小学奥数 约数与倍数(三).教师版
六年级奥数专题讲解:约数与倍数
六年级奥数专题讲解:约数与倍数六年级奥数专题讲解:约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的'公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法。
高斯小学奥数五年级上册含答案_第10讲_约数与倍数
第十讲约数与倍数在前面的章节,我们学习了数论中的整除和质数合数等知识.有关约数与倍数的知识.约数和倍数的定义是这样的:对整数a 和b ,如果a |b ,我们就称a 是b 的约数(因数),b 是a 的倍数.根据定义,我们很容易找到一个数的所有约数,例如对12:因为12 1 12 2 6 3 4 ,可知12可以被1、2、3、4、6、12整除,那么它的约数有 1、2、3、4、6、12,共6个.从上面12的分拆可以看出,约数具有“ 成对出现”的特征,也就是:最大约数对应最 小约数、第二大约数对应第二小约数等. 所以在写一个数的所有约数时,可以逐对写出.另 外如果计算较大约数不太方便,可以转而计算与其成对的较小约数.例题1. 12345654321的第三大约数是多少?「分析」第三大约数有点大,那我们可以先求出第三小的约数,12345678987654321的第二大约数是多少?从上面的分析知,可以通过枚举的方法逐对写出一个数的所有约数, 从而可就算出它的约数个数.但是对很大的数,例如 20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用枚举可知 72共12个约数,分别为1、72; 2、36; 3、24; 4、18;6、12; 8、9.因为72的约数能整除72,而72的所有质因数也都能整除 72,所以对72进 行质因数分解,有: 72 23 32,那么72的所有约数应当由若干个 2与若干个3构成.显 然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的约数共4 3 12个,见下表(注意20 1、30 1 ):从72的这个例子,我们可以总结出计算约数个数的一个简单做法:今天,我们来学习数论中再根据它计算第三大的约数.约数个数等于指数加再相乘例题2.下列各数分别有多少个约数?23, 64, 75, 225,720.「分析」熟练掌握约数个数的计算公式即可.下列各数分别有多少个约数?18, 47, 243, 196, 450.例题3. 3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?「分析」约数既然能整除3600 ,那说明约数一定包含在3600的因数中•我们知道4 2 23600 2 3 5,那么3600的所有约数一定是由若干个2、若干个3和若干个5组成的.如果约数是3的倍数,那么它至少要含有多少个3?3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个约数,根据上面关于约数个数的知识我们可以知道,有奇数个约数的数一定是平方数,有偶数个约数的数一定不是平方数.前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .7222122231 02 03 0320301 21 302 22304 23 308 31 20 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?722212223前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .1 02 03 0320301 21 302 22304 23 308 3120 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122230 01 02 03 0前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .30 20 301 21 302 22 304 23 308 3120 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?。
小学奥数王峰数论(3)约数_倍数_完全平方数
教 案教师:__ 王鑫___ 学生:_ 王峰 上课时间: 学生签字:__________【专题知识点概述】本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,而完全平方数的定义也很容易,故我们讲解的重点放在这些数的性质上,以及如何正确的运用这些性质解决数论问题。
一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若11(,),(,),a a a b b b a b =⨯=⨯则11(,)1a b =(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]a b a b a b ⨯=⨯注:(,)a b 表示两个数的最大公约数,[,]a b 表示两个数的最小公倍数(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如:567210⨯⨯=,210就是567的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍例如:678336⨯⨯=,而6,7,8的最小公倍数为3362168÷=二、约数个数与所有约数的和(1)求任一合数约数的个数:一个合数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
如:1400严格分解质因数之后为32257⨯⨯,所以它的约数有(31)(21)(11)43224+⨯+⨯+=⨯⨯=个。
(包括1和1400本身)(2)求任一合数的所有约数的和:一个合数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
如:33210002357=⨯⨯⨯,所以21000所有约数的和为2323(1222)(13)(1555)(17)74880++++++++=三、求几个分数的最小公倍数和最大公约数(1)求几个分数的最小公倍数求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;例如:求121624,,202430的最小公倍数首先将3个分数化为最简分数,123162244,, 205243305 ===由[3,2,4]12,(5,3,5)1==,所以12162412[,,]122024301==,即它们的最小公倍数是12.(2)求几个分数的最大公约数求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.例如:求121624,,202430的最大公约数首先将3个分数化为最简分数,123162244,, 205243305 ===由(3,2,4)1,[5,3,5]15==,所以1216241(,,)20243015=,即它们的最大公约数是115.四、完全平方数的性质1.常用主要性质:● 完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
【教师版】小学奥数5-4-3 约数与倍数(三).专项练习及答案解析
1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。
2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各知识点拨教学目标5-4-3.约数与倍数(三)个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
五年级奥数第20讲-最小公倍数(教)
学科教师辅导讲义知识梳理一、约数和倍数的定义整数A能被整数B整除,A叫做B的倍数,B就叫做A的约数(在自然数的范围内)。
如:2和6是12的约数,12是2的倍数,12也是6的倍数;18的约数有1、18、2、9、3、6。
注意:①一个数的约数个数是有限的,一个数的倍数有无数个。
②任何数都有最小的约数1,最大的约数本身,最小的倍数也是本身。
③一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
④因数和约数的区别:约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。
如果数a与数b 相乘的积是数c,a与b都是c的因数。
二、 2、3和5倍数的特征2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数5的倍数的数特征是个位是0或53的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数三、质数与合数(1)只有1和本身两个因数的数叫做质数(或素数)(2)除了1和本身外还有其它因数的数叫做合数(3)1既不是质数,也不是合数(4)100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
(5)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
记作[2,3]=6。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
注意:最大公约数×最小公倍数=两数的乘积,即(a,b)×[a,b]=a×b。
【精品】五年级奥数培优教程讲义第20讲最小公倍数(教师版)
第20讲最小公倍数團教学目标掌握倍数和最小公倍数的概念,最小公倍数的求法;圈会利用最小公倍数解决实际问题知识梳理、约数和倍数的定义整数A能被整数B整除,A叫做B的倍数,B就叫做A的约数(在自然数的范围内)。
女口:2和6是12的约数,12是2的倍数,12也是6的倍数;18 的约数有1、18、2、9、3、6。
注意:①一个数的约数个数是有限的,一个数的倍数有无数个。
②任何数都有最小的约数1,最大的约数本身,最小的倍数也是本身。
③一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。
④因数和约数的区别:约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。
如果数a与数b相乘的积是数c,a与b都是c的因数。
二、2、3和5倍数的特征2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数5的倍数的数特征是个位是0或53的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数三、质数与合数(1)只有1和本身两个因数的数叫做质数(或素数)(2)除了1和本身外还有其它因数的数叫做合数(3)1既不是质数,也不是合数(4)100 以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
(5)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,女口2 的倍数有2、4、6、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
记作[2,3]=6。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(完整版)小学奥数第9讲约数与倍数(含解题思路)
9、约数与倍数【约数问题】例1 用1155个同样大小的正方形拼成一个长方形,有______种不同的拼法。
(上海市第五届小学数学竞赛试题)讲析:不论拼成怎样的长方形,它们的面积都是1155。
而长方形的面积等于长乘以宽.所以,只要将1155分成两个整数的积,看看有多少种方法。
一般来说,约数都是成对地出现。
1155的约数共有16个。
16÷2=8(对)。
所以,有8种不同的拼法。
例2 说明:360这个数的约数有多少个?这些约数之和是多少?(全国第三届“华杯赛”决赛第一试试题)讲析:将360分解质因数,得360=2×2×2×3×3×5=23×32×5。
所以,360的约数个数是:(3+1)×(2+1)×(1+1)=24(个)这24个约数的和是:例3 一个数是5个2,3个3,2个5,1个7的连乘积。
这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?(全国第一届“华杯赛”决赛第一试试题)讲析:这个数是2×2×2×2×2×3×3×3×5×5×7。
把两位数从99、98、……开始,逐一进行分解:99=3×3×11; 98=2×7×7;97是质数; 96=2×2×2×2×2×3。
发现,96是上面数的约数.所以,两位数的约数中,最大的是96.例4 有8个不同约数的自然数中,最小的一个是______。
(北京市第一届“迎春杯"小学数学竞赛试题)讲析:一个自然数N,当分解质因数为:因为8=1×8=2×4=2×2×2,所以,所求自然数分解质因数,可能为:27,或23×3,或2×3×5,……不难得出,最小的一个是24。
(完整版)约数和倍数(小学奥数)
(十六)约数和倍数例1.边长1米的正方体2100个,堆成了一个实心的长方体,它的高是10米,长、宽都大于高。
问长方体的长与宽的和是几米?例2.正整数a乘以120,得到一个完全平方数,a的最小值是多少?例3.有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃,中午12点整,电子钟响铃又亮灯。
问:下一次响铃又亮灯是几点钟?例4.四个小孩的年龄依次相差1岁,他们年龄的乘积是5040,他们的年龄和是多少岁?例5.一个数是5个2,3个3,2个5,1个7的连乘积。
这个数有许多约数是两位数,这些两位的约数中,最大的是几?例6.两个自然数的最大公约数是7,最小公倍数是420。
已知其中一个自然数是42,那么另一个自然数是多少?例7. 说明:360这个数的约数有多少个?这些约数的和是多少?例8.求100以内恰好有8个约数(包括1和它本身)的所有自然数。
例9.已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。
例10.在100以内与77互质的所有奇数之和是多少?练习1. 求720的所有约数的个数。
2. 正整数a乘以378,得到的最小完全平方数是多少?3. 能被2,3,4,5,6,7,8,9,10这九个数整除的最大的六位数是多少?4. 50以内最小质数与最大质数之和是多少?5. 将长为6厘米、宽为4厘米、高为8厘米的长方体积木,叠成最小的正方体,最少要用积木多少块?6. 长96厘米、宽72厘米的长方形白纸裁成同样大小的正方形且无剩余,至少可以裁成多少块?7. 求50以内约数最多的自然数。
8.小红每隔5分钟发一封电子邮件,小明每隔9分钟发一封电子邮件,小丽每隔12分钟发一封电子邮件,今天上午8点三人同时发出电子邮件,下一次同时发电子邮件是什么时间?9. A,(A+4),(A+6),(A+10),(A+12),(A+16),(A+22)均为质数,那么A是多少?10. 求5040的所有约数的和。
学而思资料_小学奥数教案_小学奥数
行程问题多人行程二次相遇、追及问题多次相遇、追及问题火车过桥流水行船环形跑道简单的相遇、追及问题基本行程问题钟面行程走走停停接送问题发车问题电梯行程猎狗追兔平均速度数论问题数的整除约数倍数余数问题质数合数、分解质因数奇偶分析中国剩余定理位值原理完全平方数整数拆分进位制几何问题巧求周长几何的五大模型勾股定理与弦图圆与扇形立体图形的表面积和体积立体图形染色计数其它直线型几何问题格点与面积计数加法原理乘法原理排列组合枚举法标数法捆绑法插板法排除法对应法树形图法归纳法整体法递推法容斥原理几何图形计数应用题分数百分数应用题工程问题鸡兔同笼问题盈亏问题年龄问题植树问题牛吃草问题经济利润问题浓度问题比例问题还原问题列方程解应用题计算问题数学计算公式繁分数的计算分数裂项与整数裂项换元法凑整找规律比较与估算循环小数化分数拆分通项归纳定义新运算杂题逻辑推理数阵图与数字谜抽屉原理操作与策略不定方程最值问题染色问题各年级奥数知识点一年级奥数知识点认识图形数一数动手画画区分图形数数与计数火柴棍游戏二年级奥数知识点速算与巧算自然数列趣题填图与拆数数数与计数一笔画问题猜猜凑凑三年级奥数知识点植树问题长方形与正方形的面积和差问题平均数问题上楼梯问题鸡兔同笼问题四年级奥数知识点定义新运算倒推法的妙用格点与面积乘法原理行程问题有趣的数阵图五年级奥数知识点带余数的除法流水行船问题容斥原理巧求表面积时钟问题牛吃草问题六年级奥数知识点巧求分数比和比例圆柱与圆锥棋盘上的覆盖枚举法趣题巧解小学奥数理论知识速查手册(一)【学而思网校】2010-08-06 10:34②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
小学奥数第594讲 约数、倍数、完全平方数
学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。
即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
●在两个连续正整数的平方数之间不存在完全平方数。
●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
●若质数p整除完全平方数2a,则p能被a整除。
2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
小学奥数 数论问题 第三、四讲 提高篇之约数与倍数
第三讲提高篇之约数与倍数(一)约数与倍数注:0被排除在约数与倍数之外最大公约数:如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数.在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数.例如(8,12) = 4,(6,9,15) =3最小公倍数:如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数.例如: [8,12] = 24,[6,9,15] = 90求最大公约数:(一)分解质因数(二)短除法求最小公倍数:(一)分解质因数(二)短除法(三)求最大公约数法最大公约数与最小公倍数的常用性质①两个自然数分别除以它们的最大公约数,所得的商互质。
②两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
③对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍课上例题【例1】把20个梨和25个苹果平均分给小朋友,分完后梨剩下2个,而苹果还缺2个,一共最多有多少个小朋友?【例2】两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.【例3】一次考试,参加的学生中有1/7得优,1/3得良,1/2得中,其余的得差,已知参加考试的学生不满50 人,那么得差的学生有()人.课后习题基础篇:【闯关1】.两个数的差是6,它们的最大公约数可能是多少?【闯关2】张阿姨把225 个苹果、350 个梨和150 个桔子平均分给小朋友们,最后剩下9 个苹果、26个梨和6 个桔子没有分出去。
请问:每个小朋友分了多少个苹果?提高篇【闯关3】有4 个不同的正整数,它们的和是1111。
请问:它们的最大公约数最大能是多少?【闯关4】两个数的最大公约数是6,最小公倍数是420,如果这两个数相差18,那么较小的数是多少?巅峰篇【闯关5】甲、乙两个数的最小公倍数是90,乙、丙两个数的最小公倍数是105,甲、丙两个数的最小公倍数是126。
高斯小学奥数六年级上册含答案第16讲 数论综合提高二
第十六讲 数论综合提高二本讲知识点汇总:一、约数、倍数1. 基本概念(1) 如果a 能被b 整除(也就是),则b 是a 的约数(因数),a 是b 的倍数; (2)约数具有“配对”性质:大约数对应小约数. 2. 约数个数(1)分解质因数,指数加1再相乘; (2)平方数有奇数个约数,非平方数有偶数个约数. 3. 约数和公式(1) 如果一个数的质因数分解式为,则约数和为; (2)如果一个数的质因数分解式为,则约数和为;二、公约数、公倍数1. 基本概念(1)如果a 是若干个数公有的约数,则称a 是它们的公约数,其中最大的叫做最大公约数;(2)如果b 是若干个数公有的倍数,则称b 是它们的公倍数,其中最小的叫做最小公倍数;(3)公约数是最大公约数的约数,公倍数是最小公倍数的倍数. 2. 计算方法(1)短除法; (2)分解质因数法; (3)辗转相除法(只用于计算两个数的最大公约数). 3. 基本性质(1) ; (2)两个数的最大公约数是它们和或差的约数; (3)已知两个未知数的最大公约数,可利用最大公约数把这两个数表示出来: 例如,甲、乙的最大公约数是5,则可以把甲乙分别设为5a 和5b ,其中a 、b 互质,此时甲乙的最小公倍数是5ab .4. 两个最简分数的最大公约数、最小公倍数:()[],,a b a b a b ⨯=⨯()()()2111a b c c +⨯+⨯++ 2a b c ⨯⨯ ()()22311a a b b b ++⨯+++23a b ⨯ |b a;一、约数、倍数 1. 约数的配对思想;2. 约数个数与完全平方数的关系;3. 求约数个数;4. 求约数的和;5. 利用约数个数反推原数的质因数分解形式.二、公约数、公倍数 1. 基本计算;2. 带有应用题背景的公约数公倍数计算;3. 有关最大公约数和最小公倍数的反求问题;4. 最大公约数、最小公倍数的质因数的分配.例1. 庆祝高思学校4周岁的生日,预计在12月5日高思成立日的当天举行大型的庆祝活动,由编号1~100的100名高思小明星们组成的方阵,开始都面朝东方站立,第一次所有编号是1的倍数的向左转,第二次所有编号是2的倍数的小朋友再向左转,第三次编号是3的倍数的小朋友再向左转,……,最后一次所有编号是100的倍数的小朋友再向左转,最后所有小朋友中有多少名小朋友面朝南方?「分析」首先分析出转几次的人会面朝南方,这些次数排成一列,找出这组数列的规律.练习1、有2012盏灯,分别对应编号为1至2012的2012个开关.现在有编号为1至2012的2012个人来按动这些开关.已知第1个人按的开关的编号是1的倍数,第2个人按的开关的编号是2的倍数,第3个人按的开关的编号是3的倍数,……,依次做下去,第2012个人按的开关的编号是2012的倍数.如果最开始的时候,灯全是亮着的,那么这2012个人按完后,还有多少盏灯是亮着的?经典题型 []()a c a c b d b d ⎡⎤=⎢⎥⎣⎦,,, ()[]a c a c b d b d ⎛⎫= ⎪⎝⎭,,,例2.一个数有15个约数,这个数最小是多少?第二小是多少?「分析」根据约数个数公式分析出含有15个约数的数的分解质因数形式.练习2、有10个约数的自然数最小是多少?有8个约数的最小的奇数是多少?例3.在35的倍数中,恰有35个约数的最小数是多少?(请写出质因数分解式)「分析」所求数一定含有35的质因数,再结合含有35个约数的数的分解质因数形式即可找到解题的突破口.练习3、42的倍数中,恰好有42个约数的数有多少个?例4.三个自然数乘积为86400,且这三个数的约数个数分别为8、9、10个.那么这三个自然数分别是多少?「分析」把含有8、9、10个约数的数的分解质因数形式及86400中个质因数的个数结合在一起进行分析.练习4、三个自然数乘积为5184,且这三个数的约数个数分别为A个、A+1个、A+2个.那么这三个自然数分别是多少?例5.两个整数的差为7,他们的最小公倍数和最大公约数的差是689,则这两个数分别是多少?「分析」列不定方程求解.例6.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花圃的周长,亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印.问:这个花圃的周长是多少米?「分析」这是一道公约数、公倍数的问题,首先回忆一下公约数、公倍数的求法,再思考一下题中各数据之间的关系.亲和数(Amicable Pair)亲和数是一种古老的数.遥远的古代,人们发现某些自然数之间有特殊的关系:如果两个数a和b,a的所有真因数之和等于b,b的所有真因数之和等于a,则称a,b是一对亲和数.相传,毕达哥拉斯的一个门徒向他提出这样一个问题:“我结交朋友时,存在着数的作用吗?”毕达哥拉斯毫不犹豫地回答:“朋友是你的灵魂的倩影,要象220和284一样亲密.什么叫朋友?就象这两个数,一个是你,另一个是我.”后来,毕氏学派宣传说:人之间讲友谊,数之间也有“相亲相爱”.从此,把220和284叫做“亲和数”(也叫“朋友数”或叫“相亲数”).这就是“亲和数”这个名称的来源.毕达哥拉斯首先发现220与284就是一对亲和数,在以后的1500年间,世界上有很多数学家致力于探寻亲和数,面对茫茫数海,无疑是大海捞针,虽经一代又一代人的穷思苦想,有些人甚至为此耗尽毕生心血,却始终没有收获.公元九世纪,伊拉克哲学、医学、天文学和物理学家泰比特·依本库拉曾提出过一个求亲和数的法则,因为他的公式比较繁杂,难以实际操作,再加上难以辨别真假,故它并没有给人们带来惊喜,或者走出困境.数学家们仍然没有找到第二对亲和数.距离第一对亲和数诞生2500多年以后,历史的车轮转到十七世纪,1636年,法国“业余数学家之王”费马终于找到了第二对亲和数17296和18416,这个发现也重新点燃寻找亲和数的火炬.两年之后,“解析几何之父”——法国数学家笛卡尔于1638年3月31日宣布找到了第三对亲和数9437506和9363584.费马和笛卡尔在两年的时间里,打破了二千五百年的沉寂,激起了数学界重新寻找亲和数的波涛.在十七世纪以后的岁月,许多数学家投身到寻找新的亲和数的行列,他们企图用灵感与枯燥的计算发现新大陆.可是,无情的事实使他们省悟到,已经陷入了一座数学迷宫,不可能出现法国人的辉煌了.正当数学家们真的感到绝望的时候,平地又起了一声惊雷.1747年,年仅39岁的瑞士数学家欧拉竟向全世界宣布:他找到了30对亲和数,后来又扩展到60对,不仅列出了亲和数的数表,而且还公布了全部运算过程.时间又过了120年,到了1867年,意大利有一个爱动脑筋,勤于计算的16岁中学生白格黑尼,竟然发现数学大师欧拉的疏漏——让眼皮下的一对较小的亲和数1184和1210溜掉了.这戏剧性的发现让数学家们大为惊叹.在以后的半个世纪的时间里,人们在前人的基础上,不断更新方法,陆陆续续又找到了许多对亲和数.到了1923年,数学家麦达其和叶维勒汇总前人研究成果与自己的研究所得,发表了1095对亲和数,其中最大的数有25位.同年,另一个荷兰数学家里勒找到了一对有152位数的亲和数.电子计算机诞生以后,结束了笔算寻找亲和数的历史,人们利用计算机,可以更有效率的寻找和分析亲和数,但直到今天,亲和数仍有许多未解之谜,等待着数学家和计算机专家来解决.作业1.300共多少个约数?其中有多少个是6的倍数?有多少个不是4的倍数?2.把一张长108厘米,宽84厘米的长方形纸裁成同样大小的正方形,且纸无剩余,至少能裁成多少个正方形?3.一个小于200的自然数,其最小的三个约数之和是31,那么这个自然数是多少?(请写出所有答案)4.已知两个三位数M和N互为反序数(M>N),且它们的最大公约数是6,那么N最小值是多少?5.两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是多少?第十六讲 数论综合提高二例7. 答案:5详解:从向东转向南方,可以转3次、7次、11次、15次等,即约数个数是3、7、11、…….100之内的数的约数个数最多的只有12个(有5个).有3个约数的是4、9、25、49;有7个约数的是64;有11个约数的数最小是1024.所以有5名小朋友最后是面朝南方.例8. 答案:144、324详解:有15个约数的数,质因数分解式为14或24⨯.前者最小是142,次小的是143,都很大;后者最小的是4223⨯,次小的是4232⨯,这个数最小是144,次小是324.例9. 答案:6457⨯详解:因为35含有质因数5、7,恰有35个约数的数只能含有这两个质因数,所以这个数最小是6457⨯.例10. 答案:30,36,80详解:,,,易知所求三个数为30,36,80.例11. 答案:23和30详解:两数之差为7,则他们的最大公约数可能为7或1,而689也可被最大公约数整除,所以两数的最大公约数为1,即两数互质,所以两数的最小公倍数,即两数之积为690,易知相差7且乘积为690的两个数为23和30.例12. 答案: 21.6米1025=⨯ 933=⨯ 8222=⨯⨯ 73286400235=⨯⨯练习:练习1、答案:1968简答:易知第n 号灯被按的次数等于n 的约数的个数,如果n 号灯被按灭则灯被按了奇数次,即n 有奇数个约数,也就是n 每个质因子的质数为偶数,即n 为完全平方数.易知小于2012的完全平方数有44个,所以还有1968盏灯亮着.练习2、答案:48;105练习3、答案:4032个简答:因为42含有质因数2、3、7,恰有42个约数的数只能含有这三个质因数,所以这个数最小是622374032⨯⨯=练习4、答案:12、16、27简答:把5184分解质因数得:64518423=⨯ ,可凑出三个数是12、16、27,质数个数分别是6个、5个、4个作业6. 答案:18,6,12简答:通过分解质因数可得答案为18,6,12.7. 答案:63简答:正方形边长为108和84的最大公约数12,所以可裁成63个正方形.8. 答案:25,125,161简答:首先最小的约数可知为1,则另外两个较小的约数之和为30,可知另外两个较小约数可以是5和25,则答案为25和125;7和23,则答案为161;11和19,则答案为209;13和17,则答案为221.其中小于200的为25,125,161.9. 答案:204简答:设这M abc =,N cba =,则由M 和N 是6的倍数,可知99()M N a c -=-是6的倍数,则a c -是2的倍数,又由M 是偶数可知,c 可能取2、4、6或8,带入尝试可求得N 可以为204,228,246,258,294,426,438,456,498,618,678,最小的是204.10. 答案:29简答:两数相差5,所以它们的最大公约数为5或1,所以分类讨论可得这两个数为12与17,其和为29.。
小学奥数最大公约数与最小公倍数的应用比较
最大公约数与最小公倍数的应用比较在整除的应用当中,最大公约数和最小公倍数的应用最为广泛,也是最重要的部分。
一道应用题,到底是用最大公约数解题还是用最小公倍数解题,学生最容易混乱。
不妨试用下面这种土方法判断下,问题就会迎刃而解了。
判断法则:如果题目已知总体,求部分,一般用最大公约数解题,先求出总体的最大公约数,再依题意解答;如果题目已知部分,求总体,一般用最小公倍数解题,先求出部分的最小公倍数,再依题意解答。
对比例子(一)1.把一张长60厘米,宽40厘米的长方形纸板剪成边长是整数厘米数的小正方形,且无剩余,最少可以剪成多少块?分析:正方形是在长方形里面剪,所以长方形是总体,正方形是部分。
题目告诉你了长方形的长与宽,告诉了总体,求的是小正方形,求部分,所以用最大公约数解题。
具体分析:由于题中求剪后无剩余,所以小正方形的边长必须是60和40的公约数。
又因为求最少剪多少块,就要求小正方形的边长最大,所以小正方形的边长一定是60和40的最大公约数。
(60,40)=20 -------这就是小正方形的边长。
(60÷20)×(40÷20)=6(块)或用面积计算:(60×40)÷(20×20)=6(块)2.用长5CM,宽3CM的长方形硬纸片摆成一个正方形(中间无空隙),至少要用几个长方形硬纸片?分析:多个长方形摆成正方形,所以正方形是总体,长方形是部分。
题目告诉你了长方形的长与宽,即告诉了部分,求正方形,即求总体,所以用最小公倍数解题。
具体分析:由于拼摆后正好一个正方形,所以正方形的边长必须是长方形的长与宽的公倍数,又因为要用最少的长方形来摆,所以正方形的边长一定是最小的公倍数。
〔5,3〕=15 CM------这就是正方形的边长(15÷5)×(15÷3)=15(个)长方形或用面积计算:(15×15)÷(5×3)=15(个)对比例子(二)1.一长方体木块,长56CM,宽40CM,高24CM,把它锯成尽可能大,且大小相同的正方体,且无剩余,能锯成多少块?分析:小正方体是从长方体中锯出来的,长方体就是总体,小正方体为部分。
五年级数学下册:约数和倍数练习题教案
五年级数学下册:约数和倍数练习题教案
一、教学内容
本课内容是五年级数学下册中的约数和倍数练习题。
通过本课的学习,学生将了解约数和倍数的概念,并能够运用所学知识进行相关的练习。
二、教学目标
1.掌握约数和倍数的概念。
2.培养学生的逻辑思维能力。
3.培养学生的解决实际问题的能力。
三、教学重难点
1.掌握约数和倍数的概念。
2.学习如何应用所学知识解决实际问题。
四、教学方法
1.讲授法:通过课堂讲授形式介绍约数和倍数的概念,并讲解相关的练习题。
2.演示法:通过例题的演示,帮助学生理解并掌握题目的解决方法。
3.练习法:通过大量的练习题,巩固学生的学习成果。
五、教学步骤
第一步,引入课题,介绍约数和倍数的概念,以及约数和倍数的关系。
第二步,讲解约数和倍数的计算方法。
第三步,通过例题演示,直观地呈现约数和倍数的计算方法,并加深学生的理解。
第四步,通过实例演练,让学生熟悉约数和倍数的计算方法。
第五步,组织学生进行练习,检测学生的学习效果。
六、教学总结
通过本节课的学习,学生们掌握了约数和倍数的概念,以及如何应用所学知识解决实际问题。
在今后的学习过程中,学生们应该继续巩固所学知识,并不断提升自身的逻辑思维能力和解决实际问题的能力。
五年级奥数因数倍数进阶
五年级奥数因数倍数进阶因数倍数进阶知识引入1、因数和倍数如果自然数a和自然数b的乘积是c,即a×b=c,那么a 和b都是c的因数,c是a和b的倍数。
[注:在研究因数和倍数的时候,小学阶段所涉及的数指的是自然数(一般不包括)]一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身。
2、因数和倍数的关系二者是相互依存的关系,不能单独说某个数是倍数或因数。
3、求一个数的因数和倍数的方法(1)求一个数的因数的方法:找一个数的因数时,应从最小的因数找起,一直找到它本身;也可以一对一对地找,如12的因数有:1、12、2、6、3、4。
一个数的因数的个数是有限的。
(2)求一个数的倍数的方法:找一个数的倍数,可以用这个数分别去乘自然数1、2、3、4…所得的积就是这个数的倍数。
没有大小限制时,一个数的倍数的个数是无穷的。
4、求因数个数与所有因数的和(1)求任一整数因数的个数一个整数的因数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
如:1400严格分解质因数之后为23527,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个。
(包括1和1400本身)难点在于公式的逆推,有相称一部分常考的偏困难型考察的就是对这个公式的逆用,即先告诉一个数有几何个因数,然后再结合其他几个前提将原数“复原构造”出来,大概是“构造出可能的最值”。
(2)求任一整数的所有因数的和一个整数的所有因数的和是在对其严厉分化质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂乞降,然后再将这些得到的和相乘,乘积便是这个合数的所有因数的和。
如:233537,所以所有因数的和为(122223)(13)(155253)(17)此公式没有第一个公式经常使用,推导进程相对复杂,需要很多步提取公因式,规律性的记忆即可。
(完整版)小学奥数倍数与约数
倍数与约数我们知道6是2的3倍,即6=2×3 一般地,如果a=b×c,那么我们就说a是b (c)的倍数,而b(c)称为a的约数。
6=2×3,也就是6÷2=3,a=b×c,也就是a÷b=c,所以a是b的倍数(b是a的约数),那么a÷b余数为0,这时称a被b整除或b整除a。
如6被2整除(2整除6).例1:求出12的全部约数。
分析:看看1,2,3.。
12这些数中,哪些能整除1212=1×12=2×6=3×4 所以12有6个约数。
如果一个大于1的整数a,只有2个约数(即1与a),那么a就称为质数。
如2、3、5、7。
例2:从7、1、4、6、0,的卡片中抽取4张,组成若干个四位数,如是2的倍数有几个?如是5的倍数有几个?如是3的倍数有几个?例3:7824是不是9的倍数?练习:1、求15的全部约数2、101是不是质数?3、写出196的全部约数4、有0、1、4、7、9五张卡片去四张组成能被3整除的四位数,有几个?这些数从小到大排列第3个是多少?5、一个数有8个约数,这数最小是多少?6、首位为4,并能被3整除的三位数有多少个?提升题7、下面这个四十一位数55.。
599.。
9(5和9各有20个)能被7整除,那么中间方框内的数字是几?8、判断下列各数,哪些有因数3,哪些有因数9,说明理由7212 62007 180018 450927 25489、四位数7a2b被2、3、5整除,求a、b10、四位数198x被2、3整除,求x11、被2、3、5整除的三位数中最大的是多少?最小的是多少?12、什么样的数,约数的个数是奇数思考题13、用1962a8表示六位数,如果能被99整除,求 a14、已知整数1x2x3x4x5能被11整除,求所有满足条件的整数15、某小学学生张明做数学题时发现任意一个三位数,连着写2次得到一个六位数,这六位数一定能被1、11、13整除,试说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。
2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=; ②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=; ③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用知识点拨教学目标5-4-3.约数与倍数(三)后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
1. 求最小公倍数的方法①分解质因数的方法;例如:2313711=⨯⨯,22252237=⨯⨯,所以[]22231,252237112772=⨯⨯⨯=;②短除法求最小公倍数; 例如:2181239632,所以[]18,12233236=⨯⨯⨯=; ③[,](,)a b a b a b ⨯=. 2. 最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数.②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.3. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a ;求出各个分数分母的最大公约数b ;b a 即为所求.例如:35[3,5]15[,]412(4,12)4== 注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:[]()1,414,4232,3⎡⎤==⎢⎥⎣⎦ 4. 倍数、公倍数、最小公倍数的关系(1)倍数是对一个数说的;(2)最小公倍数是公倍数的约数,公倍数是最小公倍数的倍数三、最大公约数与最小公倍数的常用性质1. 两个自然数分别除以它们的最大公约数,所得的商互质。
如果m 为A 、B 的最大公约数,且A ma =,B mb =,那么a b 、互质,所以A 、B 的最小公倍数为mab ,所以最大公约数与最小公倍数有如下一些基本关系:①A B ma mb m mab ⨯=⨯=⨯,即两个数的最大公约数与最小公倍数之积等于这两个数的积;②最大公约数是A 、B 、A B +、A B -及最小公倍数的约数.2. 两个数的最大公约和最小公倍的乘积等于这两个数的乘积。
即(,)[,]a b a b a b ⨯=⨯,此性质比较简单,学生比较容易掌握。
3. 对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如:567210⨯⨯=,210就是567的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍例如:678336⨯⨯=,而6,7,8的最小公倍数为3362168÷=性质(3)不是一个常见考点,但是也比较有助于学生理解最小公倍数与数字乘积之间的大小关系,即“几个数最小公倍数一定不会比他们的乘积大”。
四、求约数个数与所有约数的和1. 求任一整数约数的个数一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
如:1400严格分解质因数之后为32⨯⨯,所以它的约数有(3+1)×(2+1)257×(1+1)=4×3×2=24个。
(包括1和1400本身)约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握。
难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造”出来,或者是“构造出可能的最值”。
2.求任一整数的所有约数的和一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
如:33=⨯⨯⨯,所以21000所有约数的和为2100023572323++++++++=(1222)(13)(1555)(17)74880此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可。
例题精讲模块一、运用大公约和小公倍的模型解题如果m为A、B的最大公约数,根据模型知道:(1)且A ma==,B mb(2)那么a b、互质(3)所以A、B的最大公约数为m,最小公倍数为mab(4)最大公约数与最小公倍数的成绩为A与B的成绩【例 1】甲数是36,甲、乙两数最大公约数是4,最小公倍数是288,那么乙数是多少?【考点】运用大公约和小公倍的模型解题【难度】2星【题型】解答【解析】法1:根据两个自然数的积=两数的最大公约数⨯两数的最小公倍数,有:甲数⨯乙数4288=⨯,所以,乙数42883632=⨯÷=;法2:因为甲、乙两数的最大公约数为4,则甲数49=⨯,设乙数4b =⨯,则(,9)1b =.因为甲、乙两数的最小公倍数是288,则28849b =⨯⨯,得8b =.所以,乙数4832=⨯=.【答案】32【巩固】 已知A 、B 两数的最小公倍数是180,最大公约数是30,若A=90,则B= 。
【考点】运用大公约和小公倍的模型解题 【难度】2星 【题型】填空【关键词】希望杯,六年级,二试,第5题,5分【解析】 根据最小公倍数⨯最大公约数A B =⨯,知道,180309060B =⨯÷=【答案】60【例 2】 已知两个自然数的积为240,最小公倍数为60,求这两个数.【考点】运用大公约和小公倍的模型解题 【难度】3星 【题型】解答【解析】 由于两个自然数的积=两数的最大公约数⨯两数的最小公倍数,可以得到,最大公约数是240604÷=,设这两个数分别为4a 、4b ,那么(,)1a b =,且60415a b ⨯=÷=,所以a 和b 可以取1和15 或 3和5 ,所以这两个数是4和60 或12和20.【答案】这两个数是4和60 或12和20【例 3】 两个自然数的和是50,它们的最大公约数是5,试求这两个数的差.【考点】运用大公约和小公倍的模型解题 【难度】3星 【题型】解答【解析】 设这两个自然数为:5a b 、5,其中a 与b 互质,5550a b +=,10a b +=,经检验,容易得到两组符合条件的数:9与1或者7与3.于是,所要求的两个自然数也有两组:45与5,35与15.它们的差分别是:45-5=40,35-15=20.所以,所求这两个数的差是40或者20.【答案】这两个数的差是40或者20【巩固】 两个自然数的和是125,它们的最大公约数是25,试求这两个数.【考点】运用大公约和小公倍的模型解题 【难度】3星 【题型】解答【解析】 125255÷=,51423=+=+,两数可以为25、100或者50、75.【答案】两数可以为25、100或者50、75【例 4】 已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?【考点】运用大公约和小公倍的模型解题 【难度】3星 【题型】解答【解析】 假设这两个数是21a 和21b ,易得21126a b ⨯⨯=,所以6a b ⨯=,由a 和b 互质,那么就有61623=⨯=⨯两种情况.所以甲、乙是:21121⨯=,216126⨯=或21242⨯=,21363⨯=两种情况.它们的和是147或105.【答案】和是147或105【巩固】 已知两个自然数的最大公约数为4,最小公倍数为120,求这两个数.【考点】运用大公约和小公倍的模型解题 【难度】3星 【题型】解答【解析】 这两个数分别除以最大公约数所得的商的乘积等于最小公倍数除以最大公约数的商,120430÷=,将30分解成两个互质的数之积:1和30,2和15,3和10,5和6,所以这两个数为4与120,或8与60,或12与40,或20与24.【答案】两个数为4与120,或8与60,或12与40,或20与24【例 5】 甲、乙两个自然数的最大公约数是7,并且甲数除以乙数所得的商是118.乙数是_____.【考点】运用大公约和小公倍的模型解题 【难度】2星 【题型】填空【解析】 由(甲,乙) 7=,且甲:乙9:8=,由于8与9互质,所以乙数8756=⨯=.【答案】56【例 6】 已知正整数a 、b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么a 、b 中较大的数是多少?【考点】运用大公约和小公倍的模型解题 【难度】4星 【题型】解答【解析】 设a b >,有120a b =+,又设()a b d =,,a pd =,b qd =,(,)1p q =,且p q >,则[,]a b pqd =,有105pqd d =,所以105357pq ==⨯⨯.因为()120a b p q d -=-=,所以()p q -是120的约数.①若105p =,1q =,则104p q -=,不符合;②若35p =,3q =,则32p q -=,不符合;③若21p =,5q =,则16p q -=,不符合;④若15p =,7q =,则8p q -=,符合条件.由()8120p q d d -==,得15d =,从而a 、b 中较大的数1515225a pd ==⨯=.【答案】225【例 7】 已知两个自然数的和为54,它们的最小公倍数与最大公约数的差为114,求这两个自然数.【考点】运用大公约和小公倍的模型解题 【难度】4星 【题型】解答【解析】 设这两个自然数分别是ma 、mb ,其中m 为它们的最大公约数,a 与b 互质(不妨设a ≤b ),根据题意有:()54(1)114mb ma m a b mab m m ab +=+=⎧⎨-=-=⎩所以可以得到 m 是54和114的公约数,所以是(54,114)6=的约数.1m =,2,3或6.如果1m =,由()54m a b ⨯+=,有54a b +=;又由(1)114m ab ⨯-=,有115ab =.1151115523=⨯=⨯,但是111511654+=≠,5232854+=≠,所以1m ≠.如果2m =,由()54m a b ⨯+=,有27a b +=;又由(1)114m ab ⨯-=,有58ab =.58158229=⨯=⨯,但是1585927+=≠,2293127+=≠,所以2m ≠.如果3m =,由()54m a b ⨯+=,有18a b +=;又由(1)114m ab ⨯-=,有39ab =.39139313=⨯=⨯,但是1394018+=≠,3131618+=≠,所以3m ≠.如果6m =,由()54m a b ⨯+=,有9a b +=;又由(1)114m ab ⨯-=,有20ab =.20表示成两个互质的数的乘积有两种形式:2012045=⨯=⨯,虽然120219+=≠,但是有459+=,所以取6m =是合适的,此时4a =,5b =,这两个数分别为24和30.【答案】两个数分别为24和30【例 8】 有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693,这两个自然数的差是 .【考点】运用大公约和小公倍的模型解题 【难度】4星 【题型】填空【解析】 两个自然数的最大公约数是它们的和的约数,也是它们的最小公倍数的约数,所以是它们的最大公约数与最小公倍数的和的约数,也就是297和693的公约数,也就是()297,69399=的约数.99的约数共有6个,此时可以逐一分情况进行讨论,但较繁琐.设这两个数分别为ad 和bd ,其中(),1a b =,a b <,d 是它们的最大公约数.那么()297a b d +=,()1693d abd ab d +=+=,相比得169372973ab a b +==+,所以3377ab a b +=+,即9212190ab a b --+=,可得 ()()373740a b --=.由于()37a -和()37b -都是40的约数且除以3余2,只能为3723720a b -=⎧⎨-=⎩或者375378a b -=⎧⎨-=⎩,可得39a b =⎧⎨=⎩或45a b =⎧⎨=⎩. 由于()297a b d +=,所以()a b +是297的约数,39a b =⎧⎨=⎩不符合,所以只能为45a b =⎧⎨=⎩,此时()2974533d =÷+=,这两个数的差为()33bd ad b a d -=-=. 【答案】33【例 9】 已知自然数A 、B 满足以下2个性质:(1)A 、B 不互质;(2)A 、B 的最大公约数与最小公倍数之和为35。