实验3 典型闭环系统的阶跃响应的仿真
华南农业大学自动控制实验三典型三阶系统动态性能和稳定性分析
题 目实验三 典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期实验三 典型三阶系统动态性能和稳定性分析一、实验目的1.学习和掌握三阶系统动态性能指标的测试方法。
2.观察不同参数下典型三阶系统的阶跃响应曲线。
3. 研究典型系统参数对系统动态性能和稳定性的影响。
二、实验内容观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。
将每个典型环节的模拟电路按系统的方框图连接起来,就得到控制系统的模拟电路图。
典型三阶系统的结构图如图25所示:图25 典型三阶系统的结构图其开环传递函数为23()(1)(1)K G s S T s T s =++,其中1234K K KK T =,三阶系统的模拟电路如图26所示:题目实验三典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期图26三阶闭环系统模拟电路图模拟电路的各环节参数代入G(s)中,该电路的开环传递函数为:SSSKSSSKSG++=++=236.005.0)15.0)(11.0()(该电路的闭环传递函数为:KSSSKKSSSKS+++=+++=236.005.0)15.0)(11.0()(φ闭环系统的特征方程为:06.005.0,0)(123=+++⇒=+KSSSSG特征方程标准式:032213=+++aSaSaSa根据特征方程的系数,建立得Routh行列表为:6.005.06.06.0105.012331321131223KSKSKSSaSaaaaaSaaSaaS-⇒-为了保证系统稳定,劳斯表中的第一列的系数的符号都应相同,所以由ROUTH 稳定判据判断,得系统的临界稳定增益K=12。
⎪⎩⎪⎨⎧>>-6.005.06.0KK题目实验三典型三阶系统动态性能和稳定性分析年级专业班级组别姓名(学号)日期即:⎪⎩⎪⎨⎧<⇒>=⇒=Ω>⇒<<系统不稳定系统临界稳定系统稳定41.7KΩR12K41.7KΩR12K7.4112KKR三、实验步骤1、按照实验原理图接线,设计三阶系统的模拟电路2、改变RX的取值,利用上位机软件仿真功能,获取三阶系统各种工况阶跃响应曲线。
《自动控制原理》实验指导书
《自动控制原理》实验指导书梅雪罗益民袁启昌许必熙南京工业大学自动化学院目录实验一典型环节的模拟研究--------------------------1 实验二典型系统时域响应和稳定性-------------------10 实验三应用MATLAB进行控制系统根轨迹分析----------15 实验四应用MATLAB进行控制系统频域分析------------17 实验五控制系统校正装置设计与仿真-----------------19 实验六线性系统校正-------------------------------22 实验七线性系统的频率响应分析---------------------26 附录:TDN—ACP自动控制原理教学实验箱简介----------31实验一 典型环节的模拟研究一. 实验目的1.熟悉并掌握TD-ACC +设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。
1.比例环节 (P)A 方框图:如图1.1-1所示。
图1.1-1B 传递函数:K S Ui S Uo =)()( C 阶跃响应:)0()(≥=t Kt U O 其中 01/R R K =D 模拟电路图:如图1.1-2所示。
图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
E 理想与实际阶跃响应对照曲线:① 取R0 = 200K ;R1 = 100K 。
② 取R0 = 200K ;R1 = 200K 。
2.积分环节(I)A .方框图:如右图1.1-3所示。
图1.1-3B .传递函数:TSS Ui S Uo 1)()(=C .阶跃响应: )0(1)(≥=t t Tt Uo 其中 C R T 0=D .模拟电路图:如图1.1-4所示。
自动控制原理实验指导典型环节及其阶跃响应
%100%max ⨯-=∞∞Y Y Y σ实验一 典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。
2. 掌握控制系统时域性能指标的测量方法。
二、实验仪器1. EL-AT-III 型自动控制系统实验箱一台 2. 计算机一台 三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 时域性能指标的测量方法: 超调量Ó %:1) 启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB 线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信 正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3) 连接被测量典型环节的模拟电路。
电路的输入U1接A/D 、D/A 卡的DA1 输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
检查无误后接通电源。
4) 在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。
5) 鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。
6) 用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量: T P 与T S :利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P 与T S 。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1. 比例环节的模拟电路及其传递函数如图1-1。
典型环节与及其阶跃响应
实验一: 典型环节与及其阶跃响应一、实验目的1、掌握控制模拟实验的基本原理和一般方法。
2、掌握控制系统时域性能指标的测量方法。
二、实验仪器1、EL-AT-III 型自动控制系统实验箱一台2、计算机一台三、实验原理控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应1、比例环节的模拟电路及其传递函数G(S)= −R2/R12、惯性环节的模拟电路及其传递函数G(S)= −K/TS+1K=R2/R1T=R2C3、积分环节的模拟电路及传递函数G(S)=1/TST=RC4、微分环节的模拟电路及传递函数G(S)= −RCS5、比例+微分环节的模拟电路及传递函数G(S)= −K(TS+1)K=R2/R1T=R1C五、实验结果及分析(注:图中黄色为输入曲线、紫色为输出曲线)1、比例环节(1)模拟电路图:(2)响应曲线:2、惯性环节(1)模拟电路图:(2)响应曲线:(3)传递函数计算:实验值:X1=1029ms=1.029s=4TT=0.257sK=Y2/1000=2.017G(S)=-2.017/(0.257S+1) 理论值:G(S)=-2/(0.2S+1)结论:实验值与理论值相近。
3、积分环节(1)模拟电路图:(2)响应曲线:(3)传递函数计算:实验值:5000/(2110/2/2)=9.1G(S)=-9.1/S=-1/0.11S 理论值:G(S)=-1/0.1S结论:实验值与理论值相近。
4、微分环节(1)模拟电路图:(2)响应曲线:5、比例+微分环节(1)模拟电路图:(2)响应曲线:实验二:二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn 对系统动态性能的影响。
自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃
实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。
比例环节的模拟电路及其传递函数示图2-1。
G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。
G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。
G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。
G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。
G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。
G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。
2、启动应用程序,设置T和N。
参考值:T=0.05秒,N=200。
3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。
实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。
2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。
2、进一步学习实验仪器的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。
试用simulink仿真H(s)系统的阶跃响应 信号与系统
电子信息与电气工程系课程设计报告设计类型:课程设计\综合设计设计题目:信号系统MATLAB仿真系别:电子信息与电气工程系年级专业:09通信工程(2)学号:0905076042 0905076040学生姓名:乔宽韩丰指导教师:纪平2011 年12 月25 日信号与系统项目设计报告需求分析设计题目:试用simulink仿真H(s)系统的阶跃响应。
设计要求:分别用系统函数和系统模拟完成。
功能分析:由分析可知该系统是一个稳定的闭环系统。
所谓,闭环系统就是将输出信号全部或部分返回到系统的输入端与输入信号叠加并且具有反馈的系统叫闭环系统。
该系统又是一个稳定系统。
像这样的系统在自动控制中经常见到。
这类系统通常实现系统的自动控制,即实现自动调节,还有系统中局部单元性能发生劣化时,负反馈可使总系统的性能不发生大的变化。
例如,宇宙飞船上的恒温箱的温度自动控制装置。
由于该系统是稳定的,因此该系统的阶跃响应会最终趋向一个确定的值。
原理分析和设计原理:由阶跃函数与冲击函数的关系可知,两者在S域的关系,然后求的S(s)。
最后,用拉普拉斯逆变换可求得H(s)系统的阶跃响应S(t)。
用MATLAB的仿真系统SIMULINK仿真此系统。
系统图1计算:根据计算S(s)然后求得s(t)。
2002233121()()(56)21123()(2)(3)23由有理式的部分分式展开法可求得:12111()||(2)(3)612132()||2(3)212153()||3(2)321()(s s s s s s s S s H s ss ss s k k k S s s s s ss s s k S s ss s s k S s s s s s k S s s s s s S s s s ===-=-=-=-+=∙=+++==+++++++=∙==+++=∙==+++-=∙==+++=231356232)(3)23由拉普拉斯逆变换得:135s ()()()()623tts ss s t t et et ξξξ---=++++++-=++详细设计设计思路:因此。
(完整)系统建模与仿真习题答案(forstudents)
第一章习题1-1什么是仿真?它所遵循的基本原则是什么?答:仿真是建立在控制理论,相似理论,信息处理技术和计算技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识,统计数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学。
它所遵循的基本原则是相似原理。
1-2在系统分析与设计中仿真法与解析法有何区别?各有什么特点?答:解析法就是运用已掌握的理论知识对控制系统进行理论上的分析,计算。
它是一种纯物理意义上的实验分析方法,在对系统的认识过程中具有普遍意义。
由于受到理论的不完善性以及对事物认识的不全面性等因素的影响,其应用往往有很大局限性.仿真法基于相似原理,是在模型上所进行的系统性能分析与研究的实验方法.1-3数字仿真包括那几个要素?其关系如何?答: 通常情况下,数字仿真实验包括三个基本要素,即实际系统,数学模型与计算机。
由图可见,将实际系统抽象为数学模型,称之为一次模型化,它还涉及到系统辨识技术问题,统称为建模问题;将数学模型转化为可在计算机上运行的仿真模型,称之为二次模型化,这涉及到仿真技术问题,统称为仿真实验.1—4为什么说模拟仿真较数字仿真精度低?其优点如何?.答:由于受到电路元件精度的制约和容易受到外界的干扰,模拟仿真较数字仿真精度低但模拟仿真具有如下优点:(1)描述连续的物理系统的动态过程比较自然和逼真。
(2)仿真速度极快,失真小,结果可信度高。
(3)能快速求解微分方程.模拟计算机运行时各运算器是并行工作的,模拟机的解题速度与原系统的复杂程度无关.(4)可以灵活设置仿真试验的时间标尺,既可以进行实时仿真,也可以进行非实时仿真.(5)易于和实物相连。
1-5什么是CAD技术?控制系统CAD可解决那些问题?答:CAD技术,即计算机辅助设计(Computer Aided Design),是将计算机高速而精确的计算能力,大容量存储和处理数据的能力与设计者的综合分析,逻辑判断以及创造性思维结合起来,用以加快设计进程,缩短设计周期,提高设计质量的技术.控制系统CAD可以解决以频域法为主要内容的经典控制理论和以时域法为主要内容的现代控制理论。
控制工程实验报告
Hefei University of Technology《控制工程基础》实验报告学院机械与汽车工程学院姓名学号专业班级机械设计制造及其自动化13-7班2015年12月15日自动控制原理实验• 1、线性系统的时域分析• 1.1典型环节的模拟研究一、实验要求1、掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2、观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
二、实验原理(典型环节的方块图及传递函数)三、实验内容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。
如果选用虚拟示波器,只要运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究实验项目,再选择开始实验,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分。
1) 观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
该环节在A1单元中分别选取反馈电阻R1=100K 、200K 来改变比例参数。
图3-1-1 典型比例环节模拟电路实验步骤: 注:“SST ”不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V 作为系统的信号输入(Ui ) (2)安置短路套、联线,构造模拟电路:(a(b(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A6单元信号输出端OUT (Uo )。
注:CH1选“X1”档。
时间量程选“x4”档。
(4)运行、观察、记录:按下信号发生器(B1)阶跃信号按钮时(0→+5V 阶跃),用示波器观测A6输出端(Uo )的实际响应曲线Uo (t ),且将结果记下。
改变比例参数(改变运算模拟单元A1的反馈电阻R1),重新观测结果,其实际阶跃响应曲线见表3-1-1。
2) 观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-2所示。
自动控制理论实验指导书(仿真).详解
实验一典型环节的MATLAB仿真Experiment 1 MATLAB simulation of typical link一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
实验三-三阶系统的阶跃响应及稳定性分析实验
实验三 三阶系统的阶跃响应及稳定性分析实验一、 实验目的1、 熟悉三阶模拟系统的组成。
2、 研究三阶系统的阶跃响应,并观测其开环增益K 对三阶系统的动态性能的影响。
3、 学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。
二、 实验内容观察典型三阶系统的阶跃响应,测出系统的超调量和调节时间,并研究其参数变化对系统动态性能及稳定性的影响。
三、 实验仪器1、 ZY17AutoC12BB 自动控制原理实验箱。
2、 双踪低频慢扫描示波器。
3、 数字万用表。
四、 实验原理典型三阶系统的方块结构图如图3.1所示:其开环传递函数为()()()1121++=S T S T S K S G ,其中021T K K K =。
取三阶系统的模拟电路如图3.2所示。
该系统开环传递函数为()()()()15.011.0++=S S S K S H S G,其中x R K 500=,Rx 的单位为K Ω.系统特征方程为K s s s 20201223+++,根据劳斯判据得到:系统稳定0<K<12系统临时稳定K=12系统不稳定K>12根据K可求取Rx,改变Rx即可实现三种典型的实验。
该系统的阶跃响应图如所示,图3.3.1,图3.3.2和图3.3.3分别对应于系统处于稳定,临界稳定和不稳定的三种情况。
五、实验步骤1、利用实验仪器,按照实验原理设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路。
此实验可使用运放单元(一)、(二)、(三)、(五)、(六)及元器件单元中的电容和可调电阻。
(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V-----+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。
(2)按照图3.2连接好电路,按下电路中所用到的运放单元的按键开关。
(3)用导线将连接好的模拟电路的输入端与T006相连接,电路的输出端与示波器相连接。
自动控制原理实验报告
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
第三章实验 典型系统的时域响应和稳定性分析
典型系统的时域响应和稳定性分析一、 实验目的1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。
4. 学习用电路系统研究一般控制系统的仿真实验方法二、 实验设备PC 机一台,Matlab ,Multisim (或PSpice)。
三、 实验原理及内容1.典型的二阶系统稳定性分析 (1) 结构框图:见图2-1图2-1(2) 对应的模拟电路图图2-2(3) 理论分析系统开环传递函数为:)1S T (S T K )1S T (S T K )S (G 101101+=+=;开环增益01T K K =。
(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图2-2),s 1T 0=, s T 2.01=,R 200K 1= R 200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ。
2.典型的三阶系统稳定性分析 (1) 结构框图图2-3(2) 模拟电路图图2-4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。
(4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 (-5K/3)+20 0S 0 20K 0为了保证系统稳定,第一列各值应为正数,所以有 ⎪⎩⎪⎨⎧>>+-0K 20020K 35得: 0 < K < 12 ⇒ R > 41.7KΩ 系统稳定K = 12 ⇒ R = 41.7KΩ 系统临界稳定 K > 12 ⇒ R < 41.7KΩ 系统不稳定四、 实验步骤1. 实验中阶跃信号幅值为1V 左右。
自动控制原理实验报告
⾃动控制原理实验报告实验⼀典型环节的模拟研究及阶跃响应分析1、⽐例环节可知⽐例环节的传递函数为⼀个常数:当Kp 分别为0.5,1,2时,输⼊幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满⾜理论值。
2、积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1µf (0.33µf ),利⽤MATLAB ,模拟阶跃信号输⼊下的输出信号如图: T=0.1 T=0.033与实验测得波形⽐较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满⾜理论条件。
3、惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K=R f /R 1,T=R f C,(1)保持K=R f /R 1=1不变,观测T= 0.1秒,0.01秒(既R 1=100K,C=1µf ,0.1µf )时的输出波形。
利⽤matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较⼩,所以读数时误差较⼤。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2)保持T=R f C= 0.1s 不变,分别观测K=1,2时的输出波形。
控制系统阶跃响应与脉冲响应实验
电子信息工程学系实验报告实验项目名称:控制系统阶跃响应与脉冲响应实验实验目的:(1)观察学习控制系统的单位阶跃响应和单位脉冲响应(2)记录单位阶跃响应和单位脉冲响应曲线(3)掌握时间响应分析的一般方法实验环境:Matlab7.1软件实验内容及过程:1、实验内容:已知二阶系统:(1)建立系统模型,观察阶跃响应曲线和单位脉冲响应,并计算系统的闭环根、阻尼比,无阻尼振荡频率,并作记录。
(2)修改参数,分别实验ξ=1,ξ=2的响应曲线,并作记录。
2、实验步骤:(1)运行MATLAB;(2)建立系统模型1)传递函数模型TF2)ZPK模型3)MATLAB的阶跃响应函数3、实验要求:(1)分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应和脉冲响应的影响;(2)分析响应曲线的零初值、非零初值与系统模型的关系;(3)分析响应曲线的稳态值与系统模型的关系;(4)分析系统零点对阶跃响应曲线和单位脉冲响应曲线的影响;实验结果及分析:1、阶跃曲线(step)与脉冲曲线(impulse),三组图分别当ξ=sqrt(10)/10,ξ=1,ξ=2的响应曲线:图1 不同ξ系统响应曲线下面是三种情况下的系统的闭环根、阻尼比,无阻尼振荡频率的结果:Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-1.00e+000 + 3.00e+000i 3.16e-001 3.16e+000-1.00e+000 - 3.00e+000i 3.16e-001 3.16e+000Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-3.16e+000 1.00e+000 3.16e+000-3.16e+000 1.00e+000 3.16e+000Eigenvalue(闭环跟) Damping(阻尼比) Freq. (rad/s)(无阻尼振荡频率)-8.47e-001 1.00e+000 8.47e-001-1.18e+001 1.00e+000 1.18e+0012、实验结果分析(1)分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应和脉冲响应的影响;系统的阻尼比(0<ζ<1)越大,其阶跃响应超调量越小,上升时间越长;系统的阻尼比ζ决定了其振荡特性:0<ζ<1时,有振荡,ζ>1 时,无振荡、无超调,阶跃响应非周期趋于稳态输出。
自控实验-自动控制系统的MATLAB仿真分析
实验名称:自动控制系统的MATLAB仿真分析一、实验目的1.熟悉MATLAB在自动控制系统仿真中的应用;2.对自动控制系统进行仿真研究;3.掌握用MATLAB绘制自动控制系统根轨迹及对数频率特性的方法,掌握根据系统根轨迹及对数频率特性分析自动控制系统性能的方法。
二、实验设备1.计算机2.MATLAB软件三、实验内容1.用MATLAB提供的Simulink仿真软件工具对实验一中的各个典型环节及二阶系统进行阶跃响应仿真研究,将仿真获得的阶跃响应结果与模拟电路获得的阶跃响应结果进行比较。
(1)比例环节传递函数为200 ()51 G s=建立仿真模型,得到的输出结果如图所示:(2)积分环节传递函数为9.8 ()G ss=建立仿真模型,得到的输出结果如图所示:(3)一阶惯性环节传递函数为3.9 ()0.21G ss=+建立仿真模型,得到的输出结果如图所示:(4)比例积分环节传递函数为0.39781 ()0.102sG ss+=建立仿真模型,得到的输出结果如图所示:(5)比例微分环节传递函数为10 ()220s G ss=++建立仿真模型,得到的输出结果如图所示:(6)比例微分积分环节传递函数为51050 ()220sG ss s+=+++建立仿真模型,得到的输出结果如图所示:(7) 二阶系统的阶跃响应 ①0.325K ξ==传递函数为2()250()10250C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:②0.510K ξ==传递函数为2()100()10100C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:③0.75K ξ==传递函数为2()50()1050C s R s s s =++ 建立的仿真模型与阶跃响应仿真波形如下图所示:2. 单位负反馈系统的开环传递函数为:(1)()()(21)k s G s H s s s +=+仿真绘制K 从0~∞变化时的根轨迹,分析系统的稳定性。
自动控制原理试验3_线性系统校正
实验三线性系统校正一、实验目的1.利用Z-N临界增益法则,初步调节PID控制器参数。
2.设计串联校正环节,使整个系统指标满足要求(附加题)。
二、实验内容与步骤1. 已知阀控缸电液位置伺服系统开环传递函数为用Z-N临界增益法则,设计串联PID控制器参数,对比校正前后闭环系统阶跃响应指标及幅频特性的变化。
试验步骤:(1)利用simulink构建闭环系统模型。
(2)构建P控制器(见图1),找出系统的临界稳定增益Kc,记录Kc值,并根据示波器Scope的图形求得系统临界稳定时的振荡周期Tc(见图2)。
图1 带有P控制器的系统模型(3)依据Z-N临界增益法(见图3),确定PID控制器参数图2 临界振荡阶跃响应曲线图3 Z-N临界增益法(4)构建PID控制器,测试校正后系统的阶跃响应。
2. 已知单位负反馈系统开环传递函数为设计串联校正环节,使系统的相角裕度不小于30度,wc不低于30rad/s。
试验步骤:(1) 写出校正后整个系统的传递函数()ysxs s s s G +++='1115.0100)(。
(2) 令30)(180,1)(=+=='c c G ωϕγω,用solve 函数解二元一次方程组。
(3) 校验:将得出的x 、y 值代入)(s G '中,验证相角裕度及幅值裕度是否满足要求。
sqrt 函数举例:21x + matlab: sqrt(1+x^2)atan 函数举例:u arctg matlab: atan(u)solve 函数举例:求()()()ys s xs G +++=111100剪切频率为20rad/s ,相角裕度为20º时的x 、y 值。
[x y]=solve(‘方程1’,’方程2’)方程1:()()1201201201100)20(222=+++=y x j G .matlab :100*sqrt(1+(x*20)^2)/(sqrt(1+20^2)*sqrt(1+(y*20)^2))=1方程2:20)20()20()20(18020)(180=--+⇒=+=y arctg arctg x arctg c ωϕγmatlab :180+atan(x*20)*180/3.1416-atan(20)*180/3.1416-atan(y*20)*180/3.1416=20 运行后,结果为x=0.005, y=0.246.验证:()()()s s s G 246.011005.01100+++= matlab: num=[100*0.005 100];den=conv([1 1],[0.246 1]);sys=tf(num,den);margin(sys); 可知,此时系统剪切频率为20rad/s ,相角裕度为20.1º。
自动控制原理MATLAB仿真实验指导书(4个实验)
自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。
2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。
图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。
2)改变模块参数。
在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math”右边窗口“Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。
MATLAB实验讲解-闭环系统的阶跃响应
实验一讲解3、典型二阶系统得闭环传递函数如下:222()2n n nG s s s ϖξϖϖ=++设定阻尼比(0,0.4,1,4)ξ=,无阻尼自然振荡频率1n ϖ=,t 取值为0~18间隔步长为2,绘制二阶系统在这些阻尼比取值下的各单位阶跃响应曲线。
图形上标注图形标题“二阶系统在不同阻尼比取值下单位阶跃响应曲线” 坐标说明:x 轴为“时间t ”,y 轴为“幅值y(t)”。
12345678910-3-2.5-2-1.5-1-0.50.511.52二阶系统在不同阻尼比取值下的单位阶跃响应曲线时间t幅值y (t )024681012141618-10-8-6-4-22二阶系统在不同阻尼比取值下的单位阶跃响应曲线时间t幅值y (t )5、考虑一个三阶对象模型:31()(1)G s s =+,研究采用P 控制策略下闭环系统的阶跃响应。
其中:P :比例增益p K 取值从0.2~2变化,变化增益为0.6。
注意:在阶跃响应曲线上分别标注变化值的最小值和最大值。
0246810121416180.10.20.30.40.50.60.70.80.9Step response时间t (sec)幅值y (t )0246810121416180.20.40.60.811.21.41.61.82Step response时间t (sec)幅值y (t )024681012141618200.20.40.60.811.21.41.6Step response时间t (sec)幅值y (t )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3 典型闭环系统的阶跃响应的仿真
一、实验目的
1. 了解MATLAB 在仿真中的具体应用
2. 熟悉MATLAB 语言环境
3. 掌握M 文件的应用
二、实验步骤
1. 对控制系统的典型结构形式二次模型化,经一定方式把数学模型转化为便于在计算
机上运行的表达形式。
2. 讨论采用数值积分法求解系统响应的仿真程序实现,绘制仿真框图。
x 0t f
t j
k 1
1,++k k y x f
t t =图3-1 典型闭环系统的仿真程序框图
3.编写MATLAB程序语句,实现对典型闭环系统的阶跃响应的仿真
Filename:sa.m
1)输入数据
a=[a0,a1,…,an]; %% n+1维分母系数向量
b=[b0,b1,…,bm]; %% m+1维分子系数向量
X0=[x0,x1,…,xn]; %% 状态向量初值
V=V0; %% 反馈系数
n=n0; %% 系统阶次
T0=t0; %% 起始时间
Tf=tf; %% 终止时间
h=h0; %% 计算步长
R=r; %% 阶跃输入函数的幅值
2)形成开、闭环系数阵
b=b/a(1);
a=a/a(1);
A=a(2:n+1); %% 首一化处理
A=[rot90(rot90(eye(n-1,n)));-fliplr(A)]; %%形成能控标准型A阵
B=[zeros(1,n-1),1]'; %%形成输入阵B
m1=length(b); %%分子向量维数M+1
C=[fliplr(b),zeros(1,n-m1)]; %%形成输出阵C
Ab=A-B*C*V; %%形成闭环系数阵
X=X0';
y=0;
t=T0; %%设初值,准备开始递推运算
3)运算求解
N=round(Tf-T0)/h; %%确定输出点数
for i=1:N %%四阶龙格-库塔法
K1=Ab*X+B*R;
K2=Ab*(X+h*K1/2)+B*R;
K3=Ab*(X+h*K2/2)+B*R;
K4=Ab*(X+h*K3)+B*R; %%求各次斜率K
X=X+h*(K1+2*K2+2*K3+K4)/6; %%求状态
y=[y,C*X]; %%求输出并以向量形式保存
t=[t,t(i)+h];
end
4) 输出结果
[t',y'] %% 输出数据形式的结果
plot(t,y,'g:') %%输出曲线形式的结果
具体应用:根据以上所述,求图5-2所示系统的阶跃响应y(t)的数值解。
图3-2 控制系统结构图
此系统结构形式为典型闭环控制系统,用sa.m求解过程如下:
1)取开环放大系数=1,反馈系数=1(单位反馈系统),阶跃输入幅值=1.
2)利用MATLAB语言的卷积函数功能,先将系统开环传递函数化成传递函数形式的分
母、分子多项式形式系数向量.
3)设置系统状态向量初值均为0.
4)系统运行参数.
5)按以上步骤和参数,在MATLAB环境下,输入以下命令语句(>>表示在MATLAB命令窗
口环境).
>> k=1; %% K为斜率
>>a=conv([1 0 0],conv([0.25 1],[0.25 1]));
>>b=[2*k k];
>>X0=[0 0 0 0]; %%状态向量初值
>>V=1; %%反馈系数
>>n=4; %%系统阶次
>>T0=0; %%起始时间
>>Tf=10; %%终止时间
>>h=0.25; %%计算步长
>>R=1; %%阶跃输入函数的幅值
>>sa.m
>>[t',y'] %% 输出数据形式的结果
由上述MATLAB程序语句实现对典型闭环系统的阶跃响应的仿真,当斜率k与反馈系数v取不同的值时,得到不同的阶跃响应曲线,对系统进行分析。
这里给出了斜率k取不同值而反馈系数v不变时的仿真曲线。
本实验的仿真结果也可由图5-3所示的M文件得到。
图3-3 阶跃响应M程序文件
表1 K=1时的输出响应数据
t y(t) t y(t) t y(t) t y(t) 0.2500 0.0447 2.7500 1.0619 5.2500 1.0776 7.7500 1.0043 0.5000 0.2779 3.0000 0.9399 5.5000 1.0589 8.0000 1.0095
0.7500 0.6392 3.2500 0.8715 5.7500 1.0345 8.2500 1.0118
1.0000 1.0237 3.5000 0.8563 6.0000 1.0106 8.5000 1.0113 1.2500 1.3410 3.7500 0.8826 6.2500 0.9919 8.7500 1.0088 1.5000 1.5361 4.0000 0.9333 6.5000 0.9809 9.0000 1.0053
1.7500 1.5944 4.2500 0.9905 6.7500 0.9778 9.2500 1.0018
2.0000 1.5342 4.5000 1.0397 7.0000 0.9811 9.5000 0.9990 2.2500 1.3950 4.7500 1.0718 7.2500 0.9883 9.7500 0.9972 2.5000 1.2235 5.0000 1.0837 7.5000 0.9968 10.0000 0.9966
表2 K=0.5时的输出响应数据
t y(t) t y(t) t y(t) t y(t) 0.2500 0.0221 2.7500 1.4661 5.2500 1.0011 7.7500 0.9791 0.5000 0.1410 3.0000 1.4508 5.5000 0.97708.0000 0.9860
0.7500 0.3342 3.2500 1.4140 5.7500 0.96068.2500 0.9920
1.0000 0.5631 3.5000 1.3626 6.0000 0.95108.5000 0.9970 1.2500 0.7948 3.7500 1.3030 6.2500 0.94708.7500 1.0010 1.5000 1.0055 4.0000 1.2406 6.5000 0.94749.0000 1.0038
1.7500 1.1809 4.2500 1.1798 6.7500 0.95109.2500 1.0058
2.0000 1.3141 4.5000 1.12377.0000 0.95699.5000 1.0068 2.2500 1.4038 4.7500 1.07457.2500 0.96409.7500 1.0072 2.5000 1.4527 5.0000 1.03357.5000 0.971610.0000 1.0070
表2 K=0.2时的输出响应数据
t y(t) t y(t) t y(t) t y(t) 0.2500 0.0089 2.7500 1.0137 5.2500 1.48857.7500 1.2493 0.5000 0.0569 3.0000 1.1031 5.5000 1.4874 8.0000 1.2110
0.7500 0.1372 3.2500 1.1837 5.7500 1.4792 8.2500 1.1728
1.0000 0.2381 3.5000 1.2549 6.0000 1.4648 8.5000 1.1352 1.2500 0.3502 3.7500 1.3166 6.2500 1.4447 8.7500 1.0987 1.5000 0.4673 4.0000 1.3685 6.5000 1.4198 9.0000 1.0638
1.7500 0.5849 4.2500 1.4108 6.7500 1.3909 9.2500 1.0309
2.0000 0.7003 4.5000 1.4435 7.0000 1.3586 9.5000 1.0003 2.2500 0.8112 4.7500 1.4671 7.2500 1.3238 9.7500 0.9722 2.5000 0.9161 5.0000 1.4819 7.5000 1.2871 10.0000 0.9468
图3-4 输出y(t)的阶跃响应曲线
四、结论
1.若要分析开环放大系数k、反馈系数v的影响作用,只需分别对k、v重新
赋值,其余参数不变,再次运行sa.m即可。
2.图3中示出了k取不同值时输出响应y(t)的曲线.由所示的曲线清楚的看
到k增大使系统的震荡加剧,甚至可能造成不稳定;而k减小将对系统快速
性和稳定精度有很大的影响。