“数学花园探秘”科普活动小中年级组决赛试题答卷A

合集下载

2020数学花园探秘决赛小中A卷

2020数学花园探秘决赛小中A卷

测评 中年级组(测评时间:2020年1月1日10:30—11:30)一.填空题Ⅰ(每小题8分,共32分)1. 算式 987651234+++⨯- 的计算结果是 .2. 均均、帅帅同一天开始背单词.均均第一天背10个,计划以后每天比前一天都多背1个;帅帅第一天背5个,计划以后每天比前一天都多背2个.直至某天两人都按计划背完单词后,发现两人背的单词总个数一样多,这时帅帅共背了 个单词.3. 如图,边长为25厘米的大正方形中有A 、B 两个大小相同的小正方形.如果图中阴影部分面积为225平方厘米,那么小正方形A 的面积是 平方厘米.4. 有连续101个格子,给每个格子涂上红色或蓝色.任意连续20个格子中,红色格子的数量都是相同的.任意连续8个格子中,红色格子的数量也是相同的.如果前5个格子里面有4个是红色的,那么一共有 个格子是红色的. 二.填空题Ⅱ(每小题10分,共40分)5. 在右图的除法竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.白龙马代表的三位数是 .6. 将0、1、10、100这四个自然数按任意顺序排成一行,拼成一个首位不为0的七位数,一共能拼成 个不同的七位数.7. 老师将一些苹果和梨平分给全班同学.分完后,苹果剩下2个,梨剩下7个,且每个同学分得的梨的个数是分得的苹果个数的2倍.如果先分给其中11名同学每人两种水果各7个,剩下的平分给余下同学,恰好分完,且余下这些同学每人分得的梨的个数是分得的苹果个数的3倍.那么苹果和梨共有 个.西 游 记白 蹄朝西A B8. 将1~9分别填入到右图的9个圆圈中,使得各条直线上圆圈中所填数的和都相等.现已将7填入,那么圆圈A 、B 、C 、D 中所填数字依次组成的四位数是 .三.填空题Ⅲ(每小题16分,共48分)9. 如图,在5×5的方格中放置了编号为1~5的5个小球,没有任何两个小球在同一行或同一列;如果同时移动其中3个小球到相邻格子(有公共点的格子)里,移动完后依然没有任何两个小球在同一行或同一列,那么共有 种移动的方法.10. 甲班的小迎同学和乙班的小春同学在谈论刚刚过去的初试成绩.小迎说:“你知道吗?这次考试咱们两个班的总分是一样的!” 小春说:“当然知道,而且我还算了下,如果我是你们班的学生,两个班的平均分就一样啦!” 小迎说:“这么巧?我也算了下,如果我是你们班的学生,两个班的人数就一样啦!” 这时老师走过来说:“小迎同学,你看看你,比你们2个班的总平均分低了整整12分;你看看小春同学,比你高了整整54分!”如果他们的话都是正确的,那么小迎考了________分.11. 如图,编号为1~9的9位同学顺时针站成一圈,每位同学持有一张卡片,卡片上写有一个1~9的数字且互不相同.每位同学计算自己以及相邻的两位同学所持的共三张卡片上数字的乘积,恰有5位同学得到乘积的个位数字与自己的编号相同.如果6号同学所持卡片上数字为5,且1、2、3号同学所持卡片上的数字依次为A 、B 、C ,那么三位数ABC 是 . (卡片不能倒过来看)。

2016年“数学花园探秘”科普活动决赛试题小中年级组A卷

2016年“数学花园探秘”科普活动决赛试题小中年级组A卷

2016年“数学花园探秘”科普活动决赛试题小中年级组A 卷一、填空题Ⅰ1.算式33333339876543++++++的计算结果是 .2.菲菲从一班转到了二班,蕾蕾从二班转到了一班.于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米.如果蕾蕾身高158厘米,菲菲身高140厘米,那么两个班共有学生 人.3.图中3个大三角形都是等边三角形,则图中共有 个三角形.4.今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面.于是得到:130、67、132、68……;那么这列数中第2016个数是 .二、填空题Ⅱ5.请将1~6分别填入右图的6个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有3条直线上各有3个圆圈,有两条直线上各有2个圆圈);那么两位数AB = .6.在A 、B 、C 三个连通的小水池中各放入若干条金鱼.若有12条金鱼从A 池游到C 池中,则C 池内的金鱼将是A 池的2倍.若有5条金鱼从B 池游到A 池中,则A 池与B 池的金鱼数将相等.此外,若有3条金鱼从B 池游到C 池中,则B 池与C 池的金鱼数也会相等.那么A 水池中原来有 条金鱼.7.如图,长方形ABCD的长AB为20厘米,宽BC为16厘米;长方形内放着两个重叠的正方形DEFG和BHIJ.已知三个阴影长方形的周长相等,那么长方形INFM的面积为平方厘米8.在下右图每个格子里填入数字1~5中的一个,使得每一行和每一列数字都不重复.每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(下左图给出了一个填1~4的例子,如下中图第3行从左到右四格依次是3,4,1,2).那么下右图中最下面一行的五个数字按照从左到右的顺序依次组成的五位数是.三、填空题Ⅲ9.用数字1至9组成一个没有重复数字的九位数ABCDEFGHI,要求AB、BC、CD、DE、EF、FG、GH、HI这八个两位数均能写成两个一位数的乘积;那么算式+的计算结果是.ABC+DEFGHI10.图③是由6个图①这样的模块拼成的.如果最底层已经给定一块的位置(如图②),那么剩下部分一共有种不同的拼法.11.甲、乙二人轮流从1~9这9个自然数中取不同的数,对方取过的数不能再取,谁取得的数中先有三个数成等差数列谁就获胜;甲先取了8,乙接着取了5;为了确保甲必胜,甲接下来取得一个数的所有可能的值的乘积是。

2016-2010数学花园探秘决赛试卷汇总——小中组

2016-2010数学花园探秘决赛试卷汇总——小中组

2016年“数学花园探秘”科普活动决赛试题小中年级组A 卷一、填空题Ⅰ(每小题8分,共32分)1.算式33333339876543++++++的计算结果是.2.菲菲从一班转到了二班,蕾蕾从二班转到了一班。

于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米。

如果蕾蕾身高158厘米,菲菲身高140厘米,那么两个班共有学生人。

3.图中3个大三角形都是等边三角形,则图中共有个三角形.4.今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面。

于是得到:130、67、132、68;那么这列数中第2016个数是。

二、填空题Ⅱ(每小题10分,共40分)5.请将1~6分别填入右图的6个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有3条直线上各有3个圆圈,有两条直线上各有2个圆圈);那么两位数AB=.6.在A、B、C三个连通的小水池中各放入若干条金鱼.若有12条金鱼从A池游到C池中,则C池内的金鱼将是A池的2倍.若有5条金鱼从B池游到A池中,则A池与B池的金鱼数将相等.此外,若有3条金鱼从B池游到C池中,则B池与C池的金鱼数也会相等.那么A水池中原来有条金鱼.7.如图,长方形ABCD的长AB为20厘米,宽BC为16厘米;长方形内放着两个重叠的正方形DEFG和BHIJ.已知三个阴影长方形的周长相等,那么长方形INFM的面积为平方厘米。

8.在下右图每个格子里填入数字1~5中的一个,使得每一行和每一列数字都不重复.每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(下左图给出了一个填1~4的例子,如下中图第3行从左到右四格依次是3,4,1,2).那么下右图中最下面一行的五个数字按照从左到右的顺序依次组成的五位数是.三、填空题Ⅲ(每小题12分,共48分)ABCDEFGHI,要求____AB、____BC、____CD、____DE、____EF、____FG、____GH、9.用数字1至9组成一个没有重复数字的九位数_______________________GHI的计算结果是.DEF+______ABC+______HI这八个两位数均能写成两个一位数的乘积;那么算式______10.图③是由6个图①这样的模块拼成的.如果最底层已经给定一块的位置(如图②),那么剩下部分一共有种不同的拼法.11.甲、乙二人轮流从1~9这9个自然数中取不同的数,对方取过的数不能再取,谁取得的数中先有三个数成等差数列谁就获胜;甲先取了8,乙接着取了5;为了确保甲必胜,甲接下来取得一个数的所有可能的值的乘积是。

(完整版)2018数学花园探秘决赛_初中A卷(答案作者版)

(完整版)2018数学花园探秘决赛_初中A卷(答案作者版)

2018年“数学花园探秘”科普活动初中年级组决赛试卷A(测评时间:2018年1月6日10:30—12:00)一. 填空题Ⅰ(每小题8分,共32分)1.__________.〖答案〗2〖作者〗北京 朱雍容2. 已知非零整数,,a b c 满足2221a b c a b c +-=+-=-,则333a b c +-的值为__________.〖答案〗11〖作者〗郑州 程国根3. 若关于,x y 的方程组26534y x x ky x ⎧=-+-⎪⎨=⎪⎩恰有四组解,则所有不同整数k 的平方和是__________.〖答案〗6〖作者〗武汉 卢韵秋4. 若关于x的方程21122x x x x+=-- 则满足条件的a 的所有正整数值之和为__________.〖答案〗21 〖作者〗上海 方非二. 填空题Ⅱ(每小题10分,共40分)5.(20218x x -+-的最小值为M ,那么不小于M 的最小整数为__________.〖答案〗22〖作者〗北京 班昌6. 如图,ABCD 是圆内接四边形,E 是直线AC 上一点,满足:直线BE 与直线BD 关于AB 对称, 且直线DE 与直线BD 关于AD 对称. 若15,20,24AB BC CD ===, 则AD =__________.〖答案〗7〖作者〗北京 申井然C7. 一个数字不含0的两位数,恰等于它的数字和与其所有不同质因数和的乘积,那么这个两位数是__________. 〖答案〗27 〖作者〗北京 陈景发8. 普通骰子六个面上分别为1~6,同时投掷红、蓝两枚骰子时,会出现36种不同的投掷结果,两枚骰子的点数之和及其对应的结果种数如下: 现在有黑、白两个特制的六面骰子,黑骰子上六个正整数中至少存在某两个相同,白色骰子上六个正整数各不相同,并且同时投掷黑白这两枚骰子时,得到的点数之和及对应的结果种数与上表相同,那么白色骰子上六个正整数之和是__________. 〖答案〗27 〖作者〗北京 石文博三. 填空题Ⅲ(每小题12分,共48分)9. 已知[]x 表示不超过x 的最大整数.那么算式2!3!4!99!100!1!1!2!1!2!3!1!2!98!1!2!99!⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+++++++++⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦的计算结果是__________. 〖答案〗4854 〖作者〗广州 黄达鹏10. 如图,P 为正方形ABCD 内的一点,2220,18PA PC ==,当PB 以及正方形的面积均为整数时,这个正方形面积的最大值为__________. 〖答案〗37 〖作者〗北京 付宇11. 四位数1234具有如下性质:把它的相邻数位依次写成三个两位数12,23,34,它们恰好构成一个等差数列.那么,具有这种性质的四位数abcd 共有__________个. 〖答案〗43〖作者〗北京 叶培臣12. (评选题)四. 解答题(每小题15分,共30分)13. 如图,△ABC中,AB =,AH 是BC 上的高,M 是AC 的中点,,HM BA 的延长线交于点D ,连结CD .求证:BC CD =.〖答案〗 〖作者〗上海 叶中豪〖解析〗(证法不唯一)作AB 边的中点N ,连结CN , ∴2212AB AN AB AC ⋅==, 又∵BAC CAN ∠=∠, ∴△ABC ∽△ACN , ∴ACB ANC ∠=∠,又∵直角△AHC 中,斜边中线MH MC =, ∴MCH MHC ∠=∠,即得DHC DNC ∠=∠,∴,,,C D N H 四点共圆,∴CDN BHN ∠=∠,再连结HN ,直角△ABH 中,斜边中线NH NB =, ∴B BHN ∠=∠,即得B CDB ∠=∠, ∴BC CD =,证毕.〖评分建议〗由各地管委会自行酌情确定.BB14. 已知直线m 交抛物线2y ax =于A 、B 两点,交x 轴于C 点,直线n 交抛物线2y ax =于D 、E两点,交x 轴于F 点,过C 、F 两点作x 轴的垂线分别交抛物线于G 、H ,已知AD //x 轴,直线AD 与BE 相交.求证:直线,BE GH 与x 轴三线共点. 〖答案〗〖作者〗北京 付宇〖解析〗不妨设点A 、B 、C 、D 、E 、F 的横坐标分别为1x 、2x 、3x 、4x 、5x 、6x ,则()()()()()()()()22222211223445563366,,,,,0,,,,,,0,,,,A x ax B x ax C x D x ax E x ax F x G x ax H x ax ,由直线m 过A 、B 两点,可得其斜率为()12a x x +,代入C 点坐标得()()212131a x x x x ax +-=,∴2112311212x x x x x x x x x =-=++,同理可得45645x x x x x =+;由题意,直线BE 不与x 轴平行,其在x 轴的截距为2525x x x x +,直线GH 在x 轴的截距为3636x xx x +;只需证36253625x x x x x x x x =++即36251111x x x x +=+,∵AD //x 轴,∴140x x +=,代入312645111111,x x x x x x =+=+立得结论,证毕. 〖评分建议〗由各地管委会自行酌情确定.。

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)

2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是.3.如图中共有个平行四边形.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有名同学.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为平方厘米.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)参考答案与试题解析一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是3434 .【分析】根据乘法的分配律简算即可.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=3434故答案为:3434.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是14 .【分析】由于0<C×D<100,所以1900<×<2017,根据130×13=1690,140×14=1960,150×15=2250,即可得出结论.【解答】解:由于0<C×D<100,所以1900<×<2017,因为130×13=1690,140×14=1960,150×15=2250,所以=14,进一步可得C×(14+D)=57,C=3,D=5.故答案为14.【点评】本题考查位值原则,考查学生的计算能力,确定1900<×<2017是关键.3.如图中共有15 个平行四边形.【分析】把图中的平行四边形分三类计数:①单个的(红色);②两个组成的(蓝色);③6部分组成的(黄色).【解答】解:根据分析可得,①单个的(红色)有:4个;②两个组成的(蓝色)有8个;③6部分组成的(黄色)有:3个;共有:4+8+3=15(个);答:图中共有 15个平行四边形.故答案为:15.【点评】本题要注意按顺序分类计数,防止遗漏.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔40 只.(注:蜘蛛有8只脚)【分析】每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,从而可得原有动物共5份,即可得出结论.【解答】解:每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,把增加的蜘蛛当作1份,那么原蜘蛛数量也是1份,走了的兔子数量是2份,原有兔子数量为4份,则原有动物共5份,是50只,1份有10只,所以原有兔子4×10=40只.故答案为40.【点评】本题考查差倍问题,考查学生转化问题的能力,确定要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍是关键.5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差9900 .【分析】将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列和与原数列的和相差所有奇数项的和的99倍,即可得出结论.【解答】解:设这个等差数列的奇数项分别为a1,a3,a5,…,公差为d,那么将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列可以表示为a1×100+a1+d,a2×100+a2+d,…,所以新数列的和与原数列的和相差99×(a1+a3+a5+…),由于奇数项的和为100,所以99×(a1+a3+a5+…)=99×100=9900,故答案为9900.【点评】本题考查等差数列,考查学生的计算能力,确定合并后的四位数列和与原数列的和相差所有奇数项的和的99倍是关键.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是13 .【分析】骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7~15进行分拆,即可得出结论.【解答】解:骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7=1+2+7,8=6+2,9=6+3,10=6+4,11=6+5,12=6+2+4,14=6+5+3,15=4+5+6,13无法拆出,即在1~15中,不可能看到的点数和是13.故答案为13.【点评】本题考查筛选与枚举,考查学生分析解决问题的能力,解题的关键是从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有7 名同学.【分析】由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.进而推出总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学.【解答】解:由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.第一轮只能在最中间放1枚棋子,此时将格子分为前半部分和后半部分,那么第二轮在每一部分的中间,都可以放1枚棋子,总共可以放2枚,此时将格子分成了4,第三轮在每一部分的中间,都可以放1枚棋子,总共可以放4枚,以此类推,总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学,棋子分布依次为:1,651,33,651,17,33,49,651,9,17,25,33,41,49,57,65,…故答案为7.【点评】本题考查找规律,考查枚举与筛选,解题的关键是若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了10 只羊.【分析】如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元,两次变化都是两只山羊的价钱,变化的总价格应该相等,即可得出结论.【解答】解:假设蕾蕾买了x只羊,原平均价格为a元,买2只山羊,每只羊的平均价格会增加60元,总价格增加60x+2(a+60)元;少买2只山羊,那么每只羊的平均价格会减少90元,总价格减少90x+2(a﹣90)元,两次变化都是两只山羊的价钱,应该相等,所以60x+2(a+60)=90x+2(a﹣90),解得x=10,故答案为10.【点评】本题考查等量关系与方程,考查学生分析解决问题的能力,正确建立等量关系是关键.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是41016 .(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)【分析】画出12月份值班表,分析A在12月份中第2,6,10次值班日期依次为4,10,16,即可得出结论.【解答】解:12月份值班表如下:由E说的话可知,25日A和E都值班,又由D的话可知D和E永远在一起,那么可以判断5日这一竖列值班人为A,D,E.由C的话可知,3日他不值班,由于每天必须有3人值班,所以D,E中必须有一个,又因为D,E在一起,所以3日这一竖列,D,E都值班.通过A的话判断,A,B在周末值班的日子比C,D,E多,统计出每一列中的周末数量,为2,1,2,2,2,每人都要在三列中值班,若要A,B比其他人多,那么1那一列必须是C,D,E值班,每天都要有3人值班,D,E现在已经排满,因此第1,4列为A,B,C值班.还剩第3列没有排完,B要跟每个人都搭配过,因此此处为B.A在12月份中第2,6,10次值班日期依次为4,10,16,故五位数为41016.故答案为41016.【点评】本题考查逻辑推理,考查学生分析解决问题的能力,确定A在12月份中第2,6,10次值班日期依次为4,10,16是关键.10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为84 平方厘米.【分析】如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半,即可得出结论.【解答】解:如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半为12×4÷2=24平方厘米,那么△ABC面积为3×24+12=84平方厘米.故答案为84.【点评】本题考查面积的计算,考查补形方法的运用,正确补形是关键.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有1476 种不同的走法.【分析】考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对,分别求出各种情况的不同的走法,即可得出结论.【解答】解:考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对.相邻:如1与2,那么下一步都顺时针走,可变为2与3,都逆时针走,变为6与1,一个顺时针,一个逆时针变为2与1或6与3,都有3种可能相邻,1种可能相对;相隔:如1与3,那么下一步可能变为2与4,6与2,6与4,都有3种可能相邻;相对:如1与4,那么下一步可能变为2与3,6与5,6与3,2与5,即有2种相邻的可能和2种相对的可能.假设警察初始房间为1,小偷与其相邻可能为2或6,那么3次之后不相遇的走法有2×(27+9+6+6+6+2+4+4)=128种相隔⇌3相隔⇌9相隔⇌27相隔.假设警察初始房间为1,小偷与其相邻可能为3或5,那么3次之后不相遇的走法有2×27=54种,假设警察初始房间为1,小偷与其相对为4,那么3次之后不相遇的走法有18+6+4+4+12+4+8+8=64种,综上所述,警察若初始位置为1,满足题目条件的走法有128+54+64+246种,那么警察初始位置还能选择2~6,因此共有246×6=1476种走法.故答案为1476.【点评】本题考查排列组合知识的运用,考查分类讨论的数学思想,正确分类讨论是关键.。

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛a卷)

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛a卷)

2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛A卷)一、填空题Ⅰ(每题8分,共32分)1.(8分)算式5×13×(1+2+4+8+16)的计算结果是.2.(8分)如图中7个小正方形拼成一个大正方形.如果这7个小正方形的边长从小到大依次是1、1、2、3、5、8、13,那么这个大长方形的周长是.3.(8分)小数、小学、小花、小园、探秘5人获得了跳远比赛的前5名(无并列),他们说:小数:“我的名次比小学好”;小学:“我的名次比小花好”;小花:“我的名次不如小园”;小园:“我的名次不如探秘”;探秘:“我的名次不如小学”.已知小数、小学、小花、小园、探秘分别获得第A、B、C、D、E名且他们都是从不说谎的好学生,那么五位数.4.(8分)有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).二、填空题Ⅱ(每题10分,共40分)5.(10分)期末了,希希老师买来同样数量的签字笔、圆珠笔和橡皮发给班上同学,发给每位学生2支签字笔、3支圆珠笔和4块橡皮后,发现圆珠笔还剩下48支,剩下的签字笔数量恰好是剩下橡皮数量的2倍,聪明的你赶紧算一算,希希老师班上一共有名学生.6.(10分)如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数=.7.(10分)小明和小强常去图书馆看书,小明在一月份的第一个星期三去图书馆,此后每隔4天去一次(即第2次去是星期一),小强是一月份的第一个星期四去图书馆,此后每隔3天去一次;如果一月份两人只有一次同时去了图书馆,那么这一天是1月号.8.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字,其中双向箭头表示箭头所指的两个方向的全部数字里有多少种不同的数字,那么图中的第二行从左到右所填数字依次组成的四位数是.(如图是一个3×3的例子)三、填空题Ⅲ(每题16分,共48分)9.(16分)一个骰子,各面点数已画好,分别为1~6;从空间一点看,能看到的不同点数的组合一共有种.10.(16分)二十世纪(1900年~1999年)的某一天,弟弟对哥哥说:“哥哥,你看,把你出生年份中的四个数字加起来,就是我的年龄.”哥哥接着说道:“亲爱的弟弟,你说得对!对我来说也是一样的,把你出生年份的四个数字加起来就是我的年龄.另外如果把我们各自年龄的两个数字对调一下就能得到对方的年龄.”已知兄弟俩出生的年份不同,那么这段对话发生在年.11.(16分)甲和乙在一张20×15的棋盘上玩游戏,开始时把一个皇后放在棋盘除了右上角外的某格内;从甲开始,两个人轮流挪动皇后,每次可以按直线或斜线走若干格,但只能往右、上或右上走;谁把皇后挪到了右上角的格子,谁就获胜.那么这个棋盘上,有个起始格是让甲有必胜策略的.2015年“迎春杯”数学花园探秘科普活动试卷(小中组决赛A卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共32分)1.(8分)算式5×13×(1+2+4+8+16)的计算结果是2015.【解答】解:5×13×(1+2+4+8+16)=5×13×31=65×31=2015故答案为:2015.黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!2.(8分)如图中7个小正方形拼成一个大正方形.如果这7个小正方形的边长从小到大依次是1、1、2、3、5、8、13,那么这个大长方形的周长是68.【解答】解:根据分析,如图:大长方形的长=8+13=21;宽=5+8=13,故大长方形的周长=2×(长+宽)=2×(21+13)=68,故答案是:68.3.(8分)小数、小学、小花、小园、探秘5人获得了跳远比赛的前5名(无并列),他们说:小数:“我的名次比小学好”;小学:“我的名次比小花好”;小花:“我的名次不如小园”;小园:“我的名次不如探秘”;探秘:“我的名次不如小学”.已知小数、小学、小花、小园、探秘分别获得第A、B、C、D、E名且他们都是从不说谎的好学生,那么五位数12543.【解答】解:根据分析,小数:“我的名次比小学好”可得:小数>小学;小学:“我的名次比小花好”可得:小数>小学>小花;小花:“我的名次不如小园”可得:小园>小花;小园:“我的名次不如探秘”可得:探秘>小园>小花;探秘:“我的名次不如小学”可得:小数>小学>探秘>小园>小花.小数第1名,小学第2名,探秘第3名,小园第4名,小花第5名,则:A=1,B=2,C=5,D=4,E=3,故答案是:12543.4.(8分)有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是360厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,由于:①到②、③到端点的距离相等,所以每一份的距离是30厘米,则②到端点的绳长是30×3=90(厘米),绳子的全长是90×4=360(厘米).答:这根绳子的总长度是360厘米.故答案为:360.二、填空题Ⅱ(每题10分,共40分)5.(10分)期末了,希希老师买来同样数量的签字笔、圆珠笔和橡皮发给班上同学,发给每位学生2支签字笔、3支圆珠笔和4块橡皮后,发现圆珠笔还剩下48支,剩下的签字笔数量恰好是剩下橡皮数量的2倍,聪明的你赶紧算一算,希希老师班上一共有16名学生.【解答】解:48﹣48×[(2+4)÷3]÷(2+1)=48﹣48×2÷3=48﹣32=16(名)答:希希老师班上一共有16名学生.故答案为:16.6.(10分)如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数=4608.【解答】解:首先根据B﹣F=0,B+F尾数是1,可以判定B是比F大1,在减法中有借位,那么B=6,F=5.字母P为首位只能是1,根据C+E加上进位是3,那么E不是0也不是1,只能是2,C =0.那么C﹣G尾数为1,G=9,最后D﹣H没有借位只能是8﹣3.所以4608﹣2593=2015.106+25=131.故答案为:46087.(10分)小明和小强常去图书馆看书,小明在一月份的第一个星期三去图书馆,此后每隔4天去一次(即第2次去是星期一),小强是一月份的第一个星期四去图书馆,此后每隔3天去一次;如果一月份两人只有一次同时去了图书馆,那么这一天是1月17号.【解答】解:依题意可知:若第一个星期三和星期四在同一个星期,则两人会在下一个星期一碰见,再碰见时时间间隔是4×5=20天还会碰见,所以1月份的第一天是星期四.则小强去的日期是1,5,9,13,17,21,25,29.小明去的日期是:7,12,17,22,27.故答案为:178.(10分)请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字,其中双向箭头表示箭头所指的两个方向的全部数字里有多少种不同的数字,那么图中的第二行从左到右所填数字依次组成的四位数是3122.(如图是一个3×3的例子)【解答】解:根据分析,逆向推导,从第一列开始推导,易得M=1,且第一列有三个不同的数,故得N=3,O=2;F处指向左边两个数,因G指向右边两个数不可能填3,故F=2;H处,L处只能是1或2,若H为1,则L为1,B必须为1,显然B不能为1,因为A=1,B指向左边三个数,左边已经有1和3,故只能是2或3,故H和L均只能为2,综上,第二行的数已经确定,为:3122.所填数字如下图:故第二行应填的四个数字为:3122.故答案是:3122.三、填空题Ⅲ(每题16分,共48分)9.(16分)一个骰子,各面点数已画好,分别为1~6;从空间一点看,能看到的不同点数的组合一共有26种.【解答】解:骰子各面已经确定,所以在空间中一点观察分3种情况:①能看到3个面,即从每个顶点观察,有8种;②能看到2个面,即从每条边处观察,有12种;③能看到1个面,即从每个面处观察,有6种;综上,共计:8+12+6=26(种).答:从空间一点看,能看到的不同点数的组合一共有26种.故答案为:26.10.(16分)二十世纪(1900年~1999年)的某一天,弟弟对哥哥说:“哥哥,你看,把你出生年份中的四个数字加起来,就是我的年龄.”哥哥接着说道:“亲爱的弟弟,你说得对!对我来说也是一样的,把你出生年份的四个数字加起来就是我的年龄.另外如果把我们各自年龄的两个数字对调一下就能得到对方的年龄.”已知兄弟俩出生的年份不同,那么这段对话发生在1941年.【解答】解:设哥哥出生于19ab年,弟弟出生于19cd年,则这段对话发生时,哥哥10+c+d岁,弟弟10+a+b岁;哥哥年龄的十位数=弟弟年龄的个位数,哥哥年龄的个位数=弟弟年龄的十位数,(1)c+d<10时,①c+d=0时,哥哥的年龄是10岁,弟弟的年龄是01岁,不符合题意;②c+d=1时,哥哥和弟弟的年龄都是11岁,出生的年份相同,不符合题意;③c+d取2﹣9中的任何一个数字时,弟弟的年龄大于哥哥的年龄,不符合题意;(2)c+d>10时,哥哥21岁,弟弟12岁,c+d=11,a+b=2;(3)因为a+b=2,所以哥哥出生的年份有3种情况:1911、1902、1920,又因为哥哥比弟弟大9(21﹣12=9)岁,所以弟弟出生的年份有3种情况:1920、1911、1929,因为1+9+2+0=12≠21,1+9+1+1=12≠21,1+9+2+9=21,所以弟弟出生于1929年,因为1929+12=1941(年),所以这段对话发生在1941年.答:这段对话发生在1941年.故答案为:1941.11.(16分)甲和乙在一张20×15的棋盘上玩游戏,开始时把一个皇后放在棋盘除了右上角外的某格内;从甲开始,两个人轮流挪动皇后,每次可以按直线或斜线走若干格,但只能往右、上或右上走;谁把皇后挪到了右上角的格子,谁就获胜.那么这个棋盘上,有287个起始格是让甲有必胜策略的.【解答】解:上面阴影的格子一共13个.棋盘上一共有20×15=300个格子,300﹣13=287故此题填287.。

数学花园探秘科普活动小中年级组决赛试题答卷A

数学花园探秘科普活动小中年级组决赛试题答卷A

数学花园探秘科普活动小中年级组决赛试题答卷A文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]2017年“数学花园探秘”科普活动小中年级组决赛试卷A(测评时间:2017年1月1日10:30—11:30)1.算式67×67—34×34+67+34的计算结果是________.2.在横式ABC×AB+C+D=2017中相同的字母代表相同的数字,不同的字母代表不同的数字.若等式成立,那么AB代表的两位数是_____.3.右图中有_________个平行四边形.4.小兔与蜘蛛共50名学员参加踢踏舞训练营.一段时间后,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔_____只.(注:蜘蛛有8只脚)5.一组由两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差_________.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7.现在从空间一点看一个骰子,能看到的所有点数之和最小是1,最大是15(4+5+6=15),那么在1~15中,不可能看到的点数和是________.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子.几名同学依次轮流向格子中放棋子,每人每次只放一枚且都必须放在相邻两个棋子正中间的格子中(如从左到右第3格、第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但如第4格、第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有________名同学.8.蕾蕾买了一些山羊和绵羊.如果她多买2只山羊,那么每只羊的平均价格会增加60元;如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了____只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班3天,每天恰有3位安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙了,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是(如A第2、6、10次值班分别在12月3、12、17日,则答案为31217)(17年第9题) 10.下图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为________平方厘米.(17年第10题)11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道.开始时,一个警察和一个小偷在两个不同房间中.每一次警察从所在房间沿着地上通道转移到相邻的房间;同时小偷从所在房间沿着地下通道转移到相邻的房间.如果警察和小偷转移了3次都没有在任何房间相遇,那么,他们有______种不同的走法.(2017年第11题)12.你认为本试卷中一道最佳试题是第__________题(答题范围为01~11);你认为本试卷整体的难度级别是__________(最简单为“1”,最难为“9”,答题范围为1~9);你认为本试卷中一道最难试题是第__________题;(答题范围为01~11).(所有答题范围内的作答均可得分,所有的评定都将视为本人对本试卷的有效评定,不作答或者超出作答范围不得分.)。

“迎春杯”数学花园探秘科普活动试卷(小高组决赛a卷)

“迎春杯”数学花园探秘科普活动试卷(小高组决赛a卷)

2015年“迎春杯”数学花园探秘科普活动试卷(小高组决赛A卷)一、填空题I (每题6分,共30分)1.(6分)算式(1-2+丄-丄+丄-丄)÷ (1+1÷1)的计算结果是.2 3 4 5 6 456 -------- 2.(6分)一张边长为10厘米的正方形纸片,如图对折两次,再沿两遍的中点连线剪掉一个角之后,那么把余下部分展开为单层纸片的面积是__________ 平方厘米.63.(6分)A、B、C、D四个人住进编号为1、2、3、4的四个房间,每个房间给住一人;那么B不住2号房间,并且B、C两人要求住在编号相邻房间的住法共有______________ 种.4.(6分)算式2015l^l×i-⅛的计算结果是2015 4 2015 ------5.(6分)哈利波特制作加强型魔法药剂“生死水”(这是一种效力很強的安眠药,由水仙根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比)•他首先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为9%;如果再加入同等量的水仙根粉末,这时“生死水”的浓度变为23%;那么普通型''生死水”的浓度为______________________ %.二、填空题Il (每题10分,共50分)6.(10分)一次考试有3道题,四个好朋友考完后核对答案,发现四人分别对了3、2、1、O道题.这时老师问:你们考的怎么样啊?他们每人说了3句话(如下)・甲:我对了两道题,而且比乙对的多,丙考的不如丁.乙:我全对了,丙全错了,甲考的不如丁.丙:我对了一道,丁对了两道,乙考的不如甲•T:我全对了,丙考的不如我,甲考的不如乙.如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了A、B、C、D道题,那么四位数甌= ___________ .7.(10分)如图算式中,不同的汉字代表不同的数字.如果二零一五= 2015,且游是质数,那么数学花园= ____________ ・二霍血M亟+顾X探X秘8.(10分)如图的图案由1个圆和2个大小相同的正方形组成(2个正方形的公共部分为正八边形)・如果圆的半径为60厘米,那么阴影部分的面积是_______ 平方厘米.(rt取3. 14)9.(10分)如果一个自然数的各位数字能够分成两组,使得每组中的数字之和相等,则称这个数为“均衡数”•例如25254是“均衡数”,因为5+2+2 = 4+5.如果相邻的两个自然数都是“均衡数”,则称这对“均衡数”为“挛生均衡数”.那么最小的一对“挛生均衡数”的和是________________ ・10.(10分)一艘轮船从A港出发顺流而下到同一条河上的B港,再逆流而上返回A港,共用3. 2小时;如果第1小时、第2小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时2千米;那么轮船往返A、B两港共行__________________ 千米.三、填空题川(每题10分,共48分)11.(10分)三位数盂除以它的各位数字和的余数是1,三位数石除以它的各位数字和的余数也是1・如果不同的字母代表不同的数字,且a>c,那么ab C= _____________ ・12.(10分)在每个方格里填入数字1〜6中的一个,使得每行和每列的数字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数ABCDE= ________13.(10分)某班共有30名学生去看电影,他们的学号依次为1, 2,…,30;他们手中的电影票恰好为某排的1号,2号,…,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,若甲的学号能被乙的学号整除,则甲的电影票号码也能被乙的电影票号码整除.那么电影票共有种不同的发放方式.14.(10分)图2的8X8表格中共含有168个如图1的“T"形.现对图2中的每个小方格染成黑色或白色;如果一个“T”形中黑白小方格各2 个,则称这个“T”形为“和谐”的;那么对图2的各种染色方案,“和谐” 的“T”形至多有_______________ 个.图12015年“迎春杯”数学花园探秘科普活动试卷(小高组决赛A卷)参考答案与试题解析一、填空题I (每题6分,共30分)1.(6分)算式(I-丄+丄-丄+丄-丄)÷ (1+±÷1)的计算结果是1・2 3 4 5 6 456 ----- 【解答】原^=α⅛⅛⅛⅛⅛)÷⅛⅜⅜α⅛4Ψ÷⅛4⅛)故答案为:1・2.(6分)一张边长为10厘米的正方形纸片,如图对折两次,再沿两遍的中点连线剪掉一个角之后,那么把余下部分展开为单层纸片的面积是75平方厘米.【解答】解:根据分析,折叠一次,面积变为一半,折叠两次后变成原来面积的四分之一,沿中位线剪去一个角,显然剪去的这个角的面积为原来正方形的面积的4XLX丄丄X4=丄,4 4 16 4余下的部分为原来正方形的面积的亘,余下部分展开为单层纸片的面积=4l×10×10 = 75 (平方厘米)・4故答案是:75.3. (6分)A、B、C、D四个人住进编号为1、2、3、4的四个房间,每个房间给住一人;那么B不住2号房间,并且B、C两人要求住在编号相邻房间的住法共有8种.【解答】解:根据题意,B 不住2号房间,则B 可以住在1、3、4号房间, 若B 住在1号房间,则C 可以住在2号房间,剩下2人安排在其他2个房 间,此时,有A 22= 2种情况,若B 住在3号房间,则C 可以住在2、4两个房间,有2种情况,剩下2 人安排在其他2个房间,此时,有2 XA 22=4种情况,若B 住在4号房间,则C 可以住在3号房间,剩下2人安排在其他2个房 间,此时,有A 22=2种情况,共有2+4+2=8种情况,故答案为8. 4. (6分)算式2015型Zx 丄-型L 的计算结果是 503・ 2015 4 2015 ------【解答】解:2015輕X 丄∙≡L 2015 4 2015= (2015÷l ⅛)x ⅜-(l-⅛)= (2015÷l)4⅛×⅜-l一 4 P0⅛TT=504-1+—-—=503+0=503故答案为:503 5. (6分)哈利波特制作加强型魔法药剂“生死水”(这是一种效力很强的安 眠药,由水仙根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末 占整个药剂的百分比)•他首先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为9%;如果再加入同等量的水仙根粉末, 这时2015 20154“生死水”的浓度变为2 3%;那么普通型“生死水”的浓度为11 %.【解答】解:设普通型“生死水”的浓度为x%,初始重量为100,连续两—^—二9%次加入的水仙根粉末和艾草浸液重量都是a, ^ IoOfa J ,化简为f100x_9a=900,解得x = 11,h00x+54a=2300综上所述,普通型“生死水”的浓度为11%,故答案为门.二、填空题Il (每题10分,共50分)6.(10分)一次考试有3道题,四个好朋友考完后核对答案,发现四人分别对了3、2、1、0道题.这时老师问:你们考的怎么样啊?他们每人说了3句话(如下)・甲:我对了两道题,而且比乙对的多,丙考的不如丁.乙:我全对了,丙全错了,甲考的不如丁.丙:我对了一道,丁对了两道,乙考的不如甲.T:我全对了,丙考的不如我,甲考的不如乙.如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了A、B、C、D道题,那么四位数甌=1203 .【解答】解:根据分析,全队的人不会说自己对的题少于3,所以只有乙、丁可能全对.若乙全对,则排名是乙、丁、甲、丙,与丙所说的:“丁对了两道”是假话矛盾;若丁全对,则丙的后两句是假话,不可能是第2名,又由丁的''甲考的不如乙”可以知道第2名是乙,所以丙全错,甲只有“丙考的不如丁”是真话,排名是丁、乙、甲、丙,经验证4人的话没有矛盾.所以甲、乙、丙、丁分别对1、2、0、3道题.故答案是:1203.7.(10分)如图算式中,不同的汉字代表不同的数字.如果二零一五= 2015, 且游是质数,那么数学萨园=8369 .二霍血M亟+顾X探X秘【解答】解:依题意可知:首先对于0-9共10个数字,那么2015用去4 个还有3, 4, 6, 7, 8, 9.数字3和9, 4和8是倍数关系不能同时出现质数中,那么花囲X探X秘是12的倍数.同时也满足3的整除特性.质数有37, 43, 47, 67, 73, 79, 83, 89 共8 个数字•当质数为37时,2015-37=1978不是3的倍数.当质数为43时,2015-43 = 1972不是3的倍数.当质数为47时,2015-47=1968是12的倍数.不能用剩余的写成3, 6,8, 9的乘法算式.当质数为67时,2015-67=1948不是3的倍数.当质数为73时,2015-73 = 1942不是3的倍数.当质数为79时,2015-79 = 1936不是3的倍数.当质数为83时,2015-83 = 1932是12的倍数•在剩余的数字4, 6, 7,9 中69×7×4=1902;当质数为89时,2015-89 = 1926不是12的倍数.2015=83+69X7X4:故答案为:83698.(10分)如图的图案由1个圆和2个大小相同的正方形组成(2个正方形的公共部分为正八边形)・如果圆的半径为60厘米,那么阴影部分的面积是3096平方厘米.(TT取3.14)【解答】解:如下图:连接AB、AD,因为AD是园的直径,所以∠ABD=90o ;设,AB = a, BD = b,即:小直角三角形的ABC的小斜边长为a (其余7个小直角三角形也是a), 2个大正方形的边长为b;由勾股定理:a2+b2=AD 2= (2R)2=120 2=14400 (平方厘米);小直角三角形的ABC的面积=丄XACXBC=丄『,即4个直角三角形的面积2 4等于孑,而F表示大正方形的面积;则:4个直角三角形的面积+大正方形的面积= 14400 (平方厘米);从图中可以看出: 图形总面积=正八边形面积+8个小正方形面积;而大正方形面积=正八边形面积+4个小正方形面积;即:图形总面积=正八边形面积+8个小正方形面积=正八边形面积+4个小正方形面积+4个小正方形面积=大正方形面积+4个小正方形面积= a2+b2=14400 (平方厘米);阴影部分面积=图形总面积-园的面积=144Oo- π γ2=14400- 3. 14X60 2=3096 (平方厘米)・故填:3096.9.(10分)如果一个自然数的各位数字能够分成两组,使得每组中的数字之和相等,则称这个数为“均衡数”•例如25254是“均衡数”,因为5+2+2 =4+5.如果相邻的两个自然数都是“均衡数”,则称这对“均衡数”为“挛生均衡数”.那么最小的一对“挛生均衡数”的和是1099 .【解答】解:(1)两位数中的“均衡数”有门、22、33、44、55、66、77、88、99,没有符合要求的.(2)两位数与三位数中99、100也不符合要求.(3)三位数中,两个相邻数数字和都是偶数,说明必有进位,且三位数必然只进1次位(数字和加1再减9),即这两个数是AB9和A (B+1) 0, 所以有:A+B=9 和A=B+1解得:A=5, B=4所以这两个数是549和550.549+550 = 1099故:最小的一对“李生均衡数”的和是1099.10.(10分)一艘轮船从A港出发顺流而下到同一条河上的B港,再逆流而上返回A港,共用3. 2小时;如果第1小时、第2小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时2千米;那么轮船往返A、B两港共行102 千米.【解答】解:第一小时全顺水,同理第三小时全逆水,第二小时必为半小时顺水半小时逆水,顺水行驶的时间:1+0.5 = 1.5 (小时)逆水行驶的时间:3.2-1.5 = 1.7 (小时)所以V 顺:V⅛=1.7: 1.5 = 17: 15,t=2X2=4 (千米)V^-Vl4÷ (17-15)×17=2X17=34 (千米/时)34X1.5X2=51 ×2= 102 (千米)答:轮船往返A、B两港共行102千米.故答案为:102.三、填空题川(每题10分,共48分)门・(10分)三位数蕊除以它的各位数字和的余数是1,三位数石除以它的各位数字和的余数也是1・如果不同的字母代表不同的数字,且a>c,那么ab C= 452 .【解答】解:根据分析,≡ιbc与Cb3的数字和都是:a+b+c,三位数≡ιbc 和Cba除以各位数字和的余数都是 按余数原理,a+b+c,五与尿之差即可被a+b+c 整除,设盂-石二∏G+b+c), 根据位值原则,有:abc=100a÷10b+c; Cba=IOClC+10b+a,则:abc-cba=(100a÷10b+c)-(1 OelC÷10b+a'=n (a+b+c) n99× (a - C) =n (a+b+c) =9X11 X (a - C) =n (a+b+c):・・・n 和(a+b+c)至少有一个是门的倍数和9的倍数,又Ta 、b 、C 均为 整数, 且 9≥a>c≥1, OWbW9, Λ3 = 2+1 +0≤a+b+c≤9+8+7 = 24,a+b+c 的可能取值为:9, 11, 18, 22,①a+b+c = 9时,根据被9整除的特征,五和尿被9除余数为0,与题意 矛盾;只有452符合条件;题意的为0个;918、 891> 873、中条件的个数为0个• 综上,abc z=452, 故答案是:452. 12. (10分)在每个方格里填入数字1〜6中的一个,使得每行和每列的数 字都不重复.右边的数表示由粗线隔开的前面三个数字组成的三位数、中间 两个数字组成的两位数以及最后的一位数这三个数之和.那么五位数ABCDE= 41244 .②a+b+c = 11时,此三位数五为: 281、362、 371、 452、 461. 524、 542、 614、623、632、641、731、713、 812、 821、 704、 902、 605, 经排查, ③a+b+c = 22时,此三位数五为: 985、 976、 967、 958、796、 895,符合 ④a+b+c = 18时,此三位数五为: 954、 972、 945、 963、 981、 936、 927、 864、 846、 837、 792、 783、 765、 695、 685、 693、 594, 排查后,符合题【解答】解:根据尾数和能够构成结果的尾数:结果中尾数是5那么这3个数字尾数一定是4, 5, 6组合.唯一法、排除法:只能填写一个数字首位分析法:第六行的结果是669那么百位数字一定是6.如图:故答案为:4124413. (IO分)某班共有30名学生去看电影,他们的学号依次为1, 2,30;他们手中的电影票恰好为某排的1号,2号,…,30号.现在按如下要求将电影票发给这些同学:对于任意两人甲、乙,若甲的学号能被乙的学号整除,则甲的电影票号码也能被乙的电影票号码整除.那么电影票共有亠__种不同的发放方式.【解答】解:1号学生有29人是其倍数,故1号学生只能拿1号电影票; 2号学生有14人是其倍数,故2号学生只能拿2号电影票;故3号学生只能拿3号电影票; 故4号学生只能拿4号电影票; 故5号学生只能拿5号电影票; 故6号学生只能拿6号电影票; 故7号学生只能拿7号电影票;8号学生必须是2号学生(2)的倍数,也必须是4号学生(4)的倍数, 同时有2人是其倍数,故8号学生只能拿8号电影票;9号学生必须是3号学生(3)的倍数,还不能是6,同时有2人是其倍数, 故9号学生只能拿9号电影票;10号学生必须是2号学生(2)的倍数,也必须是5号学生(5)的倍数, 同时有2人是其倍数,故10号学生只能拿10号电影票;12号学生必须是3号学生(3)的倍数,也必须是4号学生(4)的倍数, 同时有1人是其倍数,故12号学生只能拿12号电影票,同时24号学生 只能拿24号电影票;14号学生必须是2号学生(2)的倍数,也必须是7号学生(7)的倍数, 同时有1人是其倍数,故14号学生只能拿14号电影票,同时28号学生 只能拿28号电影票;15号学生必须是3号学生(3)的倍数,也必须是5号学生(5)的倍数, 同时有1人是其倍数,故15号学生只能拿15号电影票,同时30号学生3号学生有9人是其倍数,4号学生有6人是其倍数,5号学生有5人是其倍数,6号学生有4人是其倍数,7号学生有3人是其倍数,只能拿30号电影票;之后的数,[2, 9]=18, 18必拿18,同时是9的倍数的27只能拿27; [4, 5] =20, 20 必拿20; [3,刀=21, 21 必拿21; [3, 8] =24, 24 必拿24, 同时是8的倍数的16只能拿16; [4, 7] =28, 28必拿28; [5, 6]=30, 30必拿30,同时是5的倍数的25只能拿25.目前还没有确定的数是门、22、13、26、17、19、23、29号,11> 22互为一组成倍数;13、26互为一组成倍数,有两种拿法:门号拿门,22号拿22, 13号拿13, 26号拿26或门号拿13, 22号拿26, 13号拿门,26 号拿22, 17、19、23、29是大质数,没有限制,可随意拿,有A<=24种拿法,故共有2X24=48种拿法.14. (10分)图2的8X8表格中共含有168个如图1的“T”形.现对图2中的每个小方格染成黑色或白色;如果一个“T”形中黑白小方格各2个,则称这个“T”形为“和谐”的;那么对图2的各种染色方案,“和谐”的“T”形至多有132个.(1)把8X8的方格阵进行染色,如图2.其中含有图形3的个数是:从【解答】解: 81图左到右的第一、八行均无;第二、四、六行均为2;第三、五、七行均是1;共计(2+1) ×3 = 9.从右到左、从上到下、从下到上均为9,所以总数是9X4=36.(2)每个图形3都有图形1的个数是4,若图形1是2黑2白“和谐”的, 那每个图形3都有图形1 “和谐”的个数至多是3.所以,图形2中必然至少有36个图形1不是“和谐”的.故:图形2中至多有“和谐”的图形1个数为:168-36=132 (个)・声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:12:06;用户:小学奥数;邮箱:PfPxXX02@xyh. com; 学号:20913800。

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛a卷)(1)

2020年“春笋杯”数学花园探秘科普活动试卷(小中组决赛a卷)(1)

2017年“迎春杯”数学花园探秘科普活动试卷(小中组决赛A卷)一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是.3.如图中共有个平行四边形.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有名同学.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为平方厘米.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.2017年“迎春杯”数学花园探秘科普活动试卷(小中组决赛A卷)参考答案与试题解析一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是3434.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=3434故答案为:3434.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是14.【解答】解:由于0<C×D<100,所以1900<×<2017,因为130×13=1690,140×14=1960,150×15=2250,所以=14,进一步可得C×(14+D)=57,C=3,D=5.故答案为14.3.如图中共有15个平行四边形.【解答】解:根据分析可得,①单个的(红色)有:4个;②两个组成的(蓝色)有8个;③6部分组成的(黄色)有:3个;共有:4+8+3=15(个);答:图中共有15个平行四边形.故答案为:15.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔40只.(注:蜘蛛有8只脚)【解答】解:每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,把增加的蜘蛛当作1份,那么原蜘蛛数量也是1份,走了的兔子数量是2份,原有兔子数量为4份,则原有动物共5份,是50只,1份有10只,所以原有兔子4×10=40只.故答案为40.5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差9900.【解答】解:设这个等差数列的奇数项分别为a1,a3,a5,…,公差为d,那么将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列可以表示为a1×100+a1+d,a2×100+a2+d,…,所以新数列的和与原数列的和相差99×(a1+a3+a5+…),由于奇数项的和为100,所以99×(a1+a3+a5+…)=99×100=9900,故答案为9900.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是13.【解答】解:骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7=1+2+7,8=6+2,9=6+3,10=6+4,11=6+5,12=6+2+4,14=6+5+3,15=4+5+6,13无法拆出,即在1~15中,不可能看到的点数和是13.故答案为13.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有7名同学.【解答】解:由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.第一轮只能在最中间放1枚棋子,此时将格子分为前半部分和后半部分,那么第二轮在每一部分的中间,都可以放1枚棋子,总共可以放2枚,此时将格子分成了4,第三轮在每一部分的中间,都可以放1枚棋子,总共可以放4枚,以此类推,总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学,棋子分布依次为:1,651,33,651,17,33,49,651,9,17,25,33,41,49,57,65,…故答案为7.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了10只羊.【解答】解:假设蕾蕾买了x只羊,原平均价格为a元,买2只山羊,每只羊的平均价格会增加60元,总价格增加60x+2(a+60)元;少买2只山羊,那么每只羊的平均价格会减少90元,总价格减少90x+2(a﹣90)元,两次变化都是两只山羊的价钱,应该相等,所以60x+2(a+60)=90x+2(a﹣90),解得x=10,故答案为10.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是41016.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)【解答】解:12月份值班表如下:由E说的话可知,25日A和E都值班,又由D的话可知D和E永远在一起,那么可以判断5日这一竖列值班人为A,D,E.由C的话可知,3日他不值班,由于每天必须有3人值班,所以D,E中必须有一个,又因为D,E在一起,所以3日这一竖列,D,E都值班.通过A的话判断,A,B在周末值班的日子比C,D,E多,统计出每一列中的周末数量,为2,1,2,2,2,每人都要在三列中值班,若要A,B比其他人多,那么1那一列必须是C,D,E值班,每天都要有3人值班,D,E现在已经排满,因此第1,4列为A,B,C值班.还剩第3列没有排完,B要跟每个人都搭配过,因此此处为B.A在12月份中第2,6,10次值班日期依次为4,10,16,故五位数为41016.故答案为41016.10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为84平方厘米.【解答】解:如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半为12×4÷2=24平方厘米,那么△ABC面积为3×24+12=84平方厘米.故答案为84.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有1476种不同的走法.【解答】解:考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对.相邻:如1与2,那么下一步都顺时针走,可变为2与3,都逆时针走,变为6与1,一个顺时针,一个逆时针变为2与1或6与3,都有3种可能相邻,1种可能相对;相隔:如1与3,那么下一步可能变为2与4,6与2,6与4,都有3种可能相邻;相对:如1与4,那么下一步可能变为2与3,6与5,6与3,2与5,即有2种相邻的可能和2种相对的可能.假设警察初始房间为1,小偷与其相邻可能为2或6,那么3次之后不相遇的走法有2×(27+9+6+6+6+2+4+4)=128种相隔⇌3相隔⇌9相隔⇌27相隔.假设警察初始房间为1,小偷与其相邻可能为3或5,那么3次之后不相遇的走法有2×27=54种,假设警察初始房间为1,小偷与其相对为4,那么3次之后不相遇的走法有18+6+4+4+12+4+8+8=64种,综上所述,警察若初始位置为1,满足题目条件的走法有128+54+64+246种,那么警察初始位置还能选择2~6,因此共有246×6=1476种走法.故答案为1476.。

2016年“数学花园探秘”科普活动小学高年级组决赛试卷A

2016年“数学花园探秘”科普活动小学高年级组决赛试卷A

14.将一个固定好的正方形分割成 3 个等腰三角形,有如图的 4 种不同方式;如果将一个固 定好的正方形分割成 4 个等腰三角形,那么共有 种不同方式.
3 / 10
2016 年“数学花园探秘”科普活动
小学高年级组决赛试卷 A 参考答案
一、填空题Ⅰ(每小题 8 分,共 40 分) 1.下面算式的计算结果是_______. 2015 2016 3 2015 + + + + 1 2 3 2015 1+ 2+ 3+ 2015+ 2016 2016 2016 2016 1 2 【考点】计算繁分数运算 【难点】☆☆☆ 【答案】 2017 【解析】原式=
那么图中阴影部分的面积是 8. 如图, 正十二边形的面积是 2016 平方厘米,
平方厘米.
9.四位数 好事成双 除以两位数 成双 的余数恰好为 好事 ;如果不同的汉字表示不同的数字 且 好事 和 成双 不互质,那么四位数 好事成双 最大是 .
10.老师用 0 至 9 这十个数字组成了五个两位数,每个数字恰用一次;然后将这五个两位数 分别给了 A 、 B 、 C 、 D 、 E 这五名聪明且诚实的同学,每名同学只能看见自己的两 位数,并依次发生如下对话: A 说:“我的数最小,而且是个质数.” B 说:“我的数是一个完全平方数.”
C 说:“我的数第二小,恰有 6 个因数.”
D 说:“我的数不是最大的,我已经知道 A 、 B 、C 三人手中的其中两个数是多少了.” E 说:”我的数是某人的数的 3 倍.” 那么这五个两位数之和是 .
三、简答题(1、先给出答案;2、再同解答过程.每小题 15 分,共 60 分) 11.如图,直角三角形 ABC 中, AB 的长度是 12 厘米, AC 的长度是 24 厘米, D 、 E 分别 在 AC 、 BC 上,那么等腰直角三角形 BDE 的面积是 平方厘米.

2018数学花园探秘决赛_小中A卷(答案作者版) - 副本

2018数学花园探秘决赛_小中A卷(答案作者版) - 副本

2018年“数学花园探秘”科普活动小学中年级组决赛试卷A(测评时间:2018年1月6日10:30—11:30)一.填空题Ⅰ(每小题8分,共32分)1.算式(20+18)×45+106的计算结果是________.〖答案〗1816〖作者〗命题组2.将编号分别为1、2、3、4、5的小球依次放入下面5个小方格中.每次操作,选取相邻的4个方格,将选出的前两个小格和选出的后2个小格中的小球对换,交换时不改变前后两格内部小球的左右顺序,例如:12345操作一次只可能变为34125,或14523.那么,操作33次后,从左至右第4个方格中的数是________.12345〖答案〗2 〖作者〗北京成俊锋3.在右图的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,其中,梨<花<开<千<万<树,那么“万树梨花开”组成的五位数是________.〖答案〗67124 〖作者〗北京严红权北京姚雪垠4.黄老师带领班上的34名同学玩拼积木游戏.每位同学有8个大小相同的正方体木块,其中红色的3个,蓝色的5个,用它们拼成一个如图所示的大正方体.那么,至少有________名同学的拼法是相同的.(旋转后相同的算作同一种拼法)〖答案〗12 〖作者〗北京赵晓峰二.填空题Ⅱ(每小题10分,共40分)5.在电影《盗梦空间》中,主角柯布曾经进入过三层梦境.梦境中时间过的比现实快,现实中每经过1分钟,第一层梦境会经过2分钟,第二层梦境会经过20分钟,第三层梦境会经过200分钟.一次试验中,柯布在第三层梦境中经历的时间是第一层梦境的100倍,是第二层梦境的9倍,并且三层梦境一共经历了2018分钟,那么,现实世界中过了________分钟.〖答案〗28 〖作者〗北京李文龙6. 10个小朋友围成一个圈,他们每人想好一个数,然后将想好的数告诉相邻的两个人,然后每个人将自己知道的三个数的平均数写在了纸上,老师发现纸上写的数从某个开始,顺时针依次是10个连续的两位数.那么,这10个小朋友开始想的数中,最大的比最小的多________.〖答案〗27 〖作者〗北京 饶海波7. 猫和老鼠天生就是死对头,现在有3只猫和4只老鼠被分别放入如图所示的7个圆圈内,如果某只动物发现,与自己相邻的圆圈中死对头的数量多于同类的数量,那么它就会发出抗议.如果只有7号圆圈中的动物没有发出抗议,那么装有老鼠的圆圈编号从小到大组成的四位数是________.〖答案〗1567 〖作者〗北京 石健8. 将0~9各一个填入右边的十个六边形中,要求:任意相邻的两个六边形中所填的数字,下层的比上层的大,同层中右边的比左面的大.那么满足要求的不同填法共有________种.〖答案〗12 〖作者〗北京 成俊锋三.填空题Ⅲ(每小题12分,共48分) 9. 在长方形KJIF 中,ABCD 、CEFG 、AJIH 是三个正方形,已知长方形ADEK 的面积为30平方厘米,长方形CDHG 的面积为42平方厘米,那么长方形KJIF 的面积是________平方厘米.〖答案〗378 〖作者〗广州 黄锦熙10. 一群松鼠准备吃掉一堆松果.如果刚开始它们一起吃,只需36小时可将所有松果吃完;如果刚开始只有一只松鼠吃,然后每隔相同的时间又有一只松鼠参与进来吃松果,那么,当所有松鼠都参与进来并吃完松果后,第一只松鼠吃松果的时间是最后一只的17倍.若每只松鼠吃松果的速度相同,那么最后一只松鼠吃了________小时.〖答案〗4 〖作者〗武汉 胡志峰11. 老师选了两个不同的一位数,这两个一位数的乘积是一个两位数.老师将这两个数的和写在一张黄色卡片上,将两数乘积的十位写在一张红色卡片上,将两数乘积的个位数写在一张蓝色卡片上.小红拿了红色卡片,小权拿了蓝色卡片,小严拿了黄色卡片.小红、小严依次有如下对话:小红说:“我不知道小权手中卡片上的数是几,但小权也一定不知道我手中卡片上的数是几.” 小严说:“我还是不知道另外两张卡片上的数是几.”小红说:“那我现在知道你们手中卡片上的数都是几了.”小严、小红和小权都十分聪明而且诚实,那么这两个一位数的乘积是________.〖答案〗18 〖作者〗北京 赵晓峰 武汉 刘亚乔7654321。

2020年“春笋杯”数学花园探秘科普活动试卷(小高组决赛a卷)

2020年“春笋杯”数学花园探秘科普活动试卷(小高组决赛a卷)

根粉末和艾草浸液配成,“生死水”的浓度是指水仙根粉末占整个药剂的百分比).他首
先在普通型“生死水”中加入一定量的艾草浸液,使“生死水”的浓度变为 9%;如果再
加入同等量的水仙根粉末,这时“生死水”的浓度变为 23%;那么普通型“生死水”的
浓度为
%.
二、填空题Ⅱ(每题 10 分,共 50 分)
6.(10 分)一次考试有 3 道题,四个好朋友考完后核对答案,发现四人分别对了 3、2、1、
乙:我全对了,丙全错了,甲考的不如丁.
丙:我对了一道,丁对了两道,乙考的不如甲.
丁:我全对了,丙考的不如我,甲考的不如乙.
如果每人都是对了几道题就说几句真话.设甲、乙、丙、丁依次对了 A、B、C、D 道
题,那么四位数 = 1203 . 【解答】解:根据分析,全队的人不会说自己对的题少于 3,所以只有乙、丁可能全对. 若乙全对,则排名是乙、丁、甲、丙,与丙所说的:“丁对了两道”是假话矛盾;
题,那么四位数 =

7.(10 分)如图算式中,不同的汉字代表不同的数字.如果
=2015,且 是
第 1页(共 12页)
质数,那么


8.(10 分)如图的图案由 1 个圆和 2 个大小相同的正方形组成(2 个正方形的公共部分为正
八边形).如果圆的半径为 60 厘米,那么阴影部分的面积是
平方厘米.(π取 3.14)
2015 年“迎春杯”数学花园探秘科普活动试卷(小高组决赛 A
卷)
一、填空题Ⅰ(每题 6 分,共 30 分)
1.(6 分)算式(1﹣ + ﹣ + ﹣ )÷( + + )的计算结果是

2.(6 分)一张边长为 10 厘米的正方形纸片,如图对折两次,再沿两遍的中点连线剪掉一

广州-1-2018年“数学花园探秘”科普活动小学高年组决赛试卷A卷

广州-1-2018年“数学花园探秘”科普活动小学高年组决赛试卷A卷

6、一个五位数 9 的倍数,且
由五个互不相同的非零数字组成, 、 、 、 依次是 6、7、8、
能被 6、7、8、9 中的两个整除,那么
的值是_______。
7、右面的等式中,不同的字母表示不同的数字,且 A、D、G 均不是偶数,那么 A×(B+C) +D×(E+F)+G×(H+I)D 的值是_______。
四、解答题 13、如图,菱形 ABCD 的边长是 18。如果撒教学 CDE 是等腰三角形,求四边形 ABEF 的面积。
14、桌上有一堆糖果共 13 颗,小明和小刚罗六区糖果,小明先取,每次取的糖果数不超过 3 颗,不能不取,取完为止。当糖果被取完时,取得糖果总数为偶数的人获胜。问:谁有必 胜的策略?请说明理由。
2018 年“数学花园探秘”科普活动小学高年组决赛试卷 A 卷
一、填空题Ⅰ
20 18
20 18
1、算式(20÷18)×( + )÷( - )的计算结果是_______。
18 20
18 20
王老师班上有一些学生。如果男生的人数增加 30 人,那么男生人数比女生人数多 50%; 2、
1
如果女生减少_______人,才能使女生人数比男生人数少
3
3、老师在黑板上画了两个相同大小的等腰直角三角形;小红在一个三角形内画了一个最大
1
1
的 的圆,小权在另一个三角形内画了一个最大的半圆(如图所示)。已知小红画出的 圆
4
4
的面积为 60,那么小权画出的半圆面积为_______。
4、中国传说有蓬莱、方丈两座仙山。两座仙山上有生存着一些狐狸,有一条尾巴的普通狐 狸,和九条尾巴的九尾狐。每个月都会有新的狐狸出生。某月,蓬莱岛上有 90 只狐狸,共 250 条尾巴,每月新生 2 只普通狐狸,1 只九尾狐,方丈岛上有 110 只狐狸,共 250 条尾巴, 每月有 4 只新生普通狐狸,1 只九尾狐;假如无狐狸死亡,则_______个月后,蓬莱岛上两 种狐狸数量的比例与方丈岛上两种狐狸的数量比例相同。

2021年“数学花园探秘”小学中年级组决赛(试卷)

2021年“数学花园探秘”小学中年级组决赛(试卷)

“数学花园探秘”小学中学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚. 我同意遵守以上协议 签名: 一.填空题Ⅰ(每小题 8 分,共 32 分) 1. 中国公布测量“世界第一高峰”珠穆朗玛峰的高度约为 8844 米,而尼泊尔公布珠穆朗玛峰的高度约为 8848 米,是因为尼泊尔方面加算了山顶积雪的厚度;请计算下面的式子: 8848 ÷(8848 - 8844) - (8844 - 4488) ÷(88 ÷ 4) = . 2. 20 头驴与 16 匹马分成两队,共重 11000 千克.如果从两队中分别牵出 4 匹马和 4 头驴相交换,两队的体重就相等了,那么每匹马比每头驴重 千克.3. 图中有 个平行四边形.4. 红、橙、黄、绿、青、蓝、紫 7 个彩球依次排成一排.每次操作可将其中两个球交换位置.(例如,将橙球与蓝球交换,七个球的顺序变为红、蓝、黄、绿、青、橙、紫.)那么,将最初始七个球的顺序变为青、紫、红、蓝、黄、绿、橙,至少要操作 次.二.填空题Ⅱ(每小题 10 分,共 40 5. 便衣警察接到任务,在街上以每秒 2 米的步行速度接近前方 100 米处的逃犯.逃犯的步行速度是每秒 1 米.两人走了一会后,逃犯发觉到有人跟踪,以原来速度的 3 倍向前跑去,同时警察也立即以 3 倍的速度向前追去.最终警察抓住了逃犯,整个任务用时 1 分钟.那么,逃犯发现有人跟踪他时,已经走了 米.6. 如图,在 10×10 的棋盘内玩警察抓小偷的游戏.游戏开始时, 小偷在第 4 行第 4 列,警察在第 10 行第 10 列.小偷和警察 轮流走,小偷先行.小偷 1 步能走到与所在格子有公共边的 格子中,轮到小偷时也可以选择不动.警察1 步可走2 次, 每次能走到与所在格子有公共边的格子中.当警察和小偷在同一格子中时,警察就能抓住小偷.要确保抓住小偷,警察至少要走 步. 7. 有 2014 个正整数排成 1 排,每相邻的 6 个数的和都相等,每相邻 9 个数的和也都相等.如果第 1 个数与第 100 个数之间的 98 个数的和是 226,那么这 2014 个数的总和是.8. 小峰说:“我们几人的话中共有 A 个 2.” 小光说:“我们几人的话中共有 B 个 0.” 小叶说:“我们几人的话中共有 C 个 1.” 小健说:“我们几人的话中共有 D 个 4.”现在分别用 0~9 中的数字替换 A 、B 、C 、D (ABCD 可以相同),使得他们说的话都是真话,那么 ABCD = . 三.填空题Ⅲ(每小题 12 分,共 48 分)9. 一个正方形和一个长方形如图摆放,M 、N 是正方形边长的中点,阴影面积是 60 平方厘米,那么,大长方形的面积是 平方厘米.NM10.如图,在公园内铺设道路,如果按照第一种方案铺设,需要315 万元,如果按照第二种方案铺设,需要300 万元,如果按照第三种方案铺设,需要万元(图中虚线表示水泥路,实线表示沥青路).。

2021年“数学花园探秘”科普活动决赛试题小中年级组A卷

2021年“数学花园探秘”科普活动决赛试题小中年级组A卷

2021年“数学花园探秘”科普活动决赛试题小中年级组A

2021年“数学花园探秘”科普活动决赛试题小中年级组A卷
一、填空题Ⅰ
1.算式33 43 53 63 73 83 93的计算结果是.
2.菲菲从一班转到了二班,蕾蕾从二班转到了一班.于是一班学生的平均身高增加了2厘
米,二班学生的平均身高减少了3厘米.如果蕾蕾身高158厘米,菲菲身高140厘米,那么两个班共有学生人.
3.图中3个大三角形都是等边三角形,则图中共有个三角形.
4.今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它
除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面.于是得到:130、67、132、68 ;那么这列数中第2021个数是 .
二、填空题Ⅱ
5.请将1~6分别填入右图的6个圆圈中,使得每条直线上的圆圈中填
的所有数的和都相等(图中有3条直线上各有3个圆圈,有两条直
线上各有2个圆圈);那么两位数AB= .
6.在A、B、C三个连通的小水池中各放入若干条金鱼.若有12条金鱼从A池游到C池中,
则C池内的金鱼将是A池的2倍.若有5条金鱼从B池游到A池中,则A池与B池的金鱼数将相等.此外,若有3条金鱼从B池游到C池中,则B池与C池的金鱼数也会相等.那么A水池中原来有条金鱼.。

2021“数学花园探秘”科普活动-中年级组决赛试卷 A

2021“数学花园探秘”科普活动-中年级组决赛试卷 A

2021年“数学花园探秘”科普活动中年级组决赛试卷A一. 填空题Ⅰ(每小题8分,共32(测评时间:2021年1月9日10:30—11:30)分)1. 算式÷⨯−⨯+⨯−⨯−2021987654321)(2. 如图,小庆和小轩分别从A 、B 两城出发,去往对方城市旅游.他们出门的计算结果是________〖答案〗47 .各自带了一些糖果,途中到达休息区C 时,他们都会停下来吃掉手中一半的糖果;到达百货商店D 时,他们都会买入当时手中糖果数量的2倍的糖果.当小庆和小轩都到达对方城市时,两人共有360颗糖果.那么原来两人手中共有________颗糖果.3. 像252、3773、24542这样的数,将它们的各位数字反向排列所得到的自然数与原来相等,〖答案〗240我们称这样的数是“回文数”.如果一个五位回文数与202119的和刚好是一个六位回文数,那么这个五位回文数是________.〖答案〗312134. 如图所示,将一个周长是90厘米的长方形用两种不同的方式分别分割成2个长方形.如果长方形①比长方形③的周长多20厘米,长方形②比长方形④的周长少10厘米,那么这个大长方形的面积是________平方厘米.〖答案〗500二.填空题Ⅱ(每小题10分,共40分)5. 小宋给自己定下了连续5天的做计算题任务.任务规定:每天基础目标5题,如果完成目标则当天不再继续;但如果某天没有完成目标,则将未完成目标的题数2倍数量的题目累计到下一天.例如:如果第1天做了3题,剩余2题,则第2天目标是2×2+5=9题,接下来如果第2天完成8题,剩余1题,则第3天的目标是1×2+5=7题.结果小宋第5天完成了任务,并且每天做的题数都不超过9道,那么他从第1天至第5天所做题目数量顺次组成的五位数最小是________.〖答案〗28899A CDA B C D E F G 6. 小峰和小卉各有一些苹果和梨,小峰苹果的数量是梨的2倍,小卉梨的数量是苹果的3倍.如果小峰用自己一半数量的苹果换小卉一半数量的梨,那么小峰和小卉的水果数量恰好相等.如果原来他们总共有420个水果,那么小卉原来有________个苹果.〖答案〗607. A ,B ,C ,D ,E 五位同学面向内围成了一圈,每个人报了一个1~5中的数字,且互不相同.A 说:“与我相邻的两位同学所报数字的差是1.”B 说:“与我相邻的两位同学所报数字的差是2.”C 说:“与我相邻的两位同学所报数字的差是3.”D 说:“与我相邻的两位同学所报数字的差是4.”E 说:“我右边与我相邻的同学报的数字是5.”如果他们说的都是对的,那么A ,B ,C ,D ,E 所报数字顺次组成的五位数是________.〖答案〗153248. 如图,四边形ABCD 是一个等腰梯形,下底DC 是上底AB 的2倍,AE 、BF 分别是梯形的两条高,G 是腰BC 的中点.如果三角形BDF 的面积比三角形AEG 的面积大8平方厘米,那么梯形ABCD 的面积是________平方厘米.〖答案〗96三.填空题Ⅲ(每小题12分,共48分)9. 把1~9分成3组,每组3个数.如果把同组的3个数按从小到大的顺序排列好后,相邻两个数的奇偶性都不同,那么共有________种不同的分组方式.〖答案〗2210. 我们将图中一个长方形内所包含所有数字的和称为这个长方形的重量.例如:图中最大长方形的重量就是把所有16个数字全加起来,和是40,即图中最大长方形的重量是40.那么,下图中所有长方形的重量之和是________.(正方形也算作长方形)〖答案〗100011.有2021名学生围成一个圈,每两名同学中间都有一个空隙.老师先在其中的一些空隙中放入隔板,每两个相邻隔板中间的学生是一组,这样所有学生就会根据隔板被分为若干组.紧接着,老师把原来的所有隔板全部拿走,再把刚刚没有放隔板的空隙全部放上隔板,结果聪明的小伊发现:两次都只有1人组、2人组或3人组,而且有200名同学两次都在2人组,有300名同学两次都在3人组.那么,有________名同学两次都不在1人组.〖答案〗1314。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年“数学花园探秘”科普活动
小中年级组决赛试卷A
(测评时间:2017年1月1日10:30—11:30)
1.算式67×67—34×34+67+34的计算结果是________.
2.在横式ABC×AB+C+D=2017中相同的字母代表相同的数字,不同的字母代表不同
的数字.若等式成立,那么AB代表的两位数是_____.
3.右图中有_________个平行四边形.
4.小兔与蜘蛛共50名学员参加踢踏舞训练营.一段时间后,小兔学员走了一半,
蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔_____只.(注:蜘蛛有8只脚)
5.一组由两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,
将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差_________.
6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对
两面点数的和都等于7.现在从空间一点看一个骰子,能看到的所有点数之和最小是1,最大是15(4+5+6=15),那么在1~15中,不可能看到的点数和是________.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子.几名同学依次
轮流向格子中放棋子,每人每次只放一枚且都必须放在相邻两个棋子正中间的格子中(如从左到右第3格、第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但如第4格、第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有________名同学.
8.蕾蕾买了一些山羊和绵羊.如果她多买2只山羊,那么每只羊的平均价格会增加
60元;如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了____只羊.
9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班3天,
每天恰有3位安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:
A:我和B在周末(周六、周日)值班的日子比其他3人都多;
B:我与其余4人在这个月都一起值过班;
C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙了,可惜不算值班;D:E每次都和我安排在一起;
E:圣诞节(12月25日)那天我和A都值班了.
那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是(如A第2、6、10次值班分别在12月3、12、17日,则答案为31217)(17年第9题)
10.下图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为________
平方厘米.(17年第10题)
11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道.开始时,一个警
察和一个小偷在两个不同房间中.每一次警察从所在房间沿着地上通道转移到相邻的房间;同时小偷从所在房间沿着地下通道转移到相邻的房间.如果警察和小偷转移了3次都没有在任何房间相遇,那么,他们有______种不同的走法.(2017年第11题)
12.你认为本试卷中一道最佳试题是第__________题(答题范围为01~11);
你认为本试卷整体的难度级别是__________(最简单为“1”,最难为“9”,答题范围为1~9);
你认为本试卷中一道最难试题是第__________题;(答题范围为01~11).
(所有答题范围内的作答均可得分,所有的评定都将视为本人对本试卷的有效评定,不作答或者超出作答范围不得分.)。

相关文档
最新文档