925,29=+∴是完美数 (2) ()222)2313S x y k =++-+-( 13.k S ∴=当时,是完美数(3) 2222,m a b n c d 设=+=+,则()()()()222222mn a bc d ac bd ad bc =++=++- 即mn 也是完美数.【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.13.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”.例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;【答案】(1)1001,9999;(2)见详解;(3)2754和4848【解析】【分析】(1)根据和平数的定义,即可得到结论;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2, (9)a≠0,b≠0),于是得到abcd badc+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.(3)设这个“和平数”为abcd,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设任意的两个“相关和平数”为abcd,badc(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则+=1100(a+b)+11(c+d)=1111(a+b);abcd badc即两个“相关和平数”之和是1111的倍数.(3)设这个“和平数”为abcd,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为:2754和4848.【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.14.对于任意两个数a 、b 的大小比较,有下面的方法:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.请根据以上材料完成下面的题目:(1)已知:228A x y y =+,8B xy =,且A B >,试判断y 的符号;(2)已知:a 、b 、c 为三角形的三边,比较222a c b +-和2ac 的大小.【答案】(1)y >0;(2)222a c b +-<2ac【解析】【分析】(1)根据题意得到22880x y y xy +->,因式分解得到22(2)0y x ->,进而得到y 的符号即可;(2)将222a c b +-和2ac 作差,结合已知及三角形的两边之和大于第三边可求.【详解】解:(1)因为A >B ,所以A-B >0,即22880x y y xy +->,∴222(44)2(2)0y x x y x +-=->,因为2(2)0x -≥,∴y >0(2)因为a 2−b 2+c 2−2ac =a 2+c 2−2ac−b 2=(a−c )2−b 2=(a−c−b )(a−c +b ), ∵a +b >c ,a <b +c ,所以(a−c−b )(a−c +b )<0,所以a 2−b 2+c 2−2ac 的符号为负.∴222a c b +-<2ac【点睛】本题考查了作差法比较两个式子的大小以及因式分解,解题的关键是理解题中的“求差法”比较两个数的大小,并熟练掌握因式分解的方法.15.探究题:观察下列式子:(x 2-1)÷(x -1)=x +1;(x 3-1)÷(x -1)=x 2+x +1;(x 4-1)÷(x -1)=x 3+x 2+x +1;(x 5-1)÷(x -1)=x 4+x 3+x 2+x +1;(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(n 为正整数)(2)根据(1)的结果计算:1+2+22+23+24+…+262+263.【答案】(1)12n n x x --++…+1;(2)6421-.【解析】【分析】(1)根据已知的式子可得到的式子是关于x 的一个式子,最高次数是n-1,共有n 项; (2)把2当作x ,即可把所求的式子看成是两个二项式的商的形式,逆用(1)的结果即可求解.【详解】由题意可得:(1)()()1211n n n x x x x ---÷-=++ (1)(2)()()234626364641222222212121+++++⋯++=-÷-=-. 【点睛】 考查了多项式与多项式的除法,观察所给式子,发现运算规律是解题的关键.四、八年级数学分式解答题压轴题(难)16.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天 120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费, 请你帮公司选择一种既省时又省钱的加工方案,并说明理由.【答案】(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解析】【分析】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20, 由等量关系列出方程求解.(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用, 比较大小,选择既省时又省钱的加工方案即可.【详解】(1)设甲工厂每天加工 x 件新品,乙工厂每天加工 1.5x 件新品,则: 解得:x =16 经检验,x =16 是原分式方程的解∴甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60 天需要的总费用为:60×(80+15)=5700 元方案二:乙工厂单独完成此项任务,则需要的时间为:960÷24=40 天需要的总费用为:40×(120+15)=5400 元方案三:甲、乙两工厂合作完成此项任务,设共需要 a 天完成任务,则16a+24a =960∴a =24∴需要的总费用为:24×(80+120+15)=5 160 元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列 出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.17.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立; (3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.18.已知分式A=2344(1)11a a a a a -++-÷--. (1) 化简这个分式;(2) 当a >2时,把分式A 化简结果的分子与分母同时..加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3) 若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.【答案】(1)22a A a +=-;(2)变小了,理由见解析;(3)符合条件的所有a 值的和为11.【解析】分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除.详解: (1)A =2344111a a a a a -+⎛⎫+-÷ ⎪--⎝⎭=()()()2113211a a a a a -+--÷--=22a a +-. (2)变小了,理由如下:()()()()()()()()21522512212121a a a a a a A B a a a a a a ++-+-++-=-==-+-+-+ . ∵a >2 ∴a -2>0,a+1>0,∴()()1221A B a a -=-+>0,即A >B (3) 24122a A a a +==+-- 根据题意,21,2,4a -=±±± 则a =1、0、-2、3、4、6, 又1a ≠ ∴0+(-2)+3+4+6=11 ,即:符合条件的所有a 值的和为11.点睛:比较大小的方法:(1)作差比较法:0a b a b ->>;0a b a b -<⇒<(a b ,可以是数,也可以是一个式子)(2)作商比较法:若a >0,b >0,且1a b >,则a >b ;若a <0,b <0,且1a b>,则a <b . 19.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:112122111111x x x x x x x x +-+-==+=+-----; 2322522552()11111x x x x x x x x -+-+-==+=+-+++++. (1)下列分式中,属于真分式的是:____________________(填序号)①21a a -+; ②21x x +; ③223b b +; ④2231a a +-. (2)将假分式4321a a +-化成整式与真分式的和的形式为: 4321a a +-=______________+________________. (3)将假分式231a a +-化成整式与真分式的和的形式: 231a a +-=_____________+______________. 【答案】(1)③;(2)2,521a -;(3)a +1+41a - . 【解析】试题分析:(1)认真阅读题意,体会真分式的特点,然后判断即可;(2)根据题意的化简方法进行化简即可;(3)根据题意的化简方法进行化简即可.试题解析:(1)①中的分子分母均为1次,②中分子次数大于分母次数,③分子次数小于分母次数,④分子分母次数一样,故选③.(2)4321a a +-=42552212121a a a a -+=+---,故答案为2,5221a +-; (3)231a a +-=214(1)(1)4111a a a a a a -++-=+---=411a a ++-,故答案为a+1+41a -.20.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元. (1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A ,B 型商品共100件进行试销,其中A 型商品的件数不大于B 型的件数,已知A 型商品的售价为200元/件,B 型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.【解析】分析:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+30)元,根据“用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A 商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.详解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+30)元. 由题意: =×2,解得x=120,经检验x=120是分式方程的解,答:一件B 型商品的进价为120元,则一件A 型商品的进价为150元.(2)因为客商购进A 型商品m 件,销售利润为w 元. m≤100﹣m ,m≤50,由题意:w=m (200﹣150)+(100﹣m )(180﹣120)=﹣10m+6000,∵﹣10<0,∴m=50时,w 有最小值=5500(元)点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.五、八年级数学三角形解答题压轴题(难)21.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由.(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH EG ⊥,求证://PF GH . (3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使PHK HPK ∠=∠,作PQ 平分EPK ∠,求HPQ ∠的度数.【答案】(1)AB//CD ,理由见解析;(2)证明见解析;(3)45HPQ ∠=.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,即可证明; (2)利用(1)中平行线的性质、角平分线的性质、三角形内角和定理可得∠EPF=90°,即EG ⊥PF ,再结合GH ⊥EG ,即可证明;(3)利用三角形外角定理、三角形内角和定理求得∠A=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=-12∠EPK=45°+∠2,最后根据角与角间的和差关系即可求解.【详解】(1)//AB CD ,理由如下:如图1, 图1∵1∠与2∠互补,∴12180∠+∠=︒, 又∵1AEF ∠=∠,2CFE ∠=∠,∴180AEF CFE ∠+∠=︒,∴//AB CD ;(2)如图2,由(1)知,//AB CD ,图2∴180BEF EFD ∠+∠=︒.又∵BEF ∠与EFD ∠的角平分线交于点P ,∴1(2)90FEP EFP BEF EFD ∠+∠=∠+∠=︒, ∴90EPF ∠=︒,即EG PF ⊥.∵GH EG ⊥,∴//PF GH ;(3)如图3,∵PHK HPK ∠=∠,2PKG HPK ∴∠=∠.又∵GH EG ⊥,∴90902KPG PKG HPK ∠=-∠=-∠.∴180902EPK KPG HPK ∠=-∠=+∠.∵PQ 平分EPK ∠,∴1452QPK EPK HPK ∠=∠=+∠. ∴45HPQ QPK HPK ∠=∠-∠=.【点睛】本题主要考查了平行线的判定与性质、角平分线的性质、三角形内角和定理等知识.解题过程关注中“数形结合”思想是解答本题的关键.22.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,∠A=40°,则∠ABX+∠ACX 等于多少度;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数; ③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC=133°,∠BG 1C=70°,求∠A 的度数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册 期中精选试卷专题练习(解析版)一、八年级数学全等三角形解答题压轴题(难)1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB-PO=m-(-n)=m+n,∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM), ∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.2.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF 与△BDE 中BE CF B DCA BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BDE (SAS )∴DE=DF(3)如图:过点D 作DM ⊥BC 于点M ,DN ⊥AC 于点N ,∵AD=BD ,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN ≌△BDM (AAS )∴DN=DM当S △ADF =2S △BDE .∴12×AF×DN=2×12×BE×DM ∴|4-3x|=2x ∴x 1=4,x 2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.3.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD ,在△ACF 和△ABD 中,∵AB=AC ,∠CAF=∠BAD ,AD=AF ,∴△ACF ≌△ABD(SAS),∴CF=BD ,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF ⊥BD ;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图①,在ABC中,90BAC∠=︒,AB AC=,AE是过A点的一条直线,且B、C在AE的异侧,BD AE⊥于D,CE AE⊥于E.(1)求证:BD DE CE=+.(2)若将直线AE绕点A旋转到图②的位置时(BD CE<),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE,理由见解析.【解析】【分析】(1)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;(2)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE-CE.【详解】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,BDA AECABD CAEAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD与DE、CE的数量关系是BD=DE-CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,BDA AECABD CAEAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS,SAS,AAS,HL等.这种类型的题目经常考到,要注意掌握.5.如图1,在ABC∆中,90ACB∠=,AC BC=,直线MN经过点C,且AD MN⊥于点D,BE MN⊥于点E.易得DE AD BE=+(不需要证明).(1)当直线MN绕点C旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE、、之间的数量关系,并说明理由;(2)当直线MN绕点C旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE、AD、BE之间的数量关系是DE=AD-BE.由垂直的性质可得到∠CAD=∠BCE,证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD-BE;(2)DE、AD、BE之间的关系是DE=BE-AD.证明的方法与(1)一样.【详解】(1)不成立.DE、AD、BE之间的数量关系是DE=AD-BE,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =, ∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =, ∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.二、八年级数学轴对称解答题压轴题(难)6.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x,∵∠CAD=12∠ABE,∠BAC=90º,∴∠ABE=2x,∠BAF=90°-x,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,∴BF=AB;∵AB=AC,∴BF=AC;(2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90º,∴∠AEB=90°-2x,∵EF=EC,∴∠EFC=∠ECF ,∵∠EFC+∠ECF=∠AEB=90°-2x ,∴∠EFC=(90°-2x )÷2=45°-x ,∵BF =AB ,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,∴∠EFD=∠BFA=90°-x ,∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;(3)由(2)可知:EF =EC ,∴设EF =EC =x ,则AC=AE+EC=3+x ,∴AB=BF=AC=3+x ,∴BE=BF+EF=3+x+x=3+2x ,∵∠BAC =90º,∴222AB AE BE +=,∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去)∴BF=3+x=3+1=4.【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.7.如图,在等边△ABC 中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边△CDE ,连结BE .(1)求∠CAM 的度数;(2)若点D 在线段AM 上时,求证:△ADC ≌△BEC ;(3)当动D 在直线..AM 上时,设直线BE 与直线AM 的交点为O ,试判断∠AOB 是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB 是定值,∠AOB =60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC =BC ,DC =EC ,∠ACB =∠DCE =60°,由等式的性质就可以∠BCE =∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出△ACD ≌△BCE 而有∠CBE =∠CAD =30°而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出△ACD ≌△BCE 同样可以得出结论.【详解】(1)∵△ABC 是等边三角形,∴∠BAC =60°.∵线段AM 为BC 边上的中线,∴∠CAM 12=∠BAC ,∴∠CAM =∠BAM =30°. (2)∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE . 在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ); (3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE . 在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.③当点D 在线段MA 的延长线上时.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD和△BCE中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD.由(1)得:∠CAM=30°,∴∠CBE=∠CAD=150°,∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.综上所述:当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.8.如图,已知DCE∠与AOB∠,OC平分AOB∠.(1)如图1,DCE∠与AOB∠的两边分别相交于点D、E,90AOB DCE∠=∠=︒,试判断线段CD与CE的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD CE=.理由如下:如图1,过点C作C F OC⊥,交O B于点F,则90OCF∠=︒,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若120AOB∠=︒,60DCE∠=︒.①如图3,DCE∠与AOB∠的两边分别相交于点D、E时,(1)中的结论成立吗?为什么?线段O D、OE、OC有什么数量关系?说明理由.②如图4,DCE∠的一边与AO的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段O D、OE、OC有什么数量关系;如图5,DCE∠的一边与BO的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段O D、OE、OC有什么数量关系.【答案】(1)见解析;(2)证明见解析;(3)①成立,理由见解析;②在图4中,(1)中的结论成立,OE OD OC-=.在图5中,(1)中的结论成立,OD OE OC-=【解析】【分析】(1)通过ASA证明CDO CEF∆∆≌即可得到CD=CE;(2)过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,通过AAS证明CMD CNE∆∆≌同样可得到CD=CE;(3)①方法一:过点C作C M OA⊥,CN OB⊥垂足分别为M,N,通过AAS得到CMD CNE∆∆≌,进而得到,CD CE DM EN==,利用等量代换得到=OE OD ON OM++,在Rt CMO∆中,利用30°角所对的边是斜边的一半得12OM OC=,同理得到12ON OC=,所以OE OD OC+=;方法二:以CO为一边作60FCO∠=︒,交O B 于点F,通过ASA证明CDO CEF∆∆≌,得到,CD CE OD EF==,所以OE OD OE EF OF OC+=+==;②图4:以OC为一边,作∠OCF=60°与OB交于F点,利用ASA证得△COD≌△CFE,即有CD=CE,OD=EF得到OE=OF+EF=OC+OD;图5:以OC为一边,作∠OCG=60°与OA交于G点,利用ASA证得△CGD≌△COE,即有CD=CE,OD=EF,得到OE=OF+EF=OC+OD.【详解】解:(1)OC平分AOB∠,145∠=∠2=︒∴,390245,123︒︒∴∠=-∠=∴∠=∠=∠OC FC∴=又456590︒∠+∠=∠+∠=在CDO∆与CEF∆中,1346OC FC∠=∠⎧⎪=⎨⎪∠=∠⎩()CDO CEF ASA∴∆∆≌CD CE∴=(2)如图2,过点C作CM OA⊥,CN OB⊥,垂足分别为M,N,∴90CMD CNE∠=∠=︒,又∵OC平分AOB∠,∴CM CN=,在四边形O DCE中,12360AOB DCE∠+∠+∠+∠=︒,又∵90AOB DCE∠=∠=︒,∴12180∠+∠=︒,又∵13180∠+∠=︒,∴32∠=∠,在CMD∆与CNE∆中,32CMD CNECM CN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMD CNE AAS∆∆≌,∴CD CE=.(3)①(1)中的结论仍成立.OE OD OC+=.理由如下:方法一:如图3(1),过点C作C M OA⊥,CN OB⊥,垂足分别为 M ,N ,∴90CMD CNE ∠=∠=︒,又∵OC 平分AOB ∠,∴CM CN =,在四边形ODCE 中,12360AOB DCE ∠+∠+∠+∠=︒,又∵60120180AOB DCE ∠+∠=︒+︒=︒,∴12180∠+∠=︒,又∵23180∠+∠=︒,∴13∠=∠,在CMD ∆与CNE ∆中,13CMD CNE CM CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CMD CNE AAS ∆∆≌,∴,CD CE DM EN ==.∴OE OD OE OM DM OE OM EN ON OM +=++=++=+.在 Rt CMO ∆中,1490590302AOB ∠=︒-∠=︒-∠=︒, ∴12OM OC =,同理1 2ON OC =, ∴1122OE OD OC OC OC +=+=. 方法二:如图3(2),以CO 为一边作60FCO ∠=︒,交 O B 于点 F ,∵OC 平分AOB ∠,∴1260∠=∠=︒,∴3180260FCO ∠=︒-∠-∠=︒,∴13∠=∠,32FCO ∠=∠=∠,∴COF ∆是等边三角形,∴CO CF =,∵4560DCE ∠=∠+∠=︒,6560FCO∠=∠+∠=︒,∴46∠=∠,在CDO∆与CEF∆中,1346CO CF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CDO CEF ASA∆∆≌,∴,CD CE OD EF==.∴OE OD OE EF OF OC+=+==.②在图4中,(1)中的结论成立,OE OD OC-=.如图,以OC为一边,作∠OCF=60°与OB交于F点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCF=60°∴△COF为等边三角形∴OC=OF∵∠COF=∠OCD+∠DCF=60°,∠DCE=∠DCF+∠FCB=60°∴∠OCD=∠FCB又∵∠COD=180°-∠COA=180°-60°=120°∠CFE=180°-∠CFO=180°-60°=120°∴∠COD=∠CFE∴△COD≌△CFE(ASA)∴CD=CE,OD=EF∴OE=OF+EF=OC+OD即OE-OD=OC-=.在图5中,(1)中的结论成立,OD OE OC如图,以OC为一边,作∠OCG=60°与OA交于G点∵∠AOB=120°,OC为∠AOB的角平分线∴∠COB=∠COA=60°又∵∠OCG=60°∴△COG为等边三角形∴OC=OG∵∠COG=∠OCE+∠ECG=60°,∠DCE=∠DCG+∠GCE=60°∴∠DCG=∠OCE又∵∠COE=180°-∠COB=180°-60°=120°∠CGD=180°-∠CGO=180°-60°=120°∴∠CGD=∠COE∴△CGD≌△COE(ASA)∴CD=CE,OE=DG∴OD=OG+DG=OC+OE即OD-OE=OC【点睛】本题主要考查全等三角形的综合应用,有一定难度,解题关键在于能够做出辅助线证全等.9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案. 【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.10.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m ﹣n )2+(n ﹣4)2=0,∴(m ﹣n )2=0,(n ﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x 2﹣2xy+2y 2+6y+9=0,求xy 的值;(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2﹣10a ﹣12b+61=0,求△ABC 的最大边c 的值;(3)已知a ﹣b=8,ab+c 2﹣16c+80=0,求a+b+c 的值.【答案】(1)9;(2)△ABC 的最大边c 的值可能是6、7、8、9、10;(3)8.【解析】试题分析:(1)直接利用配方法得出关于x ,y 的值即可求出答案;(2)直接利用配方法得出关于a ,b 的值即可求出答案;(3)利用已知将原式变形,进而配方得出答案.试题解析:(1)∵x 2﹣2xy+2y 2+6y+9=0,∴(x 2﹣2xy+y 2)+(y 2+6y+9)=0,∴(x ﹣y )2+(y+3)2=0,∴x ﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy 的值是9.(2)∵a 2+b 2﹣10a ﹣12b+61=0,∴(a 2﹣10a+25)+(b 2﹣12b+36)=0,∴(a ﹣5)2+(b ﹣6)2=0,∴a ﹣5=0,b ﹣6=0,∴a=5,b=6,∵6﹣5<c <6+5,c≥6,∴6≤c <11,∴△ABC 的最大边c 的值可能是6、7、8、9、10.(3)∵a ﹣b=8,ab+c 2﹣16c+80=0,∴a (a ﹣8)+16+(c ﹣8)2=0,∴(a ﹣4)2+(c ﹣8)2=0,∴a ﹣4=0,c ﹣8=0,∴a=4,c=8,b=a ﹣8=4﹣8=﹣4,∴a+b+c=4﹣4+8=8,即a+b+c 的值是8.12.阅读下列因式分解的过程,再回答所提出的问题:()()()()()()()223111111111x x x x x x x x x x x x +++++=++++=++=⎤⎣+⎡⎦.(1)上述分解因式的方法是______________法.(2)分解220191(1)(1)(1)x x x x x x x ++++++++的结果应为___________.(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++. 【答案】(1)提公因式 ; (2)()20201x + ;(3)()11n x ++【解析】【分析】(1)用的是提公因式法; (2)按照(1)中的方法再分解几个,找了其中的规律,即可推测出结果;.(3)由(2)中得到的规律即可推广到一般情况.【详解】解:(1)上述分解因式的方法是提公因式法.(2)()()()()()2333111111x x x x x x x x x x +++++++=+++=()41x + ()()()()()()234441111111x x x x x x x x x x x x +++++++++=+++=()51x +……由此可知()2201911(1)(1)x x x x x x x ++++++++=()20201x +(3)原式=(1+x )[1+x+x (x+1)]+x (x+1)3+…+x (x+1)n ,=(1+x )2(1+x )+x (x+1)3+…+x (x+1)n ,=(1+x )3+x (1+x )3+…+x (1+x )n ,=(1+x )n +x (x+1)n ,=(1+x )n+1.【点睛】本题考查了提公因式法分解因式,找出整式的结构规律是关键,体现了由特殊到一般的数学思想.13.任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并且规定F (n )=p q .例如18=1×18=2×9=3×6,这时就有F (18)=3162=.请解答下列问题:(1)计算:F (24);(2)当n 为正整数时,求证:F (n 3+2n 2+n )=1n . 【答案】(1)23;(2) 1n. 【解析】分析:(1)根据最佳分解的意义,把24分解成两数的积,找出差的绝对值最小的两数,求比值即可;(2)根据(1)的求法,确定差的绝对值最小的两数的特点,然后根据要求变形即可. 详解:(1)∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=46=23. (2)∵n 3+2n 2+n =n(n +1)2,其中n(n +1)与(n +1)的差的绝对值最小,且(n +1)≤n(n +1),∴F(n 3+2n 2+n)=()n 1n n 1++=1n . 点睛: 本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.14.下面是某同学对多项式()()22676114x x x x -+-++进行因式分解的过程.解:设26x x y -=,原式(7)(11)4y y =+++(第一步) 21881y y =++(第二步)2(9)y =+(第三步)()2269x x =-+.(第四步) 请你回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______;A .提公因式法B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果不彻底,请直接写出因式分解的最后结果_______;(3)仿照以上方法因式分解:()()222221x x x x --++.【答案】(1)C ;(2)4(3)-x ;(3)4(1)x -【解析】【分析】(1)根据公式法分解因式可得答案;(2)先将269x x -+分解因式得2(3)x -,由此得到答案;(3)设22x x y -=,得到原式()21y =+,将22x x y -=代回得到()2221x x -+,再将括号内根据完全平方公式分解即可得到答案.【详解】解:(1)由21881y y ++2(9)y =+是运用了因式分解的两数和的完全平方公式,故选:C ;(2)∵269x x -+=2(3)x -,∴()2269x x -+=4(3)-x ,故答案为:4(3)-x ;(3)设22x x y -=, 原式()21y y =++,221y y =++,()21y =+, ()2221x x =-+, 4(1)x =-.【点睛】此题考查特殊方法分解因式,完全平方公式分解因式法,分解因式时注意应分解到不能再分解为止.15.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,有阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积(2)比较两图的阴影部分面积,可以得到乘法公式 (用字母表示)(应用)请应用这个公式完成下列各题①已知22412m n -=,24m n +=,则2m n -的值为②计算:(2)(2)a b c a b c +--+(拓展)①()()()()24832(21)21212121+1+++++结果的个位数字为 ②计算:222222221009998974321-+-++-+-【答案】[探究](1)a 2﹣b 2;(a +b )(a ﹣b );(2)(a +b )(a ﹣b )=a 2﹣b 2;[应用]①3;②4a 2﹣b 2+2bc ﹣c 2;[拓展]①6;②5050.【解析】【分析】[探究](1)由面积公式可得答案;(2)公式由(1)直接可得;[应用]①用平方差公式分解4m 2﹣n 2,将已知值代入可求解;②将三项恰当组分成两组,先用平方差,再用完全平方公式展开后合并同类项即可;[拓展]①将原式乘以(2﹣1),就可以反复运用平方差公式化简,最后按照循环规律可得解;②将原式从左向右依次两项一组,运用平方差公式分解,化为100+99+98+…+4+3+2+1,从而可得答案.【详解】(1)图①按照正方形面积公式可得:a2﹣b2;图②按照长方形面积公式可得:(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b).(2)令(1)中两式相等可得:(a+b)(a﹣b)=a2﹣b2故答案为:(a+b)(a﹣b)=a2﹣b2.【应用】①∵4m2﹣n2=12,2m+n=4,4m2﹣n2=(2m+n)(2m﹣n),∴(2m﹣n)=12÷4=3.故答案为:3.②(2a+b﹣c)(2a﹣b+c)=[2a+(b﹣c)][2a﹣(b﹣c)]=4a2﹣(b﹣c)2=4a2﹣b2+2bc﹣c2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264.∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16.故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=5050.【点睛】本题考查了平方差公式的几何背景及其应用与拓展,计算具有一定的难度,属于中档题.四、八年级数学分式解答题压轴题(难)16.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x 天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解;答:规定期限20天.方案(1):20×1.5=30(万元)方案(2):25×1.1=27.5(万元 ),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.17.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时.【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a+=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.18.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n 排序,第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金;(2)设第k 所民办学校所得到的奖金为k a 元(1k n ≤≤),试用k 、n 和b 表示k a (不必证明);(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.【答案】(1)211()(1)b b a b n n n n =-⨯=- ,23111()(1)(1)b b a b n n n n n=-⨯-=-; (2)11(1)k k ba nn-=- ; (3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少. 【解析】 【试题分析】(1)根据第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,得:22311111()(1),()(1)(1).b b b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a nn-=- ; (3)11(1)k k b a nn -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【试题解析】(1)根据题意得:22311111()(1),()(1)(1).b b b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a nn-=- (3)11(1)k k b a nn -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式。