PCB布局设计规范-制造部

合集下载

PCB布线设计规范精选全文

PCB布线设计规范精选全文

可编辑修改精选全文完整版印制电路板设计规范一、适用范围该设计规范适用于常用的各种数字和模拟电路设计。

对于特殊要求的,尤其射频和特殊模拟电路设计的需量行考虑。

应用设计软件为Protel99SE。

也适用于DXP Design软件或其他设计软件。

二、参考标准GB 4588.3—88 印制电路板设计和使用Q/DKBA—Y004—1999 华为公司内部印制电路板CAD工艺设计规范三、专业术语1.PCB(Print circuit Board): 印制电路板2.原理图(SCH图):电路原理图,用来设计绘制,表达硬件电路之间各种器件之间的连接关系图。

3.网络表(NetList表):由原理图自动生成的,用来表达器件电气连接的关系文件。

四、规范目的1.规范规定了公司PCB的设计流程和设计原则,为后续PCB设计提供了设计参考依据。

2.提高PCB设计质量和设计效率,减小调试中出现的各种问题,增加电路设计的稳定性。

3.提高了PCB设计的管理系统性,增加了设计的可读性,以及后续维护的便捷性。

4.公司正在整体系统设计变革中,后续需要自主研发大量电路板,合理的PCB设计流程和规范对于后续工作的开展具有十分重要的意义。

五、SCH图设计5.1 命名工作命名工作按照下表进行统一命名,以方便后续设计文档构成和网络表的生成。

有些特殊器件,没有归类的,可以根据需求选择其英文首字母作为统一命名。

对于元器件的功能具体描述,可以在Lib Ref中进行描述。

例如:元器件为按键,命名为U100,在Lib Ref中描述为KEY。

这样使得整个原理图更加清晰,功能明确。

5.2 封装确定元器件封装选择的宗旨是1. 常用性。

选择常用封装类型,不要选择同一款不常用封装类型,方便元器件购买,价格也较有优势。

2. 确定性。

封装的确定应该根据原理图上所标示的封装尺寸检查确认,最好是购买实物后确认封装。

3. 需要性。

封装的确定是根据实际需要确定的。

总体来说,贴片器件占空间小,但是价格贵,制板相同面积成本高,某些场合下不适用。

PCB可制造性设计工艺规范

PCB可制造性设计工艺规范

PCB可制造性设计工艺规范PCB(Printed Circuit Board,印刷电路板)是电子产品中非常常见的一部分。

它是由一种基层材料(通常是玻璃纤维增强复合材料)和通过印刷或压合技术固定在基层上的导电层构成的。

PCB可制造性设计工艺规范是一系列准则和要求,用于确保PCB的设计在生产制造过程中能够达到高质量和可重复性。

首先,对于PCB可制造性设计工艺规范来说,一个重要的方面是布局和布线。

布局指的是元件在PCB上的位置和排列方式,而布线则是指通过导线将元件连接在一起。

在布局方面,应该根据电路的需求和元件的特性进行合理的布局,避免不必要的干扰和噪音。

在布线方面,应该注意导线的长度、走线的宽度和间距,以及阻抗匹配和传输速率等因素。

其次,PCB可制造性设计工艺规范还包括了对于孔的规定。

在PCB制造过程中,通常需要在板上打孔以安装元件。

对于孔的规定,包括孔的类型(如贴片孔、通孔等)、孔的直径和位置等。

这些规定需要考虑到元件的尺寸和安装的要求,以及后续的焊接和连接等操作。

此外,在PCB可制造性设计工艺规范中还包括了对于焊盘和焊接的要求。

焊盘是指用于连接元件和导线的金属圆盘。

对于焊盘的规定,包括焊盘的形状、尺寸和间距等。

而对于焊接的要求,包括焊接的方法、焊点的形状和强度等。

这些规定需要考虑到焊接工艺的可行性和可靠性,以及后续的维修和升级等操作。

最后,PCB可制造性设计工艺规范还应该包括对于阻焊和丝印的要求。

阻焊是一种覆盖在PCB表面的绝缘材料,用于保护导线和焊盘不受外界环境的影响。

对于阻焊的规定,包括阻焊的类型、颜色和厚度等。

丝印则是一种印刷在PCB表面的文字和标记,用于标识元件和线路的位置和功能。

对于丝印的规定,包括丝印的颜色、位置和字体等。

总的来说,PCB可制造性设计工艺规范是为了确保PCB在生产制造过程中能够达到高质量和可重复性而制定的一系列准则和要求。

这些准则和要求涵盖了PCB布局和布线、孔的规定、焊盘和焊接的要求,以及阻焊和丝印等方面。

PCB布线设计规范

PCB布线设计规范

PCB布线设计规范1.布局规范-尽量使信号线、电源线和地线的路径尽量短,减少信号传输时的延迟和干扰;-对于高速信号线,要注意并配备相应的阻抗控制;-尽量减少信号线和电源线之间的交叉和平行布线,以减少互相的干扰;-分区布局原则:按照信号的类型和频率,将电路板分为数字区和模拟区,并分别进行布局,以避免数字信号对模拟信号造成的干扰;-合理安排组件的位置,将频繁使用的器件放置在靠近接口或者外部连接器的位置,以减少信号传输距离。

2.信号布线规范-保持信号线的间距:对于高速信号线,要保持足够的间距,以减少串扰和互相干扰;-避免信号线与电源线的平行布线:电源线会产生较强的磁场,容易干扰信号线;-保持信号线的长度一致性:保持同一信号线的长度一致,以减少信号传输时间的差异。

3.电源布线规范-电源线和地线的布线要尽量平衡:同时布线电源线和地线,减少共模噪声的产生;-电源线和地线要和信号线分离布线,以减少干扰。

4.地线布线规范-多使用地平面层:可以在PCB设计中增加地平面层,减少地线的阻抗,提高抗干扰能力;-分离数字地和模拟地:对于模拟信号和数字信号同时存在的电路板,应该将数字地和模拟地分离,并通过合适的连接方式进行连接,以减少相互之间的干扰。

5.未布线信号处理-对于未布线的信号,要进行正确的终端处理,防止信号反射。

6.PCB布线工具-使用合适的PCB设计软件进行布线设计,提高设计效率;-在布线前可以使用仿真工具进行预布线分析,优化设计。

以上是常见的PCB布线设计规范,通过遵循这些规范,可以提高电路板的抗干扰能力和可靠性,确保电路正常工作。

值得注意的是,具体的规范要根据实际设计需求和电路特性进行调整和优化。

PCB电路板PCB设计规范

PCB电路板PCB设计规范

PCB电路板PCB设计规范1.尺寸和形状:根据电路板应用和要求确定尺寸和形状,确保能够容纳所有的组件并符合外形要求。

在设计过程中要考虑PCB的弯曲、挤压等因素,应保持板面较为平整。

2.布线规范:合理规划布线,使布线路径尽量短,减小电阻和干扰。

应避免线路交叉和平行,减少串扰和阻抗不匹配。

同时,应根据不同信号的特性分开布线,如模拟信号、数字信号和高频信号。

3.引脚布局:根据电路板上的组件情况,合理安排引脚位置和布局,以便于布线和检修。

引脚布局应尽量避免互相干扰,减少电磁辐射和串扰。

4.电源和接地:电源和接地是电路板的重要部分,应合理规划电源和接地的位置和路径,确保电源供应稳定和接地可靠。

同时,应避免电源和接地回路交叉、干扰。

5.差分信号设计:对于差分信号,对应的差分线应该保持相同的长度和距离,并且相对地和其他信号线隔离,以保证信号的传输质量。

6.阻抗控制:对于高频信号和差分信号,需要控制PCB的阻抗以保证信号的传输质量。

通过合理布线、选用合适的线宽和间距等方式来控制阻抗。

7.信号层分布:不同信号应分配在不同的信号层上,以减少串扰和互相影响。

如分离模拟信号和数字信号的层,使其相互独立。

8.过孔和焊盘:过孔和焊盘是PCB上的重要部分,需要合理设计和布局,以便于焊接和连接。

过孔应根据设计要求确定尺寸和孔径,焊盘应采用适当的尺寸和形状。

9.元件布局:在布局元件时,应合理安排元件的位置和间距,以便于布线和散热。

同时,要注意元件的方向和引脚位置,以方便组装和检修。

10.标记和说明:在PCB上标注元件的名称、值和引脚功能,以便于使用和维护。

同时,在PCB设计文件中提供详细的说明和注释,方便其他人理解和修改。

总之,PCB设计规范是确保PCB电路板设计的合理性、可靠性和可制造性的重要标准和方法。

通过遵循相关规范,可以有效提高电路板的性能和可靠性,减少故障和制造成本。

PCB可制造性设计规范

PCB可制造性设计规范

PCB可制造性设计规范PCB (Printed Circuit Board)的制造性设计规范是指在设计和布局PCB电路板时所需考虑的一系列规范和标准,以确保电路板的制造过程顺利进行并获得可靠性和性能。

一、尺寸规范1.PCB电路板的尺寸要符合制造商的要求,包括最小尺寸、最大尺寸和板上零部件之间的间距。

2.确保电路板的边缘清晰、平整,并防止零部件或钳具与电路板边缘重叠。

二、层规范1.根据设计要求确定所需的层次和层的数量,确保原理图和布局文件的一致性。

2.定义PCB的地平面层、电源层、信号层和垫层、焊盘层等的位置和规格。

三、元件布局规范1. 合理布局元件,以最小化路径长度和EMI (Electromagnetic Interference),提高电路的可靠性和性能。

2.避免元件之间的相互干扰和干涉,确保元件之间有足够的间距,以便于焊接工序和维修。

四、接线规范1.线路走向应简洁、直接,避免交叉和环形走线。

2.确保信号和电源线路之间的隔离,并使用正确的引脚布局和接线技术。

五、电路可靠性规范1.选择适当的层次和厚度,以确保足够强度和刚度。

2.确保电路板表面和感应部件光滑,以防止划伤和损坏。

六、焊接规范1.在设计中使用标准的焊盘尺寸和间距,以方便后续的手工或自动焊接。

2.制定适当的焊盘和焊缺陷防范措施,以最小化焊接问题的发生。

七、标准规范1. 遵循IPC (Institute for Interconnecting and Packaging Electronic Circuits)标准,以确保PCB的制造符合国际标准。

2.正确标注和命名电路板上的元件和信号,以方便生产和测试。

八、生产文件和图纸规范1.提供准确和详细的生产文件和图纸,包括层叠图、金属化孔、引线表和拼图图等。

2.确保文件和图纸的易读性和可修改性。

九、封装规范1.选择适当的封装类型和尺寸,以满足电路板的要求。

2.避免使用不常见或过于复杂的封装,以确保可靠的元件焊接和连接。

PCB标准设计规范-1

PCB标准设计规范-1

■P CB的材質有電木板,玻璃纖維板和半玻璃纖維板等●電木板一般僅僅用在單面板●玻璃纖維板是用環氧樹脂+玻璃纖維布+銅皮壓制而成。

主要用于雙面板,代表性的有FR4。

●半玻璃纖維板是用環氧樹脂+玻璃纖維布+短纖+銅皮壓制而成。

主要用于雙面板,代表性的有CM-1,CM-3。

玻璃纖維板和半玻璃纖維板約有90%的產量用于雙面板。

●目前本公司使用的主要是玻璃纖維板和半玻璃纖維板,分別為FR4和CM-3,其它還有陶瓷,金屬基板,因本公司尚未使用到,在此不再贅述,后面的內容也將只針對FR4和CM-3兩种材質講述。

■P CB基板(覆銅板)的一般規格及標注方式●PCB的厚度常用規格有0.3,0.4,0.5,0.6,0.8,1.0,1.2,1.6,2.0,2.5,3.0,3.2mm等(其中厚度為1.6mm 的PCB大約占所有PCB產量的95%),一般標注為T=??mm(T為THICKNESS的縮寫)。

厚度為1OZ(盎司)/平方英尺,一盎司=28.35克,,根据銅的密度可計算出1OZ/平方英尺銅箔厚度=0.0014”=0.035mm,一邊標0為單面板。

⏹●PCB的表面處理方式有很多种,本公司主要使用的有松香板,單面噴錫板,鍍金板。

●松香板為一低成本的PCB加工方式,它只是將加工好的PCB經過微蝕刻后噴上一層松香,以防止銅箔氧化,一般只用在單面板的加工上。

目前本公司的部分血壓計及一些GP的產品有用到。

●單面噴錫板是為了提高PCB的焊接性能,將加工好的PCB經過噴錫工藝流程處理,其焊接效果比松香板有明顯得提升。

目前單面噴錫板在本公司主要應用在部分血壓計及一些GP的產品上。

●鍍金板實際上是鍍鎳鍍金板,它又有鍍軟鎳軟金和鍍硬鎳硬金之分。

鍍軟鎳軟金其電鍍用的是氨基磺酸鎳系列電鍍液,鎳的鍍層是塊狀結晶,有無數的孔隙,比較适合打線作業。

鎳的鍍層一般要求150u”(3.8um)以上,金的鍍層一般要求1-3u”(0.025~0.075um)以上。

PCB设计规范DOC

PCB设计规范DOC

PCB设计规范DOC1.PCB尺寸和形状:PCB尺寸应根据实际应用需求进行合理选择。

在进行PCB布局时,应根据特定需求确定PCB的形状,边缘应呈规整的矩形或圆角矩形。

2.PCB层次和层数:根据设计需求,合理选择PCB的层数,常见的有单层、双层和多层PCB。

根据信号完整性要求,可在多层PCB中加入地层和电源层,提高抗干扰能力和信号传输质量。

3.线宽和线距:合理选择线宽和线距对于PCB的稳定性和抗干扰能力至关重要。

一般来说,较窄的线宽和线距有助于减小PCB的尺寸,但也会增加制造和焊接的难度。

因此,需根据具体应用需求和制造工艺要求进行合理选择。

4.确保电磁兼容性(EMC):在进行PCB设计时,应考虑电磁兼容性,以降低电磁干扰和提高系统的抗干扰能力。

通过合理分布和布线可以降低干扰源和受干扰源之间的耦合,使用屏蔽罩和地层来减小电磁辐射和接收。

5.元件布局与布线:合理的元件布局和布线有助于优化PCB性能、降低串扰和噪声。

对于模拟和数字信号,应按照不同的信号类型进行分区布局,减少互相干扰的机会。

高频和敏感信号线应尽量短且平行布线,降低引入的噪声。

6.引脚映射和标识:为了便于排查和维护,应做好引脚映射和标识。

对于器件的引脚和连接器的引脚应有明确的标识,方便布线和调试。

7.保留特定区域:在PCB设计中,可能存在一些需要保留的特定区域,如机械固定孔、散热器或接口连接器的安装区域。

在布局时要合理规划这些区域,以免干扰到其他电路或器件。

8.禁止区域和引脚验证:有些器件在工作时可能会产生较大的电磁辐射或高温,需要在设计时设置禁止区域,并在设计验证阶段进行引脚验证,确保没有错误连接。

9.工艺规范:在PCB设计中,还应根据制造工艺的要求制定相应的工艺规范。

如焊盘的孔径和间距、复杂线路的线宽要求等,这些规范可以在整个制造和组装过程中起到指导作用。

10.DFM/DFT设计原则:DFM(Design for Manufacturability)和DFT(Design for Testability)是一系列设计原则,旨在方便制造和测试过程。

PCB设计规范

PCB设计规范

一、目的规范产品设计,更有利于整个制造过程,减少制程中不良的发生率,降低制造工艺难度。

二、范围本标准适用于本公司各部门PCB设计。

一、外尺寸根据公司现有设备,在设计时,应考虑基板的设计尺寸(如有客户指定超出此尺寸的PCB,需考虑该板的外发制造)根据公司设备情况.模板时应避免将PCB窄边作为制造用板边.或在窄边布置工艺板边.注:②.自动插件部品脚距离制造板边<5 mm(图中②)③.手动插件、自动插件部品表面任意部分距离制造板边尺寸<2.00mm;(图中③)⑤.<1.00mm空电路线距离制造板边尺寸<3.00mm(图中⑤)⑥.定位孔中心距离制造板边>7.00mm或定位孔边缘距离制造板边距离>8.50(图中⑥)④.手动插件的背面焊盘距离制造板边<1.00mm;(图中④)PCB设计参考标准1、公司当前设备可制造最大PCB外尺寸为330.00*250.00mm;但最小整板不得低于64.00mm.2、当有以下情况之一,需要增加工艺板边:①.SMD贴装部品焊盘距离制造板边尺寸<5.00mm;(图中①)外形尺寸无工艺板边布板时需要特别注意禁止布置SMD元件区域,不得安放任何SMD元件.释义:工艺板边——工艺边其实就是为了辅助生产插件走板、焊接过波峰在PCB板两边或者四边增加的部分,主要为了辅助生产,不属于PCB板的一部分,生产完成需去除。

制造板边——是指在完全没有工艺板边的情况下PCB四周的边缘部分,常常被视作板边在制造过程中使用。

二、定位标示释义:定位孔——用于制造过程中安装夹具或机械定位的通孔。

定位开孔与安装孔可通用.螺丝孔——产品组装时用于固定或安装产品的通孔。

因受力较大。

在设计时需要做加强其机械应力.1.定位孔的设计根据制造工艺来定,公司现行使用定位孔的工艺段分别为:自动插件印刷ICT FCT高压测试公司现行AI采用弹簧爪片对PCB进行定位作业,故对PCB定位孔有一定的技术要求.①.爪片的可定位尺寸在3.00-6.00mm.最佳生产状态为3.00mm(中心距离板边5.00mm)②.定位孔大小定∅4.00mm,允许误差为+0.05③.所有定位孔或螺丝孔周围5*5mm范围内,禁止布置SMD元件.以避免基板加工或螺丝紧定时产生外力导致部品损坏.(定位孔设计在工艺板边时,则无需考虑此问题)2、MARK点的设置.焊盘外径D一般不小于(d+1.5)mm,其中d为孔径,对于一些密度比较大的元件的焊盘最小直径可取(d+1.2)①MARK点为1*1mm露铜圆形,可以选用镀锡,在周围再围绕∮3.00mm圆环,以增强与隔绝外围线路。

PCB设计规范

PCB设计规范

PCB设计规范一.PCB 设计的布局规范(一)布局设计原则1. 组件距离板边应大于5mm。

2. 先放置与结构关系密切的组件,如接插件、开关、电源插座等。

3. 优先摆放电路功能块的核心组件及体积较大的元器件,再以核心组件为中心摆放周围电路元器件。

4. 功率大的组件摆放在利于散热的位置上,如采用风扇散热,放在空气的主流通道上;若采用传导散热,应放在靠近机箱导槽的位置。

5. 质量较大的元器件应避免放在板的中心,应靠近板在机箱中的固定边放置。

6. 有高频连线的组件尽可能靠近,以减少高频信号的分布参数和电磁干扰。

7. 输入、输出组件尽量远离。

8. 带高电压的元器件应尽量放在调试时手不易触及的地方。

9. 手焊元件的布局要充分考虑其可焊性,以及焊接时对周围器件的影响。

手焊元件与其他元件距离应大于1.5mm.10. 热敏组件应远离发热组件。

对于自身温升高于30℃的热源,一般要求:a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于2.5mm;b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于4.0mm。

若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在额定范围内。

11. 可调组件的布局应便于调节。

如跳线、可变电容、电位器等。

12. 考虑信号流向,合理安排布局,使信号流向尽可能保持一致。

13. 布局应均匀、整齐、紧凑。

14. 表贴组件布局时应注意焊盘方向尽量取一致,以利于装焊。

15. 去耦电容应在电源输入端就近放置。

16. 可调换组件(如: 压敏电阻,保险管等) ,应放置在明显易见处17. 是否有防呆设计(如:变压器的不对称脚,及Connect)。

18. 插拔类的组件应考虑其可插拔性。

影响装配,或装配时容易碰到的组件尽量卧倒。

(二)对布局设计的工艺要求1. 外形尺寸从生产角度考虑,理想的尺寸范围是“宽(200 mm~250 mm)×长(250 mm ~350 mm)”。

PCB设计规范

PCB设计规范

PCB设计规范二O 一O 年八月目录一.PCB 设计的布局规范- - - - - - - - - - - - - - - - - - - - - - - - -- - 3 ■布局设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ------ - - 3 ■对布局设计的工艺要求- - - - - - - - - - - - - - - - - - - - - ------- - - 4 二.PCB 设计的布线规范- - - - - - - - - - - - - - - - - - - - - - - - - - 15 ■布线设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - 15 ■对布线设计的工艺要求- - - - - - - - - - - - - - - - - - - - - - - ------ 16 三.PCB 设计的后处理规范- - - - - - - - - - - - - - - - - - - -- - - - - 25 ■测试点的添加- - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - - 25 ■PCB 板的标注- - - - - - - - - - - - - - - - - - - - - - - - ----- - - - - 27 ■加工数据文件的生成- - - - - - - - - - - - - - - - - - - - - - ----- - - - 31 四.名词说明- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - 33 ■金属孔、非金属孔、导通孔、异形孔、装配孔- - - - - - - - - ---- - 33 ■定位孔和光学定位点- - - - - - - - - - - - - - - - - - - - - - - ------ - 33 ■负片(Negative)和正片(Positive)- - - - - - - - - - - --- - - - - 33 ■回流焊(Reflow Soldering)和波峰焊(Wave Solder)- - --- - - 34 ■PCB 和PBA - - - - - - - - - - - - - - - - - - - - - - - - - - ---- --- - - 34一.PCB 设计的布局规范(一)布局设计原则1.距板边距离应大于5mm。

PCB设计规范)

PCB设计规范)

PCB设计规范)PCB(Printed Circuit Board)布线是电子产品设计中不可或缺的一部分,它将各个电子器件的引脚、导线、电容、电阻等连接在一起,实现电子设备的功能。

为了保证电子产品的性能和可靠性,华为制定了一系列的PCB设计规范和布线规范。

下面将介绍一些常见的规范要求。

1.PCB尺寸和材料-设计的PCB尺寸应该符合产品的外观尺寸要求,并确保容纳所有电子器件和连接线路。

-PCB板材应选择符合产品环境要求的材料,如有特殊要求,应该在设计前与材料供应商进行沟通。

2.PCB层数-PCB的层数应根据产品需求和信号走线的复杂性来决定,一般有单层、双层和多层PCB。

-对于高速数字信号的设计,建议使用多层PCB,以减小信号噪声和射频干扰。

3.信号走线规范-信号走线应遵循短、直、宽的原则,即尽量减少信号线的长度,使其直接连接,并保持足够的走线宽度,以保证信号的传输性能。

-不同信号类型应分开布线,尽量减小不同信号之间的干扰。

-对于高速信号,应采用射频层和地层的屏蔽设计来减小信号噪声。

4.电源和地线规范-电源和地线的布线应尽量短、宽,且通过整个PCB板范围内的大地平面层。

这样可以减小电源和地线的阻抗,提高电流能力和噪声抑制能力。

-电源和地线的走线应尽量避免与其他信号线交叉,以减小互相干扰的可能性。

5.元件布局规范-PCB元件布局应尽量按照信号流向、功率需求、热量分布等进行合理的布局。

-敏感元件和高噪声元件应尽量远离高功率元件和高频元件,以减小干扰。

-元件布局应考虑易维护性,方便组装和检修。

6.符号和标记规范-PCB设计中的各个元件应使用统一的符号表示,以方便工程师的理解和协作。

-PCB上的各个元件和引脚应根据规范进行统一的标记,以便于组装和调试。

7.通孔和过孔规范-PCB设计中的通孔和过孔应符合标准尺寸和位置,并确保与元件引脚的良好连接。

-对于高频和高速信号,应尽量避免使用通孔和过孔,以减小信号的反射和时延。

最全PCB设计规范

最全PCB设计规范

最全PCB设计规范PCB设计规范是指对PCB板设计与布线进行规范化的要求和标准。

合理的PCB设计规范可以提高电路的可靠性、可制造性和可维护性,减少设计错误和生产问题。

以下是一个最全的PCB设计规范指南:一、尺寸和层数规范1.预留适当的板边用于固定和装配。

2.保持板厚适当,符合设备尺寸和散热要求。

3.层数应根据电路需求合理选择,减少层数可以降低生产成本。

二、元器件布局规范1.分配适当的空间给每个元器件,避免过于拥挤。

2.避免敏感元器件(如高频元器件)靠近高噪声源(如高压变压器)。

3.分组布局,将相关功能的元器件放在一起,便于调试和维护。

三、信号线布线规范1.信号线走线应尽量保持短而直的原则,减小传输延迟和信号损耗。

2.高频信号线避免与高电流线路交叉,以减少互相干扰。

3.分层布线,将高频信号和低频信号分开,避免互相干扰。

四、电源和地线布线规范1.电源线和地线应尽量宽而短,以降低阻抗。

2.使用大面积的地平面,减少地回流电流的路径。

3.电源线和地线应尽量平行走线,减少电感和电容。

五、阻抗控制规范1.布线时应根据需求控制差分对阻抗和单端信号阻抗。

2.保持差分对信号的平衡,避免阻抗不匹配。

3.使用合适的线宽和间距设计走线,以满足阻抗要求。

六、焊盘和插孔规范1.确保焊盘和插孔的尺寸、形状和位置符合零部件要求,并适合选用的焊接工艺。

2.避免焊盘和插孔之间过于拥挤,以便于手动和自动插件。

七、丝印规范1.丝印应清晰可见,包括元器件标识、引脚标识、极性标识等。

2.不要在元器件安装位置上涂抹丝印墨水,以免影响焊接质量。

八、通孔布局规范1.确保通孔位于焊盘的中心,避免焊盘过大或过小,影响焊接质量。

2.根据电路需求选择合适的通孔类型(如PTH、NPTH等)。

九、防静电规范1.PCB板表面清洁,避免灰尘和静电积累。

2.使用合适的静电防护手套和接地装置进行操作。

十、符号和标识规范1.适当添加电路图符号和标识,便于后续调试和维护工作。

PCBLAYOUT设计规范

PCBLAYOUT设计规范

PCBLAYOUT设计规范PCB(Printed Circuit Board)是电子产品的核心组件之一,决定了电路设计的可靠性和性能。

良好的PCB布局设计可以降低电路噪声、提高信号完整性,并且方便后续的组装和维修。

以下是PCB布局设计的一些规范和建议:1.尺寸和形状规范:根据具体应用需求确定PCB板的尺寸和形状。

在选择尺寸时要考虑电路的复杂性和器件的布局。

广泛使用的尺寸为贴片型器件的长度加上两倍的元件间距。

2.组件布局规范:将元件分为功能模块,并合理安排它们的位置,以降低电路的互相干扰。

尽量将高频、噪声源放置在一起,并且与敏感信号的路径保持一定的距离。

3.走线规范:为了提高信号完整性,收集和地线走线应尽量平行运行。

重点信号线应保持足够的间距。

避免过于细长的路径和尖锐的弯曲,以减少信号反射和耦合。

4.功率平面和地面规范:为了提供稳定的供电和减少噪声,设计时需要规划功率平面和地面。

功率平面应该贴近电源引脚,且尽量大且连续。

地面应尽量覆盖整个PCB板,且与其他层相连。

5.元件引脚排布规范:元件引脚的排布应该尽量规整,方便焊接和组装。

相同类型的引脚应按照相同的方向排列。

供电和地线引脚应靠近一起,以减少线路长度和电磁干扰。

6.保持合理的间距:线与线、线与元件之间应保持合适的间距,以避免突然放电和相互干扰。

7.考虑热设计:对于功耗较大的元件,应考虑散热设计。

可以使用散热器或合理的布局来进行热扩散。

8.通过规范:为了提高布局的可维护性,设置适当的通过或测试点。

这有助于后续的调试和维修。

9.引入尽可能多的阻尼电容:引入阻尼电容可以帮助减少电源线噪声和抑制瞬态响应。

10.使用模块化设计:基于较小的模块进行设计,有助于封装、修改和重用。

这样可以提高开发效率和产品可维护性。

总之,良好的PCB布局设计对电路性能的稳定性和可靠性至关重要。

通过遵循上述规范和建议,可以降低电磁干扰、提高信号完整性,并且简化后续的组装和维护工作。

PCB设计布局及布线规则

PCB设计布局及布线规则

PCB设计布局规则1. 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。

按工艺设计规范的要求进行尺寸标注。

2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。

根据某些元件的特殊要求,设置禁止布线区。

3. 综合考虑PCB性能和加工的效率选择加工流程。

加工工艺的优选顺序为:元件面单面贴装--元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)--双面贴装--元件面贴插混装、焊接面贴装。

4.布局操作的基本原则A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.D. 相同结构电路部分,尽可能采用“对称式”标准布局;E. 按照均匀分布、重心平衡、版面美观的标准优化布局;F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。

G. 如有特殊布局要求,应双方沟通后确定。

5. 同类型插装元器件在X或Y方向上应朝一个方向放置。

同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。

7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。

8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。

当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。

9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm(50mil)的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接。

印制电路板设计规范

印制电路板设计规范

布线优化
选择合适的线宽、间距和层叠结构, 降低电磁干扰和信号延迟。
阻抗控制
通过精确计算和控制线宽、间距等参 数,确保信号线的阻抗匹配,减少信 号反射和失真。
电源完整性设计
合理规划电源分布网络,减小电源噪 声和电压降,提高供电稳定性。
设计修改与迭代
设计修正
根据仿真结果和实际测试数据,对电路板设计进行必要的修正和改 进。
机械稳定性
确保印制电路板的结构设计能够承受正常的机械应力,如弯曲、 扭曲和振动等。
振动容限
评估印制电路板的振动容限,以确保在振动环境中仍能保持性能。
连接器设计
优化连接器的设计,以提高其机械强度和稳定性,减少因振动而产 生的连接问题。
07 设计验证与优化
设计审查与仿真
审查设计规则
确保电路板设计符合预定的设 计规则,如线宽、间距、层叠
元件间距和方向
元件间距
元件之间的间距应满足电气安全 和生产工艺要求,避免过近导致 短路或过远增加布线难度。
元件方向
元件的放置方向应统一、整齐, 便于识别和装配,同时应避免相 邻元件之间产生干扰或耦合。
04 布线规范
布线基本原则
1 2
确定合理的布线路径
遵循电路原理,确保信号传输的正确性和稳定性。
性能。
防尘与防潮设计
03
采取适当的防尘和防潮措施,以减少环境因素对电路板性能的
影响。
热设计考虑
热传导路径
优化印制电路板的热传导路径,确保热量能够有效地从发热元件 传导出去。
散热器设计
根据需要为关键元件配置散热器,以提高散热效率。
温度监控
设计温度监控功能,以便实时监测印制电路板的温度,防止过热。

PCB电路设计规范及要求

PCB电路设计规范及要求

PCB电路设计规范及要求板的布局要求一、印制线路板上的元器件放置的通常顺序:1、放置与结构有紧密配合的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK 功能将其锁定,使之以后不会被误移动;2、放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC 等;3、放置小器件。

二、元器件离板边缘的距离:1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、可能的话所有的元器件均放置在离板的边缘3mm以内或至少大于板厚,这是由于在大批量生产的流水线插件和进行波峰焊时,要提供给导轨槽使用,同时也为了防止由于外形加工引起边缘部分的缺损,如果印制线路板上元器件过多,不得已要超出3mm范围时,可以在板的边缘加上3mm的辅边,辅边开V 形槽,在生产时用手掰断即可。

三、高低压之间的隔离:在许多印制线路板上同时有高压电路和低压电路,高压电路部分的元器件与低压部分要分隔开放置,隔离距离与要承受的耐压有关,通常情况下在2000kV时板上要距离2mm,在此之上以比例算还要加大,例如若要承受3000V的耐压测试,则高低压线路之间的距离应在3.5mm以上,许多情况下为避免爬电,还在印制线路板上的高低压之间开槽。

四、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

原理图PCB板设计制作规范标准

原理图PCB板设计制作规范标准

原理图PCB板设计制作规范标准1.原理图设计规范标准(1)命名规范:元件、管脚、信号和电源名称要规范命名,方便理解和维护。

可以采用英文缩写、音译或中文拼音等。

(2)元件库的选择:选择适合自己设计的元件库,要求库的内容完整,符合组织结构,元件属性准确。

(3)连线规范:连线要整齐划一,不交叉,避免拐弯和折线。

信号线要分类,分层布线,并遵循最短路径原则,尽量减小信号传输时延。

(4)参考识别:添加参考识别,包括PCB板图名、版次、日期等,方便识别和追溯。

(5)技术文件:原理图要包括技术文件,如元件清单、电源电压要求、信号电平要求等,方便后期调试和维护。

2.PCB板设计规范标准(1)PCB尺寸:根据产品的空间限制和规划,确定PCB板的尺寸,尽量利用空间,减小板面积。

(2)元件布局:根据电路功能和元件特性,合理布局元件,避免干扰和信号串扰。

功率大的元件和高频元件要分开布局,并留出足够的散热空间。

(3)关键信号处理:对于关键信号,如时钟信号、高速信号等,要特别处理。

如增加阻抗控制、差分布线、屏蔽等。

(4)电源和地线:电源和地线要分层布局,减小干扰。

同时要考虑电源电流的分布和供电稳定性,合理设计电源网络。

(5)线宽和间距:根据电流和信号传输要求,选择适当的线宽和间距。

高速信号要考虑传输线的阻抗匹配。

(6)引脚和焊盘:确定元件的引脚和焊盘布局,要考虑元件安装和焊接时的易用性和可靠性。

(1)层数和堆叠:根据电路复杂度和性能要求,确定PCB板的层数和堆叠方式。

(2)板材选择:根据电路功率、频率等要求,选择适合的板材,如FR4、高TG板等。

(3)焊接工艺:确定焊接工艺和焊接方式,如SMT、DIP等。

要考虑焊点的可靠性和焊接质量。

(4)表面处理:根据焊接方式和要求,选择适当的表面处理方式,如HASL、ENIG等,保证焊点的可靠性。

(5)丝印和标识:在PCB板上添加丝印和标识,包括元件位置、极性标识、工艺信息等,方便组装和维护。

PCB设计参考规范

PCB设计参考规范

PCB设计参考规范PCB(Printed Circuit Board)设计是电子产品开发过程中至关重要的一个环节。

一个好的PCB设计可以优化电子产品的性能、提高生产效率并降低成本。

为了保证PCB设计的质量和稳定性,设计工程师需要遵循一些常用的规范与标准。

下面是PCB设计参考规范的一些要点,以供设计工程师参考。

一、尺寸规范1.PCB板尺寸:PCB板尺寸应根据产品的需求进行合理的设计,并留出足够的空间用于组装元件和布局信号线路。

2.定位孔:在板子的四个角上应布置定位孔,用于方便PCB板的定位和对准。

二、元件布局规范1.元件布局:尽量采用合理的布局方式,避免元件之间的互相干扰。

可以根据不同的电路模块将元件进行分组,同时也要考虑到各个模块之间的互连。

2.元件间距:元件之间的间距要足够大,以避免干扰和短路等问题的发生。

三、信号线路规范1.信号线宽度:不同类型的信号线的宽度应根据其承载的电流大小来设计,以保证信号线的稳定性和可靠性。

2.信号线走向:信号线走向应尽量简洁、直观,并避免交叉。

尽量使用直线,避免过多的拐弯和斜线。

3.分层布局:合理使用PCB板的多层结构,将功率线和地线分层布局,避免互相干扰。

四、阻抗控制规范1.差分信号的阻抗控制:对于差分信号,其阻抗应尽量保持一致,以避免信号失真和互相干扰。

2.时钟信号的阻抗控制:对于高速时钟信号,应采用特殊的布线方式和阻抗控制,以避免信号抖动和失真。

五、电源和地线规范1.电源线和地线:电源线和地线应采用足够宽的线路来设计,以保证稳定的电源供应和良好的接地。

2.空域分离:电源线和地线应尽量分离,以避免互相干扰。

六、丝印规范1.丝印位置:丝印应放置在元件的旁边或正上方,方便用户查看和识别。

2.字体和标识:使用合适的字体和标识,确保丝印清晰可读。

七、焊盘规范1.焊盘尺寸:焊盘尺寸应根据元件的尺寸来设计,使得焊接过程更加方便和稳定。

2.焊盘间距:焊盘之间的间距应足够大,以便焊接过程中的热量扩散,避免焊接不良。

PCB板设计规范

PCB板设计规范

PCB板设计规范PCB板设计规范是指在进行PCB(Printed Circuit Board,印刷电路板)设计和制造过程中应遵循的标准和规范。

遵循这些规范可以提高PCB 板的质量、可靠性和性能。

以下是关于PCB板设计规范的一些重要指导原则:1.尺寸和布局规范:-PCB板的尺寸应符合实际使用要求,并遵循制造厂商的规定。

-高速电路和低速电路应尽可能分离布局,以减少干扰和串扰。

-元器件布局应考虑信号路径、热管理和机械支撑等因素。

-必要时应提供地孔或散热垫以提高散热效果。

2.元器件布局规范:-元器件应按照设计要求放置在相应的位置上,并尽量集中布局。

-不同类型的元器件(如模拟和数字电路)应分离布局,以减少相互干扰。

-元器件之间的连接应尽量短且直接,以减少信号传输的延迟和功率损耗。

-高功率元器件和高频元器件应与其他元器件分离,并采取必要的热管理和屏蔽措施。

3.信号完整性规范:-控制线、时钟线和高速信号线应尽可能短,且避免平行走线,以减少串扰和时钟抖动。

-高速信号线应采用阻抗匹配技术,以确保信号的正确传输和减少反射。

-高速差分信号线应保持恒定的差分阻抗,并采用差分匹配技术,以减少干扰和降低功耗。

4.电源和接地规范:-电源线和地线应尽可能粗,以降低电阻和电压降。

-电源和地线应尽量采用平面形式,以减少电磁干扰和提供良好的电源和接地路径。

-多层PCB板应设有专用层用于电源和接地,以提高板层的抗干扰能力和电源噪声的影响。

5.焊接规范:-设计带有相应的焊接垫和焊盘,以便于元器件的焊接和可靠连接。

-焊盘和焊接垫的尺寸应符合元器件和制造工艺的要求,并考虑到热膨胀和热应力等因素。

-导线和焊盘间的间距应符合焊接工艺的要求,以确保焊接质量和可靠性。

6.标记和文档规范:-PCB板应有清晰的标记,包括元器件名称、值和位置、网络名称等。

-为了提供必要的参考和维护,应有详细的PCB设计文档,包括原理图、布线图和尺寸图等。

总的来说,遵循PCB板设计规范可以提高PCB板的可靠性、性能和一致性,减少制造和调试过程中的问题和风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB布局及元件装配的设计规范——制造部XX年XX月XX 日年Rev.01Introduction (导言)1.此文献提供了关于可制造性设计(DFM----Design For Manufacturability)规范的总体要求:2.设计一个最有价值、品质性能兼优的可靠性产品是研发部门的职责,为了保证产品的可制造性,研发部门必须充分考虑到当前的制造能力,在设计执行阶段应经常集会回顾当前的设计及制造问题以提高制造能力,请研发人员严格按照本文所制定的规范履行职责,有任何改变必须经SMT部门NPE(New program engineer)同意。

DimensionsDimensions (尺寸)全文所使用的度量单位:mmp(范围)Scope此标准定义了PCB及装配最基本的设计要求,如下几点:•PCB Layout 及元件装配•线路设计•异形元件Layout•PCB 外形尺寸•多层PCBApplicability(应用)此文提到的所有标准应用于HYT所有产品中(除非另有说明)1. PCB Layout 及元件装配1.1通常考虑因素(Layout和元件)因为表面贴装的焊接点大多都比较小,并且在元器件与PCB之间要提供完整的机械连接点,由此在制造过程中保持连接点的可靠性就显得非常重要。

通常在产品制造、搬运、处理当中大PCB贴大元器件要比小PCB贴小元器件更冒险,因此越密集分布的PCB板对其厚度及硬度有更高的要求以避免在加工、测试及搬运过程中受弯曲而损坏焊接点或元器件本体。

因此在设计过程要充分考虑到PCB的材质、尺寸、厚度及元件的类型是否能满足在加工、测试及搬运过程中所承受的机械强度所承受的机械强度。

1.1.1 在对PCB布局时应考虑按元件的长与PCB垂直的方向放置,尤其避免将元器件布在不牢固、高应力的部分以免元器件在焊接、分板、振动时出现破裂。

具体见以下图示:1121.1.2 元件热膨胀性不匹配表面贴片元件特别是无铅元器件在焊接过程中最主要的因素是热膨胀的冲击,元器件的焊端与元件本体如果在高温焊接及大电流流过时热膨胀不匹配将导致元件本体与焊端破裂。

总的来说,大的元器件比小的元器件更易受热膨冷缩的影响,一般在焊接加工工艺中只允许电容尺寸等于1812。

121.2.1 元件贴片相似的元器件应按同一方向整齐地排列在的PCB 板上以方便SMT 贴片、检查、焊接. 建议所有有方向的元器件本体上的方向标示在PCB 板的排列是一致的, 见如下图:1.2元件装配1.2.2 SMT元件手焊、补焊要求:由于大多SMT元器件在手工焊接过程中极易受热冲击的影响而损坏,因此不允许对SMD料进行手工焊接,在生产当中出现的不良应尽量在低温下焊接。

1.2.3 SMT元器件不应放置在有DIP(Double in line package双列直接式组装)、通孔元件的下面(目前公司无1.2.3SMT Double in-line package波烽焊接工艺,以手工替代,这一条可不执行)。

1.2.4 SMT料应远离PCB定位边缘5mm1.2.5 SMT加工必须与焊接工艺相匹配,如回流焊接只适用于PCBA的回流焊接,波烽焊接也只适用于PCBA的波烽焊接。

1.3波烽焊接(略)1.4回流焊接1.4.1 回流条件:为确保元件在回流焊接前后性能的一致性,要求元器件的参数要求必须达到HYT 的回流要求。

回流焊温度曲线回流焊温度曲线:斜率(Ramp rate):>4C°/Sec峰值温度(peak temp.): 235 C°(lead product) 270 C°(lead-free product)液化时间(Time above liquidus ): 应能承受120Sec元件间隔1.4.2 元件间隔:PP—Pad to PadBB—Body to BodyBP—Body to PadChip料1.4.3 线路布局1.4.3.1 使用绝缘及不可焊接材料覆盖在裸露、无需焊接的铜箔及线路上以防止在回流焊接时焊锡流到裸露的铜箔及线路上而造成焊盘无锡、少锡或虚焊等。

1.4.3.2 Pad位的对称性避免焊盘与大的铜箔相接或用隔热材料将焊盘与大铜箔连接部分小化以免在回流焊接时由于散热太快而导致冷焊的出现。

对于单个形状的元件,其焊盘的设计应成对称,以免在回流焊接时出现立碑的现象。

1.4.3.3 通孔的位置设计方针通孔应远离元件的焊盘以免在回流焊接时焊料通过通孔流出焊盘而造成无锡、少锡等现象。

通孔与焊盘的最小距离为0.63mm,通孔仅仅在大的元器件上的焊盘上才可以使用,例如像DPAK & D²PAK,但是必须要求通孔的的直径不大于0.3mm或者更小,并且为避免在回流焊接过程中出现锡通过通孔流到另外一面造成凸状而影响另一面的生产,应考虑在另一边塞住通孔。

DPAK & D²PAK1.4.4 回流装配要求1.4.4.1 有机械支撑装置的焊接:在PCB上提供较多的铜箔可焊面积以使元件与PCB的焊接点有足够的机械强度去支撑,尤其是导线与铜箔相接的位置。

1.4.4.2 针对有支撑柱的情况下,易碎的陶瓷电容应放置在应力最小的位置。

1.4.4.3 特殊元器件的装配。

1443特殊元器件的装配a. 在焊接工艺中(特别是无铅工艺),不要选用与PCB与热膨胀不相符的并热膨胀较大的元件器,除非已经证实了试验成功及确认无任何问题,否则板变形及焊接点破裂可能发生而影响可靠性。

b. 在回流焊接过程中,除非已经证实了测试成功及确认对结果无害,否则不要选择非SMT物料在SMT进行表面装配而在炉后手工补锡。

进行表面装配而在炉后手工补锡c. 当然针对一些元器件对其引脚进行修正也可以作为SMT物料进行焊接。

d. 当非SMT元器件使用于SMT贴片时,对其引脚的弯曲度及平整度有一定的要求,如果需要弯曲,其弯曲部分不能延伸到脚与本体的相接处,而是弯曲点与本体的距离(L)为元件引脚的直径或厚度但至少不能小于1.0mm,具体可参照以下图及表格:如果对其引脚进行整平,整平的厚度应不少于引脚直径的40%:e. 异形元器件引脚成形加工的共面度要求(最大0.15mm):1.5基准校正点(Fiducial marks)1.5.1 基准校正点的应用15111.5.1.1 总体考虑a.基准点是位于PCB板上的类似于焊盘的小薄片,通常基准点的制作与SMT元器件的焊盘制作在同一时间进行蚀刻处理;b.由于基准点与SMT元器件焊盘在同一加工过程中进行,因此其相对位置比定位孔与焊盘的相对位置更稳定准确;c.在SMT加工过程中, 通过SMT贴片机的照相系统对PCB基准点坐标的读取,以及通过计算机系统对坐标偏差的计算准确定位PCB的位置,因此,元件贴片精度得到很大的提高.1.5.1.2 基准点的类型这里有两种类型,一种是“PCB基准点”,另外一种根椐不同元器件的需要而设的“元件基准点”1) PCB基准点a.对于单板的Layout,建议使用三个基准点来作为角度、线性及非线性失真的补偿,如果PCB板的元件间距或脚间距有小于50mil pitch的就必须要使用三个基准点;il i h的就必须要使用个基准点b.三个基准点位于PCB板上的三个角落位置;c.在PCB长度及对角线的范围之内,三个基准点的距离应尽量最大.d.基准点一定不要放置在如上图所示的受限制的区域,必须放置在距离PCB边缘的4mm以上的位置;e.如上图如示,每块板的两个基准点是进行角度及线性补偿的最低要求;f.两个基准点应确立在PCB对角线的位置上,在生产过程中基准点通常作为参考点来检测板的存在及校正板与板之间的细微的偏差;g g.SMT元件应尽量放置在基准点的范围内.H.对于PCB拼板的Layout,最好用三个(如果元件Pitch小于50mil必须采用三个)或两个基准点以补偿PCB拼板的偏差;i.在回流焊接加工过程中,PCB基准点必须包涵到PCB拼板的Gerber file中;j.对于一些高密度分布的PCB板中如果没有多余的空间放置基准点,可以考虑将基准点放置在拼板之间的连接材料上,但为了考虑基准点与PCB元件分布的精度,必须将基准点与PCB元件分布一起设计在Gerber file中;a.与绝缘材料之间的相距尺寸(Fiducil dia.b.b.准点尺寸相近的图案,此图案还包括多层板中的里层图案。

2. 设备的局限性对物料规格及元器件包装的影响2.1P.C.B厚度在波烽焊接加工过程中,那么PCB的厚度标准要求为:1.6mm,最薄不能低于1.0mm,不然PCB 在过波峰焊接时易弯曲变形而导致PCB上的元器件损坏及焊接点破裂,影响产品的可靠性.在回流焊接加工过程中,薄的PCB可以被使用倘若在PCB两边增加均衡性铜箔及通过拼板适当的设计而减少PCB的弯曲可能性。

2.2表面贴片元件221.SMT现有的贴片机所能处理的表面贴片元件包装有8mm、12mm、16mm、24mm、32mm及44mm的卷装料及支装料,散装物料在SMT加工过程中是不允许采用的。

2.SOIC的标准包装应优先选择卷装形式,减小支装包装方式从而减少对机器贴片效率的影响。

3.包装那些异形元器件或非SMD元器件作为SMT贴片元件时(像屏蔽罩之类)应采用胶材质的拖盘或其它方式进行包装以避免在运输及加工过程中使元器件变形而影响其共面性。

的拖盘或其它方式进行包装以避免在运输及加工过程中使元器件变形而影响其共面性4.可贴装的元件高度不能大于15mm3. 线路设计规范3.1 加强焊端的独立性, 减弱焊端之间的影响, 如下图3.2 如果焊端位于较大的铜箔上, 那么必须修整较大的可焊区焊端面积以避免出现短路等不良.如下图3.3 为了达到较好的机械强度尤其是对于1OZ铜的PCB及有手工焊接要求的PCB,经常加大铜箔的面积,如下图:3.4通孔不允许位于底部为金属物质的元器件下面,除非他们之间有绝缘体隔开,并且此绝缘体能承受焊接时的高温冲击而不被损坏;3.5铜路与焊端连接的颈部位置应加宽以避免在焊接的过程中出现断裂的现象;3.6焊盘不允许位于与大铜箔的附近,他们之间最小间隔应不小于1.8mm;3.7线路宽度及线路之间的间隔定义(对于1oz或2oz铜的PCB);3铜的PCB)3.7线路转角定义4. PCB 外形尺寸这个设计规范为SMT加工制造(单面或双面板PCB)定义了其的外形尺寸要求:4.1外形尺寸1、所有的PCB的外形轮廓必须是直的,这样可以减少PCB在SMT加工过程中上板、出板及中途传输过程中的出错率,从而缩短PCB的传输时间、增强PCB的固定及提高SMT加工品质。

SMT不能接受通过在空余的地方增加如下图所示的Dummy PCB以增强PCB的固定及提高SMT加工品质。

相关文档
最新文档