高压架空线路的防雷保护
架空线路的防雷措施
架空线路的防雷措施架空线路的防雷措施是否得当,直接关系到电网的安全运行与矿井的安全生产。
现在我们结合实际了解几种防雷措施:一、架设避雷线避雷线主要是防止雷直击导线,它是架空线路最基本的防雷措施。
规程规定:35KV_110KV架空线路,如果未沿全线架设避雷线,则应在1KM_2KM的进线段架设避雷线。
公司现在运行的架空线路最高电压等级是35KV:它们是曲矿线、铜矿线、王坡线、相坡线共四条35KV等级线路,其中曲矿线和铜矿线都是在主焦变电站进线段约1.5KM范围内架设有避雷线。
相坡线和王坡线原先也是只在坡北变电站进线段装设有避雷线,但是由于线路雷电活动较强,几乎每年都会发生雷击跳闸事故。
严重威胁到了矿井的安全生产,所以在2005年底,将这两条线路在全线补设了避雷线。
全线封闭后,到现在已有四年。
只在07年王坡线24#铁塔发生了一起雷电绕击事故。
(这与24#铁塔在龙山山顶的位置有关)事实证明,全线架设避雷线虽然成本较高,但它防止直击雷的效果还是非常明显的。
二、装设自动重合闸重合闸的作用是在线路因雷击跳闸后,能在1.5秒的时间内重新自动合一次闸。
一般设定只让重合闸一次,如果线路出现的是永久性故障,重合一次合不上,就不再重合了。
雷击造成的闪路大多数能在跳闸后自行恢复绝缘,所以重合成功率比较高。
由于它能在极短时间内恢复送电,因此对矿井的安全生产有重要意义。
咱们的35KV铜矿线就有这套装置。
实践证明,合闸成功率接近100%。
(但是它不能保护设备绝缘)三、装设避雷器公司35kv和6kv线路上都装有避雷器,使用非常广泛。
避雷器在正常工作电压下,对地呈绝缘状态;在雷电过电压(不管是直击雷还是感应雷),则呈低电阻状态,对地泄放雷电流,将过电压数值限制在设备绝缘安全值以下,从而有效地保护了被保护电器设备的绝缘免受过电压的损害。
除了这三种,还有采用消弧线圈接地、降低杆塔接地电阻等措施,这里不再讲了。
现在我们知道:避雷线是防直击雷的,对导线起屏蔽作用;自动重合闸能在架空线路因雷击跳闸后,缩短事故停电时间,但是它不能保护电气设备的绝缘;避雷器则能有效保护电气设备的绝缘,并且由于它具有成本较低、安装方便、残压低等优点,已成为架空线路不可替代的防雷措施。
浅谈雷电对电力线路的危害及高压架空线路的防雷保护措施
浅谈雷电对电力线路的危害及高压架空线路的防雷保护措施摘要:随着社会的发展,我国电网的规模也在不断扩大。
雷电击打高压架空线路的现象也频频发生,因北提高高压架空线路的防雷保护也越来越重要。
本文首先分析了雷电对高压架空线路的危害,然后对高压架空线路的防雷保护的现状进行了研究,并分析了雷电活动频繁的位置,以此为基础提出了高压架空线路的防雷保护措施,以及防雷保护设施在技术上的完善,为我国的高压架空线路的防雷保护提供必要条件。
关键词:高压架空线路防雷措施前言雷电是一种大气放电现象,产生于积雨云中,积雨云在形成过程中,某些云团带正电荷,某些云团带负电荷。
它们对大地的静电感应,使地面或建(构)筑物表面产生异性电荷,当电荷积聚到一定程度时,不同电荷云团之间,或云团与大地之间的电场强度可以击穿空气(一般为25~30 kV/cm),开始游离放电,我们称之为“先导放电”。
云对地的先导放电是云向地面跳跃式逐渐发展的,当到达地面吋(地面上的建筑物,架空输电线等),便会产生由地面向云团的逆导主放电。
在主放电阶段里,会出现很大的雷电流(一般为几十kA至几百kA),并随之发生强烈的闪电和巨响,这就形成了雷电。
雷电一般伴有阵雨,有时还会出现局部的大风、冰雹等强对流天气。
强雷暴天气出现有时还带来灾害,如雷击危及人身和电力设备安全,当家用电器、计算机机房直接遭雷击或感应雷时将会被损坏,有时还会引起火灾等。
1 雷电的特征及危害1.1雷电日特征雷电活动从季节来讲以夏季最活跃,冬季最少:从地区分布来讲是赤道附近最活跃,随纬度升高而减少,极地最少。
评价某一地区雷电活动的强弱,通常是用“雷电日”,即以一年当中该地区有多少天发生耳朵能听到雷鸣来表示该地区的雷电活动强弱,雷电闩的天数越多,表示该地区雷电活动越强,反之则越弱。
我国平均雷电日的分布,大致可以划分为4个区域:西北地区一般在15日以下;长江以北大部分地区(包括东北)在15~40日之间;长江以南地区在40日以上:北纬23°以南地区平均雷电日达80日。
高压架空输电线路防雷措施
背景介绍•高压架空输电线路的防雷措施是保证电力系统安全运行的重要环节。
采取科学合理的防雷措施,可以减少雷电对高压架空输电线路的损害,降低线路跳闸率,提高电力系统的稳定性和可靠性。
同时,防雷措施还可以保护周边环境和人民生命财产安全,对于维护社会稳定和促进经济发展具有重要意义。
防雷措施的重要性安装避雷线避雷线的作用避雷线通常沿着导线或杆塔进行安装,其安装角度和高度需根据具体的地理环境和气象条件进行设计。
避雷线的安装方式避雷线的优点降低杆塔接地电阻降低接地电阻的方法降低接地电阻的优点接地电阻的作用安装避雷器030201强化绝缘避雷线的应用避雷线的应用可以有效地将雷电电流引导到架空线上,避免雷电直接击中线路或设备。
避雷线的安装位置和数量需根据线路的具体情况和环境进行设计,一般在线路的关键部位和易受雷击的区域应加强避雷线的布置。
避雷线的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的耐压和耐腐蚀性能。
接地电阻的应用接地电阻是将雷电电流引入大地的关键设备,其阻值大小直接影响到电流的引入效果。
接地电阻的安装位置和数量需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强接地电阻的布置。
接地电阻的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的导电性能和耐腐蚀性能。
避雷器的应用避雷器的安装位置和数量需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强避雷器的布置。
避雷器的材料和结构也需根据线路的具体情况和环境进行选择,一般要求具有较高的耐压和耐腐蚀性能。
避雷器是一种将雷电电流引入地下的设备,其作用是在雷电电流过大时将其引入地下,避免对线路或设备造成损坏。
强化绝缘的应用强化绝缘是通过加强线路或设备的绝缘材料来提高其耐压能力,从而减少雷电电流对线路或设备的损坏。
强化绝缘的措施包括采用高性能的绝缘材料、增加绝缘层的厚度、添加绝缘涂层等。
强化绝缘的应用需根据线路的具体情况和环境进行设计,一般要求在易受雷击的区域应加强绝缘材料的强化。
35kv架空线路防雷
35kV架空线路的防雷保护摘要:结合工作经验,以及我国35kV输电架空线路的现状,分析、总结多种防雷措施;在雷电活动频繁的“易击段、易击点及易击相”以及山区和高土壤电阻率地区,采用综合防雷措施,能使线路投资省、效果好,是值得推广的技术。
关键词:35kV架空线路;防雷;避雷35kV电网在我国电力工业中特别是在以架空线为主的城市近郊及农村供电网中占有相当重要的地位。
以架空线为主的35kV线路多经过山区,连绵不断地分布在旷野上,极易遭雷击。
绝大多数35kV线路为3~4片绝缘子,本身的绝缘水平较低。
当雷击架空线路时,不论是感应雷过电压还是直击雷过电压都极易引起绝缘子闪络。
通过降低线路杆塔接地电阻等措施在一定程度上可提高线路耐雷水平和降低绝缘子闪络概率,但要保证绝缘子不发生闪络是不大可能的。
因此降低35kV线路雷击跳闸率的关键是使线路因雷击引起单相接地时的工频续流尽早熄弧,避免单相接地发展成相间短路而导致线路跳闸。
一、35kV线路雷电性能分析35kV线路常用杆塔除两端外无架空地线,绝缘水平低。
感应雷、直击雷、反击雷均可能威胁安全运行。
图1中a和b分别为上、下层横担的长度,mm;L1为抱箍上装设角钢的长度,m。
图135kV线路典型杆型图1.感应雷害:对一般高度的线路,规程建议,当雷击点与线路的距离d>65m 时,Ug≈25Ihd/d (1) 式中,Ug为导线雷击感应最大过电压,kV;I为雷电流辐值,kA;hd=12.4-2f/3,为导线平均高度,m;d为雷击点距线路的距离,m;f为导线弧垂,m。
f取为4m,Ug为374.5kV,绝缘子串的3片X-4.5的绝子串临界雷闪电压U50%=100+84.5×3=353.5kV,故至少需4片悬瓶组成绝缘串或S-380瓷横担才不会造成绝缘闪络。
2.直击雷害:雷击导线时绝缘子串闪络的雷电流I2=U50%/100=3.5kA,据lgP=-I/88,P为雷电流幅值概率,超过此雷电流的概率为91%,即91%的雷电流都可能造成绝缘子串闪络。
架空线路遭雷击原因及防雷措施
架空线路遭雷击原因及防雷措施架空线路遭雷击的原因主要有以下几点:1. 雷电形成的原因:雷电主要是由电荷分离和积累造成的。
当云层内部发生水分子、冰或雨滴等的互相碰撞和摩擦时,会产生正、负电荷。
而在云与地面之间,地球的电位也会不断变化。
当云中产生的负电荷和地面之间的电势差达到一定程度时,就会产生雷电。
2. 高空线路暴露在空中:架空线路由许多电线和金属杆组成,暴露在空中,容易吸引周围的带电物体,包括雷电。
3. 架空线路高度和长度:架空线路的高度和长度长,使得雷电易于击中。
在雷电活动时,雷电通常会选择离大地最近的高处物体打击,而长而高的架空线路成为了雷电最佳目标之一。
为了防止架空线路遭雷击,需要采取一系列的防雷措施:1. 安装避雷器:避雷器可以将雷电引入大地,以保护线路设备不受到雷击。
避雷器通常是通过与大地建立良好的接地系统来实现的。
2. 合理设计架空线路:在设计架空线路时,需要根据所在地区的雷电活动情况进行合理规划。
可以选择较低的线路高度,减少雷电击中的可能性。
3. 定期检查维护:定期检查和维护架空线路的绝缘性能和接地系统,及时发现并修复潜在的问题,以保证线路的安全运行。
4. 加强接地保护:保持良好的接地系统是防止雷击的重要因素。
通过合理布置接地棒、接地网和接地线等设备,将雷电及时引入大地。
5. 安装防雷针:防雷针能够引导雷电,降低雷击风险,保护架空线路设备。
在合适的位置安装防雷针,可以有效降低雷击的可能性。
防止架空线路遭雷击需要综合考虑多种因素,并采取相应的防雷措施。
只有做好防雷工作,才能确保架空线路的稳定运行,提供可靠的电力供应。
3—35kV架空线路防雷保护
3—35kV架空线路防雷保护许颖(中国电力科学研究院,北京清河,100085)【摘要】本文内容有三:(1)除为保护变电所和直配旋转电机的进线段之外,3—35kV架空线路防雷保护不应采用独立避雷针,因其会增加在架空线路导线上产生感应雷电过电压的频率。
电力行标DL/T620-1997规定;《35kV及以下线路,一般不沿全线架设避雷线》。
而推荐《3—66kV架空线路电网中性点不接地或谐振地方式》。
(2)35kV及以下架空线路雷击跳闸次数计算方法。
(3)提高35kV及以下架空线路耐雷性措施。
【关键词】架空线路谐振接地方式雷电跳闸次数建弧率1 问题的提出近来见到一些气象部门防雷检测中心为一些大型工业企业自备电网3—35kV架空线路防雷保护咨询和支招。
例如6kV架空线路,支招安装一些独立避雷针防护来减少6kV架空线路雷电跳闸次数和损坏。
笔者觉得这对电力部门的3—35kV架空线路(不含为保护变电所和直配旋转电机的进线段)防雷保护不够了解。
故本文作一介绍。
以供参考。
35kV及以下架空线路,因绝缘水平不高,可能因靠近架空线路雷击地面或其它物体,在架空线路上产生感应雷电过电压引起绝缘闪络。
所以,支招安装一些独立避雷针是不能减少6kV架空线路雷电跳闸次数和损坏。
因靠近架空线路安装了一些独立避雷针是要增加在架空线路上产生感应雷电过电压的频率。
避雷线就不是这样,避雷线不增加产生感应雷电过电压的频率,而能降低感应雷电过电压幅值,但电力行标DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第6.1.2条(e)款;《35kV及以下线路,一般不沿全线架设避雷线》。
这主要是从经济角度考虑。
DL/T620-1997第3.1条推荐3—66kV架空线路电网中性点为不接地或谐振接地方式。
从防雷观点看,电网中性点不接地或谐振接地方式,在雷电发生单相对地绝缘闪络时,建弧率很低,一般不会引起线路跳闸,就相当在架空线路上沿全线架设了一根避雷线。
架空线路遭雷击原因及防雷措施
架空线路遭雷击原因及防雷措施架空线路是指在空中悬挂的输电线路,它是电力系统中非常重要的一部分,负责输送电力到各个地方。
架空线路常常容易遭到雷击,造成电力系统的故障,给人们的生产生活带来很大的影响。
那么,架空线路遭雷击的原因是什么?我们又该如何采取防雷措施呢?一、架空线路遭雷击的原因1. 大气环境当大气中出现局部电荷分离,形成雷云时,就会产生雷电。
雷电的产生是由于云层中的冰晶和水滴之间发生碰撞,使云层内各处带电,产生了电场。
2. 架空线路高度架空线路一般都建立在高处,比如山顶、高层建筑等地方,而雷电会比较容易袭击高处的物体。
3. 气候一般来说,夏季是雷电活动的高发期,因为夏季大气湿度大,云层构成较多。
架空线路所采用的金属或者合金等材料,特别是高张力、高性能的导线,很容易成为雷电袭击的目标。
二、防雷措施1. 防雷装置在架空线路上安装防雷装置是最常见的预防措施。
这些装置一般采用封闭式避雷器,其原理是在雷电侵击时,将其引入大地,分散电流,保护线路和设备不受雷击影响。
2. 避雷线为了减少雷电对架空线路的影响,可以在线路上方安装一根金属绳——避雷线。
这样可以将雷电引向地下,减少对线路本身的影响。
3. 架设钢塔架设钢塔是确保架空线路安全运行的关键。
钢塔具有良好的导电性和耐腐蚀性,可以降低雷电对架空线路的影响。
4. 专业巡检定期对架空线路进行巡检,及时发现线路的损坏和老化情况,进行维护和修复,可以减少线路遭雷击的可能性。
5. 提高设备的耐雷水平对于电力设备,提高其耐雷水平也是很重要的防雷措施。
采用抗雷冲击能力强的设备替代易受雷电影响的设备,可以保障电力系统的安全运行。
通过以上防雷措施,我们可以有效地减少架空线路遭雷击的可能性,保障电力系统的正常供电。
还需要注意的是,在架空线路遭雷击后,需要及时对设备和线路进行维护和修复,确保电力系统的安全和稳定。
提升防雷意识,加强防雷设备的维护与更新,对于保障电力系统正常运行具有非常重要的意义。
10kV架空配电线路的防雷措施
Electric Power Technology272《华东科技》10kV 架空配电线路的防雷措施黄思海(韶关市擎能设计有限公司,广东 韶关 512000)摘要:城乡电网主要为10kV 架空配电线路,该线路途径存在着复杂的地理环境,且处于较低的绝缘水平,因雷击造成事故而跳闸的概率较高,在配置架空配电线路时,需实施良好的防雷措施。
基于此,以下对10kV 架空配电线路的防雷措施进行了探讨,以供参考。
关键词:10kV;架空配电线路;防雷措施在过去的2年里,为了加强10kV 配电网的建设和管理,提升安全、经济效益和服务水准的网络,和提高效率的投入产出综合分销网络资产,供电公司实施全过程精益管理分销网络在龙岩供电公司的整个系统。
专注于重建发病率高的断层线10kV,通过统计分析10kV 线路的故障原因,10kV 线路操作时被发现的弱点,和正在采取方法方式,最终找到降低10kV 线路故障方法方式,降低10kV 线路故障,提升10kV 配电线路的管理水准。
1 自然界雷电概述 雷电是自然界常见的集声、光、电为一体的现象,往往伴有闪电和雷鸣而出现,对人类的活动有重大影响,能够产生有机物质孕育农作物,还可以补充大气中电离层的电荷,防止太阳和宇宙中的射线进入地球表面,但是雷电也是导致高压输配电线路故障的重要因素。
当输配电线路被雷电击中时,会产生泄入大地的雷电流,引起巨大的电磁效应、机械效应和热效应,从而影响输配电线路的正常运行。
雷电作为一种特殊电脉冲波,产生时会伴随着强大的脉冲磁场,其中直击雷和感应雷这两种雷电形式对输配电线路的危害尤为严重。
直击雷能够在很短的时间内放出大量的电荷,会对设施和设备造成直接破坏,破坏能力十分巨大,中国每年造成直接财产损失超10亿美元。
而感应雷分为电磁感应雷和静电感应雷,雷电放电时,雷电流在附近空间中剧烈变化而产生强磁场可以引起电磁感应雷,若不能及时引入地下,极可能发生安全事故;架空线路的导线被积云所感应上大量电荷生成静电感应雷,使电压倍增,影响输配电线路。
10kV配电架空线路防雷措施
10kV配电架空线路防雷措施摘要:随着近年来经济的不断增长,人民生活水平不断提高并且工作领域也趋向智能化,因此对电能的需求在不断增长,由此,对电压输送的安全性和稳定性提出了极高的要求。
尽管架空配电线已经进行了防雷措施以避免在雷雨天受到雷电等破坏,但是仍存在一些问题,而且影响了架空配电线路的安全性。
为此,需要对电网进行优化和改进,以提高电网的安全性和稳定性。
同时,还需要加强对电网的监管和维护工作,以确保电网的稳定运行。
此外,还需要采用更加先进的技术和设备,以提高电网的运行效率和安全性。
关键词:10kV配电;架空线路;防雷措施;引言架空配电网是电力系统的核心,在电力传输和分配中起着举足轻重的作用。
10 KV配电网是当前我国城市和农村电网中广泛使用的一种输电线路,具有着布点多、适用范围广、线路长度大等特点。
由于负载波动较大,在雷雨季节遭受雷击的情况时有发生,给用户、供电单位的配电网和线路带来了严重的破坏,严重影响了供电的稳定性和用户的安全。
为此,在10 KV配电网的设计与施工中,应高度关注与重视10 KV配电网的雷电防护,加大10 KV配电网的应用与研究力度。
1、10kV配电线路防雷措施安装的重要性10 kV配电线路在日常运行中,受气象条件的影响。
10kV配电线路通常都是直接暴露在空气当中的,在雷雨天气中如果被雷电击中会直接导致安全问题的发生。
10kV配电线路一直在运输电力,而且电路的输电功能较好,被雷电击中就有可能发生线路燃烧,引发电线路当中的机械设备起火,导线的电能传输速度非常快,极易造成大面积导线的损伤,并引发大规模的爆炸。
由此可以看出,在10kV配电网中,加装防雷装置是非常重要的。
2、10kV配电架空线路存在的隐患2.1避雷线防雷存在的局限性避雷线安装在架空配电网中,主要起到防雷的作用,在雷击事故中,电线上会出现很大的过电压,避雷线起到保护电线的作用,这样才能最大限度的减少过电压,并将其输送到地面上。
架空线路遭雷击原因及防雷措施
架空线路遭雷击原因及防雷措施架空线路遭雷击是指在雷电天气中,架空输电线路遭到雷击而导致停电或设备损坏的现象。
雷击是一种自然灾害,如果不能有效防范和应对,将给电力系统运行带来严重影响。
了解架空线路遭雷击的原因以及采取有效的防雷措施至关重要。
我们来看一下架空线路遭雷击的原因。
架空线路遭雷击的主要原因包括以下几点:1. 雷击频率高:架空线路位于室外,暴风雨天气时容易遭受雷击。
特别是在山区、高地等地形复杂的地区,雷电活动频繁,架空线路遭雷击的概率相对较高。
2. 线路长距离:架空线路一般都是长距离输电,线路越长,遭雷击的概率也越高。
3. 雷电能量巨大:雷电能量巨大,一次雷击就能产生几十万伏特的电压。
当架空线路遭雷击时,会造成电缆或导线瞬间过压,导致设备损坏或停电。
接下来,我们谈谈如何防范架空线路遭雷击。
防雷措施主要从以下几个方面着手:1. 定期检查维护:对架空线路进行定期检查,及时发现并处理存在的隐患和故障。
包括检查线路架设是否符合要求,绝缘子是否完好,接地系统是否良好等。
2. 安装避雷设备:在架空线路附近或者线路跨越雷电频繁地区,安装避雷设备是非常必要的。
避雷设备包括避雷针、避雷带等,能够吸引雷电,并将雷电导入地下,保护线路不受雷击。
3. 提高设备耐雷能力:对于输电线路和设备,提高其耐雷能力也是防雷的重要手段。
采取合理的接地措施,增大接地电阻,减小设备对雷电的影响。
4. 增强技术监控:运用先进的技术手段,监控架空线路的状态,及时发现线路异常情况,采取相应的措施,保障线路安全稳定运行。
5. 人员培训和应急预案:加强员工的防雷知识培训,并建立完善的应急预案,一旦发生雷击事故,能够及时、有效地处置,减少事故损失。
架空线路遭雷击是一种不可避免的自然灾害,但我们可以通过科学的防雷措施和技术手段,有效降低架空线路遭雷击的风险,保障电力系统的安全稳定运行。
希望各地的电力部门和相关单位能够高度重视架空线路遭雷击问题,加强防雷意识和技术水平,共同提高架空线路的抗雷能力,确保电力系统的正常运行。
架空输电线路防雷措施
架空输电线路防雷措施架空输电线路防雷措施架空输电线路是连接电源厂、变电站及用户的主要电力传输通道,是电网系统的重要组成部分。
然而,在雷电活动频繁的地区,架空输电线路往往面临严重的雷电灾害威胁,引发各种线路事故。
因此,架空输电线路的防雷工作至关重要,必须采取合理可行的措施来确保线路的安全运行。
一、架空输电线路的特点1、长线路、高杆塔:架空输电线路一般跨越山谷、河流等地形复杂的区域,需要高杆塔支撑,其线路长度往往达到几百公里以上。
2、集落密集:随着城市化进程的不断加快,架空输电线路不可避免地要穿越人口密集区域,这加大了防雷工作的难度。
3、高电压、大电流:架空输电线路一般采用高于220kV、甚至500kV以上的高电压输电,受电端的电流也很大,因此对防雷措施的要求很高。
二、架空输电线路的防雷措施1、引雷接地引雷接地是指将雷电引入地下,以减少雷电对架空输电线路的破坏力。
具体措施包括:(1)杆塔接地:对于架空输电线路的杆塔,在深层土壤中钻孔、埋放电极,将杆塔与深层土层直接接通,形成一定的接地网。
(2)导线接地:在架空输电线路导线的每个杆塔上,安装接地线,将导线接地,以震荡雷电电压。
2、避雷针避雷针是将空气中存在的雷电集中在避雷针顶部,减少大地与云之间的电荷过渡。
具体措施包括:(1)安装避雷针:在架空输电线路的每个杆塔上方,安装避雷针,将避雷针接地,使之与架空输电线路杆塔的接地网相连。
(2)避雷绝缘子串:在导线张力较大处,安装避雷绝缘子串,用以增强其防雷能力。
3、避雷装置避雷装置是指将雷击能量通过适当的元件进行断开,以保障线路安全。
具体措施包括:(1)雷电监测装置:通过架设适当的雷电监测装置,监测雷电密集区域的雷击情况,及时采取相应的措施。
(2)避雷放电装置:在导线张力较大处,采用避雷放电装置,在雷电冲击导线时,使其迅速放电,达到抵消雷电的效果。
三、结语架空输电线路的防雷工作需要综合考虑诸多因素,采取科学合理的措施和方法,才能确保线路的安全运行。
架空电力线路的防雷保护
架空电力线路的防雷保护架空电力线路是常见的电力输配电工程,其为供电系统的核心部分,地位重要。
然而,由于架空电力线路长期处于野外环境,受到风吹日晒、雨打雷击等自然灾害的侵蚀和考验,因此需要更加科学的防雷保护措施防止损伤。
本文就此进行详细探讨。
一、架空电力线路防雷保护的重要性通常情况下,架空电力线路都应该考虑到防雷的问题。
因为架空电力线路在自然环境中处于地位较高的位置,其他建筑物相对较低,雷电活动对其影响也相对更加强烈。
如果架空电力线路不采取有效的防雷措施,极易被雷击损坏,甚至导致设备损毁,生产事故发生。
特别是在雷电相对普遍、气候恶劣或者电力负荷大的地区,则更容易发生雷击事故。
因此,为了确保电力系统的安全运行和供电的可靠性,电力系统必须对于架空电力线路进行有力的防雷保护措施。
二、架空电力线路防雷保护的措施1.引入防雷技术为了实现对架空电力线路的防雷保护,引进先进的防雷技术是非常重要的一步。
这些技术包括:① 针对架空电力线路特点,实施适当的耐雷设计,如防雷针的建设、接地装置的设置等。
② 内部绝缘的改善,增加设备的耐雷能力。
③ 电力系统的资料管理和保护,减少系统遭到雷击时的屏幕和数据丢失。
④ 在架空电力线路周围使用动雷保护措施,如雷电频发的地区,可以配置钢管、导线等,将架空电力线路从雷击结果隔离开来。
2. 加强运行和管理针对架空电力线路运行过程中受到雷击的特点,必须在运行和管理方面加强保护措施,以下是几个方面的具体运行和管理措施:①珍爱现场设备及设备安装环境,经常进行巡视,发现问题及时解决。
② 加强对架空电力线路接地装置的巡检,确保接地的带动能力。
③ 进行强度测试及绝缘检测,上线前必须满足强度和绝缘的要求。
④ 做好线路的容灾备忘录,长时间遭受雷击或特殊天气情况下,应及时采取避免损失的应急措施。
三、结论总之,架空电力线路是我们生活中非常重要的一部分,一旦发生雷击事故,将无异于电力系统的一大威胁。
因此,在预防和治理雷击事故方面,科学正确的防雷保护措施必须得到重视。
10kV配电架空线路避雷措施
10kV配电架空线路避雷措施随着社会的不断发展和人们对电力需求的增加,配电系统的建设和维护已成为当今社会中不可或缺的重要组成部分。
而在配电系统中,架空线路是一种非常常见的电力输送方式。
架空线路在雷雨天气中常常成为雷电的目标,容易受到雷击,给人们的生产生活带来诸多安全隐患。
针对10kV配电架空线路的避雷措施显得尤为重要。
本文将探讨10kV配电架空线路避雷措施的相关内容,希望能为相关工作人员提供一些参考。
1.避雷装置的设置对于10kV配电架空线路来说,避雷装置的设置是非常重要的。
避雷装置的作用是为了吸引和释放天雷的电荷,保护线路和设备不受雷击而受损。
在10kV配电架空线路上,通常会设置避雷针或者接地装置。
避雷针一般安装在架空线路的顶端,通过将天雷的电荷吸引到避雷针上,再通过接地装置将其释放到地下,从而避免了雷击对线路和设备的损害。
2.线路绝缘的加强在10kV配电架空线路中,线路绝缘的加强也是非常重要的避雷措施之一。
一般来说,线路的绝缘材料通常为橡胶或者塑料等绝缘材料,通过对这些材料的加强和保护,可以有效地提高线路的抗雷击能力。
尤其是在雷雨天气中,线路绝缘的状况更是需要引起重视,必须要进行定期的检查和维护工作,确保线路的绝缘性能处于良好状态。
3.设备接地的合理设置10kV配电架空线路中的设备接地也是一个非常重要的避雷措施。
设备接地的合理设置可以有效地将雷电的电荷释放到地下,避免了对设备的损坏。
在设置设备接地时,必须要根据实际情况进行合理的设计和布局,确保接地的效果能够起到应有的作用。
4.防雷线路监测系统的安装为了及时监测10kV配电架空线路的防雷情况,安装防雷线路监测系统也是非常必要的。
通过防雷线路监测系统,可以及时监测线路的防雷情况,一旦发现异常情况,可以及时采取相应的措施进行处理,保障线路和设备的安全。
5. 安全教育与培训在10kV配电架空线路的避雷工作中,安全教育与培训也是非常重要的一环。
只有工作人员具备了一定的防雷知识,才能够在实际工作中做到举一反三,保障线路的安全。
架空输电线路的防雷及接地措施
雷电具有极大的破坏力,可能导致人身伤亡和财产损失。通 过采取有效的防雷措施,可以降低雷电对架空输电线路及其 周边环境的危害,从而避免因雷电灾害引发的人身和财产损 失。
架空输电线路防雷的现状
防雷设施建设不足
部分地区的架空输电线路防雷设施建设不足,缺乏必要的避雷线、避雷器等防 雷设备,导致线路在遭受雷电袭击时容易发生故障。
架空输电线路分布广泛,穿越的地理环境复杂多变,包括山区、丘陵、平原等地 形。这些不同的地理环境对防雷设施的建设和维护提出了更高的要求。
02
架空输电线路的防雷措施
安装避雷线
避雷线是架空输电线路最基本的防雷措施之一,通过在导线上方安装避雷线,当雷电击中线路时,避雷线将雷电电流引入地 下,以保护线路免受雷击。
避雷器的选择应考虑其额定电压、电 流和安装位置等因素。
架设耦合地线
耦合地线是一种通过增加一条地线来提高线路防雷能力的措施,通过耦合地线与导线之间的耦合作用 ,提高线路的耐雷水平。
耦合地线的架设方式应根据线路的具体情况来确定,包括耦合地线的截面积、位置和架设方式等。
03
架空输电线路的接地措施
杆塔接地装置
培训
对架空输电线路的维护人员进行防雷知识培 训,提高其防雷技能和意识。
宣传
通过宣传栏、宣传册等方式,向公众普及架 空输电线路的防雷知识和应对方法,提高公 众的防雷意识和自我保护能力。
05
结论与展望
架空输电线路防雷及接地措施的重要性
保障电力系统的稳定运行
架空输电线路是电力系统的重要组成部分,其稳定运行对于保障电力系统的供电可靠性至 关重要。防雷及接地措施可以有效地减少雷击对线路稳定运行的影响,避免因雷击导致的 大规模停电事故。
架空输电线路防雷导则
架空输电线路防雷导则一、前言随着社会的发展,电力系统的建设越来越重要,而输电线路作为电力系统的重要组成部分,其安全稳定运行对整个电力系统的运行至关重要。
然而,雷击是输电线路运行中不可避免的问题之一,因此架空输电线路防雷导则显得尤为重要。
二、雷击对输电线路的危害雷击是指大气中产生的强大静电场与地面或物体之间产生放电现象。
当雷击发生在输电线路上时,会带来以下危害:1. 毁坏杆塔和绝缘子:雷击会在杆塔和绝缘子上形成高压脉冲,导致杆塔和绝缘子受到损坏或破裂。
2. 烧毁设备:雷击产生高温火花,容易引起设备损坏或烧毁。
3. 造成停电:当输电线路受到雷击时,可能会造成局部或整条线路停电。
4. 影响供电质量:由于输电线路受到雷击后可能出现短暂故障或停电,从而影响供电质量。
三、架空输电线路防雷导则的重要性为了保证输电线路的安全稳定运行,必须采取有效的防雷措施。
架空输电线路防雷导则是一种有效的防雷措施,其重要性主要体现在以下几个方面:1. 保护设备:架空输电线路防雷导则可以有效地保护设备不受到雷击的损坏。
2. 保障供电:通过采取架空输电线路防雷导则,可以减少因雷击造成的停电或故障,从而保障供电。
3. 提高供电质量:通过采取架空输电线路防雷导则,可以减少因雷击造成的停电或故障,从而提高供电质量。
四、架空输电线路防雷导则的实现方法1. 接地系统接地系统是一种常用的防雷措施。
通过将输电线路与大地接通,可以将静电场转移到大地中去,并消除静荷。
在接地系统中,接地体是起到关键作用的部分。
接地体应该具有良好的导体性能和耐腐蚀性能。
2. 避雷针避雷针是一种常用的防雷措施。
它通过将架空输电线路上的避雷针与大地接通,形成一个保护区域,从而将雷击电流引入大地中去。
避雷针应该设置在杆塔顶部,并保持良好的接地。
3. 避雷线避雷线是一种常用的防雷措施。
它通过将架空输电线路上的避雷线与大地接通,形成一个保护区域,从而将雷击电流引入大地中去。
避雷线应该设置在杆塔顶部,并保持良好的接地。
探究高压架空线路防雷保护技术
趟
^ 、
,
鸯 盘 一 放 敬 电 \ } Z - - 放 电 \ / \ 盥 放 电 t
’ 娜 ● t 0 0p 0
u ^ -
/
第二 敬 先 替 ) j
第兰 敬
l
U,
.-
2 . 1 安装 避雷线 、 避 雷针 、 避 雷 器
高 压 架 空 线 路 的相 应 防 雷保 护 技 术 措 施进 行 了 分析 。
【 关键词 】 高压 ; 架空线路 ; 防 雷; 保护技术
【 中图分类号 】 T M 8 6 2
【 文献标 识码 】 B
【 文章编号 】 2 0 9 5 — 2 0 6 6 ( 2 0 1 3 ) 2 4 — 0 0 9 6 — 0 3
护 角等 措施 . 均 取得 了较 好 的 防 雷 效 果
1 雷 电产生的原因及造成 的危害
1 . 1 雷 电产 生的原 因
雷 电是 由 雷 云放 电 引起 的 , 在 雷 云形 成 的过 程 中 . 某 些 云
从 图 2 中可 以 看 出, 在这 1 8 9次跳 闸故 障 中 , 其 中 因外 力 破 坏、 鸟 害、 异物短接 、 风偏 、 覆 冰、 污 闪 以 及 其 它 因 素 所 导 致 的 故 障 问题 共 只 有 7 3次 . 而 因 雷 击 的 故 障 问题 则 共 有 1 1 6 次, 占据 了总故 障率 的 6 1 %, 已严 重 影响 到 了 电 网 的安 全 运 行
口 玛侮
线路 所 导致 的事 故 发 生 率 更 高 。 为此 , 必 须加 强 对 高 压 架 空线
路 防 雷措 施 与 保 护 技 术 的研 究 与探 讨 . 以 确保 整 个 电 力 系统
谈10kV绝缘架空线路避雷线保护角的选择
谈10kV绝缘架空线路避雷线保护角的选择10kV绝缘架空线路是电力系统中常见的一种输电线路形式。
在雷雨天气中,绝缘架空线路很容易受到雷击的影响,因此需要采取一定的措施来保护绝缘架空线路,避免雷击对线路设备和运行的影响。
而选择避雷线保护角是绝缘架空线路防雷措施中的重要环节之一,本文将围绕10kV绝缘架空线路的避雷线保护角选择进行探讨。
二、10kV绝缘架空线路避雷线保护角的选择原则在选择10kV绝缘架空线路避雷线保护角时,需要遵循一定的选择原则,确保其能够有效地发挥防雷作用。
具体原则如下:1. 防护范围:避雷线保护角的选择应考虑其防护范围,确保能够覆盖整个绝缘架空线路系统,包括主线、支线、绝缘子等设备。
防护范围的合理选择是保证绝缘架空线路全面接受防雷保护的关键。
2. 安装位置:避雷线保护角的安装位置应选择在绝缘架空线路设备附近,以确保其能够迅速吸收雷电能量,并将其导入大地。
还要考虑避雷线保护角与其他设备的安全距离,以避免其他设备在遭受雷击时受到影响。
3. 参数匹配:避雷线保护角的参数选择应与绝缘架空线路的电压等级匹配,确保其能够对10kV绝缘架空线路进行有效的防雷保护。
还要考虑线路的长度、周围环境等因素进行参数匹配的选择。
4. 设备质量:选择10kV绝缘架空线路避雷线保护角时,需考虑其质量和性能指标,确保其符合国家标准和要求,具有良好的可靠性和耐久性。
三、10kV绝缘架空线路避雷线保护角的种类目前,常见的10kV绝缘架空线路避雷线保护角种类主要包括避雷器、避雷针和避雷线。
这些种类的避雷线保护角各自具有不同的特点和适用范围,需要根据具体的绝缘架空线路情况进行选择。
1. 避雷器避雷器是一种常用的10kV绝缘架空线路避雷线保护角,主要用于吸收雷电能量,并将其导入大地,起到防雷保护作用。
避雷器的工作原理是利用气体放电等现象来吸收和导入雷电能量,具有灵敏、快速的特点,可有效保护绝缘架空线路设备不受雷击损害。
四、10kV绝缘架空线路避雷线保护角的安装和维护在选择10kV绝缘架空线路避雷线保护角后,需要进行规范的安装和维护工作,确保其能够发挥有效的防雷作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:AQ-JS-07098
( 安全技术)
单位:_____________________
审批:_____________________
日期:_____________________
WORD文档/ A4打印/ 可编辑
高压架空线路的防雷保护
Lightning protection of high voltage overhead lines
高压架空线路的防雷保护
使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科
学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。
1.引言
佛山电力局送电管理所所辖110kV及以上高压送电线路总长732.8km,分布于珠江三角洲一带,属于雷电活动频繁地区,年平均雷暴日高达80~90天。
近年来,根据我市电网故障分类统计,高压送电线路因雷击而引起的事故日益增多,雷击引起的跳闸占总跳闸率的70~80%,1999年是雷电活动最为强烈的一年,我所110kV 及以上线路跳闸总数达到了10次之多。
2000年线路17次事故障碍中,因雷击而引起的达到13次。
严重威胁着输变电设备的安全运行,也大大加重了运行维护人员的劳动强度。
由此可见,加强线路防雷保护尤为迫切。
2.雷电对电力线路的危害
架空线路受到直接雷击或线路附近落雷时,导线上会因电磁感应而产生过电压,即大气过电压(外过电压)。
这个电压往往高出线路
相电压的2倍及以上,使线路绝缘遭受破坏而引起事故。
当雷击线路时,巨大的雷电流在线路对地阻抗上产生很高的电位差,从而导致线路绝缘闪络。
雷击不但危害线路本身的安全,而且雷电会沿导线迅速传到变电站,若站内防雷措施不良,则会造成站内设备严重损坏。
3.防范措施及应用情况
根据运行经验,采取降低杆塔接地电阻、加装耦合地线及线路避雷器、减小线路地线保护角、增加绝缘子片数、采用自动重合闸等措施均可以有效地降低雷击跳闸率。
以上加强防护措施可根据线路的重要性、雷电活动的频数、地形地貌特点以及土壤电阻率等情况确定选取合理的一种或几种组合。
3.1架设地线以及减少地线保护角
地线是送电线路最基本的防雷措施之一,它的功能:①防止雷直击导线;②雷击杆塔时对雷电流的分流作用,减小流入杆塔的雷电流,使杆塔顶电位降低;③对导线有耦合使用,降低雷击杆塔时塔头绝缘上的电压;④对导线能起到屏蔽作用,降低导线上的感应
过电压。
减小保护角可降低绕击率,保证雷电不致绕过地线而直接击中导线。
为提高线路耐雷水平,我所所辖线路均按规程要求,线路全线均架设两根地线,及时对锈蚀架空地线进行更换;直线塔上地线对边导线保护角分别不大于15°(500kV)及20°(110~220kV),杆塔上两根地线之间距离小于地线与导线垂直距离的5倍。
3.2降低杆塔接地电阻
地线对雷电过电压的降压作用,是依靠低的接地电阻来实现的,而且接近于成比例关系。
对一般高度的杆塔,降低线路杆塔地网接地电阻是提高线路耐雷水平,以防止反击的有效措施,也是最经济、最有效降低线路雷击跳闸率的措施之一。
因此,我所为做好接地装置的全过程技术管理工作,不断加强输电线路杆塔地网的检查维护,按有关规程规定定期对线路杆塔接地网进行检查测试,并及时对线路中杆塔接地电阻值偏高的杆塔地网进行技术改造处理。
同时加强曾发生雷击跳闸线路杆塔的接地电
阻测试工作。
表1杆塔的工频接地电阻测量周期及要求
项目
周期
要求
说明
有架空地线的线路杆塔的接地电阻
1)发电厂或变电站进出线1~2km内的杆塔2年2)其他线路杆塔5年
当杆塔高度在40m以下时,按下表要求;如杆塔高度≥40m,则取下表值的50%,但当土壤电阻率大于2000Ω.m,接地电阻难以达到15Ω时可放宽至20Ω
对于杆塔高度≤40m,如接地电阻难以降到30Ω时,可采用6~8根总长不超过500m的放射形接地体或连续伸长接地体,其接地电阻可不受限制。
但对高度≥40m的杆塔,接地电阻不宜超过20Ω土壤电阻率Ω.m
接地电阻Ω
≤100
10
100~500
15
500~1000
20
1000~2000
25
≥2000
30
对过去雷击跳闸的统计发现,在1995~2001年共发生的35次雷击跳闸记录中,雷击杆塔检测接地电阻均符合设计值要求。
未发现有因地网阻值不良而发生的雷击跳闸情况出现。
这表明,我所在定期检测与及时改造不合格地网方面,成效是显著的。
3.3加强绝缘
根据大量的权威试验数据表明,绝缘子串的雷电冲击闪络电压和绝缘子的型式关系不大,而主要取决于串长。
但在线路设计过程中,一般不按雷电过电压的要求选择绝缘子串的绝缘子强度,但应根据已选定的绝缘子水平来检验线路的耐雷水平,并应符合现行规程规定。
如在某些情况下雷击跳闸率太高,则可根据具体情况(如考虑采用降低接地电阻等其他综合措施)酌量增加绝缘子片数。
另外,零值和劣质绝缘子增多,绝缘水平下降亦会造成耐雷水平偏低。
表2有避雷线线路的耐雷水平
额定电压
(kV)
一般线路
(kA)
大跨越档中央、发电
厂和变电所进线保护段(kA)
额定电压
(kV)
一般线路
(kA)
大跨越档中央、发电厂和变电所进线保护段(kA)
35
20~30
30
220
80~120
120
60
30~60
60
330
100~140
140
110
40~75
75
500
120~160
160
154
90
90
注1.表中较大数值用于多雷区或较重要的线路;
2.双回路或多回路杆塔的线路,应尽量达到表中的数值。
为此,可采取改善接地、架设耦合地线或适当加强绝缘等措施。
3.4装设自动重合闸
据统计,我国110kV及以上送电线路自动重合闸成功率可达75%~95%。
因此规程要求“各级电压线路应尽量装设三相或单相
自动重合闸”。
对我局1995~2001年线路雷击跳闸统计结果表明:35次跳闸中有32次重合成功,1次强送成功,1次不起动,91.43%的跳闸重合闸是成功的,这说明我市110~500kV线路耐雷水平较高,自动重合闸可以有效消除雷击故障,避免了因雷击而造成的停电事故。
3.5安装线路型氧化锌避雷器
随着送电线路防雷技术的不断提高,线路氧化锌避雷器作为一种新的线路防雷技术,已得到越来越广泛的认可和应用。
省内众多兄弟单位已积累了一定的经验,且多年的运行经验表明,在雷电活动频繁、土壤电阻率高、地形复杂的地区安装线路型氧化锌避雷无论在防止雷绕击导线、雷击塔顶或地线时的反击都非常有效。
我所于2000年在110kV紫海线#25、#26、#27共3基塔共安装了9相线路避雷器,由于接受雷雨季节考验的日子尚短,防雷效果有待验证。
由于该类产品价格较高,使用成本大,若在线路上广泛推广使用,前提必须是大幅降低产品的价格。
4.防雷的新思路
以往防雷工作都是以防、堵为主,而近年来,在防雷方面又出现了一种新思路,就是既然雷害是不可预测,不可避免的,那么不如顺其自然,以疏导为主,只要能找到对保证送电线路运行安全的通道来疏导雷电流,问题就解决了。
而安装引弧间隙就是这一思路的产物。
安装引弧间隙的目的就是用间隙保护绝缘子串,避免因放电损坏绝缘子而造成永久性故障。
根据有关资料介绍,在大跨越杆塔上应用,引弧效果很好。
但这一方法带来的负作用就是:跳闸率会增加。
因此,在可靠性分析中,雷击跳闸率的标准相应要修改。
另外,我们有必要拓宽思路,例如,当同杆架设时,考虑不平衡绝缘的方式,以保证不会多条线路(同一电源)同时跳闸。
5.雷电定位系统
自2001年初起,雷电定位系统开始投入使用,由于其定位较为准确,使运行单位能及时掌握雷电相关参数,确定雷击点位置,有重点地巡查,大大减轻了线路巡查的强度,是一个值得推广的应用
系统。
6.结束语
近四年来我所110kV、220kV线路雷击跳闸率(平均值分别为0.56和0.28次/100km.年40个雷暴日)低于全省平均值(分别为0.94和0.46次/100km.年40个雷暴日),而我市这几年平均雷暴日(81日)比全省平均值(77日)高4天,这说明我所采取的防雷措施是相当有效的。
但总的来说,防雷害工作是一项很值得深入探讨的课题,统计过往6年数据,基本都集中于4~9月,其中又以6、7、8月最为集中,且只有500kV两条线路曾发生过2次及以上的雷击跳闸,随机性、分散性大,影响了线路防雷工作的有效开展;雷击随电压的增高则概率增高。
而近年来,通过雷电定位系统可知:同一个雷,多条线路同时跳闸的现象时有发生,其原因未能确定。
今后的防雷重点,应坚持不懈地做好防雷设施运行维护工作。
对安装了线路避雷器、增加绝缘子长度、降低杆塔接地电阻等加强技术措施的线路,应做好运行跟踪及进行专业技术总结工作。
并对
雷击故障作详尽的调查分析,针对故障原因制订有关反事故措施。
对雷电活动较频繁的地区应加强线路的运行维护工作,并在防雷设计中采取相应的有效的措施。
这里填写您的公司名字
Fill In Your Business Name Here。