汇交力系力偶系平衡全解
平面汇交力系和平面力偶系的平衡
平衡方程
平面汇交力系
例 已知:系统如图,不计杆、轮自重,忽略滑轮大小, P=20kN; 求:系统平衡时,杆AB,BC受力.
1.1 平面汇交力系的平衡
解: AB、BC杆为二力杆,取滑轮B (或点B),画受力图.建图示 坐标系
1.2 平面力偶系的平衡
1.平面力偶系的合成和平衡条件 已知:
任选一段距离d
=
=
=Leabharlann 1.2 平面力偶系的平衡平面力偶系平衡的充要条件 ,有如下平衡方程 平面力偶系平衡的必要和充分条件是:所有各力偶矩 的代数和等于零。
1.2 平面力偶系的平衡
例 已知: 求: 光滑螺柱 AB所受水平力.
解 由力偶只能由力偶平衡的性质, 其受力图为
解得
1.1 平面汇交力系的平衡
1.平面汇交力系合成
合力 FR 在x轴,y轴投影分别为
合力等于各力矢量和
由合矢量投影定理,得合力投影定理
合力的大小为:
方向为:
cos(FR
,
i)
Fix FR
作用点为力的汇交点.
cos(FR
,
j)
Fiy FR
2.平面汇交力系的平衡方程 平面汇交力系平衡的必要和充分条件是:该力系的合力为零。
1.1 平面汇交力系的平衡
平面力系:各力的作用线在同一平面内。 平面汇交力系:各力的作用线都在同一平面内且汇交于一点的力系。 平面平行力系:各力的作用线都在同一平面内且相互平行的力系。 平面力偶系:在同一平面内有n个力偶作用,形成一个平面力偶系。 平面任意力系:各力的作用线都在同一平面内且任意分布的力系。
第二章平面汇交力系及平面力偶系
1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至
第
终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基
础
第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα
第
一
Fy=a’ b’= - Fcosα
章
静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)
工程力学3—力系的平衡条件和平衡方程
Fyi 0 M O ( Fi ) 0 Fxi 0
即:平面任意力系平衡的解析条件是:力系中所有各 力在其作用面内两个任选的坐标轴上投影的代数和分 别等于零,所有各力对任一点之矩的代数和等于零。 上式称为平面任意力系的平衡方程。
例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
2 平面力偶系的平衡条件
所谓力偶系的平衡,就是合力偶的矩等于零。因此, 平面力偶系平衡的必要和充分条件是:所有各力偶矩 的代数和等于零,即 n
M
i 1
i
0
思考: 从力偶理论知道,一
M
O R
力不能与力偶平衡。图示轮 子上的力 P 为什么能与 M 平 衡呢?
P
[例3] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1 m2 m3 m4 15Nm ,求工件的 总切削力偶矩和A 、B端水平反力?
解: 各力偶的合力偶矩为
M m1 m2 m3 m4 4( 15) 60Nm
由力偶只能与力偶平衡的性质, 力NA与力NB组成一力偶。
根据平面力偶系平衡方程有: N B 0.2 m1 m2 m3 m4 0
N B
60 300N 0.2
N A N B 300 N
解: ①选碾子为研究对象
②取分离体画受力图 ∵当碾子刚离地面时NA=0,拉力F最大,
这时拉力F和自重及支反力NB构成一平衡力系。
由平衡的几何条件,力多边形封闭,故
F Ptg
NB P cos
r 2 (r h) 2 0.577 又由几何关系: tg r h
所以
F=11.5kN , NB=23.1kN
二章节平面汇交力系与平面力偶系
2、一般对于受多个力作用的物体,且角度不特殊或 特殊,都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只 有一个未知数。 4、对力的方向判定不准的,一般用解析法。
5、解析法解题时,力的方向可以任意设,如果求出负 值,说明力方向与假设相反。对于二力构件, 一般先 设为拉力,如果求出负值,说明物体受压力。
FAC
FA 450
FAB
FD
图示结构由直角弯杆ABCD与BEG及
直杆CG构成,各杆自重不计,F,a为已
知,求B处的约束力。 FE FA
F
E G
B
力偶实例 2.4 平面力偶
力 偶 实 例 F1
F2
一 力偶的定义:
作用在同一刚体上的大小相等、方向相反、作 用线又不重和的两个平行力所组成的力系称为力偶。 (F ,F′)
6、平面上一个力和一个力偶可以简化成一个 力。
7、如果某平面力系由多个力偶和一个力组成, 该力系一定不是平衡力系。
填空题:
1、同平面的两个力偶,只要 ________相同, 对刚体的外效应相同。
2、力偶________与一个力等效,也_______ 被一个力平衡。
3、平面力偶系合力偶之矩m= ________ 。 平面力偶系的平衡条件是________ 。
4、力矩是力使物体绕指定矩心产生________ 效应的度量,其单位是 ________ 。力F对 平面上一点O的力矩等于力的________ 与 力作用线到点的______的乘积,用_____表 示。力矩有正负之分,_____转向规定为正。
填空题:
5、力系合力对平面某点的力矩,等于该力系
平面汇交力系和平面力偶系
第二章 平面汇交力系与平面力偶系§2.1平面汇交力系合成与平衡的几何法一、汇交力系合成与平衡的几何法 汇交力系:是指各力的作用线汇交于同一点的力系。
若汇交力系中各力的作用线位于同一平面内时,称为平面汇交力系,否则称为空间汇交力系。
1、平面汇交力系的合成先讨论3个汇交力系的合成。
设汇交力系1F ,2F ,3F汇交于O (图1),由静力学公理3:力的平行四边形法则(力的三角形)可作图2,说明)(),,(321F F F F=如图和图所示,其中321F F F F ++=F2F 3F OFO1F 2F 3F12F讨论:1)图2中的中间过程12F 可不必求,去掉12F 的图称为力多边形,由力多边形求合力大小和方向的方法称为合力多边形法则。
2)力多边形法则:各分力矢依一定次序首尾相接,形成一力矢折线链,合力矢是封闭边,合力矢的方向是从第一个力矢的起点指向最后一个力矢的终点。
3)上述求合力矢的方法可推广到几个汇交力系的情况。
结论:汇交力系合成的结果是一个合力,合力作用线通过汇交点,合力的大小和方向即:∑=i F F用力多边形法则求合力的大小和方向的方法称为合成的几何法。
2.平面汇交力系的平衡1F 2F iF 2-n F 1-n F n F设作用在刚体上的汇交力系),,(21n F F F 为平衡力系,即 0),,(21≡n F F F先将121,,-n F F F 由力多边形法合成为一个力1-N F,(∑-=-=111n i i N F F )0),(),,(121≡≡-n N n F F F F F由静力公理1,作用在刚体上二力平衡的必要充分条件是:1-N F 与n F等值,反向,共线,即n N F F =-1, 可得01=+-n N F F,或0=∑i F结论:平面汇交力系平衡的必要与充分条件是:力系中各力的乖量和为零,用几何法表示的平衡条件是0=∑i F,力多边形自行封闭。
例1. 已知:简支梁AB ,在中点作用力F,方向如图,求反力FA B C45F AF BACα 45FF BF α解:1。
大学静力学02.第二章 汇交力系
§ 2-2 汇交力系的平衡条件
三、汇交力系平衡的解析条件
合力计算公式
FR
Fx 2 F y 2 Fz 2 Fx 2 F y 2 Fz 2
F 0 x Fy 0 Fz 0
0
由 得
FR
刚体在汇交力系作用下处于平衡的解析条件是: 力系中各力在三个坐标轴上投影的代数和分别等于 零
F1
y
合力投影定理
数和
合力在某一轴上的投影,等于各力在同一轴上投影的代
§ 2-1 汇交力系的合成
合力的大小为
FR FRx FRy FRz
2 2 2
Fx 2 Fy 2 Fz 2
cos( FR FR Fy cos( FR , j ) FR Fz cos( FR , k ) FR
Fx , i)
合力方向余弦为
平面汇交力系的合力和方向余弦为
FR
Fx 2 Fy 2
cos( FR
Fx , i)
FR
§ 2-2 汇交力系的平衡条件
一、 三力平衡定理
设作用在物体上的三个力F1 、F2 、F3 共面且互不平 行, 使物体处于平衡状态 F2 F2 FR1 B B F1 A C C O A F1
Fz Fx
F
Fy y′ y
O
x′ x
§ 2-1 汇交力系的合成
3. 力在直角坐标轴上的投影
z
Fxy=F cos Fx = Fxy cos = F cos cos Fy = Fxy sin = F cos sin Fz = F sin
《理论力学》基本力系
接触点处受到法向约束力的作用。
03
铰链约束
铰链约束是指两个构件通过销钉或铰链连接在一起,并能绕销钉或铰链
相对转动。这种约束只能限制物体沿垂直于销钉轴线的运动,而不能限
制物体绕销钉的转动。
平衡条件及求解方法
平面力系的平衡条件
平面任意力系平衡的充分必要条件是,力系的主矢和主矩都为零。即所有各力在x轴和y轴 上的投影的代数和分别等于零;所有各力对任意一点之矩的代数和也等于零。
汇交力系平衡条件应用
平衡条件
汇交力系平衡的充分必要条件是合力为零,即力多边形自行封闭。
应用
在静力学中,汇交力系平衡条件可应用于求解未知力、判断物体是否平衡等问题 ;在动力学中,可用于分析物体的运动状态及受力情况。
04 平面任意力系简化与平衡
平面任意力系简化方法
向一点简化
选择适当的一点,将力系中的各 力向该点平移,得到一个等效的 平面汇交力系和一个平面力偶系。
主矢和主矩
平面任意力系向作用面内任一点 简化时,一般可得到一个力和一 个力偶,这个力称为该力系的主 矢,这个力偶的矩称为该力系对
简化中心的主矩。
合力矩定理
平面任意力系的合力对作用面内 任一点之矩,等于力系中各分力
对于同一点之矩的代数和。
简化结果分析
当主矩为零时,主矢也为零
01
说明该力系本身是平衡的,或者可以合成为一个合力。
合力矩
主矩表示原力系对物体的 总体转动效应,其大小和 方向由主矩矢量确定。
平衡条件
当且仅当主矢和主矩都为 零时,空间任意力系才处 于平衡状态。
空间任意力系平衡条件应用
静力学问题
利用空间任意力系的平衡条件,可以解决各种静力学问题, 如物体的平衡、刚体的平衡等。
平面力系-平面汇交力系的简化与平衡方程(常用版)
平面力系-平面汇交力系的简化与平衡方程(常用版)(可以直接使用,可编辑完整版资料,欢迎下载)第2章平面力系192.1 平面汇交力系的简化与平衡方程 (19)2.2 力对点之矩合力矩定理 (24)2.3 力偶及其性质 (27)2.4 平面力偶系的合成与平衡方程 (30)2.5 平面一般力系的简化与平衡方程 (32)2.6 物体系统的平衡 (40)*附录Ⅱ:机械应用实例 (49)第2章平面力系本章主要介绍平面力系的简化与平衡问题,平面状态下物系平衡问题的解法。
按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。
若各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。
按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。
2.1 平面汇交力系的简化与平衡方程2.1.1 概述设刚体上作用有一个平面汇交力系F1、F2、…、F n,各力汇交于A点(图2-1a)。
根据力的可传性,可将这些力沿其作用线移到A点,从而得到一个平面共点力系(图2-1b)。
故平面汇交力系可简化为平面共点力系。
a )b )图2-1连续应用力的平行四边形法则,可将平面共点力系合成为一个力。
在图2-1b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得F R =F 1+ F 2+…+ F n =∑F i (2-1)式中 F R 即是该力系的合力。
故平面汇交力系的合成结果是一个合力,合力的作用线通过汇交点,其大小和方向由力系中各力的矢量和确定。
因合力与力系等效,故平面汇交力系的平衡条件是该力系的合力为零。
2.1.2力在坐标轴上的投影过F 两端向坐标轴引垂线(图2-2)得垂足a 、b 、a'、b'。
线段ab 和a'b'分别为F 在x 轴和y轴上投影的大小,投影的正负号规定为:从a 到b (或从a'到b')的指向与坐标轴正向相同为正,相反为负。
第二章 汇交力系
同理: FRy F1y F2 y F3y Fy
§1 汇交力系的合成
5、汇交力系合成的解析法
应用合力投影定理求出力系合力的投影后,可用下式 求出合力的大小和方向: 合力的大小:
FR FR2x FR2y FR2z ( Fx )2 ( Fy )2 ( Fz )2
合力FR 的方向余弦:
汇交力系的合成 几何法(矢量法) 解析法(投影法)
汇交力系的平衡条件 几何法(矢量法) 解析法(投影法)
§1 汇交力系的合成
一、力的可传性
F
公理三:加减平衡力系原理 在刚体上增加或减去
一组平衡力系,不会改变 原力系对刚体的作用效应
F’ F”
F A
B
F
A
B
若{P1, P2 ,L , Pm} {0} 则 {F1, F2, , Fn}
例2-3:圆柱重G=500N,搁在光滑墙面与夹板间, 板与墙面夹角为60°,用解析法求:圆柱给墙面和 夹板的压力。
解:1.以圆柱为研究对象,画受力图;
FA
O
G
FB
O
AG
60° B
例2-3:圆柱重G=500N,搁在光滑墙面与夹板间,
板与墙面夹角为60°,用解析法求:圆柱给墙面和
夹板的压力。
解:1.以圆柱为研究对象,画受力图:
Fx + Fy = F
| F | = (Fx)2 + (Fy)2 x
= (Fx)2 + (Fy)2
α = atan (Fy /Fx)
§1 汇交力系的合成
三、汇交力系合成的解析法(投影法)
可见: 力F在垂直坐标轴上的投影分量与沿轴分解的分 力大小相等;力F在相互不垂直的轴上的投影分 量与沿轴分解的分力大小是不相等的。 力在任一轴上的投影大小都不大于力的大小;而 分力的大小却不一定都小于合力大小。 力在任一轴上的投影可求,力沿一轴的分量不可 定。
讲稿4平面汇交力系
=-FRcos α + Fr cos 2α + Fr sin2α
= F (r-Rcosα)
§2-4 力偶系
一、力偶的概念
定义: 等值、反向、不共线的两个平行力的组合
作用面: 效果 :
两力所确定的平面
F
力偶臂: d 转动
矢量 力偶矩矢 m 平面力偶 标量 m=Fd m
F′
d
大小
方向
+
-
m
二、性质 1.力偶对任何点的矩都等于其力偶矩。
a a B C
FTB
D a
FTC
B
′ FTB
P
A
P
′ FTB ┐
FTC
45°
FA
A
FA
∴ FA = FTB = FTB = P ′
′ FTC = 2 FTB= 2 P
例3. 机构如图,不计杆重。求铰链A、E处的约束力。
F
B 6 4 C 8 D 6
解:
FD
F
B C
D E
FA
E
A 4
FE
A
′ FD
3 3
B
m
FA
A
C
FC
3a
m
A
FA = FB = FC
∑M = 0
2 2 m- FA a- FA 3 a = 0 2 2
2 m FA = m = 0.3536 4a a
例6.(习题2-15)
直角弯杆ABCD与直杆CD及CE铰接如图,m=40kN· m, 不计杆重及摩擦。求:A、B处约束力及CE杆受力。 解: 1.CE杆: C
三、合力矩定理 力系(F1、F2、…、Fn )汇交于A点,且有合力 FR
第2章平面汇交力系与平面力偶系
FBC
FAB
A
' F' FBA BC
B B
B
P
C
F2 F1
C
FCB
解:
y
FBA F2
600
300
(1) 取滑轮为研究对象,将其视为 一个几何点。受力如图所示。
其中 F1= F2 =P = 20 kN (2)选取图示坐标系。列方程
B
FBC
F1
x
X 0, Y 0,
FBA F1cos600 F2cos300 0 FBC F1cos300 F2cos600 0
解:(1)取碾子为研究对 象。 画受力图。
F
F
O B
O B
FB
P
P
A FA
A
(2)根据力系平衡的几何条件,作封闭的力多边形。
按比例,先画已知力,各力矢首位相接。
FB
a.从图中按比例量得
FA=11.4 kN , FB=10 kN 5 kN
FA
0
P
b.也可由几何关系计算
Rh cos 0.866 R
即:若作用在刚体上 {F1 , F2 ,, Fn } {FR }
则:
M O ( FR ) MO (Fi )
i 1
n
在古代,人们没有大型的 起重工具,只能依靠人力和畜力 。在建造宏伟的建筑物时,为了 将巨大的石柱竖立起来,可能采 用了右图所示的方法。其中起关 键作用的是用木材作成的 A 字形 支架。试从力学角度说明采用此 项措施的必要性。
P
解: 取梁为研究对象。 画受力图。
注意:这里所设力 FA 的方向与 实际方向相反。
解:取横梁为研究对象。画受力图。 建立图示直角坐标系。 由平面汇交力系的平衡条件列方程
第二三章 平面汇交及平面任意力系力系与平面力偶理论
=
=
=
33
结论:
M m1 m2 mn mi
i 1
n
平面力偶系合成结果还是一个力偶,其力偶矩为各力偶矩 的代数和。 平面力偶系平衡的充要条件是:所有各力偶矩的代数和 等于零。
即
mi 0
i 1
n
34
[例]
在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为
20
例3 求图3-6所示各分布荷载对A点的矩。
21
解:沿直线平行分布的线荷载可以合成为一个合力。合力的方 向与分布荷载的方向相同,合力作用线通过荷载图的重心,其合 力的大小等于荷载图的面积。 根据合力矩定理可知,分布荷载对某点之矩就等于其合力对该 点之矩 (1)计算图3-6(a)三角形分布荷载对A点的力矩
40N 0.4m 0.4m 60N 0.6m
推论
M=24N.m
60N
a)力偶可以在刚体内任意移转。即力偶矩矢M的作 用点可以在平面上任意移动,力偶矩矢是自由矢。 b)在保持力偶矩不变的情况下,可以任意改变力和 力臂的大小。 由此即可方便地进行力偶的合成。
28
c)平面力偶系的合成
h1 h2
h1
F1 F2
FR'
FR
力?
O
h=M0/FR
M0
A
42
y
FR h
O
FR'
x
讨论1 平面一般力系简化的最终结果
情况 向O点简化的结果 分类 主矢FR' 主矩MO
1 2 3 4 FR’=0 FR'=0 FR0 FR‘0 MO=0 MO0 MO=0 MO0
MO
力系简化的最终结果 (与简化中心无关)
第2章 平面汇交力系与平面力偶理论
式中,负号表示合力偶的转向为顺时针方向转动。
欲求作用在A、B处的水平力,应以工件为研究对象,受力分析如图 2—13所示,由于工件在水平面内受四个力偶和两个螺栓的水平反力 的作用下而平衡。因为力偶只能与力偶平衡,故两个螺栓的水平反 力N一和jv”必然组成一个力偶。由平面力偶系的平衡方程
二、平面汇交力系合成与平衡的解析法
根据合力投影定理,可计算出合力R的投影Rx和Ry
合力R与x轴正向间的夹角为
平面汇交力系平衡的充要条件是该力系的合力R等于0,则有
上式成立,必须同时满足
平面汇交力系解析法平衡的必要与充分条件是:力系中所有 各力在两个坐标轴上投影的代数和分别等于零。
例2-2 图2-5(a)所示圆柱体A重Q,在中心上系着两条绳AB和 AC,并分别经过滑轮B和C,两端分别挂重为P和2P的重物,试 求平衡时绳AC和水平线所构成的角α及D处的约束反力。 解 选圆柱为研究对象,取分离体画受
(2)作用在同一平面内的两个力偶,只要它的力偶矩的大 小相等、转向相同,则该两个力偶彼此等效。这就是平面力 偶的等效定理。
定理的推论
(1)力偶可以在其作用面内任意移动,而不影响它对 刚体的作用效应。 (2)只要保持力偶矩大小和转向不变,可以任意改变 力偶中力的大小和相应力偶臂的长短。而不改变它 对刚体的作用效应 上述推论表明,在研究同一平面内有关力偶问题时, 只需考虑力偶矩的代数值,而不必研究其中力的大 小和力偶臂的长短。
从而解得
所以
例 图a 所示结构中,各构件自重不计。在构件AB 上作用1力 偶矩为M 的力偶,求支座A 和C 的约束力。
解(1)BC为二力杆: F c= −F B(图c) (2)研究对象AB,受力如图b 所示, F AFB' 构成力偶, 则
2汇交力系、力偶系平衡
A
例2-6
30 ;
解:取轮,由力偶只能由力偶平衡的性质,画受力图。
M1
O
M1
FO
销子
M 0
解得
M1 FA r sin 0 M1 2 FO FA 8 kN 0 r sin 0.5 sin 30
例2-6
解得 FO FA 8kN
FA
A
力的投影
y
F
投影
x
投影
Fy Fy Fx Fx
y F
分力
F1
Fy Fx
y
F
分力
Fy
x
Fx
x
2)合矢量投影定理
合矢量在轴上的投影等于
y F1
各分矢量在同一轴上投影的代数和。
y
F2 j O
Fn i F3 x Fy j O
b
FR
Fx Fxi
x
i
Fy Fyi
Fx
合力大小 FR Fx 2 Fy 2 ( Fxi )2 ( Fyi )2 Fx Fy 合力方向 cos FR , i) ( cos FR , j) ( FR FR
F'= F''=F
B F''
d
F A B
d
B
d
F
A
F B A
M
F'
M
A
附加力偶矩:M=MB(F)=±Fd
2. 平面任意力系向作用面内一点简化 主矢和主矩 各力向矩心平移
矩心 Fn
F1 O
平面汇交力系 平面力偶系
Fn F1 Fi
Fi
静力学第二章平面汇交力系与力偶系
请思考:力矩和力偶矩的异同?
力偶矩:度量力偶对物体转动效应 的量。记作:M(F, F′)或M
A
F C d F′
M Fd
力偶矩正负号规定:
逆时针转动为正,反之为负
B
力偶矩正负号意义:表示力偶转向
请思考:平面(内)力偶等效的条件?
力偶矩大小相等、转动方向相同
平面力偶的性质
性质1 : 力偶无合力,即FR=0
第二章 平面汇交力系与平面力偶系
本章重点:
1、平面汇交力系(几何法、解析法)
2、力偶的概念
3、平面力偶系
§2-1 平面汇交力系
汇交力系:所有力的作用线
汇交于一点的力系。
共点力系:所有力的作用点为同一点的力系。
平面汇交力系合成—几何法
力多边形
平面汇交力系平衡—几何法
平衡几何条件:汇交力系的力多边形自行封闭。
平面力偶系的简化结果: Mo
平面力偶系的平衡条件:Mo = 0
平衡方程:
M
0
例5 图中M, r 均为已知, 且 l=2r, 各杆自重不计。
求:C 处的约束力。
解:取 BDC 为研究对象
作出受力图 由力偶理论,知 FB = FC M 0
2 2 FB r FB 2r M 0 2 2 注意:计算(FB,FC )的力偶矩
性质2 : 力偶作用效应只与力偶矩有关 性质3 : 力偶只能与力偶矩相等的另一力偶等效 性质4 : 力偶对其作用面上任一点的矩等于力偶矩
F
F´
F
F´
F
F´ F/2
(d)
F´/ 2
只要保持力偶矩不变,力偶必等效
F
F´
M
M
M
材料力学工程构件静力学平衡问题
13
3.1 汇交力系的平衡条件和方程 平衡方程为:
-例题
sin F sin 0 Xi 0 , F CB AB 2
(4)
Y i 0
F cos F cos 0(5) N B CB AB , F 2
14
3.1 汇交力系的平衡条件和方程 由(4)和(5)解得:
26
3.3 平面一般力系的例题
例3-5 起重机水平梁AB,A处为固定铰链支座,DC为 钢索。已知梁重G1=2.4KN,电动小车与重物共重 G2=16KN,尺寸如图(a)所示。试求当电动小车 在图示位置时,钢索的拉力和铰链支座A的约束力。
27
3.3 平面一般力系的例题 解: 取梁AB为研究对象 分析受力,作用于梁AB的力,除其自重G1外,在B处 受载荷G2的作用,C处有钢索拉力FT,铰链支座A处的 约束力为FAx和FAy,受力图如图(b)所示。梁AB在 平面任意力系作用下处于平衡。
例3-1 如图a所示为一简单的起重设备。
-例题
AB和BC两在A,B,C三处用铰链连接。在 B处的销钉上装一不计重量的光滑小滑轮 ,绕过滑轮的起重钢丝绳,一端悬重为 G=1.5KN的重物,另一端绕在卷扬 机绞盘D上。当卷扬机开动时, 可将重物吊起,设AB和BC 两杆的自重不计,小滑轮 尺寸亦不考虑,并设重 物上升时匀速的, 试求AB杆和BC杆所受的力.
FAy为负值,表明受力图中FAy的实际指向与图中 的假设相反。
注:本题可用二矩式及三矩式平衡方程求解。取A、 C为矩心,二矩式平衡方程为
X 0 , F F cos 0 Ax T
M ( F ) 0 . 6 F sin 2 . 7 G 5 . 4 G 0 ,3 A T 1 2
第2章 平面汇交力系与平面力偶系
离d称为该力偶的力偶臂。
力偶的作用面:力偶所在的平面称为力偶的作用面。
力偶矩:力偶中一个力的大小与力偶臂的乘积,并 取以正负号,称为该力偶的力偶矩。
表示为: m
m Fd 2S ABC
31
§2.3 平面力偶系
2.力偶的基本特性 不能合成一个合力,本身不能平衡,也不能被一个 力平衡,它只能由力偶来平衡。 对物体只能产生转动效应,不能产生移动效应,即 只能原地转动。 组成力偶的两个力对其作用面内任一点的矩的代数 和恒等于该力偶的力偶矩。
D
6cm
DE=6 cm点E在铅直线DA上
,又B ,C ,D都是光滑铰
(a)
链,机构的自重不计。
7
§2.1 平面汇交力系的合成与平衡的几何法
例 题 2-1
解: 几何法
AF
1.取制动蹬ABD作为研究对象, 并画出受力图。
BE
O
FD
FB
D
(b)
I
F
FD
J
FB
K
(c)
2.作出相应的力多边形。
3. 由图b几何关系得:
15
§2.2 平面汇交力系的合成与平衡的解析法 1.力在坐标轴上的投影与力沿轴的分解
✓力向坐标轴的投影是代数量 ✓力沿坐标轴方向的分量是矢量
16
§2.2 平面汇交力系的合成与平衡的解析法
2.合成的解析法 合力投影定理:
平面汇交力系的合力在某一轴上的投影等 于各分力在同一轴上投影的代数和。
y
F4 F1
FA=0, 得封闭力三角形abc。
a
FB G
F G tan 11.5 kN
FB
G
cos
23.09
kN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物体的受力分析和受力图
受力分析——分析物体受到的全部力 (载荷和约束力)。
载荷:主动力; 约束力:被动力
分析方法——取分离体,画受力图。
q
A
q
F Ax
F Ay
B
取分离体 ;
分析约束与相应的
约束力 ;
画出荷载与可能的
约束力.
FB
力的作用效应
移动
转动
力矢
如何度量?
力矩 力偶
• 第二章 平面力系
–平面汇交力系 –平面力对点之矩/平面力偶 –平面任意力系的简化 –平面任意力系的平衡条件
公理1 公理3
平衡力系
合力/分力
课程回顾
力的平行四边形法则。 加减平衡力系原理。
物体受力分析
等效力系
(作用效果)
力系等效替换
公理1、3
建立平衡条件
公理2 二力平衡条件(二力杆)。
公理4
作用和反作用定律。
公理5 刚化原理。
约束和约束力:自由体和非自由体
方向:必与该约束所能阻碍的位移方向相反
大小+方向 正交力系
解得 FBA 0.366P 7.321kN (压力)
FBA
F2
60°
y FBC
B
Fy 0 FBC F1 cos 30 F2 cos 60 0
FBC 1.366P 27.32kN (压力)
30°
x
F1
例3-1 图示圆轴斜齿轮,
已知:啮合力Fn , 螺旋角β,压力角α
求:力Fn在三个坐标轴上的投影。 解:
Fxy
力在空间直角坐(1标.3-轴5)上影定理
空间汇交力系的合力
空间汇交力系的合力等于各分力的矢量和
F= F1 + F2 +……+Fn=∑Fi 合力投影定理:合力在某轴上的投影
等于各分力在同一轴上投影的代数和。 Fx= Fx1 + Fx2 +……+Fxn=∑Fxi Fy= Fy1 + Fy2 +……+Fyn=∑Fyi Fz= Fz1 + Fz2 +……+Fzn=∑Fzi
F3
F4
合力F R F123 F4
合力 F R
F4
F3
注意:各分力矢首尾相接,合力矢与第一分力矢
同起点 并与最后分力同终点。
2. 汇交力系平衡的几何条件
汇交力系平衡条件:合力
FR Fi 0
平面汇交力系平衡的几何条件——
力多边形自行封闭。
F5
F1
F2
F4
F3
F2 F1
F3
F5 F4
例题 已知:梁重P=10kN,α=45° 求:钢索AC和BC所受的拉力。
空间汇交力系的平衡方程:
∑Fx= 0 ∑Fy= 0 ∑Fz= 0
Fx 0 Fy 0
例2-3 已知:系统如图,不计杆、轮自重,忽略滑轮
大小, P=20kN
求:系统平衡时,杆AB、BC受力。 解: AB、BC为二力杆,
取滑轮B,画受力图。F1=F2=P
用解析法,建图示坐标系
Fx 0 FBA F1 cos 60 F2 cos 30 0
解:取梁AB为研究对像,画受力图
用几何法,画封闭力三角形。
力多边形自行封闭,构成直角三角形 FA=FB= Wcos45°= 10 cos45°= 7.07kN
F
C
从已知力
开始
C
F 45° B
P
A α=45°
FA
α B Aα
FB
αB
F 45° A
P
P
例2-1 已知:AC=CB,F=10kN,各杆自重不计
4.汇交力系的平衡方程
汇交力系的平衡条件:合力等于零。
FR Fx2 Fy2 Fz2 ( Fxi )2 ( Fyi )2 ( Fzi )2 0
Fx= Fx1 + Fx2 +……+Fxn=∑Fxi=0 Fy= Fy1 + Fy2 +……+Fyn=∑Fyi=0 Fz= Fz1 + Fz2 +……+Fzn=∑Fzi=0
Fz= Fco(s1γ.3-5)
Fxy=Fsinγ
力的投影与分力间的关系
力的投影
在直角坐标轴上 力的投影与分力大小相同 y
F 投影
投影
Fy Fy
y 分力
F1 F
Fx Fx
x
Fy
Fx
x
y
F 分力
Fy
Fx x
力的投影与分力间的关系
力的投影
z
Fz
F
γ
Fx
Fy
x
Fxy
力的分解
z
Fz
F
γ
y
Fx
Fy
y
x
a Fx>0 b x F
投影为正;
相反时为负。 注意:力的投影是标量
Fx<0
x
力在直角坐标轴上的投影
Fz
F
z
Fx a b
Fy
y
x
Fx=Fcosα
Fy=Fcosβ
Fz=Fcos
y'
y
F
Fy b a
Fx
x'
O Fx=Fcosα x x Fy=Fcosβ
二次投影法
z
Fz
F
γ
Fx
Fy
y
x
Fxy
Fx= Fsinγ cos Fy= Fsinγ sin
Fxy= Fncos α Fz= –Fnsin α
Fx= – Fncos α cos β
Fy= – Fncos α sin β Fz= –Fnsin α
β
例3-3 图示起重装置,BCED平面与水平面夹角30°
已知:物重P=10kN,CE=EB=DE, =30°
求:杆受力及绳拉力
解:画受力图如图
∑Fx= 0 F1sin 45°–F2 sin 45°= 0 F1=F2
∑Fy= 0
FA sin 30 F1 cos 45 cos 30 F2 cos 45 cos 30 0
∑Fz= 0
F1 cos 45 sin 30 F2 cos 45 sin 30 FA cos 30 P 0 解得: F1 F2 3.54kN FA 8.66kN
求:DC杆及铰链A的受力。
解:DC为二力杆,取AB杆,画受力图。
F
用几何法,画封闭力三角形。 A
45° C
B
按比例量得
FA
A
45°
C
FC
D
E
FA
F
FC
B
F 45°
从已知力 开始
3.汇交力系合成的解析法
1)力在正交坐标轴系的投影与力的解析表达式
力在轴上的投影
Fx=Fcos
投影的正负号规则
A
FB
x'
从起点到终点 与轴的正向相同时,
各力汇交于D点------空间汇交力系
简化方法: 几何法 解析法
z D滑轮
F
E
FAD A
FBD W B O
x
FCD 60° C
y
§2-1 汇交力系——几何方法
1. 汇交力系合成的几何法 力多边形法则
合成原理:力的平行四边形法则 (力三角形) 合成方法:力多边形法则
F1
A
F2
F2
F2
F1
F12 F 3 F 1
和平衡方程 –物体系的平衡/静定和超静
定问题 –平面简单桁架的内力计算
• 第三章 空间力系
–空间汇交力系 –力对点的矩和力对轴的矩 –空间力偶 –空间任意力系向一点的简
化/主矢和主矩 –空间任意力系的平衡条件 –重心
汇交力系
力系 力偶系
平行力系
任意力系
工程实例
起重装置由三根脚杆 AD,BD,CD和绞盘及绳索 ED组成