八年级(上)期中数学试卷(含答案解析)

合集下载

数学八年级(上)期中试卷(含答案详解)

数学八年级(上)期中试卷(含答案详解)

2021-2022学年河南省商丘市柘城县八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中图案是轴对称图形的是()A.打喷嚏捂口鼻B.喷嚏后慎揉眼C.勤洗手勤通风D.戴口罩讲卫生2.(3分)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)3.(3分)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm4.(3分)如图,正五边形ABCDE,对角线AC、BD交于点P,那么∠APD=()A.96°B.100°C.108°D.115°5.(3分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC 于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.86.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°7.(3分)如图,△ABC与△DEF关于直线MN轴对称,则下列结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分8.(3分)等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°9.(3分)如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30B.50C.60D.8010.(3分)如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s 速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s二、填空题(本大题共5小题,共15分)11.(3分)如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架.12.(3分)一个多边形的内角和比它的外角和的2倍少180°,则这个多边形的边数是.13.(3分)已知△ABC关于直线y=1对称,C到AB的距离为2,AB长为6,则点A、点B的坐标分别为.14.(3分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=.15.(3分)如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)三、解答题(本大题共8小题,共75分)16.(8分)如图,在△ABC中,D为BC上一点,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,试求∠DAC、∠ADC的度数.17.(9分)如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC 于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=12cm,求CM的长.18.(9分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.19.(9分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,如图DE=DG,△ADG 和△AED的面积分别为50和38,求△EDF的面积.20.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.21.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.22.(10分)已知△ABC在平面直角坐标系中,在△ABC中,AB=BC,∠ABC=90°.(1)如图①,已知点A(0,﹣4),B(1,0),求点C的坐标;(2)如图②,已知点A(0,0),B(3,1),求点C的坐标.23.(11分)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB.2021-2022学年河南省商丘市柘城县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中图案是轴对称图形的是()A.打喷嚏捂口鼻B.喷嚏后慎揉眼C.勤洗手勤通风D.戴口罩讲卫生【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.2.(3分)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化﹣平移.【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P'的坐标,再根据关于x轴对称,横坐标不变,纵坐标相反解答.【解答】解:∵将点P(﹣3,2)向右平移3个单位得到点P',∴点P'的坐标是(0,2),∴点P'关于x轴的对称点的坐标是(0,﹣2).故选:A.3.(3分)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm【考点】三角形三边关系.【分析】首先设第三边长为xcm,根据三角形的三边关系可得6﹣3<x<6+3,再解不等式即可.【解答】解:设第三边长为xcm,根据三角形的三边关系可得:6﹣3<x<6+3,解得:3<x<9,故选:C.4.(3分)如图,正五边形ABCDE,对角线AC、BD交于点P,那么∠APD=()A.96°B.100°C.108°D.115°【考点】多边形内角与外角.【分析】首先根据正五边形的性质得到AB=BC=CD,∠ABC=∠BCD=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠CBD=∠BDC==36°,最后利用三角形的内角和定理得到∠APD=∠BPC=180°﹣∠CBD﹣∠BCA=180°﹣36°﹣36°=108°.【解答】解:∵五边形ABCDE为正五边形,∴AB=BC=CD,∠ABC=∠BCD=108°,∴∠BAC=∠BCA=∠CBD=∠BDC==36°,∴∠APD=∠BPC=180°﹣∠CBD﹣∠BCA=180°﹣36°﹣36°=108°.故选:C.5.(3分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC 于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.8【考点】含30度角的直角三角形;平行线的性质;等腰三角形的判定与性质.【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.6.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【考点】等腰三角形的性质;平行线的性质.【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,由三角形外角的性质即可求得∠ACD的度数.【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.7.(3分)如图,△ABC与△DEF关于直线MN轴对称,则下列结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分【考点】轴对称的性质;线段垂直平分线的性质.【分析】根据轴对称图形的性质一一判断即可、【解答】解:∵△ABC与△DEF关于直线MN轴对称,∴∠B=∠E,AB=DE,AD的连线被MN垂直平分,∴B、C、D正确,故选:A.8.(3分)等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°【考点】等腰三角形的性质.【分析】设另一个角是x,表示出一个角是2x﹣20°,然后分①x是顶角,2x﹣20°是底角,②x是底角,2x﹣20°是顶角,③x与2x﹣20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【解答】解:设另一个角是x,表示出一个角是2x﹣20°,①x是顶角,2x﹣20°是底角时,x+2(2x﹣20°)=180°,解得x=44°,所以,顶角是44°;②x是底角,2x﹣20°是顶角时,2x+(2x﹣20°)=180°,解得x=50°,所以,顶角是2×50°﹣20°=80°;③x与2x﹣20°都是底角时,x=2x﹣20°,解得x=20°,所以,顶角是180°﹣20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故选:A.9.(3分)如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30B.50C.60D.80【考点】全等三角形的判定与性质.【分析】易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,即可解题.【解答】解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF≌△BAG,(AAS)同理△BCG≌△CDH,∴AF=BG,AG=EF,GC=DH,BG=CH,∵梯形DEFH的面积=(EF+DH)•FH=80,S△AEF=S△ABG=AF•AE=9,S△BCG=S△CDH=CH•DH=6,∴图中实线所围成的图形的面积S=80﹣2×9﹣2×6=50,故选:B.10.(3分)如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s 速度从点A出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【考点】全等三角形的性质.【分析】分△ABC≌△PQA和△ABC≌△QPA两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QPA时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.二、填空题(本大题共5小题,共15分)11.(3分)如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架具有三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答即可.【解答】解:因为手机支架具有三角形的稳定性,故答案为:具有三角形稳定性.12.(3分)一个多边形的内角和比它的外角和的2倍少180°,则这个多边形的边数是5.【考点】多边形内角与外角.【分析】根据多边形的内角和、外角和的求法列方程求解即可.【解答】解:设这个多边形为n边形,由题意得,(n﹣2)×180°=360°×2﹣180°,解得n=5,即这个多边形为五边形,故答案为:5.13.(3分)已知△ABC关于直线y=1对称,C到AB的距离为2,AB长为6,则点A、点B的坐标分别为(2,﹣2),(2,4).【考点】坐标与图形变化﹣对称.【分析】根据题意,可得A、B的连线与y=1垂直,且两点到直线y=1的距离相等,又AB=6,从而可以得出A、B两点的纵坐标;又C到AB的距离为2,从而可以得出A、B 两点的横坐标.【解答】解:由题可知:可得A、B的连线与y=1垂直,且两点到直线y=1的距离相等∵AB=6∴A、B两点的纵坐标分别为﹣2和4又∵C到AB的距离为2∴A、B两点的横坐标都为2∴A、B两点的坐标分别为(2,﹣2)(2,4).14.(3分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=34°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=112°.【考点】轴对称﹣最短路线问题.【分析】如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB 于E′,交BC于F′,则点E′,F′即为所求,结合四边形的内角和即可得出答案.【解答】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E′,交BC于F′,则点E′,F′即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°﹣α,由轴对称知,∠ADE′=∠P,∠CDF′=∠Q,在△PDQ中,∠P+∠Q=180°﹣∠ADC=180°﹣(180°﹣34)=34°∴∠ADE′+∠CDF′=∠P+∠Q=34,∴∠E′DF′=∠ADC﹣(∠ADE′+∠CDF′)=180°﹣68°=112°故答案为:112°.15.(3分)如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为①、③、④.(注:把你认为正确的答案序号都填上)【考点】全等三角形的判定.【分析】由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB 即可.【解答】解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.三、解答题(本大题共8小题,共75分)16.(8分)如图,在△ABC中,D为BC上一点,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,试求∠DAC、∠ADC的度数.【考点】三角形内角和定理.【分析】设∠BAD=∠ABC=α,根据外角的性质得到∠ADC=∠B+∠BAD=2α,于是得到∠ADC=∠ACD=2α,根据三角形的内角和列方程即可得到结论.【解答】解:设∠BAD=∠ABC=α,∵∠ADC=∠B+∠BAD=2α,∴∠ADC=∠ACD=2α,∵∠BAC=63°,∴63°+α+2α=180°,解得:α=39°,∴∠ADC=2α=78°.∴∠DAC=180°﹣4α=24°.17.(9分)如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC 于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=12cm,求CM的长.【考点】等边三角形的判定与性质.【分析】(1)根据等边三角形的性质得出∠A=∠B=∠C,进而得出∠MPB=∠NMC=∠PNA=90°,再根据平角的意义即可得出∠NPM=∠PMN=∠MNP,即可证得△PMN 是等边三角形;(2)易证得△PBM≌△MCN≌△NAP,得出PA=BM=CN,PB=MC=AN,从而求得BM+PB=AB=12cm,根据直角三角形30°角所对的直角边等于斜边的一半得出2PB=BM,即可求得PB的长,进而得出MC的长.【解答】解:(1)∵△ABC是正三角形,∴∠A=∠B=∠C,∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∴∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形;(2)根据题意△PBM≌△MCN≌△NAP,∴PA=BM=CN,PB=MC=AN,∴BM+PB=AB=12cm,∵△ABC是正三角形,∴∠A=∠B=∠C=60°,∴2PB=BM,∴2PB+PB=12cm,∴PB=4cm,∴MC=4cm.18.(9分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.【考点】三角形的角平分线、中线和高;三角形的面积.【分析】(1)利用“面积法”来求线段AD的长度;(2)△AEC与△ABE是等底同高的两个三角形,它们的面积相等;(3)由于AE是中线,那么BE=CE,于是△ACE的周长﹣△ABE的周长=AC+AE+CE ﹣(AB+BE+AE),化简可得△ACE的周长﹣△ABE的周长=AC﹣AB,易求其值.【解答】解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC=BC•AD,∴AD===4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,=AB•AC=×6×8=24(cm2).∴S△ABC又∵AE是边BC的中线,∴BE=EC,=S△AEC,∴BE•AD=EC•AD,即S△ABE=S△ABC=12(cm2).∴S△ABE∴△ABE的面积是12cm2.方法二:因为BE=BC=5,由(1)知AD=4.8,=BE•AD=×5×4.8=12(cm2).所以S△ABE∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.19.(9分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,如图DE=DG,△ADG 和△AED的面积分别为50和38,求△EDF的面积.【考点】全等三角形的判定与性质;角平分线的性质.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和38,=S△ADG﹣S△ADM=50﹣38=12,∴S△MDGS△DNM=S△EDF=S△MDG=×12=6.20.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.【考点】全等三角形的判定与性质.【分析】(1)由SAS证明△ABD≌△ACE即可;(2)先由全等三角形的性质得∠ACE=∠ABD=20°,再由等腰三角形的性质和三角形内角和定理得∠ABC=∠ACB=47°,则∠FBC=∠FCB=27°,即可得出答案.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD=20°,∵AB=AC,∴∠ABC=∠ACB=(180°﹣86°)=47°,∴∠FBC=∠FCB=47°﹣20°=27°,∴∠BFC=180°﹣27°﹣27°=126°.21.(10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.【考点】作图﹣平移变换;作图﹣轴对称变换.【分析】(1)要关于y轴对称,即从各顶点向y轴引垂线,并延长,且线段相等,然后找出各顶点的坐标.(2)各顶点向右平移6个单位找对应点即可.(3)从图中可以看出关于直线x=3轴对称.【解答】解:(1)A1(0,4),B1(2,2),C1(1,1);(2)A2(6,4),B2(4,2),C2(5,1);(3)△A1B1C1与△A2B2C2关于直线x=3轴对称.22.(10分)已知△ABC在平面直角坐标系中,在△ABC中,AB=BC,∠ABC=90°.(1)如图①,已知点A(0,﹣4),B(1,0),求点C的坐标;(2)如图②,已知点A(0,0),B(3,1),求点C的坐标.【考点】全等三角形的判定与性质;等腰直角三角形;坐标与图形性质.【分析】(1)过点C作x轴的垂线,交x轴于点D,利用AAS证明△BCD≌△ABO,得CD=BO=1,BD=AO=4,可得答案;(2)过B作x轴的垂线,交x轴于点D,过点C作DB的垂线交DB的延长线于点E,利用AAS证明△ABD≌△BCE,得CE=BD=1,BE=AD=3,可得答案.【解答】解:(1)过点C作x轴的垂线,交x轴于点D,∵A(0,﹣4),B(1,0),∴OA=4,OB=1,∵∠ABC=90°,∠AOB=90°,∴∠CBD+∠OBA=90°,∠OAB+∠OBA=90°,∴∠CBD=∠BAO,∵AB=BC,∠AOB=∠BDC=90°,∴△BCD≌△ABO(AAS),∴CD=BO=1,BD=AO=4,∴OD=3,∴点C坐标为(﹣3,1);(2)过B作x轴的垂线,交x轴于点D,过点C作DB的垂线交DB的延长线于点E,∵A(0,0),B(3,1),∴OD=3,BD=1,∵∠ABC=90°,∠ADB=90°,∴∠CBE+∠OBD=90°,∠BAD+∠OBD=90°,∴∠BAD=∠CBE,∵AB=BC,∠ADB=∠BEC=90°,∴△ABD≌△BCE(AAS),∴CE=BD=1,BE=AD=3,∴DE=4,∴点C的横坐标为3﹣1=2,∴点C坐标为(2,4).23.(11分)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB.【考点】全等三角形的判定与性质.【分析】(1)根据角平分线性质可得∠PAB+∠PBA=45°,即可解题;(2)易得∠DPB=45°,可得∠BPF=135°,即可证明△ABP≌△FBP;(3)由(2)结论可得∠F=∠BAD,AP=PF,AB=BF,即可求得∠F=∠CAD,即可证明△APH≌△FPD,可得AH=DF,即可解题.【解答】解:(1)∵AD平分∠BAC,BE平分∠ABC,∴∠PAB+∠PBA=(∠ABC+∠BAC)=45°,∴∠APB=180°﹣45°=135°;(2)∵∠APB=135°,∴∠DPB=45°,∵PF⊥AD,∴∠BPF=135°,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA);(3)∵△ABP≌△FBP,∴∠F=∠BAD,AP=PF,AB=BF,∵∠BAD=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴AH=DF,∵BF=DF+BD,∴AB=AH+BD.。

人教版八年级上册期中数学试卷(含解析)

人教版八年级上册期中数学试卷(含解析)

八年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.(4分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(4分)以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cmC.5cm,6cm,12cm D.2cm,3cm,5cm3.(4分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°4.(4分)已知点M(﹣1,3),则M点关于x轴对称点的坐标是()A.(﹣1,﹣3)B.(1,3)C.(﹣3,1)D.(3,1)5.(4分)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.286.(4分)如图,B、E、C、F四点在一条直线上,EB=CF,∠A=∠D,再添一个条件不能得到△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠DEF=∠B D.AB∥DE7.(4分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于()A.10B.7C.5D.48.(4分)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35°B.45°C.55°D.60°9.(4分)如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B 的度数是()A.45°B.60°C.50°D.55°10.(4分)如图所示,在△ABC中,∠A=60°,AB=AC,BD是△ABC的角平分线,延长BC至E,使CE=CD,若△ABC的周长为20,BD=a,则△DBE的周长是()A.20+a B.15+2a C.10+2a D.10+a二、填空题(每小题5分,共20分)11.(5分)等腰三角形的两边长分别为4和9,则这个三角形的周长为.12.(5分)如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AB=AC,∠B=∠C,AD=4,CE=5,则AB=.13.(5分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为点E.若AE=2,则△ABC 的周长为.14.(5分)如图,四边形ABCD的对角线AC,BD相交于点O,AB=AD,∠CAB=∠CAD.下列结论:①AC⊥BD;②CB=CD;③DA⊥DC;④∠ACB=∠ACD,其中正确结论的序号是(只填序号)三、解答题15.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.16.(8分)如图,AC⊥BC,BD⊥AD,AC=BD,求证:△CAB≌△DBA.17.(8分)如图,直线l同侧两个点A、B(需要写画法)(1)在直线l上求作一点M,使MA=MB;(2)在直线l上求作一点N,使NA+NB最小.18.(8分)在一次数学课上,李老师在黑板上画出图(如图所示),并写出三个等式:①AB=DC,②AC =DB,③∠BAD=∠CDA,要求同学从这三个等式中选出两个作为条件,推出∠B=∠C,请你试着完成李老师提出的要求,并说明理由.已知:(写一种情况即可)求证:∠B=∠C.19.(10分)如图,一艘轮船早上8时从点A向正北方向出发,小岛P在轮船的北偏西15°方向,轮船每小时航行15海里,11时轮船到达点B处,小岛P此时在轮船的北偏西30°方向.(1)求此时轮船距小岛为多少海里?(2)在小岛P的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.20.(10分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.21.(12分)已知如图,点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,连接AE、BD相交于点F.(1)求证:AE=BD;(2)如果∠ACD=30°,求∠AFB.22.(12分)(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°求∠BOC的度数.(2)如图(2),△A′B′C′外角的平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数.(3)由(1)、(2)可以发现∠BOC与∠B′O′C′有怎样的数量关系?设∠A=∠A′=n°,∠BOC 与∠B′O′C′是否还具有这样的数量关系?这个结论你是怎样得到的?23.(14分)定义:各个角都相等,各条边都相等的多边形叫做正多边形,如图,正五边形ABCDE的对角线AD、BE相交于点O.(1)求五边形ABCDE每一个内角的度数;(2)求证:AB=BO;(3)连接CO,求证:CO垂直平分AE.参考答案一、选择题(每小题4分,共40分)1.D;2.B;3.B;4.A;5.B;6.A;7.C;8.C;9.C;10.C;二、填空题(每小题5分,共20分)11.22;12.9;13.24;14.①②④;三、解答题15【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.16【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.17【解答】解:(1)连接AB,作AB的垂直平分线交AB于M,则点M即为所求;(2)作点A关于l的对称点A′,连接A′B,交l与点N,点N就是所求.18【解答】解:已知:①②(或①③),证明:在△ABD和△DCA中,,∴△ABE≌△DCE(SSS),∴∠B=∠C.故答案为:①②(或①③).19【解答】解:(1)∵∠P AB=15°,∠PBC=30°,∴∠P AB=∠APB,PB=AB=15×3=45海里;(2)过P点作PD⊥BC于D,在Rt△PBD中,∠PBD=30°,PB=45,∴PD==22.5,22.5>20.所以,轮船继续向前航行,不会有触礁危险.20【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.21【解答】(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵,∴△ACE≌△DCB,∴AE=BD;(2)解:∵∠ACD=30°,∴∠CDB+∠DBC=∠ACD=30°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=30°,∴∠AFB=180°﹣30°=150°.22【解答】解:(1)在△ABC中,∠ABC、∠ACB的平分线相交于点O,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣∠A)=×(180°﹣40°)=70°.故∠BOC=180°﹣70°=110°;(2)因为∠A的外角等于180°﹣40°=140°,△A′B′C′另外的两外角平分线相交于点O′,根据三角形的外角和等于360°,所以∠1+∠2=×(360°﹣140°)=110°,∠B′O′C′=180°﹣110°=70°;(3)∵(1)(2)中∠BOC+∠B′O′C′=110°+70°=180°,∴∠BOC与∠B′O′C′互补;证明:当∠A=n°时,∠BOC=180°﹣[(180°﹣n°)÷2]=90°+n°,∵∠A′=n°,∠B′O′C′=180°﹣[360°﹣(180°﹣n°)]÷2=90°﹣n°,∴∠A+∠A′=90°+n°+90°﹣°=180°,∠BOC与∠B′O′C′互补,∴当∠A=∠A′=n°,∠BOC与∠B′O′C′还具有互补的关系.23【解答】解:(1)∠BAE=∠ABC=∠BCD=∠CDE=∠AED=(5﹣2)×180°÷5=108°;(2)证明:∵AB=AE,∴∠ABE=∠AEB=(180°﹣108°)÷2=36°,同理得:∠DAE=∠ADE=36°,∴∠BAO=∠BAE﹣∠DAE=108°﹣36°=72°,∠AOB=∠DAE+∠AEB=72°,∴∠BAO=∠AOB,∴AB=BO;(3)证明:连接AC,CE,∵AB=ED,∠ABC=∠CDE,BC=CD,∴△ABC≌△EDC(SAS),∴AC=EC,∵∠DAE=∠AEB=36°,∴AO=EO,∴CO垂直平分AE.。

八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析1.已知三角形两边长分别为7、10,那么第三边的长可以是()A.2B.3C.17D.52.n边形的每个外角都为15o,则边数n为()A.20B.22C.24D.263.如图,要测量湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再在BF的垂线DG上取点E,使点A,C,E在一条直线上,可得ΔABC≌ΔEDC.判定全等的依据是()A.ASAB.SASC.SSSD.HL4.已知,如图,AD=AC,BD=BC,O为AB上一点,则图中共有全等三角形的对数是()A.1对B.2对C.3对D.4对5.如图,ΔABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.LB=LCB.AD平分LBACC.AD L BCD.AB=2BD6.和点p(—3,2)关于x轴对称的点是()A.(3,2)B.(—3,2)C.(—3,—2)D.(3,—2)7.如图所示,人字梯中间一般会设计一“拉杆”,这样做的依据是.8.八边形的对角线共有条.9.如图,在ΔABC中,LC=40。

,将ΔABC沿着直线l折叠,点C落在点D的位置,则L1—L2的度数是.10.如图,小虎用10块高度都是4cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,LACB=90。

),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离DE为cm.11.RtΔABC中,CD是斜边AB上的高,LB=30。

,AD=2cm,则AB的长度是cm.12.已知等腰三角形的一个内角等于40。

,则它的顶角是。

.13.如图点P是LBAC的平分线AD上一点,PE L AC于点E.已知PE=3,则点P到AB的距离是.14.如图,等腰ΔABC中,AB=AC,AB的垂直平分线MN交AC于点D,LDBC=15。

,则LA 的度数是度.15.如图,在ΔABC中,AD L BC于D,AE平分LDAC,LBAC=80。

八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC 的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C 的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC ≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE ﹣S△BOD=1,∴S△ABE =S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).。

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。

八年级(上)期中数学试卷(附答案)

八年级(上)期中数学试卷(附答案)

八年级(上)期中数学试卷一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.2.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个3.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±14.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°6.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=27.下列运算错误的是()A.B.C.D.8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3 B.4 C.6 D.510.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2 B.1 C.6 D.10二、填空题(每空2分,共24分)11.计算:(﹣3)﹣2=.12.约分:=.13.用科学记数法表示﹣0.000614为.14.分解因式:4x2y﹣4xy+y=.15.若分式有意义,则实数x的取值范围是.16.化简﹣的结果是.17.如图,已知∠1=∠2,AC=AD,添加一个条件使△ABC≌△AED,你添加的条件是(填一种即可),根据.18.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为.19.已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是.20.观察下列等式:第1个等式:a1==﹣;第2个等式:a2==﹣;第3个等式:a3==﹣;第4个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.三、解答题(每小题5分,共25分)21.分解因式:x2(m﹣2)+9y2(2﹣m)22.化简:﹣÷.23.解分式方程:.24.已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.25.先化简,再求值:(1﹣)÷,其中a=﹣1.四、解答题(26题3分,27-29每题6分,本题共21)26.尺规作图:已知:如图,∠A与直线l.试在l上找一点P,使点P到∠A的两边的距离相等.要求:保留痕迹,不写作法.27.列方程解应用题从A地到B地的路程是30千米.甲骑自行车从A地到B地先走,半小时后,乙骑自行车从A地出发,结果二人同时到达.已知乙的速度是甲的速度的1.5倍,求甲、乙二人骑车速度各是多少?28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.29.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段AD与BE的大小关系,并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是.参考答案与试题解析一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个【考点】因式分解-运用公式法;因式分解-提公因式法.【专题】因式分解.【分析】直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.【解答】解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.【点评】此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.3.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.【解答】解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.4.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°【考点】全等三角形的性质;三角形内角和定理.【分析】根据已知数据找出对应角,根据全等得出∠A=∠D=50°,∠F=∠C=72°,根据三角形内角和定理求出即可.【解答】解:∵△ABC和△DEF全等,AC=DF=b,DE=AB=a,∴∠1=∠B,∠A=∠D=50°,∠F=∠C=72°,∴∠1=180°﹣∠D﹣∠F=58°,故选B.【点评】本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠A=∠D=50°,∠F=∠C=72°是解此题的关键,注意:全等三角形的对应边相等,对应角相等.5.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°【考点】全等三角形的性质.【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.【解答】解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=35°.故选B.【点评】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.6.分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣2),得2x﹣5=﹣3,解得x=1.检验:当x=1时,(x﹣2)=﹣1≠0.∴原方程的解为:x=1.故选:C.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.下列运算错误的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.【解答】解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、=,故本选项正确;D、=﹣,故本选项错误;【点评】此题考查了分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(S、S、S)B.(S、A、S)C.(A、S、A)D.(A、A、S)【考点】全等三角形的判定与性质;作图—基本作图.【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选A.【点评】考查全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.10.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2 B.1 C.6 D.10【考点】分式的混合运算;完全平方公式.【专题】阅读型.【分析】根据题意求出所求式子的最小值即可.【解答】解:∵x>0,∴在原式中分母分子同除以x,即=x+,在面积是9的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=,(x>0),解得x=3,这时矩形的周长2(x+)=12最小,因此x+(x>0)的最小值是6.故选:C【点评】此题考查了分式的混合运算,弄清题意是解本题的关键.二、填空题(每空2分,共24分)11.计算:(﹣3)﹣2=.【考点】负整数指数幂.【分析】根据负指数次幂的意义,首先计算乘方,即可.【解答】解:(﹣3)﹣2==.故答案是:.【点评】本题主要考查了负指数次幂的意义,正确理解意义是解题的关键.12.约分:=.【考点】约分.【分析】先找出分式的分子和分母的公因式,再根据分式的基本性质求出即可.【解答】解:原式==,故答案为:.【点评】本题考查了分式的约分的应用,关键是找出分式的分子和分母的公因式.13.用科学记数法表示﹣0.000614为﹣6.14×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.000614=﹣6.14×10﹣4,故答案为:﹣6.14×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:4x2y﹣4xy+y=y(2x﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(4x2﹣4x+1)=y(2x﹣1)2.故答案为:y(2x﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.若分式有意义,则实数x的取值范围是x≠5.【考点】分式有意义的条件.【专题】计算题.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.16.化简﹣的结果是﹣.【考点】分式的加减法.【专题】计算题.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣=﹣=﹣.故答案为:﹣.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.如图,已知∠1=∠2,AC=AD,添加一个条件使△ABC≌△AED,你添加的条件是AB=AE(填一种即可),根据SAS.【考点】全等三角形的判定.【专题】开放型.【分析】首先根据等式的性质可得∠CAB=∠DAE,再添加条件AB=AE可利用SAS定理判定△ABC≌△AED.【解答】解:添加的条件AB=AE,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,在△ABC和△AED中,∴△ABC≌△AED(SAS),故答案为:AB=AE,SAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快了20米,结果提前2天完成任务.若设原计划每天修建道路x米,则根据题意可列方程为﹣=2.【考点】由实际问题抽象出分式方程.【分析】设原计划每天修建道路x米,则实际每天修建道路(x+20)米,根据题意,提前2天完成任务,列方程.【解答】解:设原计划每天修建道路x米,则实际每天修建道路(x+20)米,由题意得,﹣=2.故答案为:﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.19.已知,如图,点D是△ABC的两外角平分线的交点,下列说法:①AD=CD②D到AB、BC的距离相等③D到△ABC的三边的距离相等④点D在∠B的平分线上.其中正确的说法的序号是②③④.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,根据角平分线上的点到角的两边的距离相等可得DE=DF=DG,再根据到角的两边距离相等的点在角的平分线上解答.【解答】解:如图,过点D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,∵点D是△ABC的两外角平分线的交点,∴DE=DG,DF=DG,∴DE=DF=DG,∴点D在∠B的平分线上,故②③④正确,只有点G是AC的中点时,AD=CD,故①错误,综上所述,说法正确的是②③④.故答案为:②③④.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.20.观察下列等式:第1个等式:a1==﹣;第2个等式:a2==﹣;第3个等式:a3==﹣;第4个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)由前四个等是可以看出:是第几个算式,等号左边的分母的第一个因数是就是几,第二个因数是几加1,第三个因数是2的几加1次方,分子是几加2;等号右边分成分子都是1的两项差,第一个分母是几乘2的几次方,第二个分母是几加1乘2的几加1次方;由此规律解决问题;(2)把这20个数相加,化为左边的形式相加,正好抵消,剩下第一个数分裂的第一项和最后一个数分裂的后一项,得出答案即可.【解答】解:(1)用含n的代数式表示第n个等式:a n==﹣.(2)a1+a2+a3+…+a20=﹣+﹣+﹣+﹣+…+﹣=﹣.故答案为:(1),﹣;(2)﹣.【点评】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.三、解答题(每小题5分,共25分)21.分解因式:x2(m﹣2)+9y2(2﹣m)【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(m﹣2)﹣9y2(m﹣2)=(m﹣2)(x2﹣9y2)=(m﹣2)(x+3y)(x﹣3y).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.化简:﹣÷.【考点】分式的混合运算.【专题】计算题.【分析】原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣•=﹣=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.解分式方程:.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2(x﹣1)=3,去括号得:2x+2x﹣2=3,移项合并得:4x=5,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定定理SAS推知△ADF≌△CBE;然后由全等三角形的对应边相等知,AF=CE,所以AF﹣EF=CE﹣EF,即AE=CF.【解答】证明:∵AD∥BC(已知),∴∠A=∠C(两直线平行,内错角相等);在△ADF和△CBE中,,∴△ADF≌△CBE (ASA),∴AF=CE(全等三角形的对应边相等),∴AF﹣EF=CE﹣EF,即AE=CF.【点评】本题主要考查了全等三角形的判定与性质.普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.做题时要根据已知条件的具体位置来选择方法.25.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【专题】探究型.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.四、解答题(26题3分,27-29每题6分,本题共21)26.尺规作图:已知:如图,∠A与直线l.试在l上找一点P,使点P到∠A的两边的距离相等.要求:保留痕迹,不写作法.【考点】作图—基本作图;角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等可得点P在∠A的角平分线上,因此画∠A 的角平分线与l的交点就是P点.【解答】解:如图所示:.【点评】此题主要考查了基本作图,以及角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.27.列方程解应用题从A地到B地的路程是30千米.甲骑自行车从A地到B地先走,半小时后,乙骑自行车从A地出发,结果二人同时到达.已知乙的速度是甲的速度的1.5倍,求甲、乙二人骑车速度各是多少?【考点】分式方程的应用.【分析】首先设甲的速度为x千米/时,则乙的速度为1.5x千米/时,由题意得:甲需要时间小时,乙需要小时,再根据乙所用时间+半小时=甲所用时间即可列出方程.【解答】解:设甲的速度为x千米/时,则乙的速度为1.5x千米/时,由题意得:=+,解得:x=20,经检验:x=20是原分式方程的解,1.5×20=30(千米/时).答:甲的速度为20千米/时,则乙的速度为30千米/时.【点评】此题主要考查了分式方程的应用,难度中等,做此类题主要是要抓住关键条件列出方程解答即可.28.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中真分式与假分式的定义判断即可;(2)原式变形,化为带分式即可;(3)分式化为带分式后,即可确定出x的整数值.【解答】解:(1)分式是真分式;(2)==1﹣;(3)==2﹣为整数,则x的可能整数值为0,﹣2,2,﹣4.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.29.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作出图形:①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE.(2)猜想(1)中线段AD与BE的大小关系,并证明你的结论.解:(1)完成作图(2)AD与BE的大小关系是AD=BE.【考点】全等三角形的判定与性质.【分析】(1)根据已知条件画出图形即可;(2)在AE上截取AF=AC,连结BF,根据全等三角形的判定定理求出△BAF≌△BAC,求出△BFE≌△DCA,即可得出答案.【解答】解:(1)如图:;(2)AD=BE,理由是:在AE上截取AF=AC,连结BF,∵∠BAC=90°,∴∠BAF=180°﹣90°=90°,∴∠BAC=∠BAF,在△ABF与△ABC中∴△ABF≌△ABC(SAS),∴BF=BC,AF=AC,∠BCA=∠BFA,∵∠BFE+∠BFA=180°,∠BCA+∠DCA=180°,∴∠BFE=∠DCA,∵BC=DC,BC=BF,∴BF=DC,∵AC=AF,AE=2AC=AF+EF,∴EF=AC=AF,在△BFE和△DCA中∴△BFE≌△DCA,∴AD=BE,故答案为:AD=BE.【点评】本题考查了全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,有一定的难度.。

八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。

八年级(上)期中数学试卷附答案解析

八年级(上)期中数学试卷附答案解析

八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个 D.1个6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.107.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠310.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=.12.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是.13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD=cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是(填序号).三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.23.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的中线把三角形分成面积相等的两部分【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、直角三角形有三条高,故本选项错误;C、三角形的中线一定在三角形的内部,故本选项正确;D、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确.故选:B.2.(3分)下列说法,正确的有()①七边形有14条对角线②外角和大于内角和的多边形只有三角形③若一个多边形的内角和与外角和的比是4:1,则它是九边形.A.0个 B.1个 C.2个 D.3个【解答】解:①7边形有=14条对角线,故正确;②外角和大于内角和的多边形只有三角形,故正确;③多边形外角和=360°,设这个多边形是n边形,根据题意得(n﹣2)•180°=360°×4,解得n=10.故错误.故选:C.3.(3分)如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对【解答】解:∵AB∥CD,∴∠A=∠D,∵AB=CD,AE=FD,∴△ABE≌△DCF(SAS),∴BE=CF,∠BEA=∠CFD,∴∠BEF=∠CFE,∵EF=FE,∴△BEF≌△CFE(SAS),∴BF=CE,∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∴△ABF≌△CDE(SSS),∴全等三角形共有三对.故选:C.4.(3分)如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm【解答】解:∵O是AB,CD的中点,AB=CD,∴OA=OB=OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD=15cm,故选:D.5.(3分)请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个D.1个【解答】解:第一个图形是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,故选:A.6.(3分)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.连接ED并延长和AB交于点F,若EF=12,则BD的长度是()A.4 B.6 C.8 D.10【解答】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BD是中线,∴∠ABD=30°,∵CE=CD,∴∠CDE=∠E=30°,∴∠BFE=90°,∴BE=2BF,∵EF=12,∴BE2=BF2+EF2,即4BF2=BF2+144,解得BF=4,在Rt△BDF中,cos30°=,∴BD=BF÷cos30°=4÷=8.故选:C.7.(3分)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【解答】解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D.8.(3分)如图,△ABC和△AB′C′关于直线l对称,下列结论:(1)∠ABC≌△AB′C′;(2)∠BAC′=∠B′AC;(3)l垂直平分CC′;(4)直线BC和B′C′的交点不一定在l上.其中正确的有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC和△AB′C′关于直线L对称,∴(1)△ABC≌△AB′C′,正确;(2)∠B′AC=∠B′AC正确;(3)直线L一定垂直平分线段C C′,故本小题正确;(4)根据对应线段或其延长线的交点在对称轴上可知本小题错误;综上所述,正确的结论有3个.故选:B.9.(3分)如图,∠1、∠2、∠3、∠4满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4﹣∠3 C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2﹣∠3【解答】解:如图,由三角形外角的性质可得∠1+∠4=∠5,∠2=∠5+∠3,∴∠1+∠4=∠2﹣∠3,故选:D.10.(3分)如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选:B.二、填空(每小题3分,共24分)11.(3分)(a﹣b)2•(b﹣a)5=(b﹣a)7.【解答】解:原式=[﹣(b﹣a)]2•(b﹣a)5=(b﹣a)2•(b﹣a)5=(b﹣a)7故答案为:(b﹣a)712.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.(3分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【解答】解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.=×7×7=(cm2).故S△ACF故答案为:.14.(3分)在△ABC中,∠BCA=90°,∠B=2∠A,CD⊥AB于D,若AB=10cm,则BD= 2.5cm.【解答】解:在△ABC中,∠C=90°,∠B=2∠A,所以,∠A=30°,∠B=60°,BC=sin∠A×AB=×10=5cm;∵CD⊥AB∴∠B+∠BCD=∠A+∠B=90°即:∠BCD=∠A又∵∠CDB=∠ACB=90°∴△ACB∽△CDB∴=即:DB===2.5cm.15.(3分)如图,AB=AC,BD=BC,若∠A=30°,则∠ABD的度数为45°.【解答】解:∵AB=AC,∴∠C=∠ABC,∵BD=BC,∴∠C=∠CBD,∵∠A=30°,∴∠C=∠ABC=∠CBD=75°,∴∠CBD=30°,∴∠ABD=75°﹣30°=45°.故答案为45.16.(3分)若一个等腰三角形的一个外角等于70°,则这个等腰三角形的顶角应该为110°.【解答】解:等腰三角形一个外角为70°,那相邻的内角为110°三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以110°只可能是顶角.故答案为:110°.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为6.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CND∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.18.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是②③④(填序号).【解答】解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;∵AD是△ABC的角平分线,∴∠EAD=∠FAD,在△AED和△AFD中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,故④正确;∵在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,故②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,故③正确.综上可得:正确的是:②③④,故答案为:②③④.三、解答题(共66分)19.(12分)如图所示,已知A(0,2),B(3,﹣2),C(4,2),请作出△ABC 关于直线AC对称的图形,并写出点B关于AC的对称点B′的坐标.【解答】解:如图所示:点B′即为所求,∵A(0,2),B(3,﹣2),∴B点到AC的距离为4,则B′点到AC的距离也为4,且两点横坐标相等,∴B′(3,6).20.(12分)已知如图,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,且AD=AC,AF平分∠CAE交CE于F.求证:FD∥BC.【解答】解:∵AF平分∠CAE,∴∠CAF=∠DAF在△CAF与△DAF中,∴△CAF≌△DAF(SAS)∴∠ACF=∠ADF∵∠ACB=∠CAE=90°,∴∠ACE+∠CAE=∠B+∠CAE=90°∴∠ACE=∠B,∴∠ADF=∠B∴FD∥BC21.(12分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC有怎样的数量关系,并证明你的猜想.【解答】解:数量关系为:BE=EC,位置关系是:BE⊥EC.证明如下:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC﹣∠EDA=180°﹣45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=CD=AC,∵AC=2AB,∴AB=AD=DC,∵在△EAB和△EDC中,∴△EAB≌△EDC(SAS),∴EB=EC,且∠AEB=∠DEC,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE⊥EC.22.(8分)已知, +(4a﹣b﹣2)2=0,求代数式(﹣3ab2)2的值.【解答】解:∵+(4a﹣b﹣2)2=0,∴≥0,(4a﹣b﹣2)2≥0,∴,解得,∴(﹣3ab2)2=(﹣3×1×4)2=3623.(7分)先化简,再求值:3x(2x+1)﹣(2x+3)(x﹣5),其中x=﹣2.【解答】解:原式=6x2+3x﹣2x2+10x﹣3x+15=4x2+10x+15,当x=﹣2时,原式=16﹣20+15=11.24.(15分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.【解答】(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,∴BG>CE.21。

八年级数学(上)期中试卷和答案详解

八年级数学(上)期中试卷和答案详解

2021-2022学年江西省南昌八年级(上)期中数学试卷一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)下列各组长度的线段能构成三角形的是()A.3cm,4cm,9cm B.5cm,6cm,11cmC.4cm,5cm,6cm D.4cm,10cm,4cm3.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°4.(3分)下列方法中,不能判定三角形全等的是()A.SSA B.SSS C.ASA D.SAS5.(3分)正六边形的每个内角都是()A.60°B.80°C.100°D.120°6.(3分)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…,按此规律作下去,若∠A1B1O=α,则∠A2021B2021O 等于()A.度B.度C.度D.度二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)点P(2,3)关于x轴的对称点的坐标为.8.(3分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件是.9.(3分)已知等腰三角形的两个内角之和为100°,顶角度数为.10.(3分)如图,在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=25cm,则△DEB的周长为cm.11.(3分)如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.12.(3分)已知:P(0,4),PQ=5,点Q在坐标轴上,则点Q的坐标为.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.14.(6分)已知a,b,c是等腰△ABC的三条边,若a,b满足|a﹣7|+(b﹣1)2=0,求△ABC的周长.15.(6分)已知:如图,在△ABC中,∠C>∠B,AD,AE分别是△ABC的高和角平分线.若∠B=30°,∠C=50°,求∠DAE的度数.16.(6分)如图,在2×2的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中△ABC是一个格点三角形.请在每一个图中,作出一个与△ABC 成轴对称的格点三角形.(画两个,不能重复)17.(6分)如图,M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM 交BN于点P.求证:△ABM≌△BCN.四、解答题(本大题共3个小题,每小题8分,共24分)18.(8分)如图,△ABE为等腰直角三角形,∠ABE=90°,BC=BD.(1)求证:△ABC≌△EBD;(2)求证:AF⊥DE.19.(8分)如图,AD是△ABC的角平分线,DE⊥AC于点E,BF∥AC,交ED的延长线于点F.(1)若AD恰好平分BC.求证:DE=DF;(2)若BC恰好平分∠ABF.求证:DE=DF.20.(8分)如图,△ABC的角平分线AD,BE相交于点P,已知:∠APB=135°.(1)求证:△ABC是直角三角形;(2)过点P作PH⊥AD交AC于点H,PH与BC的延长线相交于点F.求证:PA=PF.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)在数学活动课上,小华用一块等腰直角三角板AEB进行探究:其中AE=BE,∠AEB=90°.【发现】如图1,小华把△AEB的直角顶点E放置在直线m上,使点A、B分别位于直线m的同侧,作AC⊥m,BD⊥m,分别交直线m于点C、D,这时,小华通过观察发现△ACE与△EDB全等,请说明理由;【探究】小华借助发现中的结论,发现当点A、B位于直线的同侧时,线段AC、CD和BD之间满足一个等量关系,请你写出这个等量关系式,并说明理由;【拓展】如图2,小华把三角板的直角顶点E放在直线m上旋转,使点A、B分别位于直线m的两侧,作AC⊥m,BD⊥m,分别交直线m于点C、D,请直接写出AC、CD和BD这三条线段之间的数量关系:.22.(9分)如图,在平面直角坐标系中,已知点A(1,3),B(2,0),C为x轴上点B右侧的动点,以AC为腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直线DB交y 轴于点P.(1)求证:AO=AB;(2)求证:△AOC≌△ABD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?六、解答题(本大题共12分)23.(12分)【概念学习】如图1,2,已知△ABC,点P为其内部一点,连接PA、PB、PC,在△PAB、△PBC、△PAC中,如果存在一个三角形,其内角与△ABC的三个内角分别相等,那么就称点P为△ABC的等角点.【理解应用】(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真命题”;反之,则写“假命题”.①等边三角形存在等角点:;②等腰直角三角形存在等角点:;③内角分别为30°、60°、90°的三角形存在等角点:;④任意的三角形都存在等角点:;【深入理解】(2)如图1,点P是锐角△ABC的等角点,且△PBC与△ABC的三个内角分别相等,已知:若∠BAC=50°,∠PBA=∠PCA=10°,求∠ABC的度数;(3)如图2,点P是锐角△ABC的等角点,若∠BAC=∠PCB,探究∠BPC、∠ACB、∠ABP之间的数量关系,并说明理由.2021-2022学年江西省南昌八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.(3分)下列各组长度的线段能构成三角形的是()A.3cm,4cm,9cm B.5cm,6cm,11cmC.4cm,5cm,6cm D.4cm,10cm,4cm【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、3+4=7<9,不能组成三角形,故此选项错误;B、5+6=11,不能组成三角形,故此选项错误;C、4+5>6,能够组成三角形,故此选项正确;D、4+4<10,不能组成三角形,故此选项错误.故选:C.3.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°【考点】轴对称的性质;三角形内角和定理.【分析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.【解答】解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选:B.4.(3分)下列方法中,不能判定三角形全等的是()A.SSA B.SSS C.ASA D.SAS【考点】全等三角形的判定.【分析】根据全等三角形的判定定理可直接得到答案.【解答】解:SSA不能判定三角形全等,故选:A.5.(3分)正六边形的每个内角都是()A.60°B.80°C.100°D.120°【考点】多边形内角与外角.【分析】先利用多边形的内角和公式(n﹣2)•180°求出正六边形的内角和,然后除以6即可;或:先利用多边形的外角和除以正多边形的边数,求出每一个外角的度数,再根据相邻的内角与外角是邻补角列式计算.【解答】解:(6﹣2)•180°=720°,所以,正六边形的每个内角都是720°÷6=120°,或:360°÷6=60°,180°﹣60°=120°.故选:D.6.(3分)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…,按此规律作下去,若∠A1B1O=α,则∠A2021B2021O 等于()A.度B.度C.度D.度【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.【解答】解:∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=∠A2B2O=α,∠A4B4O=α,∴∠A n B n O=α,∴∠A2021B2021O=,故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)点P(2,3)关于x轴的对称点的坐标为(2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)得出即可.【解答】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).8.(3分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件是∠A=∠C,∠B=∠D,OD=OB,AB∥CD.【考点】全等三角形的判定.【分析】本题要判定△OAB≌△OCD,已知OA=OC,∠AOB=∠COD,具备了一组边对应相等和一组角对应相等,故添加∠A=∠C,∠B=∠D,OD=OB,AB∥CD后可分别根据ASA、AAS、SAS、AAS判定△OAB≌△OCD.【解答】解:∵OA=OC,∠A=∠C,∠AOB=∠COD,∴△OAB≌△OCD(ASA).∵OA=OC,∠B=∠D,∠AOB=∠COD,∴△OAB≌△OCD(AAS).∵OA=OC,OD=OB,∠AOB=∠COD,∴△OAB≌△OCD(SAS).∵AB∥CD,∴∠A=∠C,∠B=∠D(两直线平行,内错角相等),∵OA=OC,∴△OAB≌△OCD(AAS).故填∠A=∠C,∠B=∠D,OD=OB,AB∥CD.9.(3分)已知等腰三角形的两个内角之和为100°,顶角度数为20°或80°.【考点】等腰三角形的性质.【分析】题中没有指明这两个角是都是底角还是一个底角一个顶角,故应该分两种情况进行分析:100°是顶角和一底角的和;100°是两底角的和.【解答】解:①当100°是顶角和一底角的和,则另一个底角=180°﹣100°=80°,所以顶角=100°﹣80°=20°;②当100°是两底角的和,则顶角=180°﹣100°=80°;综上所述,此等腰三角形的顶角为:20°或80°.故答案为:20°或80°10.(3分)如图,在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=25cm,则△DEB的周长为25cm.【考点】角平分线的性质;等腰直角三角形.【分析】证明△ACD≌△ECD,根据全等三角形的性质得到AC=EC,AD=ED,根据等腰直角三角形的性质得到BE=DE,根据三角形的周长公式计算,得到答案.【解答】解:∵CD平分∠ACB,∴∠ACD=∠ECD,在△ACD和△ECD中,,∴△ACD≌△ECD(AAS),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°,∴BE=DE,∴△DEB的周长=DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=25cm,故答案为:25.11.(3分)如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有8个.【考点】等腰三角形的判定.【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:如图,AB是腰长时,红色的4个点可以作为点C,AB是底边时,黑色的4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故答案为8.12.(3分)已知:P(0,4),PQ=5,点Q在坐标轴上,则点Q的坐标为(3,0),(﹣3,0),(0,9),(0,﹣1).【考点】点的坐标.【分析】分点P在x轴和y轴两种情况讨论解答即可.【解答】解:如图,当点P在x轴上时,点Q的坐标为(﹣3,0)或(3,0);当点P在y轴上时,点Q的坐标为(0,9)或(0,﹣1);故答案为:(3,0),(﹣3,0),(0,9),(0,﹣1).三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【考点】多边形内角与外角.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.14.(6分)已知a,b,c是等腰△ABC的三条边,若a,b满足|a﹣7|+(b﹣1)2=0,求△ABC的周长.【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.【分析】根据非负数的性质列式求出a、b的值,再根据等腰三角形的性质以及三角形的任意两边之和大于第三边,两边之差小于第三边求出c,再计算△ABC的周长即可求解.【解答】解:由题意知:a﹣7=0,b﹣1=0,解得a=7,b=1,∵a,b,c是等腰△ABC的三条边,∴c=7,∴△ABC的周长=7+7+1=15.15.(6分)已知:如图,在△ABC中,∠C>∠B,AD,AE分别是△ABC的高和角平分线.若∠B=30°,∠C=50°,求∠DAE的度数.【考点】三角形内角和定理.【分析】在直角△ACD中,求得∠CAD,然后利用角平分线的定义求得∠CAE的度数,根据∠DAE=∠CAE﹣∠CAD可以求解.【解答】解:∵AD是高线,∴在直角△ACD中,∠CAD=90°﹣∠C=90°﹣50°=40°;∵在△ABC中,∠CAB=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∵AE是角的平分线,∴∠CAE=∠CAB=50°,∴∠DAE=∠CAE﹣∠CAD=50°﹣40°=10°.16.(6分)如图,在2×2的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中△ABC是一个格点三角形.请在每一个图中,作出一个与△ABC 成轴对称的格点三角形.(画两个,不能重复)【考点】作图﹣轴对称变换.【分析】根据轴对称图形的概念作图即可.【解答】解:如图所示,△BDE和△AMN即为所求(答案不唯一).17.(6分)如图,M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM 交BN于点P.求证:△ABM≌△BCN.【考点】全等三角形的判定.【分析】利用正五边形的性质得出AB=BC,∠ABM=∠C,再利用全等三角形的判定即可证明△ABM≌△BCN.【解答】证明:∵五边形ABCDE是正五边形,∴AB=BC,∠ABM=∠C,∴在△ABM和△BCN中,∴△ABM≌△BCN(SAS).四、解答题(本大题共3个小题,每小题8分,共24分)18.(8分)如图,△ABE为等腰直角三角形,∠ABE=90°,BC=BD.(1)求证:△ABC≌△EBD;(2)求证:AF⊥DE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据SAS即可证明;(2)利用全等三角形的性质即可解决问题.【解答】证明:(1)∵△ABE是等腰直角三角形,∴AB=BE,∵∠ABE=90°,∴∠EBD=90°,∴∠ABE=∠EBD,在△ABC与△BDE中,,∴△ABC≌△EBD(SAS).证明:(2)∵△ABC≌△EBD,∴∠BAC=∠BED,∵∠BED+∠D=90°,∴∠BAC+∠D=90°,∴∠AFD=90°,∴∠AFE=90°,∴AF⊥DE.19.(8分)如图,AD是△ABC的角平分线,DE⊥AC于点E,BF∥AC,交ED的延长线于点F.(1)若AD恰好平分BC.求证:DE=DF;(2)若BC恰好平分∠ABF.求证:DE=DF.【考点】平行线的性质;全等三角形的判定与性质;角平分线的性质.【分析】(1)由已知条件可得DB=DC,再由平行线的性质得∠CED=∠BFD=90°,从而有∠ACB=∠FBC,则可证得△CDE≌△BDF,即有DE=DF;(2)证明△ABC为等腰三角形,根据等腰三角形的性质得到DB=DC,根据全等三角形的判定定理和性质定理即可得到结论.【解答】证明:(1)∵AD恰好平分BC,∴DB=DC,∵DE⊥AC,BF∥AC,∴∠CED=∠BFD=90°,∠ACB=∠FBC,在△CDE和△BDF中,,∴△CDE≌△BDF(AAS),∴DE=DF;(2)∵BC平分∠ABF,∴∠ABC=∠FBC,∵BF∥AC,∴∠ACB=∠FBC,∴∠ABC=∠ACB,∴AB=AC,∵AD是△ABC的角平分线,∴DB=DC,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴DE=DF.20.(8分)如图,△ABC的角平分线AD,BE相交于点P,已知:∠APB=135°.(1)求证:△ABC是直角三角形;(2)过点P作PH⊥AD交AC于点H,PH与BC的延长线相交于点F.求证:PA=PF.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)根据直角三角形的判定解答即可;(2)根据ASA证明△ABP与△FBP全等,进而利用全等三角形的性质解答即可.【解答】证明:(1)∵∠APB=135°,∴∠PAB+∠PBA=45°,∵AD平分∠BAC,BE平分∠ABC,∴∠PAB=∠PAC=∠BAC,∠ABP=∠PBC=∠ABC,∴∠BAC+∠ABC=2(∠PAB+∠PBA)=90°,∴△ABC为直角三角形;(2)∵∠APB=135°,∴∠BPD=45°,∵PH⊥AD,∴∠APH=∠FPD=90°,∴∠BPF=135°,,∴△ABP≌△FBP(ASA),∴PA=PF.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)在数学活动课上,小华用一块等腰直角三角板AEB进行探究:其中AE=BE,∠AEB=90°.【发现】如图1,小华把△AEB的直角顶点E放置在直线m上,使点A、B分别位于直线m的同侧,作AC⊥m,BD⊥m,分别交直线m于点C、D,这时,小华通过观察发现△ACE与△EDB全等,请说明理由;【探究】小华借助发现中的结论,发现当点A、B位于直线的同侧时,线段AC、CD和BD之间满足一个等量关系,请你写出这个等量关系式,并说明理由;【拓展】如图2,小华把三角板的直角顶点E放在直线m上旋转,使点A、B分别位于直线m的两侧,作AC⊥m,BD⊥m,分别交直线m于点C、D,请直接写出AC、CD和BD这三条线段之间的数量关系:AC=BD+CD.【考点】几何变换综合题.【分析】【发现】根据同角的余角相等,可证∠CAE=∠BED,通过AAS即可证明△ACE ≌△EDB;【探究】由△ACE≌△EDB得,AC=ED,CE=BD,即可得出CD=AC+BD;【拓展】同理可证△AEC≌△BED,则AC=ED,EC=BD,从而AC=BD+CD.【解答】解:【发现】∵∠ACE=∠BDC=∠AEB=90°,∴∠CAE+∠AEC=90°,∠CEA+∠BED=90°,∴∠CAE=∠BED,,∴△ACE≌△EDB(AAS);【探究】CD=AC+BD,理由如下:∵△ACE≌△EDB,∴AC=ED,CE=BD,∵CD=CE+DE,∴CD=AC+BD;【拓展】AC=BD+CD,理由如下:∵∠AEB=∠ACE=∠BDE=90°,∴∠EAC=90°﹣∠AEC,∠AEC=90°﹣∠BED,∴∠EAC=∠BED,又∵AE=BE,∴△AEC≌△BED(AAS),∴AC=ED,EC=BD,∴AC=BD+CD;故答案为:AC=BD+CD.22.(9分)如图,在平面直角坐标系中,已知点A(1,3),B(2,0),C为x轴上点B右侧的动点,以AC为腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直线DB交y 轴于点P.(1)求证:AO=AB;(2)求证:△AOC≌△ABD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?【考点】三角形综合题.【分析】(1)先根据非负数的性质求出a、b的值,作AE⊥OB于点E,由SAS定理得出△AEO≌△AEB,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB,得出∠OAC=∠BAD,再由SAS定理即可得出△AEO≌△AEB;(3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP =180°﹣∠ABO﹣∠ABD=180°﹣2α为定值,再由OB=2,∠POB=90°可知OP的长度不变,故可得出结论.【解答】(1)证明:作AE⊥OB于点E,∵A(1,3),B(2,0),∴OE=1,BE=2﹣1=1,∴OE=EB,在△AEO与△AEB中,,∴△AEO≌△AEB(SAS),∴AO=AB;(2)证明:∵∠CAD=∠OAB,∴∠CAD+∠BAC=∠OAB+∠BAC,即∠OAC=∠BAD,在△AOC与△ABD中,,∴△AOC≌△ABD(SAS);(3)解:点P在y轴上的位置不发生改变.理由:设∠AOB=∠ABO=α(定值),∵由(2)知,△AOC≌△ABD,∴∠ABD=∠AOB=α,∵OB=2,∠OBP=180°﹣∠ABO﹣∠ABD=180°﹣2α为定值,∠POB=90°,∴OP长度不变,∴点P在y轴上的位置不发生改变.六、解答题(本大题共12分)23.(12分)【概念学习】如图1,2,已知△ABC,点P为其内部一点,连接PA、PB、PC,在△PAB、△PBC、△PAC中,如果存在一个三角形,其内角与△ABC的三个内角分别相等,那么就称点P为△ABC的等角点.【理解应用】(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真命题”;反之,则写“假命题”.①等边三角形存在等角点:假命题;②等腰直角三角形存在等角点:假命题;③内角分别为30°、60°、90°的三角形存在等角点:真命题;④任意的三角形都存在等角点:假命题;【深入理解】(2)如图1,点P是锐角△ABC的等角点,且△PBC与△ABC的三个内角分别相等,已知:若∠BAC=50°,∠PBA=∠PCA=10°,求∠ABC的度数;(3)如图2,点P是锐角△ABC的等角点,若∠BAC=∠PCB,探究∠BPC、∠ACB、∠ABP之间的数量关系,并说明理由.【考点】三角形综合题.【分析】(1)根据点P为△ABC的等角点的定义判断即可;(2)分两种情形:当∠BAC=∠PBC=50°时,∠ABC=60°.当∠BAC=∠PCB=50°时,分别求解即可;(3)结论:∠BPC=∠ABP+∠ACB.利用三角形内角和定理,解决问题即可.【解答】解:(1)①等边三角形存在等角点,是假命题;②等腰直角三角形存在等角点,是假命题;③内角分别为30°、60°、90°的三角形存在等角点,是真命题;④任意的三角形都存在等角点,是假命题.故答案为:假命题,假命题,真命题,假命题;(2)当∠BAC=∠PBC=50°时,∠ABC=60°.当∠BAC=∠PCB=50°时,∠ACB=∠PCA+∠PCB=10°+50°=60°,∴∠ABC=180°﹣∠BAC﹣∠ACB=180°﹣50°﹣60°=70°,综上所述,满足条件的∠ABC=60°或70°;(3)结论:∠BPC=∠ABP+∠ACB.理由:∵∠BAC=∠BCP,∠BPC=∠ABP+∠BAC+∠ACB﹣∠PCB=∠ABP+∠BAC+∠ACB﹣∠BAC=∠ABP+∠ACB,∴∠BPC=∠ABP+∠ACB.。

八年级上学期数学期中试卷(解析版)

八年级上学期数学期中试卷(解析版)

河北省邯郸市邯山区扬帆初中学校2022--2023学年八年级上学期数学期中试卷一、选择题(本题有14个小题,每题4分,共56分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列交通指示标志中,不是轴对称图形的是()A. B. C. D.【答案】D 【解析】【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,逐项分析判断即可求解.【详解】解:A .是轴对称图形,故该选项不符合题意;B .是轴对称图形,故该选项不符合题意;C .是轴对称图形,故该选项不符合题意;D .不是轴对称图形,故该选项符合题意;故选D【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的定义是解题的关键.2.下列运算中,结果正确的是()A.426a a aB.246()a a C.246a a a D.44(2)8a a 【答案】C 【解析】【分析】直接利用同底数幂的乘法法则,幂的乘方法则,积的乘方法则分别计算进行判断即可.【详解】解:A.42a a 不能合并,故此项错误,不合题意;B .248()a a ,故此项错误,不合题意;C.246a a a 故此项正确,符合题意;D.44(2)16a a 故此项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法运算,幂的乘方运算,积的乘方运算,解题的关键是掌握相关的运算法则.3.如图,在A B C 中,90C ,30B ,6A B .则A C长度是()A.3B.3.5C.2.5D.2【答案】A 【解析】【分析】根据含30度角的直角三角形的性质即可求解.【详解】解:∵在A B C 中,90C ,30B ,6A B .∴132A C A B.故选:A .【点睛】本题考查了含30度角的直角三角形的性质,掌握直角三角形中30度角所对的直角边等于斜边的一半是解题的关键.4.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是()A.AM =BMB.AP =BNC.∠MAP =∠MBPD.∠ANM =∠BNM【答案】B 【解析】【分析】根据直线MN 是四边形AMBN 的对称轴,得到点A 与点B 对应,根据轴对称的性质即可得到结论.【详解】解:∵直线MN 是四边形AMBN 的对称轴,∴点A 与点B 对应,∴AM =BM ,AN =BN ,∠ANM =∠BNM ,∵点P 是直线MN 上的点,∴∠MAP =∠MBP ,∴A ,C ,D 正确,而B 错误,故选:B .【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.5已知102,103x y ,则3210x y 等于()A.36B.72C.108D.24【答案】B 【解析】【分析】利用同底数幂的乘法法则及幂的乘方的法则对所求的式子进行整理,再代入相应的值进行运算.【详解】解:323210(10)(10)x yx y ,当102,103xy时,原式3223 8972 ;故选:B .【点睛】本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是熟练掌握相关的运算法则.6.已知等腰三角形的周长为16,一边长为4,则此等腰三角形的底边长是()A.4B.6C.4或10D.4或6【答案】A 【解析】【分析】分4为腰和底两种情况进行分类讨论即可.【详解】解:当4为等腰三角形的腰时,则底边为16448 ,此时三边分别为4、4、8,不满足三角形的三边关系,则不能构成三角形;当4为等腰三角形的底边时,则腰为(164)26 ,此时三边分别为6、6、4,满足三角形的三边关系,能构成三角形;故选:A .【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系,解题的关键是在题目没有明确已知边长的情况时,需进行分类讨论.7.下列各式,4n x 可以写成()A.4n x xB.3n n x xC.22n x D.4nx x 【答案】C 【解析】【分析】根据同底数幂的乘法以及幂的乘方解决此题.详解】解:A .44n n x x x ,那么A 不符合题意.B .34n n n x x x ,那么B 不符合题意.C .根据幂的乘方,224()n n x x ,那么C 符合题意.D .根据同底数幂的乘法,44n n x x x ,那么D 不符合题意.故选:C .【点睛】本题主要考查同底数幂的乘法、幂的乘方,熟练掌握同底数幂的乘法、幂的乘方解决此题.8.如图,在锐角A B C 中,边AB ,AC 的垂直平分线交于点P .连结BP ,CP .若100B P C ,则A ()A.40B.50C.60D.80【答案】B 【解析】【分析】连结AP 并延长到D ,先根据线段垂直平分线的性质可得P A P B P C ,从而利用等腰三角形的性质可得,A B P B A P C A P A C P,然后利用三角形的外角性质可得2,2B P D B A P C P D C A P ,最后根据已知可得100B P D C P D ,从而可得22100B A PC A P ,进行计算即可解答.【详解】解:连结A P 并延长到D ,∵边,A B A C 的垂直平分线交于点P ,∴P A P B P C ,∴,A B P B A P C A P A C P ,∴2,2B P D B A P A B P B A P C P D C A P A C P C A P ,∵100B P C ,∴100B P D C P D ,∴22100B A P C A P ,∴50B A P C A P ,∴50B A C ,故选:B .【点睛】本题考查了线段垂直平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.若计算22(321)(3)4x a x x x 的结果中不含有2x 项,则a 的值为()A.23B.0C.2D.32【答案】A 【解析】【分析】利用单项式乘多项式的法则进行求解,再结合不含2x 项,则其2x 项的系数为0,从而求解.【详解】解:22(321)(3)4x a x x x3229634x a x x x 329(64)3x a x x ,结果中不含有2x 项,640a ,解得23a ,故选:A .【点睛】本题主要考查了单项式乘多项式,合并同类项,解题的关机是熟练掌握相应的运算法则.10.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D 【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】解:Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选:D .【点睛】本题主要考查了尺规作图,正确掌握基本作图方法是解题关键.11.若k 为正整数,则34()k 的意义为()A.4个3k 相加B.3个4k 相加C.4个3k 相乘D.7个k 相乘【答案】C【解析】【分析】根据幂的乘方的含义即可解答.【详解】解:根据幂的乘方的含义,可得34k表示4个3k相乘,()故选:C.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方的含义是解题的关键.12.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB 中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A.利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B.过线段外一点作已知线段垂线,不能保证也平分此条线段,不符合题意;C.利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D.利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.,宽为a b 的长方形,需要B类卡13.用如图所示的正方形和长方形卡片若干张,拼成一个长为32a b片()张.A.3B.4C.5D.6【答案】C 【解析】【分析】根据长方形的面积公式22(32)()352S a b a b a ab b 即可得出结果.【详解】解:∵长方形长为32a b ,宽为a b ∴长方形的面积:22(32)()352S a b a b a ab b∴需要B 内卡片5张.故选C .【点睛】本题考查多项式的乘法,灵活运用多项式乘法法则和数形结合思想是解题的关键.14.如图,等边A B C 的边长为8,A D 是B C 边上的中线,F 是A D 边上的动点,E 是A C 边上一点,若4A E ,则当E F C F 取得最小值时,E C F 的度数为()A.22.5B.30C.45D.15【答案】B 【解析】【分析】根据对称性和等边三角形的性质,作B E A C 于点E ,交A D 于点F ,此时B F C F ,E F C F最小,进而求解.【详解】解:如图:过点B 作B EA C于点E ,交A D 于点F ,连接C F ,A B C 是等边三角形,边长为8,若4A E ,4A E E C ,A F F C ,F A C F C A ,A D 是等边ABC 的B C 边上的中线,30B A D C A D ,30E C F .故选:B .【点睛】本题考查了轴对称 最短路线问题、等边三角形的性质,解决本题的关键是准确找到点E 和F 的位置.二、填空题(本大题共3个小题,每空3分,共12分)15.平面直角坐标系中,与点 4,8 关于y 轴对称的点的坐标是_____.【答案】 4,8 【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点 4,8 关于y 轴对称的点的坐标是 4,8 .故答案为:4,8 【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16.若350x y ,求28x y _____.【答案】32【解析】【分析】由350xy 得到35x y ,再代入 3332822222yx y x x y x y 中即可求解答案.【详解】解:∵350x y ,∴35x y ,∴ 33352822222232yxyxx yx y ,故答案为:32【点睛】此题主要考查了幂的乘方的逆运算、同底数幂的乘法等知识,熟练掌握运算法则是解题的关键.17.如果一条线段将一个三角形分割成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”;如果两条线段将一个三角形分割成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.(1)如图,在A B C 中,A B A C ,点D 在A C 边上,且A D B D B C ,则A _____度;(2)在A B C 中,33B A D ,和D E 是A B C 的“好好线”,点D 在B C 边上,点E 在A C 边上,且A D B D ,D E C E ,则C 的度数为____________.【答案】①.36②.22 或38 .【解析】【分析】(1)利用等边对等角得到三对角相等,设A A B D x ,表示出B D C 与C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出A 的度数;(2)设C x ,①当A D A E 时,利用三角形外角的性质得到23333x x ,解得22x ,②当A D D E 时,利用三角形内角和定理得到23803313x x ,解得38x .【详解】解:(1)A B A C ,A B C C ,B D BC A D,A AB D ,C BD C ,设A A B D x ,则2B D C x ,1802x C,即18022xx ,解得36x ,则36A ,故答案为:36;(2)设C x ,①当A D A E 时,如图:23333x x ,22x ;②当A D D E 时,如图:23333180x x ,38x ,所以C 的度数为22 或38 ;故答案为:22 或38 .【点睛】此题考查了等腰三角形的性质,三角形外角的性质以及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.三、解答题(本大题共3个小题,共32分.解答应写出文字说明、证明过程或演算步骤)18.计算:(1)已知2528322n n ,求n 的值;(2)已知n 是正整数,且32n x ,求3223(3)(2)n n x x 的值.【答案】(1)3;(2)4.【解析】【分析】(1)由3535812528322(2)(2)22222n n n n n n n ,得到一元一次方程8125n ,即可求解;(2)把3223(3)(2)n n x x 变形为2323(3)8()n n x x ,再把32n x 代入计算即可.【小问1详解】解:35358125)(2)2832222222(2n n n n n n n ,8125n ,解得3n .【小问2详解】解:32233223(3)(2)()8)3(n n n n x x x x ,当32n x 时,原式22(32)82 36324 .【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解题的关键.19.如图,某市有一块长为(3)a b 米,宽为(2)a b 米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)则绿化的面积是多少平方米?(用a ,b 的代数式表示)(2)若a ,b 满足2(1)(3)x x x ax b 时,求该绿化面积.【答案】(1) 253a ab 平方米(2)116平方米【解析】【分析】(1)用长方形的面积减去正方形的面积即可;(2)把等式的左边化简,求出a 和b 的值,代入(1)中结果计算.【小问1详解】解:长方形面积:(3)(2)a b a b ,正方形面积:()()a b a b ,∴绿化面积:(3)(2)()()a b a b a b a b22226322a ab ab b a ab b 22226322a ab ab b a ab b 253a ab答:绿化的面积是 253a ab 平方米.【小问2详解】解:∵2(1)(3)x x x ax b∴2243x x x a x b ,∴4,3a b 时,∴225354343a ab 8036116答:绿化的面积是116平方米,【点睛】本题考查了整式的混合运算,正确列出算式是解答(1)的关键,根据多项式乘以多项式求出a 和b 的值是解(2)的关键.20.如图,在A B C 中,B C ,过B C 的中点D 作D E A B ,D F A C ,垂足分别为点E 、F .(1)求证:D E D F ;(2)若55B D E ,求B A C 的度数.(3)若30B ,2A E ,则A B .【答案】(1)见解析(2)110(3)8【解析】【分析】(1)根据D E A B ,D F A C ,可得90B E D C F D ,由于B C ,D 是B C 的中点,根据全等三角形的判定和性质即可得出结论.(2)根据三角形的内角和定理求出35B ,根据三角形的内角和定理即可求解.(3)由等腰三角形的性质得到90A D B ,30B ,得到2A B A D ,再求得30A D E A D B B D E ,得到30A D E A D B B D E ,即可得到24A D A E ,即可得到答案.【小问1详解】∵D E A B ,D F A C ,∴90B E D C F D ,∵D 是B C 的中点,∴B D C D ,在B E D 与C F D ♀中,B E DC F DB C B D C D,∴B E D C F D A A S ≌(),∴D E D F ;【小问2详解】∵90B E D ,55,B D E ∴18035C B ED B DE ,∴=35B C ,∴1803535110B A C .【小问3详解】连接A D,∵B C ,∴A B C 是等腰三角形,∵D 是B C 的中点,∴A D B C ,∴90A D B ,∵30B ,∴2A B A D ,∵D E A B ,∴90B D E A E D ,∵90B E D ,55,B D E ∴18060B D E B E D B ,∴30A D E A D B B D E ,∴24A D A E ,∴28A B A D ,故答案为:8【点睛】此题主要考查了等腰三角形的判定和性质、全等三角形的判定与性质、直角三角形的性质等知识点的理解和掌握.。

八年级(上)期中数学试卷付答案解析

八年级(上)期中数学试卷付答案解析

八年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.2.(﹣xy3)2的计算结果是()A.xy5B.x2y6C.﹣x2y6D.x2y53.下列计算错误的是()A.(a2)3•(﹣a3)2=a12B.(﹣ab2)2•(﹣a2b3)=a4b7C.(2xy n)•(﹣3x n y)2=18x2n+1y n+2D.(﹣xy2)(﹣yz2)(﹣zx2)=﹣x3y3z34.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°5.如图,∠A=60°,∠B=80°,则∠1+∠2=()A.100°B.120°C.140°D.150°6.如图,AB∥CD,AD∥BC,AC与BD相交于点O,则图中全等三角形共有()A.2对B.4对C.6对D.8对7.若2m=3,2n=5,则2m+2n=()A.15 B.30 C.45 D.758.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5° C.30°D.45°10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题2分,共16分)11.在△ABC中,∠A=∠B=2∠C,则∠C等于度.12.三角形的两边长分别为4和5,那么第三边a的取值范围是.13.(﹣)•x2y2=.14.等腰三角形的两边分别为5cm和8cm,则它的周长为.15.如图,D、E分别是△ABC的边AB、AC上的点,把△ADE沿DE折叠,使点A落在四边形BCED 内部A′处,已知∠A=40°,则∠1+∠2=度.16.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是.17.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.18.在Rt△ABC中,∠A=30°,∠C=90°,AB+BC=12cm,AB=.三、(第19题8分,第20题8分,共计16分)19.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.20.如图,已知△ABC,用尺规作图作出BC边上的高AD(保留作图痕迹,不写作法),若∠B=∠BAC=30°,求∠CAD的度数.四、(第21题6分,第22题8分,共计14分)21.计算:(2x)2+x(x﹣1)+(1+x)(6﹣5x)22.如图,在△ABC中,AB=AC,∠C=30°,AD⊥AB交BC于D,AD=3cm,求BC的长.五、(8分)23.如图,在△ABC中,已知∠ABC和△ABC的外角∠ACG的平分线交于点F,过点F作FD∥BC,FD分别交AB、AC于点D、E,求证:DE=BD﹣CE.六、(8分)24.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.(1)如图1,∠A=90°,则∠BOC=;(2)如图2,∠A=80°,求∠BOC的度数;(3)从上述计算中,你能发现∠BOC与∠A的关系吗?请直接写出∠B0C与∠A的关系.七、(8分)25.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.八、(10分)26.如图,△ABC为等边三角形,P是直线AB左侧一点,连接PA、PB、PC,PC与AB相交于点D,∠BPC=60°.(1)求证:∠PBA=∠PCA;(2)求证:PC=PA+PB.参考答案与试题解析一、选择题(每小题2分,共20分)1.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(﹣xy3)2的计算结果是()A.xy5B.x2y6C.﹣x2y6D.x2y5【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方的运算法则计算即可.【解答】解:原式=x2y6.故选B.【点评】本题考查的是幂的乘方和积的乘方的简单应用.3.下列计算错误的是()A.(a2)3•(﹣a3)2=a12B.(﹣ab2)2•(﹣a2b3)=a4b7C.(2xy n)•(﹣3x n y)2=18x2n+1y n+2D.(﹣xy2)(﹣yz2)(﹣zx2)=﹣x3y3z3【考点】幂的乘方与积的乘方;同底数幂的除法.【专题】计算题.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3•(﹣a3)2=a12,故本选项正确;B、(﹣ab2)2•(﹣a2b3)=﹣a4b7,故本选项错误;C、(2xy n)•(﹣3x n y)2=18x2n+1y n+2,故本选项正确;D、(﹣xy2)(﹣yz2)(﹣zx2)=﹣x3y3z3,故本选项正确.故选B.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键,特别注意符号的变化.4.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【专题】探究型.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.5.如图,∠A=60°,∠B=80°,则∠1+∠2=()A.100°B.120°C.140°D.150°【考点】三角形内角和定理.【分析】在四边形ABCD中,根据四边形的内角和定理和邻补角的定义就可以得到∠1+∠2的度数.【解答】解:∵∠A=60°,∠B=80°,∴∠ADC+∠BCD=220°,∴∠1+∠2=360°﹣220°=140°.故选C.【点评】本题主要考查了四边形的内角和定理,以及邻补角的定义.四边形的内角和等于360°.6.如图,AB∥CD,AD∥BC,AC与BD相交于点O,则图中全等三角形共有()A.2对B.4对C.6对D.8对【考点】全等三角形的判定.【分析】根据平行线的性质得出∠ADB=∠CBD,∠DAO=∠BCO,∠ABD=∠CDB,∠BAO=∠DCO,根据ASA即可推出△ADB≌△CBD,△ABC≌△CDA,根据全等三角形的性质得出AD=BC,AB=CD,根据ASA推出△AOD≌△COB,△AOB≌△COD即可.【解答】解:图中全等三角形有4对,是△ADB≌△CBD,△ABC≌△CDA,△AOD≌△COB,△AOB ≌△COD,理由是:∵AB∥CD,AD∥BC,∴∠ADB=∠CBD,∠DAO=∠BCO,∠ABD=∠CDB,∠BAO=∠DCO,在△ADB和△CBD中,,∴△ADB≌△CBD(ASA),同理△ABC≌△CDA,∴AD=BC,AB=DC,在△AOD和△COB中,,∴△AOD≌△COB(ASA),同理△AOB≌△COD.故选B.【点评】本题考查了平行线的性质,全等三角形的性质和判定的应用,能灵活运用全等三角形的判定和性质定理进行推理是解此题的关键.7.若2m=3,2n=5,则2m+2n=()A.15 B.30 C.45 D.75【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式=(2m)(2n)2=3×25=75.故选D.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.8.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°【考点】多边形内角与外角;三角形内角和定理.【分析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.【解答】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.【点评】本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5° C.30°D.45°【考点】轴对称-最短路线问题;等边三角形的性质.【分析】过E作EM∥BC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.【解答】解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.【点评】本题考查了轴对称﹣最短路线问题,等边三角形的性质,等腰三角形的性质,平行线分线段成比例定理等知识点的应用.10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.【解答】解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每小题2分,共16分)11.在△ABC中,∠A=∠B=2∠C,则∠C等于36度.【考点】三角形内角和定理;解一元一次方程.【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠A=∠B=2∠C代入得出5∠C=180°,求出即可.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠B=2∠C,∴5∠C=180°,∴∠C=36°,故答案为:36.【点评】本题考查了解一元一次方程,三角形内角和定理的应用,能得出关于∠C的方程是解此题的关键.12.三角形的两边长分别为4和5,那么第三边a的取值范围是1<a<9.【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边a的取值范围.【解答】解:∵三角形的两边长分别为4和5,第三边的长为a,∴根据三角形的三边关系,得:5﹣4<a<5+4,即:1<a<9.故答案为:1<a<9.【点评】此题考查了三角形的三边关系.此题比较简单,注意掌握已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和.13.(﹣)•x2y2=x3y3z.【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:原式=﹣x1+2y1+2z=x3y3z,故答案为:x3y3z.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.14.等腰三角形的两边分别为5cm和8cm,则它的周长为18cm或21cm.【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为5cm和8cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是5cm,底边是8cm时,能构成三角形,则其周长=5+5+8=18cm;②当底边是5cm,腰长是8cm时,能构成三角形,则其周长=5+8+8=21cm.故答案为:18cm或21cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.应向学生特别强调.15.如图,D、E分别是△ABC的边AB、AC上的点,把△ADE沿DE折叠,使点A落在四边形BCED 内部A′处,已知∠A=40°,则∠1+∠2=80°度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据平角定义和折叠的性质,得∠1+∠2=360°﹣2(∠ADE+∠AED),再利用三角形的内角和定理进行转换,得∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.【解答】解:根据平角的定义和折叠的性质,得∠1+∠2=360°﹣2(∠ADE+∠AED),又∵∠ADE+∠AED=180°﹣∠A,∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A=80°.故答案为:80°.【点评】本题主要考查了三角形的内角和定理,平角的定义、折叠的性质,综合运用各定理是解答此题的关键.16.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是360°.【考点】多边形内角与外角;三角形的外角性质.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠3、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.17.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180度.【考点】角的计算.【专题】计算题.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.【点评】本题考查了角的计算、三角板的度数,注意分清角之间的关系.18.在Rt△ABC中,∠A=30°,∠C=90°,AB+BC=12cm,AB=8cm.【考点】含30度角的直角三角形.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得BC=AB,然后代入求解即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB,∵BC+AB=12cm,∴AB+AB=12,解得AB=8cm.故答案为:8cm.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.三、(第19题8分,第20题8分,共计16分)19.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.【考点】作图-轴对称变换.【分析】利用关于y轴对称点的性质进而得出各点坐标,进而画出图形即可.【解答】解:如图所示:△A1B1C1各点的坐标分别为:A1(3,2),B1(4,﹣3),C1(1,﹣1).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.20.如图,已知△ABC,用尺规作图作出BC边上的高AD(保留作图痕迹,不写作法),若∠B=∠BAC=30°,求∠CAD的度数.【考点】作图—基本作图.【分析】先过点A作BC的垂线,垂足为D,则AD为△ABC的高线,再依据三角形外角的性质求得∠ACD=60°,从而可求得∠CAD=30°.【解答】解:如图所示:∵∠ACD=∠B+∠BAC,∴∠ACD=30°+30°=60°.∵AD是△ABC的高线,∴∠BDA=90°.∴∠ACD=90°﹣60°=30°.【点评】本题主要考查的是尺规作图,掌握五种基本作图是解题的关键.四、(第21题6分,第22题8分,共计14分)21.计算:(2x)2+x(x﹣1)+(1+x)(6﹣5x)【考点】整式的混合运算.【分析】先算乘法,再合并同类项,即可得出答案.【解答】解:(2x)2+x(x﹣1)+(1+x)(6﹣5x)=4x2+x2﹣x+6﹣5x+6x﹣5x2=6.【点评】本题考查了整式的混合运算的应用,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.22.如图,在△ABC中,AB=AC,∠C=30°,AD⊥AB交BC于D,AD=3cm,求BC的长.【考点】勾股定理;等腰三角形的性质;含30度角的直角三角形.【分析】由等腰三角形的性质得出∠B=∠C=30°,∠BAD=90°;易证得∠DAC=∠C=30°,即CD=AD=3cm.Rt△ABD中,根据30°角所对直角边等于斜边的一半,可求得BD=2AD=6cm;由此可求得BC的长.【解答】解:∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×3=6(cm),∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=3cm∴BC=BD+DC=6+3=9(cm).【点评】本题考查了等腰三角形的性质、三角形内角和定理、含30°角的直角三角形的性质;熟练掌握等腰三角形的性质,求出BD和CD的长度是解决问题的关键.五、(8分)23.如图,在△ABC中,已知∠ABC和△ABC的外角∠ACG的平分线交于点F,过点F作FD∥BC,FD分别交AB、AC于点D、E,求证:DE=BD﹣CE.【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】证明BD=FD,CE=FE,即可解决问题.【解答】证明:∵∠ABC的平分线和外角∠ACF的平分线交于点F,∴∠DBF=∠CBF,∠ECF=∠GCF;∵FD∥BC,∴∠DFB=∠CBF,∠EFC=∠GCF,∴∠DBF=∠DFB,∠ECF=∠EFC,∴BD=FD,EC=EF;∴DE=BD﹣CE【点评】该题主要考查了等腰三角形的判定、平行线的性质等几何知识点的应用问题;牢固掌握等腰三角形的判定、平行线的性质等几何知识点是灵活运用、解题的基础和关键.六、(8分)24.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O.(1)如图1,∠A=90°,则∠BOC=135°;(2)如图2,∠A=80°,求∠BOC的度数;(3)从上述计算中,你能发现∠BOC与∠A的关系吗?请直接写出∠B0C与∠A的关系.【考点】三角形内角和定理.【分析】(1)求出∠ABC+∠ACB的度数,根据平分线的定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB的度数,根据三角形内角和定理求出即可;(2)与(1)同理可得结果;(3)由(1)结论可得,(2)同理可得,可得结论.【解答】解:(1)∵∠A=90°,∴∠ABC+∠ACB=180°﹣∠A=90°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=45°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°,故答案为:135;(2)∵在△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵∠ABC和∠ACB的平分线交于O点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×100°=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°;(3)∠BOC=90°+∠A,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,即:∠BOC=90°+∠A.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.七、(8分)25.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据∠1=∠2求出∠EAC=∠DAB,根据ASA推出△EAC≌△DAB即可.【解答】证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(ASA),∴AE=AD.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.八、(10分)26.如图,△ABC为等边三角形,P是直线AB左侧一点,连接PA、PB、PC,PC与AB相交于点D,∠BPC=60°.(1)求证:∠PBA=∠PCA;(2)求证:PC=PA+PB.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】证明题.【分析】(1)首先根据三角形的内角和求得∠PBC+∠PCB=120°,再根据等边三角形的内角为60°,得到∠PBA+∠PCB=60°,∠ACB=∠PCB+∠PCA=60°,即可得到∠PBA=∠PCA.(2)如图,延长BP至E,使PE=PA,连接AE,证明△PAE为等边三角形,得到AE=AP=PE,∠PAE=60°,由△ABC为等边三角形,证明△AEB≌△APC(SAS),得到EB=PC,即可解答.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵∠BPC=60°,∴∠PBC+∠PCB=180°﹣60°=120°,∴∠PBA+∠ABC+∠PCB=120°,∴∠PBA+∠PCB=60°,∵∠ACB=∠PCB+∠PCA=60°,∴∠PBA=∠PCA.(2)如图,延长BP至E,使PE=PA,连接AE,∵∠PBA=∠PCA,∴点A,P,B,C四点共圆,∴∠APC=∠ABC=60°,∴∠APE=180°∠BPC﹣∠APC=60°,又∵PE=PA,∴△PAE为等边三角形,∴AE=AP=PE,∠PAE=60°,∵△ABC为等边三角形,∴AC=BC,∠BCA=60°,∴∠BAC=∠PAE,∴∠BAC+∠PAD=∠PAE+∠PAD,即:∠EAB=∠PAC,在△AEB和△APC中,,∴△AEB≌△APC(SAS),∴EB=PC,∵BE=BP+PE=PB+PA,∴PC=PB+PA.【点评】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,解决本题的关键是正确作出辅助线.。

八年级上期中数学试卷含答案解析

八年级上期中数学试卷含答案解析

八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列标志中,可以看作是轴对称图形的是( )A.B. C.D.2.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF3.下列四组线段中,可以构成直角三角形的是( )A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,34.如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若AB=6cm,则△DEB的周长是( )A.5cm B.6cm C.7cm D.8cm5.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是( )A.垂直 B.相等 C.平分 D.平分且垂直6.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN为等边三角形;下面判断正确是( )A.①正确B.②正确C.①②都正确D.①②都不正确7.一等腰三角形底边长为8cm,腰长为5cm,则腰上的高为( )A.3cm B.cm C.cm D.cm8.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(本大题共11小题,每空2分,共22分.)9.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC ≌△ADC,只需再添加的一个条件可以是__________.10.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是__________.11.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.12.如图,有一块直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=__________.13.等腰三角形的两边长分别为2cm和4cm,则这个三角形的周长为__________cm.14.一个等腰三角形的一个角为80°,则它的顶角的度数是__________.15.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是__________cm2.16.△ABC中,点O是△ABC内一点且到△ABC三边的距离相等,∠A=40°,则∠BOC=__________.17.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是__________.18.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为__________.19.如图,在△ABC中AB=17,AC=10,BC边上的高AD=8,则边BC的长为__________.三、简答题:(本大题共7小题,共54分)20.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方值是__________.21.如图,已知△ABC,AC<AB.(1)用直尺和圆规作出一条过点A的直线l,使得点C关于直线l的对称点落在边AB上(不写作法,保留作图痕迹);(2)设直线l与边BC的交点为D,且∠C=2∠B,请你通过观察或测量,猜想线段AB、AC、CD之间的数量关系,并说明理由.22.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.23.如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?24.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是__________,CF的对应线段是__________;(2)若AB=8,DE=10,求CF的长度.25.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.26.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?2015-2016学年江苏省无锡市江阴市青阳片八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列标志中,可以看作是轴对称图形的是( )A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.2.在下列各组条件中,不能说明△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.下列四组线段中,可以构成直角三角形的是( )A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3【考点】勾股定理的逆定理.【专题】计算题.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若AB=6cm,则△DEB的周长是( )A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线的性质得到DC=DE,AC=AE,根据三角形的周长公式计算即可.【解答】解:∵AD是∠CAB的角平分线,DE⊥AB,∠C=90°,∴DC=DE,AC=AE,∴△DEB的周长=DE+BE+BD=BE+DC+BD=BE+BC=BE+AE=AB=6cm.故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是( )A.垂直 B.相等 C.平分 D.平分且垂直【考点】平移的性质;勾股定理.【专题】网格型.【分析】先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC 的关系.【解答】解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选:D.【点评】本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.6.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②△PMN为等边三角形;下面判断正确是( )A.①正确B.②正确C.①②都正确D.①②都不正确【考点】直角三角形斜边上的中线;等边三角形的判定.【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断②正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;所以①②都正确.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键.7.一等腰三角形底边长为8cm,腰长为5cm,则腰上的高为( )A.3cm B.cm C.cm D.cm【考点】勾股定理;等腰三角形的性质.【分析】作AD⊥BC于D,作CE⊥AB于E,由等腰三角形的性质得出BD,由勾股定理求出AD,由三角形面积的计算方法即可求出腰上的高.【解答】解:如图所示:作AD⊥BC于D,作CE⊥AB于E,则∠ADB=90°,∵AB=AC,∴BD=BC=4cm,∴AD===3(cm),∵△ABC的面积=AB•CE=BC•AD,∴AB•CE=BC•AD,即5×CE=8×3,解得:CE=,即腰上的高为;故选:C.【点评】本题考查了勾股定理、等腰三角形的性质三角形面积的计算;熟练掌握等腰三角形的性质,运用勾股定理求出AD是解决问题的关键.8.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正确的结论有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【分析】过E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,过D作DH⊥AB于H,根据角平分线性质求出CE=EQ,DF=DH,根据勾股定理求出AC=AQ,AF=AH,根据等腰三角形的性质和判定求出BQ=QE,即可求出③;根据三角形外角性质求出∠CND=45°,证△ACN≌△BCD,推出CD=CN,即可求出②①;证△DCF≌△DBH,得到CF=BH,AF=AH,即可求出④.【解答】解:如图,过E作EQ⊥AB于Q,∵∠ACB=90°,AE平分∠CAB,∴CE=EQ,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵EQ⊥AB,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ,∴∠QEB=45°=∠CBA,∴EQ=BQ,∴AB=AQ+BQ=AC+CE,∴③正确;作∠ACN=∠BCD,交AD于N,∵∠CAD=∠CAB=22.5°=∠BAD,∴∠ABD=90°﹣22.5°=67.5°,∴∠DBC=67.5°﹣45°=22.5°=∠CAD,∴∠DBC=∠CAD,在△ACN和△BCD中,,∴△ACN≌△BCD,∴CN=CD,AN=BD,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDA=45°,∴∠ACN=45°﹣22.5°=22.5°=∠CAN,∴AN=CN,∴∠NCE=∠AEC=67.5°,∴CN=NE,∴CD=AN=EN=AE,∵AN=BD,∴BD=AE,∴①正确,②正确;过D作DH⊥AB于H,∵∠FCD=∠CAD+∠CDA=67.5°,∠DBA=90°﹣∠DAB=67.5°,∴∠FCD=∠DBA,∵AE平分∠CAB,DF⊥AC,DH⊥AB,∴DF=DH,在△DCF和△DBH中,∴△DCF≌△DBH,∴BH=CF,由勾股定理得:AF=AH,∴====2,∴AC+AB=2AF,AC+AB=2AC+2CF,AB﹣AC=2CF,∵AC=CB,∴AB﹣CB=2CF,∴④正确.故选D【点评】本题主要考查了三角形的外角性质,三角形的内角和定理,等腰三角形的性质和判定,直角三角形斜边上中线性质,全等三角形的性质和判定,等腰直角三角形性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.二、填空题(本大题共11小题,每空2分,共22分.)9.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC ≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS 即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DA C=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.10.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.11.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8.【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD 中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.【点评】本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.12.如图,有一块直角三角形纸片,两直角边AC=3cm,BC=4cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=cm.【考点】翻折变换(折叠问题).【分析】先利用勾股定理求得AB=5,然后由翻折的性质得到AE=AC=3,CD=DE,则EB=2,设CD=EC=x,则BD=4﹣x,然后在Rt△DEB中利用勾股定理列方程求解即可.【解答】解:在Rt△ACB中,AB==5,由翻折的性质可知:AE=AC=3,CD=DE,则BE=2.设CD=DE=x,则BD=4﹣x.Rt△DEB中,由勾股定理得:DB2=DE2+EB2,即(4﹣x)2=x2+22,解得:x=.∴CD=.故答案为:cm.【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用翻折的性质和勾股定理列出关于x的方程是解题的关键.13.等腰三角形的两边长分别为2cm和4cm,则这个三角形的周长为10cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:(1)当三边是2cm,2cm,4cm时,2+2=4cm,不符合三角形的三边关系,应舍去;(2)当三边是2cm,4cm,4cm时,符合三角形的三边关系,此时周长是10cm;所以这个三角形的周长是10cm.故填10.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.一个等腰三角形的一个角为80°,则它的顶角的度数是80°或20°.【考点】等腰三角形的性质.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当80°角为顶角,顶角度数即为80°;(2)当80°为底角时,顶角=180°﹣2×80°=20°.故答案为:80°或20°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是30cm2.【考点】直角三角形斜边上的中线.【分析】由于直角三角形斜边上的中线是6cm,因而斜边是12cm,而高线已知,因而可以根据面积公式求出三角形的面积.【解答】解:∵直角三角形斜边上的中线是6cm,∴斜边是12cm,∴S△=×5×12=30cm2∴它的面积是30cm2.故填:30cm2.【点评】本题主要考查了直角三角形的性质:斜边上的中线等于斜边的一半.16.△ABC中,点O是△ABC内一点且到△ABC三边的距离相等,∠A=40°,则∠BOC=110°.【考点】角平分线的性质.【分析】根据O到三角形三边距离相等,得到O是内心,再利用三角形内角和定理和角平分线的概念即可求出∠BOC的度数.【解答】解:∵O到三角形三边距离相等,∴O是内心,∴AO,BO,CO都是角平分线,∴∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∠ABC+∠ACB=180°﹣40°=140°,∠OBC+∠OCB=70°,∠BOC=180°﹣70°=110°.故答案为:110°.【点评】本题考查的是角平分线的定义和三角形的内心的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,PN+PM+MN的最小值是5cm,则∠AOB的度数是30°.【考点】轴对称-最短路线问题.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.故答案为:30°.【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.18.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【考点】等腰三角形的性质.【专题】分类讨论.【分析】分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.19.如图,在△ABC中AB=17,AC=10,BC边上的高AD=8,则边BC的长为21.【考点】勾股定理.【专题】计算题.【分析】在直角三角形ACD中,利用勾股定理求出CD的长,在直角三角形ABD中,利用勾股定理求出BD的长,由CD+BD求出BC的长即可.【解答】解:在Rt△ACD中,AC=10,AD=8,根据勾股定理得:CD==6,在Rt△ABD中,AB=17,AD=8,根据勾股定理得:BD==15,则BC=6+15=21,故答案为:21【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.三、简答题:(本大题共7小题,共54分)20.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方值是13.【考点】作图-轴对称变换.【分析】(1)分别找到各点的对称点,顺次连接可得△A′B′C′.(2)连接B'C,则B'C与l的交点即是点P的位置,求出PB+PC的值即可.【解答】解:(1)如图所示:.(2)如图所示:PB+PC=PB'+PC=B'C==.则这个最短长度的平方值是13.【点评】本题考查了轴对称作图及最短路线问题,解答本题的关键是掌握轴对称的性质,难度一般.21.如图,已知△ABC,AC<AB.(1)用直尺和圆规作出一条过点A的直线l,使得点C关于直线l的对称点落在边AB上(不写作法,保留作图痕迹);(2)设直线l与边BC的交点为D,且∠C=2∠B,请你通过观察或测量,猜想线段AB、AC、CD之间的数量关系,并说明理由.【考点】作图—复杂作图;全等三角形的判定与性质;角平分线的性质.【专题】作图题.【分析】(1)先作∠BAC的平分线l,再过点C作CF⊥l交AB于F,则可得到点C和F点关于l对称,所以l为所作;(2)连结DF,如图,利用等腰三角形的判定方法得到AF=AC,则AD垂直平分CF,所以DF=DC,则∠DCF=∠DFC,再利用三角形外角性质得∠BDF=2∠DCF,接着证明∠B=2∠BCF,于是得到∠B=∠BDF,则FB=FD=CD,则易得AB=AF+FB=AC+CD.【解答】解:(1)如图,直线l为所作;(2)AB=AC+CD.理由如下:连结DF,如图,∵AD平分∠BAC,AD⊥CF,∴AF=AC,∴AD垂直平分CF,∴DF=DC,∴∠DCF=∠DFC,∴∠BDF=∠DCF+∠DFC=2∠DCF,∵∠AFC=∠ACF,∵∠AFC=∠B+∠BCF,∴∠ACF=∠B+∠BCF,∵∠ACB=2∠B,∴2∠B﹣∠BCF=∠B+∠BCF,∴∠B=2∠BCF,∴∠B=∠BDF,∴FB=FD,∴FB=CD,∴AB=AF+FB=AC+CD.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质.22.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由等式的性质就可以得出BF=CE,由平行线的性质就可以得出∠B=∠C,根据SAS就可以得出结论;(2)由△ABF≌△DCE就可以得出∠AFB=∠DEC就可以得出结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.∵AB∥CD,∴∠B=∠C.在△ABF和△DCE中,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴AF∥DE.【点评】本题考查了等式的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.23.如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.【解答】解:连结AC,如图所示:在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC==10(米),∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴∠ACB=90°,∴该区域面积S=S△ACB﹣S△ADC=×10×24﹣×6×8=96(平方米),∴铺满这块空地共需花费=96×100=9600元.【点评】本题考查了勾股定理,三角形面积,勾股定理的逆定理的应用;解此题的关键是求出区域的面积.24.如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是BC′,CF的对应线段是FC′;(2)若AB=8,DE=10,求CF的长度.【考点】翻折变换(折叠问题).【分析】(1)根据翻折后的对应点确定出对应线段即可;(2)在Rt△ABE中由勾股定理可求得AE=6,从而得到AD=16,然后证明BE=BF=10,从而可求得FC=16﹣10=6.【解答】解:(1)∵点D与点B重合,点C落在点C′的位置上,∴DC的对应线段是BC′,CF的对应线段是FC′.故答案为:BC′;FC′.(2)由翻折的性质可知:DE=BE=10,∠2=∠BEF.∵AD∥BC,∴∠2=∠1.∴∠1=∠BEF.∴BE=BF=10.在Rt△A BE中,由勾股定理得:AE===6,∴AD=AE+ED=6+10=16.∴CF=CB﹣BF=16﹣10=6.【点评】本题主要考查的是翻折的性质、勾股定理的应用,证得BE=BF=10是解题的关键.25.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【考点】勾股定理的证明.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.【点评】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.26.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B →C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【考点】等腰三角形的判定与性质.【专题】计算题;动点型.【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,t+2t﹣3=6;当P点在AB上,Q在AC上,则AC=t﹣4,AQ=2t﹣8,t﹣4+2t﹣8=6.【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

2023-2024学年山东省济南市市中区八年级(上)期中数学试卷(含解析)

2023-2024学年山东省济南市市中区八年级(上)期中数学试卷(含解析)

2023-2024学年山东省济南市市中区八年级第一学期期中数学试卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,1.实数4的平方根是( )A.2B.﹣2C.D.±22.如图,在平面直角坐标系xOy中,被一团墨水覆盖住的点的坐标有可能是( )A.(2,﹣4)B.(﹣2,4)C.(﹣2,﹣4)D.(2,4)3.在△ABC中a,b,c分别是∠A、∠B,∠C的对边,下列条件中,不能判断△ABC是直角三角形的是( )A.a:b:c=5:12:13B.C.∠A:∠B:∠C=3:4:5D.∠A+∠B=∠C4.下列数中﹣4,,3.1415,﹣3π,3.030030003…中,无理数的个数是( )A.1B.2C.3D.45.下列计算中,结果错误的是( )A.B.C.D.6.已知点(﹣2,y1),(3,y2)都在直线y=﹣x+1上,则y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.无法确定7.一次函数y1=ax+b与正比例函数y2=﹣bx在同一坐标系中的图象大致是( )A.B.C.D.8.如图一个三级台阶,它的每一级的长宽高分别是5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,点A上有一只蚂蚁,想到点B去吃可口的食物,则蚂蚁沿着台阶面爬到点B的最短路程长为( )A.10B.11C.12D.139.在物理实验课上,小鹏利用滑轮组及相关器材进行实验,他把得到的拉力F(N)和所悬挂物体的重力G(N)的几组数据用电脑绘制成如图象(不计绳重和摩擦),请你根据图象判断以下结论正确的序号有( )①物体的拉力随着重力的增加而增大;②当物体的重力G=7N时,拉力F=2.2N;③拉力F与重力G成正比例函数关系;④当滑轮组不悬挂物体时,所用拉力为0.5N.A.①②B.②④C.①④D.③④10.如图,在平面直角坐标系中,长为2的线段AB(点B在点A上面)在y轴上移动,C (1,0),D(4,0),连接AC,BD,则AC+BD的最小值为( )A.5B.C.2D.二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)11.若(1,2)表示教室里第1列第2排的位置,则教室里第4列第3排的位置可以表示为 .12.已知点P(2﹣a,a﹣3)在y轴上,则a= .13.如图,一次函数y=﹣2x和y=kx+b的图象相交于点A(﹣2,4),则关于x的方程kx+b+2x=0的解是 .14.小明是一个电脑爱好者,他设计了一个程序,如图,当输入x的值是64时,输出的y 值是 .15.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要 小时.16.如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3⋯=∠MA n A n+1=90°,(n为正整数),若M点的坐标是(﹣1,2),A1的坐标是(0,2),则A2023的坐标为 .三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步17.计算:(1);(2).18.解方程:(1)(x﹣4)2﹣9=0;(2)(x+1)3=﹣27.19.学过《勾股定理》后,李老师和“几何小分队”的队员们到操场上测量旗杆AB高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长2米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为9米(如图2).根据以上信息,求旗杆AB的高度.20.在平面直角坐标系中,△ABC的位置如图所示,已知点A的坐标是(﹣4,3).(1)点B的坐标为( , ),点C的坐标为( , ).(2)△ABC的面积是 .(3)作点C关于y轴的对称点C',那么A、C'两点之间的距离是 .21.如图,学校准备在阴影部分修建草坪,经施工人员测量,∠ADC=90°,AD=8米,CD =6米,AB=26米,BC=24米.(1)判断△ABC的形状并证明.(2)求草坪(阴影部分)的面积.22.一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在该图象上,连接OC.(1)求函数y=kx+b的关系式;(2)求△AOB的面积;(3)点P为x轴上一动点,若S△ACP=3S△AOB,求点P的坐标.23.某校八年级开展了《为家人选择合适的手机套餐》项目学习.小露收集并整理奶奶近六个月的话费账单,根据她的月平均通话时间筛选出两款比较适合她的手机套餐.甲套餐:月租费8元,送30分钟通话时间,超出的部分按每分钟0.25元计;乙套餐:月租费29元,通话费按每分钟0.1元计.(1)每月的手机资费y(元)与通话时间x(分)之间存在函数关系,y与x之间的关系式为:y甲=,y乙= (x≥0).(填写最简结果)(2)为了直观比较,在同一坐标系内画出两个函数的图象(如图).①写出图中A点表示的实际意义.②如果从节省费用的角度考虑,应如何选择套餐?24.小明在解决问题:已知,求2a2﹣8a+1的值.他是这样分析与解的:∵∴,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)= ,= .(2)化简:.(3)若,请按照小明的方法求出4a2﹣8a+1的值.25.如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,过点A作AD⊥I交于点D,过点B作BE⊥l交于点E,易得△ADC≌△CEB,我们称这种全等模型为“k型全等”.如图2,在直角坐标系中,直线l1:y=kx+2分别与y轴,x轴交于点A、B(﹣1,0).(1)求k的值和点A的坐标;(2)在第二象限构造等腰直角△ABE,使得∠BAE=90°,求点E的坐标;(3)将直线l1绕点A旋转45°得到l2,求l2的函数表达式.26.△ABC中,AC=BC,∠ACB=90°,D为△ABC外一点.【探究发现】(1)如图1,点D在边AB下方,∠ADB=90°.学校的数学兴趣小组的同学们尝试探究此时线段AD、BD、CD之间的数量关系.他们的思路是这样的,作EC⊥CD,取EC=CD,连接BE.易证△ADC≌△BEC.通过等量代换得到线段之间的数量关系.请根据同学们的思路,写出△ADC≌△BEC的证明过程.【迁移运用】(2)如图2,点D在边AB上方,∠ADB=90°.猜想线段AD、BD、CD 之间的数量关系,并证明你的结论.【延伸拓展】(3)如图3,在四边形ABCD中,∠ABC=∠BAC=∠ADC=45°,若AD =2,CD=4,请直接写出BD的值.参考答案一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,1.实数4的平方根是( )A.2B.﹣2C.D.±2【分析】根据算术平方根的定义解答即可.解:∵(±2)2=4,∴4的平方根是±2,即±=±2.故选:D.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2.如图,在平面直角坐标系xOy中,被一团墨水覆盖住的点的坐标有可能是( )A.(2,﹣4)B.(﹣2,4)C.(﹣2,﹣4)D.(2,4)【分析】根据各象限点的坐标规律进行判断即可.解:第四象限点的坐标特征是:横坐标大于零,纵坐标小于零.故选:A.【点评】本题考查了各象限内点的坐标特征,若P(x,y)在第四象限,则x>0,y<0.3.在△ABC中a,b,c分别是∠A、∠B,∠C的对边,下列条件中,不能判断△ABC是直角三角形的是( )A.a:b:c=5:12:13B.C.∠A:∠B:∠C=3:4:5D.∠A+∠B=∠C【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.解:A.设a=5k,b=12k,c=13k,∵(5k)2+(12k)2=(13k)2,∴a2+b2=c2,故△ABC是直角三角形;B.设a=k,b=k,c=k,∵k2+(k)2=(k)2,∴a2+b2=c2,故△ABC是直角三角形;C.∵∠A:∠B:∠C=3:4:5,∴∠C=75°,∴△ABC不是直角三角形;B.∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握勾股定理的逆定理是解题的关键.4.下列数中﹣4,,3.1415,﹣3π,3.030030003…中,无理数的个数是( )A.1B.2C.3D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:﹣4,,3.1415是有理数,无理数有:﹣3π,3.030303……共2个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数.5.下列计算中,结果错误的是( )A.B.C.D.【分析】利用二次根式的加减法的法则,二次根式的乘除法和乘方法则对各项进行运算即可.解:A、与不属于同类二次根式,不能运算,故A符合题意;B、5﹣2=3,故B不符合题意;C、÷=,故C不符合题意;D、(﹣)2=2,故D不符合题意;故选:A.【点评】本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握.6.已知点(﹣2,y1),(3,y2)都在直线y=﹣x+1上,则y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.无法确定【分析】由k=﹣1<0,利用一次函数的性质,可得出y随x的增大而减小,再结合﹣2<3,即可得出y1>y2.解:∵k=﹣1<0,∴y随x的增大而减小,又∵点(﹣2,y1),(3,y2)都在直线y=﹣x+1上,且﹣2<3,∴y1>y2.故选:C.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.7.一次函数y1=ax+b与正比例函数y2=﹣bx在同一坐标系中的图象大致是( )A.B.C.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.解:A、若a>0,b>0,则y=ax+b经过一、二、三象限,y=﹣bx经过二、四象限,B、a>0,b<0,则y=ax+b经过一、三、四象限,y=﹣bx经过一、三象限,C、若a>0,b>0,则y=ax+b经过一、二、三象限,y=﹣bx经过二、四象限,D、若a<0,b<0,则y=ax+b经过二、三、四象限,y=﹣bx经过一、三象限,故选:C.【点评】本题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.如图一个三级台阶,它的每一级的长宽高分别是5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,点A上有一只蚂蚁,想到点B去吃可口的食物,则蚂蚁沿着台阶面爬到点B的最短路程长为( )A.10B.11C.12D.13【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解:如图所示,∵三级台阶平面展开图为长方形,宽为5,长为(3+1)×3=12,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长,由勾股定理得,则蚂蚁沿着台阶面爬到B点最短路程是13.故选:D.【点评】本题主要考查了平面展开图中的最短路径问题,熟练掌握平面展开图及勾股定理是解决本题的关键.9.在物理实验课上,小鹏利用滑轮组及相关器材进行实验,他把得到的拉力F(N)和所悬挂物体的重力G(N)的几组数据用电脑绘制成如图象(不计绳重和摩擦),请你根据图象判断以下结论正确的序号有( )①物体的拉力随着重力的增加而增大;②当物体的重力G=7N时,拉力F=2.2N;③拉力F与重力G成正比例函数关系;④当滑轮组不悬挂物体时,所用拉力为0.5N.A.①②B.②④C.①④D.③④【分析】由函数图象直接可以判断①③④,设出拉力F与重力G的函数解析式用待定系数法求出函数解析式,把G=7代入函数解析式求值即可判断②.解:由图象可知,拉力F随着重力的增加而增大,故①正确;∵拉力F是重力G的一次函数,∴设拉力F与重力G的函数解析式为F=kG+b(k≠0),则,解得:,∴拉力F与重力G的函数解析式为F=0.2G+0.5,当G=7时,F=0.2×7+0.5=1.9,故②错误;由图象知,拉力F是重力G的一次函数,故③错误;∵G=0时,F=0.5,故④正确.故选:C.【点评】本题考查一次函数的应用,关键是数形结合思想的运用.10.如图,在平面直角坐标系中,长为2的线段AB(点B在点A上面)在y轴上移动,C (1,0),D(4,0),连接AC,BD,则AC+BD的最小值为( )A.5B.C.2D.【分析】将线段BD向下平移到AE的位置,作点A关于原点的对称点A′,连接CA′,EA′.再作点C关于y轴的对称点C',则C'(﹣1,0),进而得出AC+BD的最小值为EC',即可求解答案.解:如图,将线段BD向下平移到AE的位置,作点A关于原点的对称点A′,连接CA ′,EA′,则E(4,﹣2),C′(﹣1,0),AC+BD=C′A+AE≥EC′,EC′==,∴AC+BD的最小值为.故选:D.【点评】此题主要考查了对称的性质,平移的性质,坐标与图形性质,将AC+BD的最小值转化为EC'是解本题的关键.二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)11.若(1,2)表示教室里第1列第2排的位置,则教室里第4列第3排的位置可以表示为 (4,3) .【分析】由(1,2)表示教室里第1列第2排的位置,可得教室里第4列第3排的位置的表示方法,从而可得答案.解:∵(1,2)表示教室里第1列第2排的位置,∴教室里第4列第3排的位置可以表示为(4,3).故答案为:(4,3).【点评】本题考查的是利用有序实数对表示位置,理解题意,理解有序实数对的含义是解本题的关键.12.已知点P(2﹣a,a﹣3)在y轴上,则a= 2 .【分析】根据y轴上的点横坐标为0可得2﹣a=0,然后进行计算即可解答.解:∵点P(2﹣a,a﹣3)在y轴上,∴2﹣a=0,解得:a=2,故答案为:2.【点评】本题考查了点的坐标,熟练掌握y轴上的点横坐标为0是解题的关键.13.如图,一次函数y=﹣2x和y=kx+b的图象相交于点A(﹣2,4),则关于x的方程kx+b+2x=0的解是 x=﹣2 .【分析】根据交点坐标直接写出方程的解即可.解:函数y=﹣2x与y=kx+b的图象交于点A(﹣2,4),∴关于x的方程kx+b+2x=0的解为x=﹣2.故答案为x=﹣2.【点评】本题考查了一次函数与一元一次方程的关系,利用数形结合的方法确定方程的解.14.小明是一个电脑爱好者,他设计了一个程序,如图,当输入x的值是64时,输出的y 值是 .【分析】按照计算流程计算,如果不满足输出条件,继续循环计算即可.解:当x值为64时,取算术平方根得8,取立方根得2,取算术平方根得是,是无理数,所以输出的数为.故答案为:.【点评】本题考查了实数的运算,关键是掌握立方根及算术平方根的求解.15.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要 1.5 小时.【分析】利用待定系数法求出乙离开A城的距离y与x的关系式,再根据题意列出方程,解方程得到答案.解:设乙离开A城的距离y与x的关系式为:y=kx+b,把(1,0)和(4,300)代入解析式,得,解得:,所以乙离开A城的距离y与x的关系式为:y=100x﹣100;当乙追上甲车时,60x=100x﹣100,解得:x=2.5,2.5﹣1=1.5(小时),答:乙出发后1.5小时追上甲车.故答案为:1.5.【点评】本题考查的是一次函数的应用,灵活运用待定系数法求出一次函数解析式是解题的关键.16.如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3⋯=∠MA n A n+1=90°,(n为正整数),若M点的坐标是(﹣1,2),A1的坐标是(0,2),则A2023的坐标为 (﹣1,2﹣21011) .【分析】探究规律,利用规律解决问题即可.解:观察图象可知,点的位置是8个点一个循环,∴A2023与A7,A15的位置都在第三象限,且在直线x=﹣1上,∵第一个等腰直角三角形的直角边为1,第二个等腰直角三角形的边长为,…,第n 个等腰直角三角形的边长为()n﹣1,∴第2023个等腰直角三角形的边长为()2022,可得A2022M=()2022,∴A2023(﹣1,2﹣21011),故答案为:(﹣1,2﹣21011).【点评】本题考查勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步17.计算:(1);(2).【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先进行二次根式的除法运算,然后进行二次根式的乘法运算,最后合并即可.解:(1)原式=2﹣+=;(2)原式=+﹣×=2+﹣=2.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.18.解方程:(1)(x﹣4)2﹣9=0;(2)(x+1)3=﹣27.【分析】根据平方根与立方根的定义进行解题即可.解:(1)(x﹣4)2﹣9=0,(x﹣4)2=9,x﹣4=±3,x=7或1.(2)(x+1)3=﹣27,x+1=﹣3,x=﹣4.【点评】本题考查立方根与平方根,熟练掌握相关的知识点是解题的关键.19.学过《勾股定理》后,李老师和“几何小分队”的队员们到操场上测量旗杆AB高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长2米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为9米(如图2).根据以上信息,求旗杆AB的高度.【分析】设AB=x,在Rt△ACE中根据勾股定理列方程求解即可.解:设AB=x,则AE=x﹣1,AC=x+2,根据题意得:在Rt△ACE中,根据勾股定理得:AC2=AE2+CE2,∴(x+2)2=(x﹣1)2+92,∴x=13.答:旗杆AB的高度为13米.【点评】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.20.在平面直角坐标系中,△ABC的位置如图所示,已知点A的坐标是(﹣4,3).(1)点B的坐标为( 3 , 0 ),点C的坐标为( ﹣2 , 5 ).(2)△ABC的面积是 10 .(3)作点C关于y轴的对称点C',那么A、C'两点之间的距离是 2 .【分析】(1)根据坐标系写出答案即可;(2)利用矩形面积减去周围多余三角形的面积可得△ABC的面积;(3)首先确定C'位置,然后再利用勾股定理计算即可.解:(1)点B的坐标为(3,0),点C的坐标为(﹣2,5),故答案为:3;0;﹣2;5;(2))△ABC的面积是:7×5﹣3×7﹣2×2﹣×5×5=35﹣10.5﹣2﹣12.5=10,故答案为:10;(3)A、C'两点之间的距离是:==2,故答案为:2.【点评】此题主要考查了关于y轴对称、三角形面积,以及勾股定理的应用,关键是正确确定C′点位置.21.如图,学校准备在阴影部分修建草坪,经施工人员测量,∠ADC=90°,AD=8米,CD =6米,AB=26米,BC=24米.(1)判断△ABC的形状并证明.(2)求草坪(阴影部分)的面积.【分析】(1)先利用勾股定理计算出AC=10米,然后利用勾股定理的逆定理证明△ABC 为直角三角形;(2)根据直角三角形的面积公式,利用草坪(阴影部分)的面积=S△ABC﹣S△ACD进行计算.解:(1)△ABC为直角三角形.理由如下:∵∠ADC=90°,AD=8米,CD=6米,∴AC==10(米),在△ABC中,∵AC=10米,AB=26米,BC=24米,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°;(2)草坪(阴影部分)的面积=S△ABC﹣S△ACD=×10×24﹣×6×8=96(米2).答:草坪(阴影部分)的面积为96米2.【点评】本题考查了勾股定理的应用:会应用勾股定理进行几何计算,利用勾股定理的逆定理证明直角三角形.22.一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在该图象上,连接OC.(1)求函数y=kx+b的关系式;(2)求△AOB的面积;(3)点P为x轴上一动点,若S△ACP=3S△AOB,求点P的坐标.【分析】(1)把B(0,2)、C(﹣1,3)代入到y=kx+b中进行求解即可;(2)先求解A的坐标,再结合B的坐标,直接利用三角形的面积公式进行计算即可;(3)设点P的坐标为(m,0),根据S△ACP=6得到,由此求解即可.解:(1)把B(0,2)、C(﹣1,3)代入到y=kx+b中得:,∴,∴函数y=kx+b的解析式为y=﹣x+2;(2)把y=0代入y=﹣x+2,∴x=2,即A(2,0),∵B(0,2),∴.(3)设点P的坐标为(m,0),A(2,0),C(﹣1,3),∴AP=|m﹣2|,∵S△ACP=3S△AOB=6,∴,∴,∴m=6或m=﹣2,∴点P的坐标为(6,0)或(﹣2,0).【点评】本题主要考查了一次函数与几何综合,坐标与图形的面积,求一次函数解析式,正确求出一次函数解析式是解题的关键.23.某校八年级开展了《为家人选择合适的手机套餐》项目学习.小露收集并整理奶奶近六个月的话费账单,根据她的月平均通话时间筛选出两款比较适合她的手机套餐.甲套餐:月租费8元,送30分钟通话时间,超出的部分按每分钟0.25元计;乙套餐:月租费29元,通话费按每分钟0.1元计.(1)每月的手机资费y(元)与通话时间x(分)之间存在函数关系,y与x之间的关系式为:y甲=,y乙= 0.1x+29 (x≥0).(填写最简结果)(2)为了直观比较,在同一坐标系内画出两个函数的图象(如图).①写出图中A点表示的实际意义.②如果从节省费用的角度考虑,应如何选择套餐?【分析】(1)根据两种套餐的收费标准,列出函数关系式即可;(2)①由自变量,因变量的意义可得A的实际意义;②观察图象可得答案.解:(1)当0≤x≤30时,y甲=8,当x>30时,y甲=8+0.25(x﹣30)=0.25x+0.5;∴y甲=;y乙=0.1x+29;故答案为:0.1x+29;(2)①A点表示的实际意义是通话时间为190分钟时,甲,乙套餐的资费都是48元;②由图形可知,当0≤x<190时,选甲套餐费用少,当x=190时,两种套餐费用相同;当x>190时,选乙套餐费用少.【点评】本题考查一次函数的应用,解题的关键是读懂题意,列出函数关系式.24.小明在解决问题:已知,求2a2﹣8a+1的值.他是这样分析与解的:∵∴,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)= ,= (﹣) .(2)化简:.(3)若,请按照小明的方法求出4a2﹣8a+1的值.【分析】(1)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)根据小明的分析过程,a﹣1=得a2﹣2a=1,可求出代数式的值.解:(1)原式==,原式==(﹣),故答案为:,(﹣),(2)原式=(﹣+﹣+...+﹣)=(﹣3+11)=4;(2)a==+1,∴a﹣1=,∴(a﹣1)2=2,a2﹣2a+1=2,∴a2﹣2a=1,∴原式=4(a2﹣2a)+1=4×1+1=5.【点评】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.25.如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,过点A作AD⊥I交于点D,过点B作BE⊥l交于点E,易得△ADC≌△CEB,我们称这种全等模型为“k型全等”.如图2,在直角坐标系中,直线l1:y=kx+2分别与y轴,x轴交于点A、B(﹣1,0).(1)求k的值和点A的坐标;(2)在第二象限构造等腰直角△ABE,使得∠BAE=90°,求点E的坐标;(3)将直线l1绕点A旋转45°得到l2,求l2的函数表达式.【分析】(1)由待定系数法即可求解;(2)过点C作EF⊥y轴交于点F,证明△EAF≌△ABO,据此即可求解;(3)当直线l1绕点A顺时针旋转45°得到l2时,过点B作BC⊥AB交直线l2于点C,过点C作CD⊥x轴交于点D,证明△BCD≌△ABO,求得C(﹣3,1),利用待定系数法即可求解;当直线l1绕点A逆时针旋转45°得到l2时,同理可求.解:(1)将点B的坐标代入y=kx+2得:0=﹣k+2,解得:k=2,则该函数的表达式为:y=2x+2,令x=0,则y=2;∴A(0,2),即k=2,点A(0,2);(2)过点E作EF⊥y轴交于点F,∵∠BAE=90°,AE=AB,∴由K型全等模型可得△EAF≌△ABO,∴EF=OA=2,AF=OB=1,则OF=2+1=3,∴点E的坐标为(﹣2,3);(3)当直线l1绕点A顺时针旋转45°得到l2时,过点B作BC⊥AB交直线l2于点C,过点C作CD⊥x轴交于点D,∵∠CAB=45°,BC⊥AB,∴BC=AB,∴由K型全等模型可得△BCD≌△ABO,∵y=2x+2与x轴的交点B(﹣1,0),A(0,2),∴CD=1,BD=2,∴C(﹣3,1),设直线l2的解析式为y=kx+b,∴,解得:,∴y=x+2;当直线l1绕点A逆时针旋转45°得到l2时,同理可得y=﹣3x+2;综上所述:直线l2的解析式为y=x+2或y=﹣3x+2.【点评】本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,三角形全等的判定及性质,正确利用模型是解题的关键.26.△ABC中,AC=BC,∠ACB=90°,D为△ABC外一点.【探究发现】(1)如图1,点D在边AB下方,∠ADB=90°.学校的数学兴趣小组的同学们尝试探究此时线段AD、BD、CD之间的数量关系.他们的思路是这样的,作EC⊥CD,取EC=CD,连接BE.易证△ADC≌△BEC.通过等量代换得到线段之间的数量关系.请根据同学们的思路,写出△ADC≌△BEC的证明过程.【迁移运用】(2)如图2,点D在边AB上方,∠ADB=90°.猜想线段AD、BD、CD之间的数量关系,并证明你的结论.【延伸拓展】(3)如图3,在四边形ABCD中,∠ABC=∠BAC=∠ADC=45°,若AD =2,CD=4,请直接写出BD的值.【分析】(1)作EC⊥CD,取EC=CD,连接BE,因为∠ACD=∠ECB,又AC=BC,即可证明∴△ADC≌△BEC(SAS);(2)由(1)知∴△ADC≌△BEC,则BD=CE,∠ACE=∠B=45°,勾股定理可得CE2+CD2=DE2,又DE2=2AD2,CE=BD,即可得出结论;(3)如图,过点C作CE⊥CD,使CE=CD,连接DE,AE,证明△BAD≌△CAE (SAS),可得AE=BD,然后在Rt△ADE中根据勾股定理,即可求解.【解答】(1)证明:作EC⊥CD,取EC=CD,连接BE.∵∠ACD+∠DCB=∠ECB+∠DCB=90°,∴∠ACD=∠ECB,∵AC=BC,∴△ADC≌△BEC(SAS).(2)BD2+CD2=2AD2.证明:由(1)知△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=DE2,∵AD=AE,∠DAE=90°,∴DE2=2AD2,∴CE2+CD2=2AD2.∵CE=BD,∴BD2+CD2=2AD2.(3)解:如图,过点C作CE⊥CD,使CE=CD,连接DE,AE∴DE=∵∠ABC=∠BAC=45°,∴∠ACB=90°,在△BCD和△CAE中,∴△BCD≌△ACE(SAS),∴AE=BD.∵∠ADC=45°,∠EDC=45°,∴∠EDA=90°.∴AE2=AD2+DE2==36,∴AE=6∴BD=6.【点评】本题考查了旋转的性质,勾股定理,全等三角形的性质与判定,等腰直角三角形的性质,熟练掌握以上知识是解题的关键.。

八年级(上)期中数学试卷含解析

八年级(上)期中数学试卷含解析

八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.123.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180° D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是.10.若正n边形的每个内角都等于150°,则n=,其内角和为.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A 的对应点A1的坐标是.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)参考答案与试题解析一、选择题(每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】K6:三角形三边关系.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.3.点P(4,5)关于x轴对称点的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(4,﹣5)D.(5,4)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故选:C.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】KB:全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【考点】K7:三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180° D.140°【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】KJ:等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C从而求解.△ODE【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,BC=BD+DE+EC=OD+DE+OE=C△ODE=10cm.故选C.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是()A.1个 B.2个 C.3个 D.4个【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;KI:等腰三角形的判定;KW:等腰直角三角形;M6:圆内接四边形的性质.【分析】求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.【解答】解:∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC=22.5°,∴∠BFD=∠AEB=90°﹣22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE,∵M为EF的中点,∴AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°﹣67.5°=22.5°=∠MBN,在△FBD和△NAD中∴△FBD≌△NAD,∴DF=DN,∴①正确;在△AFB和△△CNA中∴△AFB≌△CAN,∴AF=CN,∵AF=AE,∴AE=CN,∴②正确;∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,∴DM=MN,∴△DMN是等腰三角形,∴③正确;即正确的有4个,故选D.二、填空题(每小题3分,共21分)9.“三角形任意两边之和大于第三边”,得到这个结论的理由是两点之间线段最短.【考点】K6:三角形三边关系.【分析】三角形三边关系定理:三角形两边之和大于第三边,可以运用两点之间线段最短的性质进行判断.【解答】解:“三角形任意两边之和大于第三边”,得到这个结论的理由是:两点之间线段最短.故答案为:两点之间线段最短.10.若正n边形的每个内角都等于150°,则n=12,其内角和为1800°.【考点】L3:多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.11.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=125°.【考点】KD:全等三角形的判定与性质.【分析】在△ADC和△ABE中,由∠C=∠E,∠A=∠A和AD=AB证明△ADC≌△ABE,得到∠ADC=∠ABE,由∠CDE=55°,得到∠ADC=125°,即可求出∠ABE的度数.【解答】解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=55°,∴∠ADC=125°,∴∠ABE=125°,故答案为125°.12.如图△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【考点】KF:角平分线的性质;KQ:勾股定理.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8cm.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,解得AD=6cm,∴S△ABC∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.15.在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数为4.【考点】KI:等腰三角形的判定;D5:坐标与图形性质.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;P是OA的中垂线与x轴的交点,有1个,共有4个.【解答】解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故填:4.三、解答题:(本大题共8个小题,满分75分)16.证明三角形内角和定理:三角形的三个内角的和等于180°.【考点】K7:三角形内角和定理.【分析】先写出已知、求证,再画图,然后证明.过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】K7:三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.19.C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明AC+DE=CE.【考点】KD:全等三角形的判定与性质.【分析】可证明△ABC≌△DBE,得到AC=BE DE=BC,即可证明AC+DE=CE.【解答】证明:∵∠ABD=90°,AC⊥CB,DE⊥BE,∴∠ABC+∠DBE=∠ABC+∠A,∴∠A=∠DBE;在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴AC=BE,BC=DE,∴AC+DE=CE.20.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD的度数,然后根据30°角所对的直角边等于斜边的一半求解即可.【解答】解:过点C作BA的垂线,交BA的延长线于点D,解:∵∠B=∠ACB=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°,∵AC=4cm,CD是AB边上的高,∴CD=AC=×2=1.∴AB边上的高是1.21.如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,求AD的长.【考点】KD:全等三角形的判定与性质;K6:三角形三边关系.【分析】延长AD到E,使AD=DE,连接BE,证△ADC≌△EDB,推出AC=BE=2,在△ABE中,根据三角形三边关系定理得出AB﹣BE<AE<AB+BE,代入求出即可.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE=2,在△ABE中,AB﹣BE<AE<AB+BE,∴4﹣2<2AD<4+2,∴1<AD<3,∵AD是整数,∴AD=2,22.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A 的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:13.5.23.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.(1)求证:△BAD≌△CAE.(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;(4)如图③,若∠BAC=∠DAE=α,直接写出∠BFC的度数(不需说明理由)【考点】KY:三角形综合题.【分析】(1)由等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.(2)判定BD与CE的关系,可以根据角的大小来判定.由∠BAC=∠DAE可得∠BAD=∠CAE,进而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.(3)根据①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°(4)根据②∠BFC=∠BAC,所以∠BFC=α【解答】解:(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),(2)BD与CE相互垂直,BD=CE.由(1)知,△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,∵∠BAC=90°,∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°∴BD⊥CE.(3)由题①得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=60°,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=60°.(4)由题(1)得∠CBF+∠BCF=∠ABC+∠ACB,∵∠BAC=∠DAE=α,∴∠CBF+∠BCF=∠ABC+∠ACB,∴∠BFC=∠BAC∴∠BFC=α.。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.已知△ABC 中,AB =6,BC =4,那么边AC 的长可能是下列哪个值()A .11B .5C .2D .12.下面四个图形中,线段BE 是⊿ABC 的高的图是()A .B .C .D .3.如图,已知ABC EFG ∆≅∆,则∠α等于()A .72°B .60°C .58°D .50°4.下列图形具有稳定性的是()A .梯形B .长方形C .直角三角形D .平行四边形5.下列图形中,是轴对称图形的是()A .B .C .D .6.下列命题正确的是()A .三角形的一个外角大于任何一个内角B .三角形的三条高都在三角形内部C .三角形的一条中线将三角形分成两个三角形面积相等D .两边和其中一边的对角相等的三角形全等7.如图,若ABE ACF V V ≌,且AB =8,AE =3,则EC 的长为()A .2B .3C .5D .2.58.如图,ABC DEF ≅ ,DF 和AC ,EF 和BC 为对应边,若A 123∠=︒,F 39∠= ,则DEF ∠等于()A .18°B .20°C .39°D .123°9.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .410.如图,点C 为线段AB 上一点,△ACM 和△CBN 是等边三角形.下列结论:①AN=BM;②CE=CF;③△CEF 是等边三角形;④∠ECF=60°∘.其中正确的是()A .①B .①②C .①②③D .①②③④11.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .二、填空题12.一个三角形的三个内角的度数的比是1:2:3,这个三角形是________三角形;13.一木工师傅现有两根木条,木条的长分别为40cm 和30cm ,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm ,则x 的取值范围是_______.14.如图,Rt ABC ∆和Rt EDF ∆中,//BC DF ,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt ABC ∆和Rt EDF ∆全等.15.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的4个外角,若1234310∠+∠+∠+∠=︒,则B Ð的度数为_________.16.如图,在△ABC 中,已知点D 、E 、F 分别是边BC 、AD 、CE 上的中点,且S △ABC =4,则S △BFF =_____.17.如图,等腰三角形ABC 的底边BC 长为4,面积是18,腰AC 的垂直平分线EF 分别交AC ,周长的最小AB边于E,F点.若点D为BC边的中点,点G为线段EF上一动点,则CDG值为______.三、解答题+++-----.18.已知a,b,c为三角形三边的长,化简:a b c b c a c a b19.如图,两个三角形成轴对称,画出对称轴.20.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∆ABC关于直线l成轴对称的△AB'C';(2)以AC为边作与∆ABC全等的三角形,则可作出个三角形与∆ABC全等;(3)在直线l上找一点P,使PB+PC的长最短.21.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:AB∥DE.22.已知:如图,已知点B 、E 、F 、C 在同一直线上,AB =CD ,AE ⊥BC ,DF ⊥BC ,E ,F 是垂足,CE =BF ,求证:AB //CD .23.如图,在△ABC 中,AC =BC ,直线l 经过顶点C ,过A ,B 两点分别作l 的垂线AE ,BF ,E ,F 为垂足.AE =CF ,求证:∠ACB =90°.24.如图,△ABC 中,AB =AC ,∠BAC +∠BDC=180°.(1)求证:AD 为∠BDC 的平分线;(2)若∠DAE=12∠BAC ,且点E 在BD 上,直接写出BE 、DE 、DC 三条线段之间的等量关系_______.25.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.(问题解决)(1)如图1,若点D在边BC上,求证:CE+CF=CD;(类比探究)(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.参考答案1.B【详解】试题分析:由三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选B.考点:三角形三边关系.2.A【解析】分析:根据三角形的高的定义,过顶点向对边作垂线,顶点与垂足之间的线段为三角形的高,观察各选项直接选择答案即可.解答:解:根据三角形高线的定义,只有A 选项符合.故选A .3.A【分析】根据全等三角形的性质求解即可.【详解】∵ABC EFG ∆≅∆,∴∠ACB =∠EGF ,故72ACB α∠=∠=︒.故答案为:72︒.【点睛】本题考查了全等三角形的性质,对应边相等,对应角相等,对应线段相等,特别要注意“对应”两字.4.C【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得答案.【详解】直角三角形具有稳定性,梯形、长方形、平行四边形都不具有稳定性.故选:C【点睛】本题考查三角形的性质之一,即三角形具有稳定性,掌握三角形的这一性质是快速解题的关键.5.D【分析】根据轴对称图形的定义判断即可【详解】A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、不是轴对称图形,不合题意;D 、是轴对称图形,符合题意;故选:D .【点睛】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.6.C【分析】根据三角形的外角定理即可判断①;根据三角形的高的定义即可判断②;根据三角形中线的性质即可判断③;根据全等三角形的判定方法即可判断④,进而可得答案.【详解】解:A 、三角形的一个外角大于和它不相邻的任何一个内角,故本选项命题错误,不符合题意;B 、钝角三角形有两条高在三角形的外部,故本选项命题错误,不符合题意;C 、三角形的一条中线将三角形分成两个三角形面积相等,故本选项命题正确,符合题意;D 、两边和其中一边的对角相等的两个三角形不一定全等,故本选项命题错误,不符合题意.故选:C .【点睛】本题考查了真假命题、三角形的外角性质、中线的性质、高的定义和全等三角形的判定等知识,属于基础题型,熟练掌握基本知识是解题的关键.7.C【分析】由ABE ACF V V ≌可得,AB AC =从而利用线段的和差可得答案.【详解】解:,8ABE ACF AB = ≌,8,AB AC ∴==3,AE = 83 5.CE AC AE ∴=-=-=故选C .【点睛】本题考查的是三角形全等的性质,线段的和差,掌握以上知识是解题的关键.8.A【分析】根据全等三角形的性质求出∠D ,再用三角形的内角和定理即可求解.【详解】解:∵ABC DEF ≅ ,∴∠D=∠A=123°,又F 39∠= ,∴DEF ∠=180°-∠D-∠F=180°-123°-39°=18°,故答案为:A .【点睛】本题考查全等三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质是解答的关键.9.C【分析】根据三角形面积公式由点D 为BC 的中点得到S △ABD =S △ADC =12S △ABC =6,同理得到S △EBD =S △EDC =12S △ABD =3,则S △BEC =6,然后再由点F 为EC 的中点得到S △BEF =12S △BEC =3.【详解】解:∵点D 为BC 的中点,∴S △ABD =S △ADC =12S △ABC =6,∵点E 为AD 的中点,∴S △EBD =S △EDC =12S △ABD =3,∴S △EBC =S △EBD +S △EDC =6,∵点F 为EC 的中点,∴S △BEF =12S △BEC =3,即阴影部分的面积为3cm 2.故选:C .【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.10.D【分析】由等边三角形可得其对应线段相等,对应角相等,进而可由SAS 得到△CAN ≌△CMB ,再由△CAN ≌△CMB 可得∠CAN=∠CMB ,进而得出∠MCF=∠ACE ,由ASA 得出△CAE ≌△CMF ,即CE=CF ,又ECF=60°,所以△CEF 为等边三角形结论得以验证.【详解】解:(1)∵△ACM ,△CBN 是等边三角形,∴AC=MC ,BC=NC ,∠ACM=60°=∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB在△CAN 和△MCB 中,AC MC ACN MCB NC BC =⎧⎪∠=∠⎨⎪=⎩,∴△CAN ≌△CMB (SAS ),∴AN=BM ,①正确;∵△CAN ≌△CMB ,∴∠CAN=∠CMB ,又∵∠ECF=180°-∠ACM-∠NCB=180°-60°-60°=60°,∴∠ECF=∠ACE ,在△CAE 和△CMF 中,CAE CMF CA CM ACE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAE ≌△CMF (ASA ),∴CE=CF ,∴△CEF 为等腰三角形,又∵∠ECF=60°,∴△CEF 为等边三角形,所以②③④正确,故选:D .【点睛】本题考查了全等三角形的性质和判定及等边三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.11.B【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC、2、只有选项B的各边为1B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.12.直角【分析】依据三角形的内角和为180°,直接利用按比例分配求得最大的角,根据三角形的分类即可判断.【详解】解:3 18090123︒︒⨯=++因为三角形中有一个角是90°,所以该三角形是直角三角形;故答案为直角.【点睛】此题主要考查三角形的内角和定理以及三角形的分类方法.13.10cm<x<70cm【解析】试题分析:三角形的第三边长大于两边之差,小于两边之和,则x的取值范围为:10cm x70cm<<.14.AB ED=,答案不唯一【分析】本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC=EF或AE=CF等,只要符合全等三角形的判定定理即可.【详解】∵Rt ABC∆和Rt EDF∆中,∴90BAC DEF ∠=∠=︒,∵//BC DF ,∴DFE BCA ∠=∠,∴添加AB ED =,在Rt ABC ∆和Rt EDF ∆中DFE BCA DEF BAC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt Rt AAS ABC EDF ∆∆≌,故答案为:AB ED =答案不唯一.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理的内容是解此题的关键,注意:两直角三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL 等.15.130°【分析】根据多边形外角是360︒可求得B Ð的外角,即可得到结果.【详解】由题可得B Ð的外角=()1234360-=360-310=50︒︒︒∠+∠+∠+∠︒,∴=180-50=130B ∠︒︒︒.故答案为130︒.【点睛】本题主要考查了多边形的外角定理,准确理解外角和及邻补角的性质是解题的关键.16.1【分析】根据三角形中线的性质可得S △ABE =S △DBE =S △DCE =S △AEC =14S △ABC ,进而可根据()()12BEC DBE DCE ABD ADC S S S S S =+=+ 求出BEC S ,再利用三角形中线的性质解答即可.【详解】解:∵D 、E 分别为BC 、AD 的中点,∴S △ABE =S △DBE =S △DCE =S △AEC =14S △ABC ,∴()()11222BEC DBE DCE ABD ADC ABC S S S S S S ==+=+= ,∵F 是边CE 的中点,∴211122BEF BEC S S ==⨯= .故答案为:1.【点睛】本题考查了三角形中线的性质,属于常考题型,熟练掌握三角形的中线性质是解题的关键.17.11【分析】连接AD ,AG ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,GA=GC ,推出GC+DG=GA+DG≥AD ,故AD 的长为BG+GD 的最小值,由此即可得出结论.【详解】解:连接AD ,AG .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC•AD=12×4×AD=18,解得AD=9,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,GA=GC ,∴GC+DG=GA+DG≥AD ,∴AD 的长为CG+GD 的最小值,∴△CDM 的周长最短=(CG+GD )+CD=AD+12BC=9+12×4=9+2=11.故答案为:11.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.a+c-b【分析】根据三角形的三边关系得出a+b>c,a+c>b,再去绝对值符号,合并同类项即可.【详解】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,+-+-+--+∴原式=(a b)c b(c a)c(a b)=a+b-c-b+c+a+c-a-b=a+c-b【点睛】本题考查的是三角形的三边关系以及整式的加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.19.见解析.【分析】连接一对对应点AB,作AB的垂直平分线即可得出答案【详解】解:连接一对对应点AB,作AB的垂直平分线即可得出答案.【点睛】此题主要考查了利用轴对称设计图案,解决此类问题的关键是熟练掌握其性质,根据要求找出对应点再画图形.20.(1)见解析;(2)3;(3)见解析【分析】(1)分别作各点关于直线l 的对称点,再顺次连接即可;(2)根据勾股定理找出图形即可;(3)连接B′C 交直线l 于点P ,则P 点即为所求.【详解】(1)如图,△AB 'C '即为所求;(2)如图,△AB 1C ,△AB 2C ,△AB 3C 即为所求,故填:3;(3)如图,P 点即为所求.【点睛】本题考查的是作图−轴对称变换,熟知轴对称的性质是解答此题的关键.21.见详解.【分析】利用“HL”定理可证明ABC EDF ≅ ,由全等可得B D ∠=∠易证AB ∥DE .【详解】解: AC ⊥BD ,EF ⊥BD90,90ACB EFD ︒︒∴∠=∠= CD =BFCD CF BF CF∴+=+BC DF∴=在Rt ABC 和Rt EDF 中{BC DF AB DE==Rt ABC Rt EDF∴≅ B D∴∠=∠AB DE∴ 【点睛】本题考查了直角三角形的判定,熟练掌握直角三角形特殊的判定方法“HL”定理是解题的关键.22.见解析【分析】由AE ⊥BC ,DF ⊥BC ,得出∠AEB=∠DFC=90°,再由CE=BF ,AB=DC 得Rt △AEB ≌Rt △DFC ,即可得∠B=∠C ,即可得出结论.【详解】∵AE ⊥BC ,DF ⊥BC ,∴∠AEB=∠DFC=90°.∵BF=CE ,∴BF-EF=CE-EF ,即BE=CF ,在Rt △AEB 和Rt △DFC 中,BE CF AB DC =⎧⎨=⎩,∴Rt △AEB ≌Rt △DFC (HL ),∴∠B=∠C ,∴AB ∥CD .【点睛】本题主要考查了全等三角形的判定及性质,平行线的判定等知识;熟练掌握全等三角形的判定及性质是解决问题的关键.23.见解析【分析】根据题意易得Rt △ACE ≌Rt △CBF ,则有∠EAC =∠BCF ,然后根据等角的余角相等及领补角可求证.【详解】证明:如图,在Rt △ACE 和Rt △CBF 中,AC BC AE CF =⎧⎨=⎩,∴Rt △ACE ≌Rt △CBF (HL ),∴∠EAC =∠BCF ,∵∠EAC+∠ACE =90°,∴∠ACE+∠BCF =90°,∴∠ACB =180°﹣90°=90°.【点睛】本题主要考查直角三角形全等的判定与性质,熟练掌握三角形全等的判定条件及性质是解题的关键.24.(1)见解析;(2)DE=B E+DC.【分析】(1)过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,先证明∠BAG=∠CAF ,然后证明△BAG ≌△CAF 得到AG=AF ,最后由角平分线的判定定理即可得到结论;(2)过A 作∠CAH=∠BAE ,证明△EAD ≌△HAD ,得到AE=AH ,再证明△EAB ≌△HAC 中,即可得出BE 、DE 、DC 三条线段之间的等量关系.【详解】证明:(1)如图1,过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,∵AG ⊥BD ,AF ⊥DC ,∴∠AGD=∠F=90°,∴∠GAF+∠BDC=180°,∵∠BAC+∠BDC=180°,∴∠GAF=∠BAC ,∴∠GAF-∠GAC=∠BAC-∠GAC ,∴∠BAG=∠CAF ,在△BAG 和△CAF 中90AGB F BAG CAF AB AC⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△BAG ≌△CAF (AAS ),∴AG=AF ,∴∠BDA=∠CDA ,(2)BE 、DE 、DC 三条线段之间的等量关系是DE=B E+DC ,理由如下:如图2,过A 作∠CAH=∠BAE 交DC 的延长线于H,∵∠DAE=12∠BAC ,∴∠DAE=∠BAE+∠CAD ,∵∠CAH=∠BAE ,∴∠DAE=∠CAH+∠CAD=∠DAH ,在△EAD 和△HAD 中EAD HADAD AD ADE ADH∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EAD ≌△HAD (ASA ),∴DE=DH ,AE=AH ,在△EAB 和△HAC 中BAE CAH AE AH ⎪∠=∠⎨⎪=⎩,∴△EAB ≌△HAC (SAS ),∴BE=CH ,∴DE=DH=DC+CH=DC+BE ,∴DE=DC+BE.故答案是:DE=DC+BE.【点睛】本题考查了全等三角形的性质和判定,角平分线的判定定理,线段和差的证明,掌握截长法和补短法是解答此题的突破口.25.(1)见解析;(2)FC =CD+CE ,见解析【分析】(1)在CD 上截取CH =CE ,易证△CEH 是等边三角形,得出EH =EC =CH ,证明△DEH ≌△FEC (SAS ),得出DH =CF ,即可得出结论;(2)过D 作DG ∥AB ,交AC 的延长线于点G ,由平行线的性质易证∠GDC =∠DGC =60°,得出△GCD 为等边三角形,则DG =CD =CG ,证明△EGD ≌△FCD (SAS ),得出EG =FC ,即可得出FC =CD+CE .【详解】(1)证明:在CD 上截取CH =CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH =60°,∴△CEH 是等边三角形,∴EH =EC =CH ,∠CEH =60°,∵△DEF 是等边三角形,∴DE =FE ,∠DEF =60°,∴∠DEH+∠HEF =∠FEC+∠HEF =60°,∴∠DEH =∠FEC ,在△DEH 和△FEC 中,DEH FEC EH EC⎪∠=∠⎨⎪=⎩,∴△DEH ≌△FEC (SAS ),∴DH =CF ,∴CD =CH+DH =CE+CF ,∴CE+CF =CD ;(2)解:线段CE ,CF 与CD 之间的等量关系是FC =CD+CE ;理由如下:∵△ABC 是等边三角形,∴∠A =∠B =60°,过D 作DG ∥AB ,交AC 的延长线于点G ,如图2所示:∵GD ∥AB ,∴∠GDC =∠B =60°,∠DGC =∠A =60°,∴∠GDC =∠DGC =60°,∴△GCD 为等边三角形,∴DG =CD =CG ,∠GDC =60°,∵△EDF 为等边三角形,∴ED =DF ,∠EDF =∠GDC =60°,∴∠EDG =∠FDC ,在△EGD 和△FCD 中,ED DFEDG FDC DG CD=⎧⎪∠=∠⎨⎪=⎩,∴△EGD ≌△FCD (SAS ),∴EG =FC ,∴FC =EG =CG+CE =CD+CE .21【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.。

八年级(上)期中数学试卷答案解析版

八年级(上)期中数学试卷答案解析版

八年级(上)期中数学试卷一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.66.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120° D.150°8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:29.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;(2)添加了条件后,证明△ABC≌△EFD.21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:条条条条条.(2)一个正n边形有条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)25.(12分)如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D 点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段A E、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?参考答案与试题解析一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D说法错误;故选:D.5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.6【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.6.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120° D.150°【解答】解:∵∠A与∠B互余,∴∠A+∠B=90°,在△ABC中,∠C=180°﹣(∠A+∠B)=180°﹣90°=90°.故选:B.8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.9.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b=6.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,﹣4),∴a=4,b=2,∴a+b=6.故答案为6.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:K62897.【解答】解:实际车牌号是K62897.故答案为:K62897.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为70°或40°.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故填70°或40°.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.【解答】解:(1);(2)A′(1,5),B′(1,0),C′(4,3);(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB=5,AB边上的高为3,=.∴S△ABC18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.【解答】解:∵AB∥CD,∴∠1=∠A,∵∠A+∠1=74°,∴∠1=×74°=37°,∴∠ECD=∠1=37°,∵DE⊥AE,∴∠DEC=90°,∴∠D=90°﹣37°=53°.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.【解答】证明:在△ACB与△DCE中,∵∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BDE和△CFD中,,∴△BDE≌△CDF(AAS),∴DE=DF,∴点D在∠BAC的平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.【解答】解:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABE=∠ACD,∴∠ABC﹣∠ABE=∠ACB﹣∠ACD,∴∠PBC=∠PCB,∴PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:3条4条5条6条7条.(2)一个正n边形有n条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)【解答】解:(1)三角形有3条对称轴;正方形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正七边形有7条对称轴;正八边形有8条对称轴;(2)一个正n边形有n条对称轴;(3)①所作图形如图所示:②所作图形如图所示.故答案为:3,4,5,6,7;n.25.(12分)如图1,△ABC和△DBE中,AB=C B,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠A BE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;②线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)期中数学试卷一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.3.五边形的内角和是()A.180°B.360°C.540°D.600°4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠27.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.2812.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.16.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.17.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.参考答案与试题解析一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.五边形的内角和是()A.180°B.360°C.540°D.600°【考点】多边形内角与外角.【专题】常规题型.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°【考点】平行线的性质.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故选C.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.7.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点评】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.故选D.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=6.【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是65°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.16.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.【解答】解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.17.如图,AC=AD,BC=BD,则△ABC≌△ABD;应用的判定方法是(简写)SSS.【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS.【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形全等的判定,熟练掌握各判定定理是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.【点评】本题考查了全等三角形的判定及性质;证明两边相等时,如果这两边不在同一个三角形中,通常是证明它们所在的三角形全等来证明它们相等,是一种很重要的方法.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.【考点】全等三角形的判定.【专题】证明题.【分析】根据已知得出Rt△CEB和Rt△AED,利用HL定理得出即可.【解答】证明:∵BE⊥CD,∴∠CEB=∠AED=90°,∴在Rt△CEB和Rt△AED中,∴Rt△CEB≌Rt△AED(HL).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.【考点】作图-轴对称变换.【分析】根据关于坐标轴对称的点的坐标特点画出图形即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据OC=OD得,△ODC是等腰三角形;根据AB∥DC,得出对应角相等,求得△AOB是等腰三角形,证明最后结果.【解答】证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.【点评】本题主要考查了等腰三角形的判定和平行线的性质:两直线平行,内错角相等.。

相关文档
最新文档