北师大九年级数学上学期期末试题及答案
北师大版九年级上册数学期末考试试卷含答案
北师大版九年级上册数学期末考试试题一、单选题 1.若25x y =,则xy的值是( ) A .52 B .25 C .32D .232.如图所示的几何体的左视图是( )A .B .C .D .3.下列关于矩形的说法,正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分 4.连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是( ) A .16 B .14C .12 D .135.两个相似多边形的相似比是3:4,其中小多边形的面积为18cm 2,则较大多边形的面积为( )A .16cm 2B .54cm 2C .32cm 2D .48cm 2 6.如图,////AB CD EF ,若3BF DF =,则ACCE的值是( )A .2B .12 C .13D .3 7.点A (﹣3,y 1)、B (﹣1,y 2)、C (2,y 3)都在反比例函数y =6x-的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 8.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根9.如图,有一张矩形纸片,长10cm ,宽6cm ,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm 2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm ,根据题意可列方程为( )A .10×6﹣4×6x=32B .(10﹣2x )(6﹣2x )=32C .(10﹣x )(6﹣x )=32D .10×6﹣4x 2=32 10.函数y=x+m 与my x=(m≠0)在同一坐标系内的图象可以是( ) A .B .C .D .11.如图,在平面直角坐标系中,已知点A (﹣3,6)、B (﹣9,﹣3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B′的坐标是( )A .(﹣3,﹣1)B .(﹣1,2)C .(﹣9,1)或(9,﹣1)D .(﹣3,﹣1)或(3,1)12.如图,在矩形ABCD 中,对角线AC 、BD 交于O ,2,BC AE BD =⊥,垂足为E ,30BAE∠=︒,那么ECO∆的面积是()A B C D二、填空题13.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为16m,那么这根旗杆的高度为_______m.14.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.15.若一元二次方程ax2﹣bx﹣2021=0有一根为x=﹣1,则a+b=______.16.如图,点O是菱形ABCD对角线的交点,DE//AC,CE//BD,连接OE,设AC=12,BD=16,则OE的长为_____.17.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=kx(k≠0,x>0)上,若矩形ABCD的面积为8,则k的值为___.三、解答题18.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)若a的值为3时,请解这个方程.19.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A:乘坐电动车,B:乘坐普通公交车或地铁,C:乘坐学校的定制公交车,D:乘坐家庭汽车,E:步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.20.某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.(1)求平均每次降价盈利的百分率;(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?21.如图,在Rt△ABC中,△ACB=90°,过点C的直线MN△AB,D为AB边上一点,过点D作DE△BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE =AD ;(2)当D 为AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC 满足什么条件时,四边形BECD 是正方形?(不必说明理由)22.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y =mx(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积; (3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标. 23.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.24.如图,已知Rt△ABO ,点B 在x 轴上,△ABO=90°,△AOB=30°,OB=函数()0ky x x=>的图象经过OA 的中点C ,交AB 于点D . (1)求反比例函数ky x=的表达式; (2)求△OCD 的面积;(3)点P 是x 轴上的一个动点,请直接写出使△OCP 为直角三角形的点P 坐标.25.如图,在Rt△ABC 中,△ACB=90°,点D 是斜边AB 的中点,过点B 、点C 分别作BE△CD ,CE△BD .(1)求证:四边形BECD 是菱形;(2)若△A=60°,BECD 的面积.26.如图(1),在四边形ABCD 中,AB△DC ,CB△AB ,AB =16cm ,BC =6cm ,CD =8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2cm/s .点P 和点Q 同时出发,设运动的时间为t (s ),0<t <5 (1)用含t 的代数式表示AP ;(2)当以点A 、P 、Q 为顶点的三角形与△ABD 相似时,求t 的值;(3)如图(2),延长QP、BD,两延长线相交于点M,当△QMB为直角三角形时,求t 的值.参考答案1.A【分析】利用比例的基本性质计算即可.【详解】△2x=5y,△xy=52,故选A.【点睛】本题考查了比例的基本性质,熟练掌握比例的性质并能进行灵活变形是解题的关键.2.D【分析】根据简单组合体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,即可求解.【详解】解:根据简单组合体的三视图的画法可知,其左视图是中间有一道横虚线的长方形,因此选项D的图形比较符合题意,故选:D.【点睛】考查三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.D【详解】分析:根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.解答:解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选D.4.B【分析】利用树状图法列出连续两次掷一枚质地均匀的硬币会出现的所有情况,看两次都正面朝上的情况占总情况的多少即为所求.【详解】解:画树状图如图所示:共有4种情况,两次都正面朝上的情况只有一种,所以两次都是正面朝上的概率是14.故答案选:B.【点睛】本题考查了求概率的方法,熟练应用树状图法或列表法求出所求情况数和总情况数是解题的关键.5.C【分析】设较大多边形的面积为S,由相似比与面积相似比的关系得18916S=,计算求解即可.【详解】解:设较大多边形的面积为S由两个相似多边形的相似比是3:4,可知两个相似多边形面积的相似比是9:16△18916 S=解得32S=故选C.【点睛】本题考查了相似三角形的性质.解题的关键在于明确相似多边形的面积比与相似6.A【分析】由BF=3DF,得BD=2DF,使用平行线分线段成比例定理计算即可.【详解】△BF=3DF,△BD=2DF,△////AB CD EF,△ACCE=BDDF,△ACCE=2DFDF=2,故选A.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是定理的对应关系是解题的关键.7.C【分析】分别把A、B、C各点坐标代入反比例函数y=6x-求出y1、y2、y3的值,再比较大小即可.【详解】解:△点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=6x-的图象上,△y1=63--=2,y2=61--=6,y3=62-=﹣3,△﹣3<2<6,△y3<y1<y2,故选:C.【点睛】本题考查了反比例函数图像上点的特征,熟练掌握反比例函数的性质是解题的关键8.A【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】△a=1,b=1,c=﹣3,△△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,△方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0△方程有两个不相等的实数根;(2)△=0△方程有两个相等的实数根;(3)△<0△方程没有9.B【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据题意得:(10−2x)(6−2x)=32.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.B【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m 的取值,二者一致的即为正确答案.【详解】A.由函数y=x+m的图象可知m<0,由函数ymx=的图象可知m>0,相矛盾,故错误;B.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m>0,正确;C.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m<0,相矛盾,故错误;D.由函数y=x+m的图象可知m=0,由函数ymx=的图象可知m<0,相矛盾,故错误.故选:B.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题.11.D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以13或-13即可得到点B′的坐标.【详解】解:△以原点O为位似中心,相似比为13,把△ABO缩小,△点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).故选:D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12.B【分析】过点C作CF△BD于F.根据矩形的性质得到△ABE=△CDF=60°,AB=CD ,AD =BC =2,△AEB =△CFD =90°.根据全等三角形的性质得到AE =CF .解直角三角形得到OE 【详解】解:如图:过点C 作CF△BD 于F .△矩形ABCD 中,BC =2,AE△BD ,△△ABE =△CDF =60°,AB =CD ,AD =BC =2,△AEB =△CFD =90°.△△ABE△△CDF ,(AAS ),△AE =CF .△△ABE =△CDF =60°,△△ADE =△CBF =30°,△CF =AE =12AD =1,△BE =tan AE ABE ∠ △△ABE =60°,AO=BO ,△△ABO 是等边三角形,△OE =△S△ECO =12OE•CF =112= 故选B .13.8【分析】根据同时同地物高与影长成比相等,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得:1.5316x = 解得8x =.故答案为8.14.25【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.15.2021【分析】将1x =-代入原方程即可得出答案.【详解】解:将1x =-代入一元二次方程ax 2﹣bx ﹣2021=0中,得:20210a b +-=,△2021a b +=,故答案为:2021.16.10【分析】由菱形的性质和勾股定理求出CD =20,证出平行四边形OCED 为矩形,得OE =CD =10即可.【详解】解:△DE //AC ,CE //BD ,△四边形OCED 为平行四边形,△四边形ABCD 是菱形,△AC△BD ,OA =OC =12AC =6,OB =OD =12BD =8,△△DOC =90︒,CD =10,△平行四边形OCED 为矩形,△OE =CD =10,故答案为:10.17.4.【分析】设A 点的坐标为(m ,n )则根据矩形的性质得出矩形中心的纵坐标为2n ,根据中心在反比例函数y =k x 上,求出中心的横坐标为2k n ,进而可得出BC 的长度,根据矩形ABCD 的面积即可求得.【详解】如图,延长DA 交y 轴于点E ,△四边形ABCD 是矩形,设A 点的坐标为(m ,n )则根据矩形的性质得出矩形中心的纵坐标为2n ,△矩形ABCD 的中心都在反比例函数y =k x 上, △x =2k n, △矩形ABCD 中心的坐标为(2k n ,2n ) △BC =2(2k n ﹣m )=4k n﹣2m , △S 矩形ABCD =8,△(4k n﹣2m )•n =8, 4k ﹣2mn =8,△点A (m ,n )在y =k x上, △mn =k ,△4k ﹣2k =8解得:k =4故答案为:418.(1)12(2)12x x == 【分析】(1)将x=1代入原方程可得出关于a 的一元一次方程,解之即可得出a 的值; (2)把a=3代入原方程得到x 2+3x+1=0,再利用公式法求解即可.(1)将x=1代入原方程,得:1+a+a-2=0,解得:a=12.(2)把a=3代入原方程得,x 2+3x+1=0,△Δ=32-4×1×1=5,△x ==△12x x . 19.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B 项对应的扇形圆心角是4036072200︒⨯=︒, 故答案为:200;72;(2)C 选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个, ∴甲、乙两名学生恰好选择同一种交通工具上班的概率为3193=. 20.(1)10%;(2)60元【分析】(1)设每次下降的百分率为a ,根据刚上市每件利润100元和连续两次降价后每件利润81元,可列方程为:100(1﹣a )2=81,即可求解;(2)设每件应降价x 元,则降价后的利润为()81x -,因降价后销量为()202x +,根据总利润=利润⨯销量,列方程进而求解.【详解】(1)设每次下降的百分率为a ,根据题意,得:100(1﹣a )2=81,解得:a =1.9(舍)或a =0.1=10%,答:每次下降的百分率为10%;(2)设每件应降价x元,根据题意,得(81﹣x)(20+2x)=2940,解得:x1=60,x2=11,△尽快减少库存,△x=60,答:若商场每天要盈利2940元,每件应降价60元.21.(1)见解析;(2)菱形,理由见解析;(3)△A=45°.【分析】(1)根据△ACB=90°,DE△BC可得DE//AC,即可证明四边形ADEC是平行四边形,根据平行四边形的性质即可得结论;(2)根据直角三角形斜边中线的性质可得AD=BD=CD,可得BD=CE,根据AB//MN可证明BECD是平行四边形,根据有一组邻边相等的平行四边形是菱形即可得结论;(3)根据正方形的性质可得△CBD=45°,根据△ACB=90°可得△ABC为等腰直角三角形,可得答案.【详解】(1)△DE△BC,△△DFB=90°,△△ACB=90°,△△ACB=△DFB,△AC△DE,△MN△AB,即CE△AD,△四边形ADEC是平行四边形,△CE=AD.(2)四边形BECD是菱形,理由如下:△D为AB中点,△ACB=90°,△AD=BD=CD,△CE=AD,△BD=CE,△BD△CE,△四边形BECD是平行四边形,△BD=CD,△四边形BECD是菱形.(3)当△ABC 是等腰直角三角形时,四边形BECD 是正方形,理由如下:由(2)可知,四边形BECD 是菱形,△△BDC=90°时,四边形BECD 是正方形,△△CBD =45°,△△ACB=90°,△△ABC 是等腰直角三角形,△当△ABC 是等腰直角三角形时,四边形BECD 是正方形.22.(1)132y x =-,y=8x; (2)C (2,-2),18(3)O'(4,2),D'(6,6).【分析】(1)把A 坐标代入一次函数解析式求出k 的值,确定出一次函数解析式,再将A 坐标代入反比例函数解析式求出k 的值,即可确定出反比例解析式;(2)设C 的坐标为(a ,132a -),表示出D 的坐标,两点纵坐标之差即为DC 的长,由已知DC 的长求出a 的值,确定出C 的坐标,过A 作AE△CD 于点E ,由A 与C 的横坐标之差求出AE 的长,三角形ACD 面积以DC 为底,AE 为高,求出即可;(3)连接OO',由平移可得:OO'△AC ,根据两直线平行时k 的值相同确定出直线OO'的解析式,与反比例函数解析式联立求出交点O'的坐标,根据平移的性质,由O 平移到O'的路径确定出D 平移到D'的路径,进而确定出D'的坐标即可.(1)解:△点A (8,1)在直线y=kx -3上,△1=8k -3,解得:k=12,△一次函数解析式为132y x =-,△A (8,1)在y=m x(x >0)的图象上, △1=8m , 解得:m=8,则反比例函数解析式为y=8x;(2)解:设C(a,132a-)(0<a<8),则有D(a,8a),△CD=8a-(132a-)=8132aa-+,△CD=6,△81362aa-+=,解得:a=-8(舍去)或a=2,△131322a-=-=-,△C(2,-2),过A作AE△CD于点E,则AE=8-2=6,△S△ACD=12CD•AE=12×6×6=18;(3)连接OO',由平移可得:OO'△AC,△直线OO'的解析式为y=12x,联立得:812y x y x ⎧=⎪⎪⎨⎪=⎪⎩, 解得:42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩(不合题意,舍去), △O'(4,2),即O (0,0)通过往右平移4个单位,往上平移2个单位得到O'(4,2),又由(2)中知D 坐标为(2,4),△点D (2,4)往右平移4个单位,往上平移2个单位得到D'(6,6).【点睛】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数及反比例函数解析式,一次函数与反比例函数的交点,平移的性质,熟练掌握各自的性质是解本题的关键.23.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD△BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC =,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD =,1CD ∴=,∴AC.【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键.24.(1)0)y x =>;(2(3)P (2,0)或(4,0)【分析】(1)解直角三角形求得AB ,作CE△OB 于E ,根据平行线分线段成比例定理和三角形中位线的性质求得C 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)补形法,求出各点坐标,S △OCD =S △AOB -S △ACD - S △OBD ;(3)分两种情形:△△OPC=90°.△△OCP=90°,分别求解即可.【详解】解:(1)△△ABO=90°,△AOB=30°,OB=OB=2, 作CE△OB 于E ,△△ABO=90°,△CE△AB ,△OC=AC , △OE=BE=12CE=12AB=1,△C1),△反比例函数k y x =(x >0)的图象经过OA 的中点C ,△反比例函数的关系式为y=;(2)△OB=△D的横坐标为代入y=y=12,△D(12),△BD=12,△AB=12,△AD=32,△S△OCD =S△AOB-S△ACD- S△OBD=12OB•AB-12AD•BE-12(3)当△OPC=90°时,点P的横坐标与点C的横坐标相等,C(2,2),△P(2,0).当△OCP=90°时.△C(2,2),△△COB=45°.△△OCP为等腰直角三角形.△P(4,0).综上所述,点P的坐标为(2,0)或(4,0).【点睛】本题主要考查的是一次函数、反比例函数的综合应用,列出关于k、n的方程组是解答问题(2)的关键,分类讨论是解答问题(3)的关键.25.(1)见解析;(2)面积(1)先证明四边形BECD是平行四边形,再根据直角三角形中线的性质可得CD=BD,再根据菱形的判定即可求解;(2)根据图形可得菱形BECD的面积=直角三角形ACB的面积,根据三角函数可求BC,根据直角三角形面积公式求解即可.【详解】(1)证明:△BE△CD,CE△BD,△四边形BECD是平行四边形,△Rt△ABC中点D是AB中点,△CD=BD,△四边形BECD是菱形;(2)解:△Rt△ABC中,△A=60°,,△直角三角形ACB的面积为△菱形BECD【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.26.(1)10-2t;(2)4013或2513;(3)3527或209【分析】(1)作DH△AB于H,得矩形DHBC,则CD=BH=8cm,DH=BC=6cm,AH=8cm,由勾股定理可求得AD的长,从而可得AP;(2)分两种相似情况加以考虑,根据对应边成比例即可完成;(3)分△QMB=90゜和△MQB=90゜两种情况考虑即可,再由相似三角形的性质即可求得t 的值.【详解】(1)如图,作DH△AB于H则四边形DHBC是矩形△CD=BH=8cm,DH=BC=6cm△AH=AB-BH=16-8=8(cm)在Rt△ADH中,由勾股定理得10(cm)AD==△DP=2tcm△AP=AD-DP=(10-2t)cm(2)△当△APQ△△ADB时则有AP AD AQ AB=△10210 216tt-=解得:4013 t=△当△APQ△△ABD时则有AP AB AQ AD=△10216 210tt-=解得:2513 t=综上所述,当4013t=或2513t=时,以点A、P、Q为顶点的三角形与△ABD相似;(3)△当△QMB=90゜时,△QMB为直角三角形如图,过点P作PN△AB于N,DH△AB于H△△PNQ=△BHD△△QMB=90゜△△PQN+△DBH=90゜△△PQN+△QPN=90゜△△QPN=△DBH△△PNQ△△BHD△6384 QN DHPN BH===即4QN=3PN△PN△DH△△APN△△ADH△63105PN DHAP AD===,84105AN AHAP AD===△33(102)55PN AP t==-,44(102)55AN AP t==-△418(102)2855 QN AN AQ t t t =-=--=-由4QN=3PN得:1834(8)3(102) 55t t -=⨯-解得:3527 t=△当△MQB=90゜时,△QMB为直角三角形,如图则PQ△DH△△APQ△△ADH△45 AQ AHAP AD==△45 AQ AP=即42(102)5t t =-解得:209 t=综上所述,当3527t=或209时,△QMB是直角三角形.。
北师大版九年级数学第一学期期末考试试题及答案
北师大版九年级数学第一学期期末考试试题及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的六角螺栓,其俯视图是( )A. B. C. D.2.关于菱形的性质,以下说法不正确的是( )A. 四条边相等B. 对角线互相垂直C. 对角线相等D. 是轴对称图形3.关于x的一元二次方程x2−6x+m=0有两个不相等的实数根,则m的值可能是( )A. 8B. 9C. 10D. 114.对于反比例函数y=−5,给出下列结论:①图象经过点(1,−5);②图象位于第二、第四象限;③当x<0时,xy随x的增大减小;④当x>0时,y随x的增大而增大.其中正确的结论个数为( )A. 1个B. 2个C. 3个D. 4个5.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“E”字高度为72.7mm,当测试距离为3m时,最大的“E”字高度为( )A. 4.36mmB. 29.08mmC. 43.62mmD. 121.17mm6.如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC=6米,则自动扶梯AB的长约为(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 7.5米B. 8米C. 9米D. 10米7. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O.点E 、F 分别是AB ,AO 的中点,且AC =8.则EF 的长度为( )A. 2B. 4C. 6D. 88. 如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G ,若CG =4,CF =3,则AE 的长是( )A. 3B. 4C. 5D. 79. 如图,在正方形网格中:△ABC 、△EDF 的顶点都在正方形网格的格点上,△ABC∽△EDF ,则∠ABC +∠ACB 的度数为( )A. 30°B. 45°C. 60°D. 75°10. 两个相似三角形对应中线的长分别为6cm 和12cm ,若较大三角形的面积是12cm 2,则较小的三角形的面积为( )A. 6cm 2B. 4cm 2C. 3cm 2D. 1cm 211. 一次函数y =ax +b(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一平面直角坐标系中的图象可能是( )A. B.C. D.12.如图,二次函数y=ax2+bx+c的图象经过点A(−1,0),B(3,0),与y轴交于点C.给出下列结论:①a>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的结论个数为( )A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)13.关于x的方程2x2+mx−4=0的一根为x=1,则另一根为______.14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=−2x2+4x+1喷出水珠的最大高度是______ m.15.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水面DF,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD=______米.第4页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………16. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高 米.(结果保留根号)17. 如图,在矩形ABCD 中,AB =6,BC =10,以点B 为圆心、BC 的长为半径画弧交AD 于点E ,再分别以点C ,E 为圆心、大于12CE 的长为半径画弧,两弧交于点F ,作射线BF 交CD 于点G ,则CG 的长为______.18. 如图,点A ,B 在反比例函数y =kx(k >0)的图象上,点A 的横坐标为2,点B 的纵坐标为1,OA ⊥AB ,则k 的值为______.三、计算题(本大题共1小题,共8.0分)19. (1)计算:2sin30°+3cos60°+(14)−1−5tan45°;(2)用配方法求抛物线y =2x 2−4x −6的顶点坐标.四、解答题(本大题共6小题,共52.0分。
北师大版数学九年级上册期末试卷及参考答案
北师大版数学九年级上册期末试卷1一、选择题(每题3分,共30分)1.用配方法解方程3x2-6x+2=0,则方程可变形为()A.(x-3)2=23B.3(x-1)2=23C.(3x-1)2=1 D.(x-1)2=132.关于x的一元二次方程(a-1)x2+a2-1=0的一个根是0,则a的值为()A.1 B.-1 C.1或-1 D.1 23.已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于() A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限4.如图是一次数学活动课上制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数(当指针恰好指在分界线上时,不记,重转),则记录的两个数都是正数的概率为()A.18B.16C.14D.125.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()6.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为()A.6 B.8 C.10 D.127.如图,线段AB的两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3)C.(3,1) D.(4,1)8.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.342D.349.如图,两个反比例函数y=1x和y=-2x的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△P AB的面积为()A.3 B.4 C.92D.510.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A.22B.32C.1 D.62二、填空题(每题3分,共30分)11.如图,添加一个条件:______________,使△ADE∽△ACB(写出一个即可).12.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是____________.13.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k 的取值范围是___________________________.14.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为________.15.若干桶方便面摆放在桌子上,三视图如图所示,则这一堆方便面共有___桶.16.若矩形ABCD的两邻边长分别为一元二次方程x2-7x+12=0的两个实数根,则矩形ABCD的对角线长为________.17.如图,在△ABC中,M,N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=________.18.如图,在菱形ABCD中,AC交BD于点O,DE⊥BC于点E,连接OE,若∠ABC=140°,则∠OED=________.19.如图,A,B两点在函数y=4x(x>0)的图象上,分别经过A,B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=________.20.如图,正方形ABCD的边长为4,E是BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是________.三、解答题(21~25题每题8分,其余每题10分,共60分)21.解下列方程:(1)x2-6x-6=0;(2)(x+2)(x+3)=1.22.如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是________.23.关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.24.现有5个质地、大小完全相同的小球,上面分别标有数-1,-2,1,2,3.先将标有数-2,1,3的小球放在一个不透明的盒子里,再将其余小球放在另一个不透明的盒子里.现分别从这两个盒子里各随机取出一个小球.(1)请利用画树状图或列表的方法表示取出的两个小球上的数之和的所有可能结果;(2)求取出的两个小球上的数之和等于0的概率.25.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售.销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.如果这批旅游纪念品共获利1 250元,则第二周每个旅游纪念品的销售价格为多少元?26.如图,一次函数y1=kx+b和反比例函数y2=mx的图象交于A,B两点.(1)求一次函数y1=kx+b和反比例函数y2=mx的表达式;(2)观察图象,当y1<y2时,x的取值范围为________________;(3)求△OAB的面积.27.如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B 出发,在BA边上以5 cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4 cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若△BPQ和△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.答案一、1.D 2.B 3.C 4.C 5.A 6.C 7.A 8.D 9.C 10.C 二、11.∠ADE =∠ACB (答案不唯一) 12.y =-6x 13.k >12且k ≠1 14.23 15.6 16.5 17.3 18.20° 19.6 20.6三、21.解:(1)移项,得x 2-6x =6,配方,得x 2-6x +9=6+9,即(x -3)2=15. 两边开平方,得x -3=±15, 即x -3=15或x -3=-15. ∴x 1=3+15,x 2=3-15.(2)将原方程化为一般形式,得x 2+5x +5=0.∵b 2-4ac =52-4×1×5=5,∴x =-5±52.∴x 1=-5+52,x 2=-5-52.22.(1)证明:∵DE ∥CA ,AE ∥BD ,∴四边形AODE 是平行四边形. ∵矩形ABCD 的对角线相交于点O , ∴AC =BD ,OA =OC =12AC ,OB =OD =12BD . ∴OA =OD .∴四边形AODE 是菱形. (2)矩形23.(1)证明:∵在方程x 2-(k +3)x +2k +2=0中,Δ=[-(k +3)]2-4×1×(2k +2)=k 2-2k +1=(k -1)2≥0, ∴方程总有两个实数根.(2)解:∵x 2-(k +3)x +2k +2=(x -2)(x -k -1)=0,∴x 1=2,x 2=k +1.∵方程有一个根小于1,∴k +1<1,解得k <0.24.解:(1)画树状图如图所示.(2)因为所有等可能的结果有6种,其中和为0的有2种,所以所求概率为26=13.25.解:由题意得出200×(10-6)+(10-x -6)×(200+50x )+(4-6)[600-200-(200+50x )]=1 250,即800+(4-x )(200+50x )-2(200-50x )=1 250, 整理得x 2-2x +1=0, 解得x 1=x 2=1. ∴10-1=9(元).答:第二周每个旅游纪念品的销售价格为9元. 26.解:(1)由图象可知点A 的坐标为(-2,-2).∵反比例函数y 2=mx 的图象过点A ,∴m =4. ∴反比例函数的表达式是y 2=4x .把x =3代入y 2=4x ,得y 2=43,∴点B 的坐标为⎝ ⎛⎭⎪⎫3,43.∵直线y 1=kx +b 过A ,B 两点, ∴⎩⎪⎨⎪⎧-2k +b =-2,3k +b =43,解得⎩⎪⎨⎪⎧k =23,b =-23. ∴一次函数的表达式是y 1=23x -23. (2)x <-2或0<x <3(3)设直线AB 与y 轴的交点为C ,由一次函数y 1=23x -23可知C ⎝ ⎛⎭⎪⎫0,-23,∴S △OAB =S △OAC +S △OBC =12×23×2+12×23×3=53.27.解:(1)由题易知AB=10 cm,BP=5t cm,CQ=4t cm,∴BQ=(8-4t) cm.当△ABC∽△PBQ时,有BPBA=BQBC,即5t10=8-4t8,∴t=1;当△ABC∽△QBP时,有BQBA=BPBC,即8-4t10=5t8,∴t=3241.∴若△BPQ和△ABC相似,则t=1 或t=32 41.(2)如图,过点P作PD⊥BC于点D.由(1)知BP=5t cm,CQ=4t cm,可求得PD=3t cm,BD=4t cm,∴CD=(8-4t) cm.∵AQ⊥CP,∠ACB=90°,∴∠CAQ+∠ACP=90°,∠DCP+∠ACP=90°.∴∠CAQ=∠DCP.又∵∠CDP=∠ACQ=90°,∴△CPD∽△AQC.∴CDAC=PDQC,即8-4t6=3t4t.∴t=78.北师大版数学九年级上册期末试卷2一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是()A.3y2+2y+1=0B.12x2=1-3x C.110a2-16a+23=0D.x2+x-3=x22.如图放置的几何体的左视图是()3.下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形4.若反比例函数y=kx的图象经过点(m,3m),其中m≠0,则反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个实数根,则k的取值范围是()A.k≤-2 B.k≤2 C.k≥2 D.k≤2且k≠16.有三张正面分别标有数-2,3,4的不透明卡片,它们除数不同外,其他全部相同.现将它们背面朝上洗匀后,从中任取两张,则抽取的两张卡片上的数之积为正偶数的概率是()A.49 B.112 C.13 D.167.如图,在△ABC中,已知点D,E分别是边AC,BC上的点,DE∥AB,且CE:EB=2:3,则DE AB等于()A.2:3 B.2:5 C.3:5 D.4:58.如图,在菱形纸片ABCD中,∠A=60°,P为AB的中点,折叠该纸片使点C 落在点C′处,且点P在DC′上,折痕为DE,则∠CDE的度数为()A.30°B.40°C.45°D.60°9.设△ABC的一边长为x,这条边上的高为y,y与x之间的反比例函数关系如图所示.当△ABC为等腰直角三角形时,x+y的值为()A.4 B.5 C.5或3 2 D.4或3 210.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边上的中线,点D,E分别在边AC和BC上,DB=DE,DE与BM相交于点N,EF⊥AC于点F,有以下结论:①∠DBM=∠CDE;②S△BDE<S四边形BMFE;③CD·EN=BN·BD;④AC=2DF.其中正确结论的数量是()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知一元二次方程(m-2)x2-3x+m2-4=0的一个根为0,则m=________.12.如图,物理课上张明做小孔成像实验,已知蜡烛与成像板之间的距离为24 cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间带小孔的纸板应放在离蜡烛________的地方.13.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.14.为预防流感,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(min)之间的函数关系如图所示.已知在药物燃烧阶段,y与x成正比例,燃烧完后y与x成反比例.现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg.当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用.那么从消毒开始,经过________min后教室内的空气才能达到安全要求.15.已知三角形纸片(△ABC)中,AB=AC=5,BC=8,将三角形按照如图所示的方式折叠,使点B落在直线AC上,记为点B′,折痕为EF.若以点B′,F,C 为顶点的三角形与△ABC相似,则BF的长度是________.16.为了估计鱼塘中鱼的数量,养鱼者首先从鱼塘中捕获10条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞100条鱼.如果在这100条鱼中有2条鱼是有记号的,则可估计鱼塘中约有鱼________条.17.如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A,C的坐标分别为(2,4),(3,0),过点A的反比例函数y=kx的图象交BC于点D,连接AD,则四边形AOCD的面积是________.18.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.三、解答题(19~22题每题8分,23,24题每题11分,25题12分,共66分) 19.解方程:(1)x2-6x-6=0; (2)(x+2)(x+3)=1.20.已知关于x的一元二次方程kx2+x-2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,且满足(x1+x2)2+x1·x2=3,求k的值.21.在一个不透明的布袋里装有4个分别标有数字1,2,3,4的小球,它们除所标数字外其他完全相同,小明从布袋里随机取出1个小球,记下数字为x,小红在剩下的3个小球中随机取出1个小球,记下数字为y.(1)计算由x,y确定的点(x,y)在函数y=-x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x,y满足xy>6,则小明胜,若x,y满足xy<6,则小红胜,这个游戏公平吗?请说明理由.若不公平,请写出公平的游戏规则.22.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.23.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,-2),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过A,C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求点P的坐标.24.如图①,在正方形ABCD中,P是BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.25.在等腰三角形ABC中,AB=AC,D是AB延长线上一点,E是AC上一点,DE交BC于点F.(1)如图①,若BD=CE,求证:DF=EF.(2)如图②,若BD=1n CE,试写出DF和EF之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E在CA的延长线上,那么(2)中的结论还成立吗?试证明.答案一、1.D 2.C 3.C4.B 【点拨】把点(m ,3m )的坐标代入y =kx ,得到k =3m 2,因为m ≠0,所以k >0.所以图象在第一、三象限. 5.D 6.C 7.B 8.C9.D 【点拨】由题意得xy =4,当等腰直角三角形ABC 的斜边长为x 时,x =2y ,所以2y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =22,所以x +y =32;当等腰直角三角形ABC 的一条直角边长为x 时,x =y ,所以y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =2,所以x +y =4.故x +y 的值为4或3 2.故选D.10.C 【点拨】设∠EDC =x ,则∠DEF =90°-x ,从而可得到∠DBE =∠DEB =180°-(90°-x )-45°=45°+x ,∠DBM =∠DBE -∠MBE =45°+x -45°=x ,从而可得到∠DBM =∠CDE ,所以①正确.可证明△BDM ≌△DEF ,然后可证明S △DNB =S 四边形NMFE ,所以S △DNB +S △BNE =S 四边形NMFE+S △BNE ,即S △BDE =S 四边形BMFE .所以②错误.可证明△DBC ∽△NEB ,所以CD BD =BNEN ,即CD ·EN =BN ·BD .所以③正确. 由△BDM ≌△DEF ,可知DF =BM ,由直角三角形斜边上的中线的性质可知BM =12AC ,所以DF =12AC ,即AC =2DF .所以④正确.故选C. 二、11.-2 12.8 cm13.5 【点拨】综合左视图和主视图知,这个几何体有两层,底层最少有2+1=3(个)小正方体,第二层有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5(个).14.50 【点拨】设药物燃烧完后y 与x 之间的函数表达式为y =kx ,把点(10,8)的坐标代入y =k x ,得8=k10,解得k =80,所以药物燃烧完后y 与x 之间的函数表达式为y =80x .当y =1.6时,由y =80x 得x =50,所以从消毒开始,经过50 min后教室内的空气才能达到安全要求. 15.4或4013 16.50017.9 【点拨】由题易知OC =3,点B 的坐标为(5,4),▱ABCO 的面积为12.设直线BC 对应的函数表达式为y =k ′x +b ,则⎩⎨⎧3k ′+b =0,5k ′+b =4,解得⎩⎨⎧k ′=2,b =-6.∴直线BC 对应的函数表达式为y =2x -6.∵点A (2,4)在反比例函数y =k x 的图象上,∴k =8.∴反比例函数的表达式为y =8x .由⎩⎪⎨⎪⎧y =2x -6,y =8x解得⎩⎨⎧x =4,y =2或⎩⎨⎧x =-1,y =-8(舍去).∴点D 的坐标为(4,2). ∴△ABD 的面积为12×2×3=3. ∴四边形AOCD 的面积是9.18.12 【点拨】易知EF ∥BD ∥HG , 且EF =HG =12BD =3,EH ∥AC ∥GF 且EH =GF =12AC =4. ∵AC ⊥BD ,∴EF ⊥FG . ∴四边形EFGH 是矩形.∴四边形EFGH 的面积=EF ·EH =3×4=12. 三、19.解:(1)x 2-6x -6=0, x 2-6x +9= 15, (x -3)2= 15, x -3= ±15,∴x 1=3+15,x 2=3-15.(2)(x +2)(x +3)=1, x 2+5x +6= 1, x 2+5x +5= 0, ∵a =1,b =5,c =5, ∴b 2-4ac =52-4×1×5=5. ∴x =-5±52. ∴x 1=-5+52,x 2=-5-52. 20.解:(1)∵方程有两个不相等的实数根, ∴Δ=12+8k >0, ∴k >-18. 又∵k ≠0,∴k 的取值范围是k >-18且k ≠0.(2)由根与系数的关系,得x 1+x 2=-1k ,x 1·x 2=-2k . ∵(x 1+x 2)2+x 1·x 2=3,∴⎝ ⎛⎭⎪⎫-1k 2-2k =3,即3k 2+2k -1=0, 解得k =13或k =-1. 由(1)得k >-18且k ≠0, ∴k =13.21.解:(1)画树状图如图.由树状图可知共有12种等可能的结果.其中在函数y =-x +5的图象上的有(1,4),(2,3),(3,2),(4,1), ∴点(x ,y )在函数y =-x +5的图象上的概率为412=13.(2)不公平.理由:∵x ,y 满足xy >6的有(2,4),(3,4),(4,2),(4,3),共4种结果,x ,y 满足xy <6的有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),共6种结果, ∴P (小明胜)=412=13, P (小红胜)=612=12. ∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy <6,则小红胜.(规则不唯一)22.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(2)∵AC ∥DF ,∴∠ACB =∠DFE . 又∠ABC =∠DEF =90°, ∴△ABC ∽△DEF .∴AB DE =BC EF . ∵AB =3 m ,BC =2 m ,EF =6 m , ∴3DE =26. ∴DE =9 m.即旗杆DE 的高度为9 m.23.解:(1)∵点A 的坐标为(0,1),点B 的坐标为(0,-2), ∴AB =1+2=3,即正方形ABCD 的边长为3,∴点C 的坐标为(3,-2).将点C 的坐标代入y =kx 可得k =-6, ∴反比例函数的表达式为y =-6x .将C (3,-2),A (0,1)的坐标分别代入y =ax +b ,得⎩⎨⎧3a +b =-2,b =1,解得⎩⎨⎧a =-1,b =1,∴一次函数的表达式为y =-x +1. (2)设P ⎝ ⎛⎭⎪⎫t ,-6t ,∵△OAP 的面积恰好等于正方形ABCD 的面积, ∴12×1×|t |=3×3,解得t =±18.∴点P 的坐标为⎝ ⎛⎭⎪⎫18,-13或⎝ ⎛⎭⎪⎫-18,13. 24.(1)证明:∵四边形ABCD 是正方形, ∴AD =CD ,∠ADP =∠CDP . 又∵DP =DP ,∴△ADP ≌△CDP . ∴P A =PC .又∵P A =PE ,∴PC =PE . (2)解:由(1)知△ADP ≌△CDP , ∴∠DAP =∠DCP . ∵P A =PE ,∴∠DAP =∠E . ∴∠FCP =∠E .又∵∠PFC =∠DFE ,∠EDF =90°, ∴∠CPE =∠EDF =90°. (3)解:AP =CE .理由如下: ∵四边形ABCD 是菱形, ∴AD =CD ,∠ADP =∠CDP . 又∵DP =DP ,∴△ADP ≌△CDP . ∴P A =PC ,∠DAP =∠DCP .又∵P A=PE,∴PC=PE,∠DAP=∠DEP.∴∠DCP=∠DEP.又∵∠PFC=∠DFE,∴∠CPF=∠EDF.∵在菱形ABCD中,∠ABC=120°,∴∠ADC=120°.∴∠EDC=60°.∴∠CPE=∠EDF=60°.又∵PC=PE,∴△PCE是等边三角形.∴PE=CE.又∵P A=PE,∴AP=CE.25.(1)证明:在题图①中作EG∥AB交BC于点G,则∠ABC=∠EGC,∠D=∠FEG.∵AB=AC,∴∠ABC=∠C.∴∠EGC=∠C.∴EG=EC.∵BD=CE,∴BD=EG.又∵∠D=∠FEG,∠BFD=∠GFE,∴△BFD≌△GFE.∴DF=EF.(2)解:DF=1n EF.证明:在题图②中作EG∥AB交BC于点G,则∠D=∠FEG. 同(1)可得EG=EC.∵∠D=∠FEG,∠BFD=∠EFG,∴△BFD∽△GFE.∴BDEG=DFEF.∵BD=1n CE=1n EG,∴DF=1n EF.(3)解:成立.证明:在题图③中作EG∥AB交CB的延长线于点G,则仍有EG =EC ,△BFD ∽△GFE . ∴BD EG =DF EF .∵BD =1n CE =1n EG ,∴DF =1n EF .。
北师大版九年级(上)期末数学试卷及答案
北师大版九年级(上)期末数学试卷及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)如图,该几何体的主视图是()A.B.C.D.2.(3分)下列函数不是反比例函数的是()A.y=B.y=C.y=5x﹣1D.xy=103.(3分)一元二次方程2x2+3x=1化为一般式后的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,14.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,根据题意列出的方程是()A.125(1﹣x)2=80B.80(1﹣x)2=125C.125(1+x)2=80D.125(1﹣x2)=805.(3分)已知点C是线段AB的黄金分割点,且AB=2,AC<BC,则AC长是()A.B.﹣1C.3﹣D.6.(3分)如图,△ABC的中线BE、CF交于点O,连接EF,则的值为()A.B.C.D.7.(3分)如图,反比例函数的图象经过A(﹣1,﹣2),则以下说法错误的是()A.k=2B.x>0,y随x的增大而减小C.图象也经过点B(2,1)D.当x<﹣1时,y<﹣28.(3分)如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC、PE,若△P AE与△PBC是相似三角形,则满足条件的点P的个数为()A.1B.2C.3D.4二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为.10.(3分)已知=,且a+b=22,则a的值为.11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为.12.(3分)若sin A=,则锐角∠A的度数为.13.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:4cos230°+|2﹣4|+6×.15.(5分)解方程:x(x+1)﹣x=1.16.(5分)已知:△ABC.求作:菱形DBEC,使菱形的顶点D落在AC边上.结论:.17.(6分)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.18.(6分)点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,求反比例函数的表达式.19.(5分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.求证:四边形ABCD是菱形.20.(5分)如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F 在南偏东45°方向上,接原方向再航行10海里至C处,测得小岛F在正东方向上,求A,B之间的距离.(结果保留根号)21.(8分)如图,路灯OP在BC左侧,路灯P距地面8米,当身高1.6米的小明在点A时影长为AM,距离灯的底部O点20米,小明沿AB所在的直线从点A行走14米到点B处时,影长为BN,(1)请你画出灯杆OP位置;(保留作图痕迹)(2)求此时人影的长度BN.22.(5分)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.请说明方程实数根的情况并加以证明.23.(7分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.24.(7分)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.25.(5分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣2,1)、B (1,2),C(﹣4,4).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的下方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并写出A2,B2,C2的坐标.26.(12分)问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(1)你认为勤奋小组同学的作法正确吗?请说明理由;(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)解决问题:(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)如图,该几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得如下图形:故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)下列函数不是反比例函数的是()A.y=B.y=C.y=5x﹣1D.xy=10【分析】根据反比例函数的定义,知道反比例函数的形式有:y=(k为常数,k≠0)或y=kx﹣1(k为常数,k ≠0)或xy=k(k为常数,k≠0).【解答】解:A,C,D选项都是反比例函数的形式,故A,C,D选项都不符合题意;B选项不是反比例函数的形式,它是正比例函数,故该选项符合题意;故选:B.【点评】本题考查了反比例函数的定义,掌握反比例函数的三种形式是解题的关键.3.(3分)一元二次方程2x2+3x=1化为一般式后的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1【分析】先把方程化为一元二次方程的一般形式,再确定a、b、c.【解答】解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a、b分别是二次项和一次项系数,c为常数项.4.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,根据题意列出的方程是()A.125(1﹣x)2=80B.80(1﹣x)2=125C.125(1+x)2=80D.125(1﹣x2)=80【分析】设平均每次降价的百分率为x,则原价×(1﹣x)2=现价,据此列方程.【解答】解:设平均每次降价的百分率为x,由题意得,125(1﹣x)2=80.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.(3分)已知点C是线段AB的黄金分割点,且AB=2,AC<BC,则AC长是()A.B.﹣1C.3﹣D.【分析】根据黄金分割的定义:点C把线段AB分成两条线段AC和BC(AC<BC),且使BC是AB和AC的比例中项(即AB•BC=BC•AC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中BC=AB ≈0.618AB.【解答】解:∵点C是线段AB的黄金分割点,且AB=2,AC<BC,BC2=AC•AB(2﹣AC)2=2ACAC2﹣6AC+4=0解得AC=3+(舍去)或3﹣则AC长是3﹣.故选:C.【点评】本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.(3分)如图,△ABC的中线BE、CF交于点O,连接EF,则的值为()A.B.C.D.【分析】先根据三角形中位线的性质得到EF∥BC,EF=BC,则可判断△OEF∽△OBC,利用相似比得到=,然后根据比例的性质得到的值.【解答】解:∵中线BE、CF交于点O,∴EF为△ABC的中位线,∴EF∥BC,EF=BC,∴△OEF∽△OBC,∴==,∴=.故选:B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.7.(3分)如图,反比例函数的图象经过A(﹣1,﹣2),则以下说法错误的是()A.k=2B.x>0,y随x的增大而减小C.图象也经过点B(2,1)D.当x<﹣1时,y<﹣2【分析】把A(﹣1,﹣2)代入反比例函数的解析式能求出k,把A的坐标代入一次函数的解析式得出关于k的方程,求出方程的解即可.【解答】解:把A(﹣1,﹣2)代入反比例函数的解析式得:k=xy=2,故A正确;∵k=2>0,∴y随x的增大而减小,∴x>0,y随x的增大而减小,故B正确;∵反比例函数的解析式为y=,把x=2代入求得y=1,∴图象也经过点B(2,1),故C正确;由图象可知x<﹣1时,则y>﹣2,故D错误;故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,主要考查反比例函数的性质,题目较好,难度适中.8.(3分)如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC、PE,若△P AE与△PBC是相似三角形,则满足条件的点P的个数为()A.1B.2C.3D.4【分析】设AP=x,则BP=8﹣x,分△P AE∽△PBC和△P AE∽△CBP两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:设AP=x,则BP=8﹣x,当△P AE∽△PBC时,=,即=,解得,x=,当△P AE∽△CBP时,=,即=,解得,x=2或6,可得:满足条件的点P的个数有3个.故选:C.【点评】本题考查了相似三角形的性质,解答时,注意分情况讨论思想的灵活运用.二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为24.【分析】由菱形面积公式即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=8,BD=6,∴菱形ABCD的面积为AC×BD=×8×6=24;故答案为:24.【点评】本题考查了菱形的性质;熟记菱形面积公式是解题的关键.10.(3分)已知=,且a+b=22,则a的值为12.【分析】根据题意设==k(k≠0),得出a=6k,b=5k,求出k的值,然后求出a的值即可.【解答】解:设==k(k≠0),则a=6k,b=5k,∵a+b=22,∴6k+5k=22,∴k=2,∴a=6k=6×2=12.故答案为:12.【点评】此题考查了比例的性质,根据题意设出a=6k,b=5k是解题的关键.11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为(x+3)2=10.【分析】根据配方法即可求出答案.【解答】解:∵x2+6x﹣1=0,∴x2+6x=1,∴(x+3)2=10,故答案为:(x+3)2=10【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.12.(3分)若sin A=,则锐角∠A的度数为30°.【分析】根据锐角三角函数值即可确定锐角的度数.【解答】解:∵sin A=,∴锐角∠A的度数为30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.13.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为6.【分析】当点F与C重合时,△EFP的边长最长,周长也最长,根据30°角所对的直角边是斜边的一半可得AC =4,AP=2,再由勾股定理可得答案.【解答】解:如图,当点F与C重合时,△EFP的边长最长,周长也最长,∵∠ACB=90°,∠PFE=60°,∴∠PCA=30°,∵∠A=60°,∴∠APC=90°,△ABC中,AC=AB=4,△ACP中,AP=AC=2,∴PC===2,∴周长为2×3=6.故答案为:6.【点评】本题考查含30°角的直角三角形的性质,运用勾股定理是解题关键.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:4cos230°+|2﹣4|+6×.【分析】首先代入特殊角的三角函数值,再利用绝对值的性质和二次根式的乘法法则进行计算,最后计算加减即可.【解答】解:原式=4×+4﹣2+2=4+3=7.【点评】此题主要考查了二次根式的混合运算,关键是掌握特殊角的三角函数值和绝对值的性质,注意计算顺序.15.(5分)解方程:x(x+1)﹣x=1.【分析】先移项,再将左边利用提公因式法因式分解,继而可得两个关于x的一元一次方程,分别求解即可得出答案.【解答】解:∵x(x+1)﹣x=1,∴x(x+1)﹣(x+1)=0,则(x+1)(x﹣1)=0,∴x+1=0或x﹣1=0,解得x1=1,x2=﹣1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.(5分)已知:△ABC.求作:菱形DBEC,使菱形的顶点D落在AC边上.结论:菱形DBEC即为所求.【分析】作BC的垂直平分线交AC于点D,连接DB,再分别以点B,C为圆心,BD长为半径画弧交于点E,进而可得菱形DBEC.【解答】解:如图,菱形DBEC即为所求.故答案为:菱形DBEC即为所求.【点评】本题考查作图﹣复杂作图,菱形的判定和性质等知识,解题的关键是掌握菱形的判定和性质,属于中考常考题型.17.(6分)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,再由概率公式求解即可.【解答】解:(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为,故答案为:;(2)画树状图如下:共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,∴摸出的这两个小球标记的数字之和为7的概率为=.【点评】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,求反比例函数的表达式.【分析】先求出P点坐标,再把P点坐标代入反比例函数的解析式即可求出k的值,进而得出结论.【解答】解:∵点Q(2,4)和点P关于y轴对称,∴P点坐标为(﹣2,4),将(﹣2,4)代入解析式得,k=xy=﹣2×4=﹣8,∴反比例函数解析式为.【点评】本题考查的是待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.(5分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.求证:四边形ABCD是菱形.【分析】根据菱形的判定方法可得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,∵△ACE是等边三角形,∴EA=EC,∴BE⊥AC,∴平行四边形ABCD是菱形.【点评】本题考查了菱形的判定,等边三角形的性质,平行四边形的性质,熟练掌握菱形的判定方法是解题的关键.20.(5分)如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F 在南偏东45°方向上,接原方向再航行10海里至C处,测得小岛F在正东方向上,求A,B之间的距离.(结果保留根号)【分析】根据等腰直角三角形的性质求出CF,根据正切的定义求出AC,结合图形计算,得到答案.【解答】解:在Rt△BCF中,∠BFC=45°,∴CF=BC=10,在Rt△ACF中,tan∠CAF=,即=,解得,AC=10,∴AB=AC﹣BC=10(﹣1),答:A,B之间的距离为10(﹣1)海里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.21.(8分)如图,路灯OP在BC左侧,路灯P距地面8米,当身高1.6米的小明在点A时影长为AM,距离灯的底部O点20米,小明沿AB所在的直线从点A行走14米到点B处时,影长为BN,(1)请你画出灯杆OP位置;(保留作图痕迹)(2)求此时人影的长度BN.【分析】(1)小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化;(2)证明△BCN∽△OPN,推出,由此可得结论.【解答】解:(1)如图即为所求.(2)解:∵OA=20米,AB=14米,∴OB=20﹣14=6(米).∵BC∥OP,∴△BCN∽△OPN,∴,即,解得BN=1.5(米)答:人影的长度为1.5米.【点评】本题考查的是相似三角形的应用,测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.22.(5分)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.请说明方程实数根的情况并加以证明.【分析】方程总有两个实数根.计算方程根的判别式,利用根的判别式的符号进行证明即可.【解答】解:方程总有两个实数根.理由如下:∵Δ=b2﹣4ac=(k﹣3)2﹣4(﹣2k+2)=k2﹣6k+9+8k﹣8=k2+2k+1=(k+1)2≥0.所以方程总有两个实数根.【点评】此题考查了根的判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.23.(7分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(7分)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得反比例函数解析式,则可求得B点坐标,再由A、B两点坐标可求得一次函数解析式;(2)根据一次函数解析式可求得C点的坐标,则可求得OC的长度,且根据S△AOB=S△AOC+S△BOC可求得△AOB 的面积.【解答】解:(1)∵A(﹣3,4)在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数的关系式为y=﹣,又∵B(n,﹣2)在反比例函数y=的图象上,∴n=6,又∵B(6,﹣2),A(﹣3,4)是一次函数y=kx+b的上的点,∴,解得,∴一次函数的关系式为y=﹣x+2;(2)在y=﹣x+2中,令y=0,则x=3,∴C(3,0),∴CO=3,∴S△AOB=S△AOC+S△BOC=×3×4+=9.【点评】本题主要考查待定系数法求函数解析式,三角形的面积,掌握待定系数法求函数解析式的关键是求得点的坐标.25.(5分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣2,1)、B (1,2),C(﹣4,4).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的下方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并写出A2,B2,C2的坐标.【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据位似变换的定义分别作出三个顶点的对应点,再首尾顺次连接即可.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(﹣2,﹣4),C2(8,﹣8).【点评】本题主要考查作图—位似变换、轴对称变换,解题的关键是掌握位似变换与旋转变换的定义及性质.26.(12分)问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(1)你认为勤奋小组同学的作法正确吗?请说明理由;(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)解决问题:(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.【分析】(1)由正方形的性质得出IJ=KJ,KJ∥BC,由平行线分线段成比例定理得出,则GF=EF,可得出结论;(2)按题意画出图形即可;(3)若DE=2DG,设AN=x,则MN=6﹣x,证明△AGF∽△ABC,由相似三角形的性质得出,则,求出x=3,若DG=2DE,可求出x=,则可得出答案.【解答】解:(1)正确.理由:∵EF⊥BC,BC⊥GD,∴∠FED=∠EDG=90°,∵FG∥BC,∴∠EFG=180°﹣∠FED=90°,∴四边形DEFG是矩形,∵四边形HIJK是正方形,∴IJ=KJ,KJ∥BC,∴,∴GF=EF,∴四边形DEFG为正方形;(2)如图1和图2,矩形DEFG为所作.(3)如图3,作△ABC的高AM,交GF于点N,∵△ABC的面积=BC•AM=×12×AM=36,∴AM=6,∵DE=2DG,设AN=x,则MN=6﹣x,DG=MN=6﹣x,DE=GF=2(6﹣x)=12﹣2x,∵GF∥BC,∴△AGF∽△ABC,∴,∴,解得x=3,∴DG=6﹣x=3,∴DE=2DG=6,∴矩形DEFG的面积=6×3=18,同理,在矩形DEFG中,若DG=2DE,可求出x=,∴DG=6﹣x=,DE=,∴矩形DEFG的面积==,故矩形DEFG的面积为18或.【点评】此题是四边形综合题,考查了相似三角形的判定与性质、正方形的判定与性质、矩形的性质等知识.解题时注意数形结合思想与方程思想的应用,注意准确作出辅助线是解此题的关键.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列给出的几何体中,主视图和俯视图都是圆的是( )A .球B .正方体C .圆锥D .圆柱2.若锐角A 满足cos A =∠A 的度数为( ) A .30° B .45° C .60° D .75°3.菱形、矩形、正方形都具有的性质是( )A .对角线互相垂直B .对角线相等C .四条边相等,四个角相等D .两组对边分别平行且相等 4.关于x 的一元二次方程x 2+(k ﹣2)x+k 2﹣1=0的一个根是0,则k 的值是( ) A .1 B .﹣1 C .±1 D .25.在平面直角坐标系中,点P 的坐标为(),m n ,从2-,0,2这三个数中任取一个数作为m 的值,再从余下的两个数中任取一个数作为n 的值,则点P 在坐标轴上的概率是( )A .13B .12 C .23 D .346.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4)7.若点A (-1,1y ),B (2,2y ),C (3,3y )在反比例函数10y x =-图象上,则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .1y >3y >2yC .3y >2y >1yD .3y >1y >2y8.已知∠PAQ=36°,点B 为射线AQ 上一固定点,按以下步骤作图:∠分别以A ,B 为圆心,大于12AB 的长为半径画弧,相交于两点M ,N ;∠作直线MN 交射线AP 于点D ,连接 BD ;∠以B 为圆心,BA 长为半径画弧,交射线AP 于点C ; 根据以上作图过程及所作图形,下列结论中错误的是( )A.∠CDB=72°B.∠ADB∠∠ABCC.CD:AD=2:1 D.∠ABC=3∠ACB9.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与∠PDC相似,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个10.已知反比例函数y=abx的图象如图所示,则二次函数y =ax 2-2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题11.一幅比例尺为1:300000的地图上,某道路的长度为2cm,则它的实际长度为______ km.12.若方程230x x c-+=没有实数根,则c的取值范围是_____________.13.如图,ABC的顶点都在方格纸的格点上,则sin ABC∠=______.14.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同,小红通过多次试验发现,摸出红球的频率稳定在0.2左右,则袋子里红球的个数最有可能是__________.15.点P (m ,n )是函数3y x=和y =x +4图象的一个交点,则mn +n -m 的值为________.16.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴,下列四个结论:∠abc <0;∠2a +b >0;∠a +b +c =0;∠a >1.其中正确的有________.(填序号)17.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题18.解方程:2233(1)x x x x --=-.19.如图所示,太阳光线AC 和A C ''是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.20.如图,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x bx c =++经过点B ,且与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)P 是直线AC 下方的抛物线上一动点,设其横坐标为a .过点P 作PD∠y 轴交AC 于点D ,点D 在线段AC 上,当a 为何值时,∠APC 的面积最大,并求出其最大值.21.如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点B (2,2,反比例函数k y x=(x >0)的图象与BC ,AB 分别交于D ,E ,BD =12. (1)求反比例函数关系式和点E 的坐标;(2)写出DE 与AC 的位置关系并说明理由;(3)点F 在直线AC 上,点G 是坐标系内点,当四边形BCFG 为菱形时,求出点G 的坐标并判断点G 是否在反比例函数图象上.22.如图,在矩形ABCD中,E为AD的中点,EF∠EC交AB于F,延长FE与直线CD 相交于点G,连接FC(AB>AE).(1)求证:∠AEF∠∠DCE;(2)∠AEF与∠ECF是否相似?若相似,证明你的结论;若不相似,请说明理由;(3)设ABkBC,是否存在这样的k值,使得∠AEF与∠BFC相似?若存在,证明你的结论并求出k的值;若不存在,请说明理由.23.如图,矩形ABCD中,点E在边CD上,将∠BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∠CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.24.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P.(1)分别求出抛物线和直线AB的函数表达式;(2)连接PA、PB,求∠PAB面积的最大值,并求出此时点P的坐标.(3)如图2,点E(2,0),将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.25.已知:如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:(1)∠AFD∠∠CEB;(2)四边形AECF是平行四边形.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC∠x轴,垂足为点C,且∠AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求∠AOB的面积.参考答案1.A【分析】主视图是从正面看,俯视图是从上往下看,分别进行判断即可.【详解】A.球的主视图和俯视图都是圆,故选项A正确;B.正方体主视图和俯视图都是正方形,故选项B错误;C.圆锥的主视图是三角形,俯视图是圆,故选项C错误;D.圆柱的主视图是长方形,俯视图是圆,故选项D错误;故选:A.【点睛】本题考查了几何体的三视图,解题关键是明确主视图、俯视图、左视图分别是从物体的正面、上面、左面看所得到的图形.2.A【分析】根据特殊的锐角三角比值可确定∠A的度数.【详解】∠cos A∠∠A=30°,故选:A.【点睛】本题主要考查了特殊角的三角函数值,熟记特殊角的三角函数值是解答关键.3.D【分析】根据菱形、矩形、正方形的性质,逐项判断即可求解.【详解】解:A、矩形的对角线不一定互相垂直,故本选项不符合题意;B、菱形的对角线不一定相等,故本选项不符合题意;C、矩形的四条边不一定相等,菱形的四个角不应当相等,故本选项不符合题意;D、菱形、矩形、正方形的两组对边分别平行且相等,故本选项符合题意;故选:D【点睛】本题主要考查了菱形、矩形、正方形的性质,熟练掌握菱形、矩形、正方形的性质是解题的关键.4.C【分析】把x=0代入方程计算即可求出k的值.【详解】解:把x=0代入方程得:k2﹣1=0,解得:k=1或k=﹣1,故选:C.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握解一元二次方程的方法是解本题的关键.5.C【分析】利用树状图得出所有的情况,从中找到使点P落在坐标轴上的结果数,再根据概率公式计算可得.【详解】解:画树状图如下由树状图知,共有6种等可能结果,其中使点P 在轴上的有4种结果,∠点P 在坐标轴上的概率是4263= 故选:C【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.6.B 【详解】试题分析:在抛物线y =-3x 2-4中a<0,所以开口向下;b=0,对称轴为x=0,所以顶点坐标为(0,-4),故选B.7.B 【分析】根据反比例函数表达式中的k 值可以确定函数图象所在的象限,再根据象限内点的坐标特征及函数增减性即可求解.【详解】解:∠反比例函数10y x =-,k=-10<0, ∠此函数经过第二、四象限,在每一象限内,y 随x 的增大而增大.∠A (-1,1y ),B (2,2y ),C (3,3y ),∠点A 在第二象限,10y >,点B 、点C 在第四象限,∠3>2∠230y y <<∠1y ,2y ,3y 的大小关系是:1y >3y >2y .故选:B【点睛】本题考查了反比例函数比大小,熟练掌握象限内点的坐标特征及反比例函数的增减性是解决本题的关键.8.C 【分析】根据垂直平分线的性质、等腰三角形的性质及判定,相似三角形的判定一一判断即可.【详解】解:由作图可知,MN 垂直平分AB ,AB =BC ,∠MN 垂直平分AB ,∠DA=DB,∠∠A=∠DBA,∠∠PAQ=36°,∠∠CDB=∠A+∠DBA=72°,(A正确)∠AB=BC,∠∠A=∠ACB=36°,∠∠ABD=∠ACB,又∠∠A=∠A,∠∠ADB∠∠ABC,(B正确)∠∠A=∠ACB=36°,∠∠ABC=180°-∠A-∠ACB=108°,∠∠ABC=3∠ACB,(D正确)∠∠ABD=36°,∠ABC=108°,∠∠CBD=∠ABC-∠ABD=72°,∠∠CBD=∠CDB=72°,∠CD=BC,∠∠A=∠ACB=36°,∠AB=BC,∠CD=AB,∠AD+DB>AB,AD=DB∠2AD>AB∠2AD>CD,(C错误)故选:C【点睛】本题考查作图﹣复杂作图,线段的垂直平分线的性质,等腰三角形的性质及判定、相似三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.C【分析】设AP=x,则PD=AD﹣AP=10﹣x,然后分类讨论:若∠APB=∠DPC,则Rt∠APB∠Rt∠DPC,得到比例式,代入求出即可;若∠APB=∠PCD,则Rt∠APB∠Rt∠DCP,得到比例式,代入求出即可.【详解】∠四边形ABCD是矩形,∠AB=DC=3,AD=BC=10,∠A=∠D=90°,设AP=x,则PD=AD﹣AP=10﹣x,若∠APB=∠DPC,则Rt∠APB∠Rt∠DPC,∠APPD=ABCD,即3103xx=-,解得:x=5;若∠APB=∠PCD,则Rt∠APB∠Rt∠DCP,∠ABDP=APCD,即3103xx=-,解得:x=1或9;所以当AP=1或5或9时,以P,A,B为顶点的三角形与以P,D,C为顶点的三角形相似,即这样的P点有三个.故选:C.【点睛】本题考查了矩形的性质及相似三角形的判定和性质,分类讨论的思想是解决问题的关键.10.C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】解:∠当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∠反比例函数y=abx的图象在第一、三象限,∠ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=1a<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.11.6【分析】根据比例尺=图上距离:实际距离即可求解.【详解】解:设实际距离为x厘米,则1:300000=2:x,解得:x=600000,600000厘米=6千米,故答案为:6.【点睛】本题考查了比例尺的定义、比例线段的性质,根据比例尺=图上距离:实际距离是解答的关键,注意单位的换算.12.94c >【分析】令方程230x x c -+=的0<即可. 【详解】230x x c -+=中a=1,b=-3,c=c则()22434194b ac c c =-=--⋅⋅=-△若方程230x x c -+=没有实数根则令940c =-<△ 即94c > 故答案为:94c >. 【点睛】本题考查了一元二次方程式根的判别式,使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a ,b ,c 的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,0>;有两个相等的实数根时,0=;没有实数根时,0<.当240b ac =-=时,方程有两个相等的实数根,不能说方程只有一个根.13.35【分析】利用网格构造直角三角形,根据格点线段的长度求出斜边的长,再根据三角函数的意义求出答案.【详解】解:如图,由网格的特征可知,∠ADB 是直角三角形,∠AD=3,BD=4,∠由勾股定理得:5AB =, ∠3sin 5AD ABC AB ∠==, 故答案为:35. 【点睛】本题考查了直角三角形的边角关系,利用网格构造直角三角形是解题的关键.14.4【分析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.2左右列出关于x 的方程,求出x 的值,从而得出答案.【详解】解:设袋子中红球有x 个, 根据题意,得:0.220=x 解得x=4,∠袋子中红球的个数最有可能是4个,故答案为:4.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.7【分析】将点P (m ,n )分别代入3y x =和y =x +4得mn=3,n-m=4,再求值即可.【详解】解:∠点P (m ,n )是函数3y x =和y =x +4图象的一个交点, ∠3n m =,n=m+4, ∠mn=3,n-m=4,∠mn +n-m=3+4=7.故答案为:7.【点睛】本题考查反比例函数与一次函数图象的交点问题,解题关键是理解函数图象上点的坐标特征.16.∠∠∠【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:观察图象得:抛物线开口向上,对称轴02b a->,且与y 轴交于负半轴, ∠0,0a c ><,∠0b <,∠abc >0,故∠错误; 观察图象得:12b a-<,0a >, ∠2b a >-,∠20b a +>,故∠正确;观察图象得:当时x=1时,y=0,∠a +b +c =0,故∠正确;∠图象经过点(-1,2)和(1,0),∠a +b +c =0,a-b +c =2,∠2a+2c=2,即a=-c+1,∠0c <,∠0c ->,即11c -+>,∠a >1,故∠正确;∠正确的有∠∠∠.故答案为:∠∠∠【点睛】本题考查二次函数的图象与系数的关系,综合应用相关知识分析问题、解决问题的能力是关键.17.60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∠OA=OC ,∠∠OCA=x ,∠OA=OB ,∠∠OBA=x+y ,∠OC=OB ,∠∠OBC=x+30°,∠30ACB ∠=︒,∠∠CAB+∠OBA+∠OBC=150°,∠y+x+y+ x+30°=150°,∠2(x+y)=120°,∠∠AOB=180°-2∠OBA=180°-2(x+y),∠∠AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.18.13x =,21x =-【分析】先把方程整理成一般形式,再用因式分解法解方程即可.【详解】解:2233(1)x x x x --=-整理2233(1)x x x x --=-得,2230x x --=,因式分解得,(x -3)(x +1)=0,∠x -3=0或x +1=0,解得13x =,21x =-.【点睛】此题考查了一元二次方程,熟练掌握一元二次方程的解法是解题的关键.19.一样高,理由见解析【分析】证明∠ABC =∠A B C ''',∠ACB =∠AC B ''',结合BC =B C '',推出∠ABC∠∠A B C ''',得到AB =A B ''.【详解】建筑物一样高.理由如下 :∠AB∠BC ,A B ''∠B C '',∠∠ABC =∠A B C '''=90°,∠AC∠A C '',∠∠ACB =∠AC B ''',又∠BC =B C ''∠∠ABC∠∠A B C '''∠AB =A B ''.即建筑物一样高.【点睛】本题主要考查了全等三角形,解决问题的关键是熟练掌握全等三角形的判定和性质.20.(1)n =2,215124y x x =--(2)a =2,最大值为83 【分析】(1)将点B 的坐标代入直线34y x m =+求出m ,得到直线解析式314y x =-,再将点C 的坐标代入求出n ,然后将点B 、C 的坐标代入二次函数表达求解;(2)先表示出点P 、D 、A 的坐标,进而求出PD ,再利用三角形面积公式求出∠APC 的面积=228(2)33a --+,再利用二次函数的性质求解. (1)解:∠直线l :34y x m =+过点B (0,-1),∠m = -1, ∠直线l :314y x =-, 将点C (4,n )代入314y x =-解得:n =2, ∠点C (4,2).将点B 、C 的坐标代入二次函数表达式得1216421b c c ⎧=⨯++⎪⎨⎪=-⎩, 解得:541b c ⎧=-⎪⎨⎪=-⎩, ∠抛物线的表达式为:215124y x x =--; (2)解:∠PD∠y 轴,点D 在线段AC 上,设其横坐标为a ,由题意得P (a ,215124a a --),则D (a ,314a -),A (43,0), ∠PD =314a -−2215112242a a a a ⎛⎫--=-+ ⎪⎝⎭. ∠A (43,0),C (4,2), ∠∠APC 的面积=214118(4)(2)23223PAD PDC S S PD a a ∆∆+=⨯⨯-=⨯-+⨯=228(2)33a --+, ∠a =2时,∠APC 的面积最大,最大值为83. 【点睛】本题主要考查了一次函数和二次函数解析式的求法,二次函数的最值,求出解析式是解答关键.21.(1)y E ⎛=⎝⎭;(2)//DE AC,理由见解析;(3)点G的坐标为(或(,这两个点都在反比例函数图象上【分析】(1)求出D(32,,再用待定系数法即可求解;(2)证明EB BDAB BC=,即可求解;(3)∠当点F在点C的下方时,求出FH=1,CHF(1,则点G (3,即可求解;∠当点F在点C的上方时,同理可解.【详解】解:(1)∠B(2,,则BC=2,而BD=12,∠CD=2﹣12=32,故点D(32,,将点D的坐标代入反比例函数表达式得:32K,解得k=故反比例函数表达式为y,当x=2时,yE(2;(2)由(1)知,D(32,,点E(2,点B(2,,则BD=12,BE故BDBC=122=14,EBAB=14=BDBC,∠DE∠AC;(3)∠当点F在点C的下方时,如下图,过点F 作FH∠y 轴于点H ,∠四边形BCFG 为菱形,则BC =CF =FG =BG =2,在RT∠OAC 中,OA =BC =2,OB =AB =则tan∠OCA =AOCO ∠OCA =30°,则FH =12FC =1,CH =CF•cos∠OCA =故点F (1,则点G (3,当x =3时,y G 在反比例函数图象上; ∠当点F 在点C 的上方时,同理可得,点G (1,,同理可得,点G 在反比例函数图象上;综上,点G 的坐标为(31,,这两个点都在反比例函数图象上.【点睛】本题主要考查反比例函数,解题关键是过点F 作FH∠y 轴于点H.22.(1)见解析(2)相似,证明见解析(3)存在,k 【分析】(1)由题意可得∠AEF +∠DEC =90°,又由∠AEF +∠AFE =90°,可得∠DEC =∠AFE ,据此证得结论;(2)根据题意可证得Rt∠AEF∠Rt∠DEG(ASA),可得EF =EG ,∠AFE =∠EGC ,可得CE 垂直平分FG ,∠CGF 是等腰三角形,据此即可证得∠AEF 与∠ECF 相似;(3)假设∠AEF 与∠BFC 相似,存在两种情况:∠当∠AFE =∠BCF ,可得∠EFC =90°,根据题意可知此种情况不成立;∠当∠AFE =∠BFC ,使得∠AEF 与∠BFC 相似,设BC =a ,则AB =ka ,可得AF =13ka ,BF =23ka ,再由∠AEF∠∠DCE ,即可求得k 值. (1)证明:∠EF∠EC ,∠∠FEC =90°,∠∠AEF +∠DEC =90°,∠∠AEF +∠AFE =90°,∠∠DEC=∠AFE,又∠∠A=∠EDC=90°,∠∠AEF∠∠DCE;(2)解:∠AEF∠∠ECF.理由:∠E为AD的中点,∠AE=DE,∠∠AEF=∠DEG,∠A=∠EDG,∠∠AEF∠∠DEG(ASA),∠EF=EG,∠AFE=∠EGC.又∠EF∠CE,∠CE垂直平分FG,∠∠CGF是等腰三角形.∠∠AFE=∠EGC=∠EFC.又∠∠A=∠FEC=90°,∠∠AEF∠∠ECF;(3)解:存在k∠AEF与∠BFC相似.理由:假设∠AEF与∠BFC相似,存在两种情况:∠当∠AFE=∠BCF,则有∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况不成立;∠当∠AFE=∠BFC,使得∠AEF与∠BFC相似,设BC=a,则AB=ka,∠∠AEF∠∠BCF,∠12 AF AEBF BC,∠AF=13ka,BF=23ka,∠∠AEF∠∠DCE,∠AE AFDC DE=,即113212kaaka a=,解得,k=.∠存在k=使得∠AEF与∠BFC相似.【点睛】本题考查了矩形的性质,相似三角形的判定及性质,全等三角形的判定与及性质,等腰三角形的判定及性质,采用分类讨论的思想是解决本题的关键.23.(1)见解析(2)四边形CEFG的面积为203.【分析】(1)根据题意和翻折的性质,可以得到∠BCE∠∠BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,∠BCE∠∠BFE,∠∠BEC=∠BEF,FE=CE,∠FG∠CE,∠∠FGE=∠CEB,∠∠FGE=∠FEG,∠FG=FE,∠FG=EC,∠四边形CEFG是平行四边形,又∠CE=FE,∠四边形CEFG是菱形;(2)解:∠矩形ABCD中,AB=6,AD=10,BC=BF,∠∠BAF=90°,AD=BC=BF=10,∠AF=8,∠DF=2,设EF=x ,则CE=x ,DE=6-x ,∠∠FDE=90°,∠22+(6-x )2=x 2,解得,x=103, ∠CE=103, ∠四边形CEFG 的面积是:CE•DF=103×2=203. 24.(1)239344y x x =-++,334y x =-+;(2)PAB S 最大值为6,点P 的坐标为(2,92);(3)E'A+23E'B【分析】(1)把点(-1,0),B (0,3)代入23y mx mx n =-+,即可求得m 的值,得到抛物线的解析式令0y =,求出抛物线与x 轴交点,根据待定系数法可以确定直线AB 的解析式;(2)设点P 的坐标为(a ,239344a a -++),则点N 的坐标为(a ,334a -+),利用PAB PBN PAN 12S S S PN OA =+=⨯,得到()2PAB 3262S a =--+,利用二次函数的性质即可求解;(3)在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E'A+23E'B 的最小值.【详解】(1)∠抛物线23y mx mx n =-+(m≠0)与x 轴交于点(-1,0)与y 轴交于点B (0,3),则有303m m n n ++=⎧⎨=⎩, 解得:343m n ⎧=-⎪⎨⎪=⎩, ∠抛物线的解析式为:239344y x x =-++, 令0y =,得到2393044x x -++=, 解得:4x =或1-,∠A (4,0),B (0,3),设直线AB 解析式为y kx b =+,则403k b b +=⎧⎨=⎩, 解得343k b ⎧=-⎪⎨⎪=⎩,∠直线AB 解析式为334y x =-+;(2)如图,设点P 的坐标为(a ,239344a a -++),∠PE∠OA 交直线AB 于点N ,交x 轴于E ,∠点N 的坐标为(a ,334a -+), ∠PAB PBN PAN 111222S S S PN OE PN EA PN OA =+=⨯+⨯=⨯,∠2PAB 13933342444S a a a ⎛⎫=-+++-⨯ ⎪⎝⎭213933342444a a a ⎛⎫=-+++-⨯ ⎪⎝⎭()23262a =--+,∠302-<,∠当2a =时,PAB S 有最大值,最大值为6,此时点P 的坐标为(2,92);(3)如图中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∠OE′=2,OM′•OB=4343⨯=, ∠OE′2=OM′•OB , ∠O OB O O E M E =''', ∠∠BOE′=∠M′OE′,∠∠M′OE′∠∠E′OB , ∠O 2B OB 3M E E E ''=='', ∠M′E′=23BE′, ∠E'A+23E'B=AE′+E′M′=AM′,此时E'A+23E'B 最小(两点间线段最短,A 、M′、E′共线时),最小值=. 【点睛】本题属于二次函数综合题,考查了相似三角形的判定和性质、待定系数法、两点间线段最短等知识,第(3)问解题的关键是构造相似三角形,找到线段AM′就是E'A+23E'B 的最小值.25.(1)见解析(2)见解析【分析】(1)由SAS 证明AFD CEB ∆≅∆即可;(2)由(1)知AE CF =,AFD CEB ∆≅∆,则AF CE =,即可得出结论.(1)解:证明:四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,B D ∠=∠,又E ,F 分别是AB ,CD 的中点,12AE BE AB ∴==,12CF DF CD ==,BE DF ∴=,AE CF =,在AFD ∆和CEB ∆中,AD CB D B DF BE =⎧⎪∠=∠⎨⎪=⎩,()AFD CEB SAS ∴∆≅∆; (2)解:由(1)知AE CF =,AFD CEB ∆≅∆,AF CE ∴=,∴四边形AECF 是平行四边形.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识,解题的关键是熟练掌握平行四边形的判定与性质.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式ky x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆=,24AOC k S ∆∴==;4y x ∴=;(2)解:0k >,∴函数y 的值在各自象限内随x 的增大而减小;0a >,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==, 4(,)A a a ∴,2(2,)B a a ; ()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。
北师大版九年级上学期数学《期末考试试卷》含答案解析
北 师 大 版 数 学 九 年 级 上 学 期期 末 测 试 卷一、单选题1. 若23(0)x y y =≠,则下列比例式一定成立的是( ) A. 23x y = B. 32x y = C. 23x y = D. 32x y= 2. 用配方法解一元二次方程245x x -=时,此方程可变形为( )A. ()221x +=B. ()221x -=C. ()229x +=D. ()229x -= 3. 如图,A 为反比例函数y=k x的图象上一点,AB 垂直x 轴于B ,若S △AOB =2,则k 的值为( )A. 4B. 2C. ﹣2D. 14. 如图,在直角三角形ABC 中(∠C=90°),放置边长分别3,4,x 的三个正方形,则x 的值为( )A. 5B. 6C. 7D. 125. 上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A. 168(1+a %)2=128B. 168(1-a %)2=128C. 168(1-2a %)=128D. 168(1-a 2%)=1286. 如图,CD 为Rt △ABC 斜边上的高,如果AD=6,BD=2,那么CD 等于( )A. 2B. 4C. 23D. 327. 如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )A. 12πB. 24πC. 36πD. 48π 8. 下列命题正确的个数有( )①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:9.A . 1个 B. 2个 C. 3个 D. 4个 9. 反比例函数6y x=-图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3),其中x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 1<y 3C. y 3<y 1<y 2D. y 3<y 2<y 110. 四边形ABCD 、AEFG 都是正方形,当正方形AEFG 绕点A 逆时针旋转45°时,如图,连接DG 、BE ,并延长BE 交DG 于点H ,且BH ⊥DG 与H ,若AB=4,AE=2时,则线段BH 的长是( )A. 42B. 16C. 810D. 310 二.填空题(每题3分,共15分)11. 一元二次方程2x 3x 0-=的根是 .12. 如图,△ABC 中,已知DE ∥BC ,AD=2,BD=3,AE=1,则EC=__.13. 一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是 .14. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .15. 有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.三、解答题(共55分)16. 解方程:(1)x 2+2x ﹣2=0 (2)3x 2+4x ﹣7=0(3)(x+3)(x ﹣1)=5 (4)(3﹣x )2+x 2=9.17. 小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏规则对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?18.如图,九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆 的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,人的 眼睛E 、标杆顶点C 和旗杆顶点A 在同一直线,求旗杆AB高度.19. 如图,已知一次函数y 1=kx+b 的图象与x 轴相交于点A ,与反比例函数y 2=cx 相交于B (﹣1,5),C (52,d )两点.(1)利用图中条件,求反比例和一次函数的解析式;(2)连接OB ,OC ,求△BOC 的面积.20. (本小题满分8分)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG 、AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)AE =CG ;(2)AN •DN =CN •MN .答案与解析一、单选题1. 若23(0)x y y =≠,则下列比例式一定成立的是( ) A. 23x y= B. 32xy= C. 23x y = D. 32xy =【答案】B【解析】【分析】由2x=3y (y≠0),根据比例的性质,即可求得答案.【详解】解:∵2x=3y (y≠0), ∴32xy=或32x y =故选B .【点睛】本题考查比例的性质.此题比较简单,解题关键是注意比例变形与比例的性质.2. 用配方法解一元二次方程245x x -=时,此方程可变形为( )A . ()221x += B. ()221x -= C. ()229x += D. ()229x -= 【答案】D【解析】试题解析:245,x x -=24454,x x -+=+2(2)9.x -=故选D.3. 如图,A 为反比例函数y=kx 的图象上一点,AB 垂直x 轴于B ,若S △AOB =2,则k 的值为()A. 4B. 2C. ﹣2D. 1【答案】A【解析】【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=12|k|=2;又由于函数图象位于一、三象限,则k=4.故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.4. 如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A. 5B. 6C. 7D. 12【答案】C【解析】【分析】根据已知条件可以推出△CEF∽△MOE∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】△CEF∽△MOE∽△PFN则有OM EM FP PN,∴3344=xx--,解得:x=0(舍),x=7,故选C.【点睛】本题考查相似三角形的性质,在图形中找到相似三角形是解题的关键.5. 上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下面所列方程中正确的是( )A. 168(1+a%)2=128B. 168(1-a%)2=128C. 168(1-2a%)=128D. 168(1-a2%)=128【答案】B【解析】【详解】解:第一次降价a%后的售价是168(1-a%)元,第二次降价a%后的售价是168(1-a%)(1-a%)=168(1-a%)2;故选B.6. 如图,CD为Rt△ABC斜边上的高,如果AD=6,BD=2,那么CD等于()A. 2B. 4C. 3D. 32【答案】C【解析】【分析】根据同角的余角相等证明∠DCB=∠CAD,利用两角对应相等证明△ADC∽△CDB,列比例式可得结论.【详解】∵∠ACB=90︒,∴∠ACD+∠DCB=90︒,∵CD是高,∴∠ADC=∠CDB=90︒,∴∠ACD+∠CAD=90︒,∴∠DCB=∠CAD ,∴△ADC ∽△CDB , ∴=DC AD BD DC, ∴CD 2=AD ⋅BD ,∵AD=6,BD=2,∴CD=12=23,故选C.【点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定与性质.7. 如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( )A. 12πB. 24πC. 36πD. 48π【答案】B【解析】【分析】 根据三视图:俯视图是圆,主视图与左视图是长方形可以确定该几何体是圆柱体,再利用已知数据计算圆柱体的体积.【详解】先由三视图确定该几何体是圆柱体,底面直径是4,半径是2,高是6.所以该几何体的体积为π×22×6=24π.故选B .【点睛】本题主要考查由三视图确定几何体和求圆柱体的面积,考查学生的空间想象能力.8. 下列命题正确的个数有( )①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:9.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【详解】①两边成比例且夹角对应相等的两个三角形相似,故错误;②对角线相等的平行四边形是矩形,故错误;③任意四边形的中点四边形是平行四边形,正确;④两个相似多边形的面积比2:3,故错误,正确的有1个,故选A.【点睛】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质.9. 反比例函数6yx=-图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y3<y2<y1【答案】C【解析】【分析】先根据反比例函数6yx=-判断出函数图象所在的象限,再根据x1<x2<0<x3,判断出三点所在的象限,再根据点在各象限坐标的特点及函数在每一象限的增减性解答.【详解】∵反比例函数6yx=-,k=-6<0,∴此反比例函数图象的两个分支在二、四象限;∵x3<0,∴点(x3,y3)在第四象限,y3<0;∵x1<x2<0,∴点(x1,y1),( x2,y2)在第二象限,y随x的增大而减小,故y2>y1>0,由于x1<0< x3,则(x3,y3)在第四象限, (x1,y1)在第二象限,所以y3<0, y1>0, y3< y1,于是y3<y1<y2.故选B.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握反比例函数图象上点的坐标特征.10. 四边形ABCD、AEFG都是正方形,当正方形AEFG绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且BH⊥DG与H,若AB=4,AE=2时,则线段BH的长是()A. 42B. 16C. 810D.310【答案】C【解析】【分析】连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG互相垂直平分,且AF AD上,由AE=2可得到AN=GN=1,所以DN=4-1=3,然后根据勾股定理可计算出DG=10,则BE=10,解着利用S△DEG=12GE•ND=12DG•HE可计算出HE,所以BH=BE+HE.【详解】连结GE交AD于点N,连结DE,如图,∵正方形AEFG绕点A逆时针旋转45︒,∴AF与EG互相垂直平分,且AF在AD上,∵2∴AN=GN=1,∴DN=4−1=3,在Rt△DNG中22DN GN+10;由题意可得:△ABE相当于逆时针旋转90∘得到△AGD,∴10,∵S △DEG =12GE ⋅ND=12DG ⋅HE , ∴HE=10=310, ∴BH=BE+HE=310+10=8105. 故答案为C. 【点睛】本题考查旋转的性质和正方形的性质,解题的关键是掌握旋转的性质和正方形的性质.二.填空题(每题3分,共15分)11. 一元二次方程2x 3x 0-=的根是 .【答案】12x 0,?x 3== 【解析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,212x 3x 0x(x 3)0x 0x 30x 0,?x 3-=⇒-=⇒=-=⇒==,.12. 如图,在△ABC 中,已知DE ∥BC ,AD=2,BD=3,AE=1,则EC=__.【答案】1.5.【解析】【分析】根据平行线分线段成比例定理得到比例式,代入计算即可.【详解】∵DE ∥BC ,∴AD BD=AE EC , 即231EC =, 解得:EC=1.5,故答案为1.5.【点睛】本题考查平行线分线段成比例,解题的关键是掌握平行线分线段成比例.13. 一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是 .【答案】13. 【解析】 【详解】解:根据树状图,蚂蚁获取食物的概率是26=13.故答案为13. 考点:列表法与树状图法.14. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .【答案】9【解析】【详解】∵四边形ABCD 是矩形,∴∠ABC =90°,BD =AC ,BO =OD ,∵AB =6cm ,BC =8cm ,∴由勾股定理得:226810BD AC =+= (cm ),∴DO =5cm ,∵点E . F 分别是AO 、AD 的中点,1 2.52EF OD ∴== (cm ),1 2.54EA AC ==,142AF AD ==, △AEF 的周长=9EF AE AF ++=故答案为9.15. 有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.【答案】11【解析】【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x(x+1)+x+1人感染,又知经过两轮传染共有288人被感染由此列出方程求解即可.【详解】设每轮传染中平均一个人传染不超过x人,由题意得,2+2x+(2+2x)x=288,解得:x1=11,x2=-13,答:每轮传染中平均一个人传染了11个人.故答案为11.【点睛】本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.三、解答题(共55分)16. 解方程:(1)x2+2x﹣2=0 (2)3x2+4x﹣7=0(3)(x+3)(x﹣1)=5 (4)(3﹣x)2+x2=9.【答案】(1)x=﹣1(2)x=1或x=﹣73;(3)x=2或x=﹣4;(4)x=0或x=3.【解析】【分析】(1)根据根的判别式得到根的正负,再根据公式法进行计算即可得到答案;(2)进行因式分解,计算即可得到对答案;(3)先整理,再进行因式分解计算,即可得到答案;(4)先整理,再进行因式分解计算,即可得到答案.【详解】解:(1)∵a=1,b=2,c=﹣2,∴△=b2﹣4ac=4﹣4×1×(﹣2)=12>0,则=﹣1(2)∵(x﹣1)(3x+7)=0,∴x﹣1=0或3x+7=0,解得:x=1或x=﹣73;(3)整理成一般式得:x2+2x﹣8=0,∴(x﹣2)(x+4)=0,则x﹣2=0或x+4=0,解得:x=2或x=﹣4;(4)整理成一般式得2x2﹣6x=0,∴2x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3.【点睛】本题考查根的判别式、公式法和因式分解,解题的关键是掌握根的判别式、公式法和因式分解.17. 小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏规则对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?【答案】见解析【解析】(1)因为()2 9P=配成紫色,()79 P配不成紫色=,所以小刚得分:22199⨯=,小明得分:77199⨯=,因为2799≠,所以游戏对双方不公平.(2)修改方法不唯一,可以添加适当的分值进行调节.列表得:红白蓝红(红,红) (红,白) (红,蓝) 黄(黄,红) (黄,白) (黄,蓝)蓝 (蓝,红) (蓝,白) (蓝,蓝)P(配色紫色)=29,p(配不成紫色)= 79 因为2/9 ≠79所以游戏对双方不公平. 修改规则的方法不唯一,只要合理即可. (如可改:若配成紫色时小刚得7分,否则小明得2分)18.如图,九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆 的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,人的 眼睛E 、标杆顶点C 和旗杆顶点A 在同一直线,求旗杆AB 的高度.【答案】13.5【解析】试题分析:过点E 作EH//BF ,交CD,AB 于点G 、H ,利用△ECG ∽△EAH ,求出AH 的长,然后可得AB 的长.试题解析:解:过点E 作EH//BF ,交CD,AB 于点G 、H ,如图:∵CG ∥AB∴△ECG ∽△EAH 2分∴即:4分∴AH=11.9∴AB=11.9+1.6=13.5 6分考点:相似三角形的判定与性质.19. 如图,已知一次函数y 1=kx+b 的图象与x 轴相交于点A ,与反比例函数y 2=cx相交于B (﹣1,5),C (52,d )两点.(1)利用图中条件,求反比例和一次函数的解析式;(2)连接OB ,OC ,求△BOC 的面积.【答案】(1)反比例函数解析式为y=﹣5x,一次函数y 1=﹣2x+3;(2)S △BOC =214 【解析】【分析】 (1)将点B 的坐标代入反比例函数解析式求出c ,从而得解,再将点C 的坐标代入反比例函数解析式求出d ,从而得到点C 的坐标,然后利用待定系数法求一次函数解析式求解; (2)根据一次函数解析式求出点A 的坐标,再根据S △BOC =S △AOB +S △AOC 列式计算即可得解. 【详解】解:(1)将B (﹣1,5)代入y 2=c x 得, 1c =5, 解得c=﹣5,所以,反比例函数解析式为y=﹣5x, 将点C (52,d )代入y=﹣5x 得d=﹣552=﹣2, 所以,点C 的坐标为(52,﹣2),将点B(﹣1,5),C(52,﹣2)代入一次函数y1=kx+b得,5522k bk b-+=⎧⎪⎨+=-⎪⎩,解得23kb=-⎧⎨=⎩,所以,一次函数y1=﹣2x+3;(2)令y=0,则﹣2x+3=0,解得x=32,所以,点A的坐标为(32,0),所以,OA=32,S△BOC=S△AOB+S△AOC,=12×32×5+12×32×2,=214.【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是掌握反比例函数与一次函数的交点问题.20. (本小题满分8分)如图,四边形ABCD、DEFG都是正方形,连接AE、CG、AE与CG相交于点M,CG 与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=CN•MN.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据条件结合正方形的性质利用SAS证明△ADE≌△CDG即可得出结论;(2)根据两个角对应相等的两个三角形相似证明△AMN∽△CDN,然后根据相似三角形的性质即可得出结论.试题解析:(1)∵四边形ABCD、DEFG都是正方形∴AD="CD" DE="DG" ∠ADC=∠EDG=90°∴∠ADC+∠ADG=∠ED+∠ADG即∠ADE=∠CDG∴△ADE≌△CDG∴AE=CG(2)∵△ADE≌△CDG∴∠DAE=∠DCG∵∠ANM=∠CND∴△AMN∽△CDN∴∴考点:1.正方形的性质2.全等三角形的判定与性质3.相似三角形的判定与性质.。
北师大版九年级数学第一学期期末试题及答案
北师大版九年级数学第一学期期末试题及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.42.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:24.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.35.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=16.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.157.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而(增大、变小).11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.15.(5分)画出如图所示的正三棱柱的三视图.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.4【分析】由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义,即可得=,又由a=3,b=0.6,c=2,即可求得d的值.【解答】解:∵a、b、c、d四条线段是成比例的线段,∴=,∵a=3,b=0.6,c=2,∴=解得:d=0.4.故选:A.【点评】此题考查了比例线段,此题比较简单,解题的关键是注意掌握比例线段的定义.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个同心圆,内圆要画成实线.故选:C.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:2【分析】根据位似图形的概念得到EF∥BC,证明△BAC∽△EAF,根据相似三角形的性质求出,根据相似多边形的性质计算即可.【解答】解:∵四边形ABCD与四边形AEFG是位似图形,∴四边形ABCD∽四边形AEFG,EF∥BC,∴△BAC∽△EAF,∴==,∴四边形ABCD与四边形AEFG的面积之比为4:9,故选:B.【点评】本题考查的是位似变换的概念和性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.4.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.3【分析】根据方程没有实数根得出(﹣3)2﹣4×1×n<0,解之求出n的范围,结合各选项可得答案.【解答】解:根据题意,得:(﹣3)2﹣4×1×n<0,解得:n>,∴n的值可以是3,故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=1【分析】由k=2>0即可判断B,C;把x=2,代入y=可判断A,D.【解答】解:A.把(2,1)代入y=得:左边=右边,故本选项不符合题意;B.k=2>0,图象在第一、三象限内,故本选项符合题意;C.k=2>0,图象在第一、三象限内,故本选项不符合题意;D.把x=2,代入y=得y=1,故本选项不符合题意;故选:B.【点评】本题主要考查了反比例函数的性质,能熟练地根据反比例函数的性质进行判断是解此题的关键.6.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.15【分析】由矩形的性质可得AO=CO=BO=DO,可得S△AOB=S△BOC=S△AOD=S△OCD=3,即可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∴S△AOB=S△BOC=S△AOD=S△OCD=3,∴矩形ABCD的面积=12,故选:C.【点评】本题考查了矩形的性质,掌握矩形的对角线互相平分且相等是解题的关键.7.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.【分析】画树状图,即可得出答案.【解答】解:画树状图如下:共有6种等可能的结果,先经过A门、再经过D门只有1种结果,所以先经过A门、再经过D门的概率为,故选:D.【点评】此题考查的是用树状图法.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;正确画出树状图是解题的关键.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2【分析】根据正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF,利用勾股定理分别求出OB,PB进而可求.【解答】解:∵四边形ABPQ,ACFH为正方形,∴PB=AB,AC=CF=CB+BF=4,∠F=∠C=90°,∠PBA=90°,∴∠FOB+∠FBO=90°,∠ABC+∠FBO=90°∴∠FOB=∠ABC,∴△FOB∽△CBA,∴=,即=,∴OF=1,在Rt△FBO中,由勾股定理得,OB===,在Rt△ABC中,由勾股定理得,AB===2,∴OP=PB﹣OB=,故选:A.【点评】本题考查了正方形的性质和相似三角形的性质与判定,利用正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为5.【分析】把x=3代入方程x2﹣mx+6=0得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=3代入方程x2﹣mx+6=0得9﹣3m+6=0,解得m=5.故答案为:5.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而变小(增大、变小).【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【解答】解:连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.则他在墙上投影长度随着他离墙的距离变小而变小.故答案为变小.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是10.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,a=10.故可以推算出a大约是10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】首先延长BA交y轴于点E,易得四边形ADOE与四边形BCOE是矩形,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S矩形ADOE=1,S矩形BCOE=3,继而求得答案.【解答】解:延长BA交y轴于点E,∵四边形ABCD为矩形,且AB∥x轴,点C、D在x轴上,∴AE⊥y轴,∴四边形ADOE与四边形BCOE是矩形,∵点A在反比例函数的图象上,点B在反比例函数的图象上,∴S矩形ADOE=1,S矩形BCOE=3,∴S矩形ABCD=S矩形BCOE﹣S矩形ADOE=3﹣1=2.故答案为:2.【点评】此题考查了反比例函数的系数k的几何意义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=8.【分析】设AC的中点为O,连接EO,根据题意可得OE是△ABC的中位线,从而可得OE=BC,OE∥BC,进而可证8字模型相似三角形△AFG∽△OEG,然后利用相似三角形的性质进行计算即可解答.【解答】解:设AC的中点为O,连接EO,∴AO=AC=20,∵E是AB的中点,∴OE是△ABC的中位线,∴OE=BC,OE∥BC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥OE,∴∠F AG=∠AOE,∠AFG=∠OEG,∴△AFG∽△OEG,∴=,∵AF:AD=1:3,∴=,∴==,∴=,∴AG=8,故答案为:8.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.【分析】根据因式分解法即可求出答案.【解答】解:y(y﹣7)+2y﹣14=0,y(y﹣7)+2(y﹣7)=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.(5分)画出如图所示的正三棱柱的三视图.【分析】根据题意可得正三棱柱的主视图为中间有一条竖的实心线的矩形,左视图为矩形,俯视图为正三角形,从而可画出三视图.【解答】解:如图所示:【点评】此题考查了作图﹣三视图,属于基础题,解答本题的关键是掌握三视图的观察方法,要求一定的空间想象能力.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.【分析】根据已知可求得△ABC是等边三角形,从而得到AC=AB,再根据正方形的周长公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.【点评】本题考查菱形与正方形的性质,关键是根据已知可求得△ABC是等边三角形.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.【分析】根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.【点评】本题考查了平行四边形的性质,矩形的判定,熟练掌握矩形的判定定理是解题关键.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?【分析】(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=3代入求出相应的v的值,即可求出放水速度.【解答】解:(1)由题意得:vt=1200,即:v=,答:v关于t的函数表达式为v=,自变量的取值范围为t>0.(2)当t=3时,v==400,所以每小时应至少放水400立方米.【点评】考查求反比例函数的应用,根据常用的数量关系得出函数关系式是解题的关键.20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.【分析】结合条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF =FB.【解答】证明:∵四边形ABCD为正方形,∴BF∥CD,∴=,∵FG∥BE,∴GF∥AD,∴=,∴=,且AD=CD,∴GF=BF.【点评】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.【分析】设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3.根据题意建立方程求出其值就可以求出其结论.【解答】解:设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3,依题意得:10(x﹣3)+x=x2,解得x1=5,x2=6,当x=5时,25<30,(不合题意,舍去),当x=6时,36>30(符合题意),答:周瑜去世时的年龄为36岁.【点评】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人30岁的年龄是关键.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.【分析】如图1中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.利用相似三角形的性质求出CH,可得结论.【解答】解:如图中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.∴EF=BJ=DH=1.5米,BF=EJ=2米,DB=JH=23米,∵AB=2.5米.∴AJ=AB﹣BJ=2.5﹣1.5=1(米),∵AJ∥CH,∴△EAJ∽△ECH,∴=,∴=,∴CH=12.5(米),∴CD=CH+DH=12.5+1.5=14(米).答:大楼的高度CD为14米.【点评】本题考查相似三角形的应用,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.【分析】(1)根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是,故答案为:;(2)列表如下:A B CD(A,D)(B,D)(C,D)E(A,E)(B,E)(C,E)由表知,共有6种等可能结果,其中两人选购到同一种类奶制品的有2种结果,所以两人选购到同一种类奶制品的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.【分析】(1)由DE∥AB得∠EDC=∠A,因为∠CBD=∠A,所以∠EDC=∠EBD,而∠A=∠A,可证明△ECD ∽△EDB;(2)由DE∥AB可证明△DCE∽△ACB,而AC=3CD,所以△DCE的周长:△ACB的周长=CD:AC=1:3,即可得出问题的答案.【解答】(1)证明:如图,∵DE∥AB,∴∠EDC=∠A,∵∠CBD=∠A,∴∠EDC=∠CBD,即∠EDC=∠EBD,∵∠E=∠E,∴△ECD∽△EDB;(2)解:∵DE∥AB,∴△DCE∽△ACB,∵AC=3CD,∴△DCE的周长:△ACB的周长=CD:AC=1:3=,∴△DCE与△ACB的周长比为.【点评】此题考查平行线的性质、相似三角形的判定与性质等知识,其中证明△DCE∽△ACB是解题的关键.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.【分析】(1)根据B坐标为(6,0),得到OB=6,根据等腰三角形的性质得到OH=BH=OB=3,根据勾股定理得到AH===4,求得A坐标为(3,4),于是得到结论;(2)设C坐标为(6,m),根据y=(x>0)经过点C,求得BC=2,根据相似三角形的性质得到=,根据三角形的中位线定理得到MH=BC=×2=1于是得到结论.【解答】解:(1)∵B坐标为(6,0),∴OB=6,∵AO=AB=5,AH⊥x轴于点H,∴OH=BH=OB=3,在Rt△AOH中,AO2=AH2+OH2,∴AH===4,∴A坐标为(3,4),∵y=(x>0)经过点A,∴4=,∴k=12,∴双曲线表达式为y=(x>0);(2)设C坐标为(6,m),∵y=(x>0)经过点C,∴m==2,∴BC=2,∵AH⊥x轴,BC⊥x轴,∴AM∥CB,∴△ADM∼△ABC,∴=,∵OH=BH,∴OM=CM,∴MH是△OBC的中位线,∴MH=BC=×2=1,∴AM=AH﹣MH=3,∴=.【点评】本题考查了待定系数法求反比例函数的解析式,相似三角形的判定和性质,三角形的中位线定理,熟练掌握待定系数法求函数的解析式是解题的关键.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.【分析】(1)由四边形ABCD是菱形,根据菱形的性质得AD=CD=AB=CB,还有BD是公共边,可证明△ADB ≌△CDB,得∠PDA=∠PDC,再证明△APD≌△CPD即可;(2)由CD∥AB得∠F=∠PCD,由△APD≌△CPD得∠P AE=∠PCD,所以∠P AE=∠F,而∠P AE=∠FP A,即可证明△APE∽△FP A;(3)由△APE∽△FP A得=,其中PE=4,PF=12,可求出P A的长,由△APD≌△CPD可知PC=P A,即可求得PC的长.【解答】(1)证明:如图,∵四边形ABCD是菱形,∴AD=CD=AB=CB,在△ADB和△CDB中,,∴△ADB≌△CDB(SSS),∴∠PDA=∠PDC,在△APD和△CPD中,,∴△APD≌△CPD(SAS).(2)证明:如图,∵CD∥AB,∴∠F=∠PCD,∵∠P AE=∠PCD,∴∠P AE=∠F,∵∠P AE=∠FP A,∴△APE∽△FP A.(3)解:如图,∵△APE∽△FP A,∴=,∵PE=4,PF=12,∴P A2=PE•PF=4×12=48,∴P A==4,∴PC=P A=4.∴PC的长为4.【点评】此题考查菱形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识,根据菱形的性质找出相等的角并证明角相等是解题的关键.。
北师大版九年级上册数学期末试卷及答案【完整版】
北师大版九年级上册数学期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A.44°B.40°C.39°D.38°9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:3x-x=__________.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x+1)(x -1)3、30°或150°.4、-45、x=26、9三、解答题(本大题共6小题,共72分)1、x=12、(1)k ≤58;(2)k=﹣1.3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112-),P 2(352,2),P 3,2),P 412-). 4、河宽为17米 5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
北师大版九年级(上)期末数学试卷(含答案)
北师大版九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是()A.B.C.D.2.(3分)若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是()A.﹣2B.﹣1C.1D.23.(3分)如图,已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.30°B.35°C.80°D.100°4.(3分)一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.(3分)已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm26.(3分)为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》《新中国史》《改革开放史》《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为()A.B.C.D.17.(3分)如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是()A.1:4B.1:2C.2:1D.4:18.(3分)下列命题中,是真命题的是()A.一条线段上只有一个黄金分割点B.各角分别相等,各边成比例的两个多边形相似C.两条直线被一组平行线所截,所得的线段成比例D.若2x=3y,则=9.(3分)文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x元,由题意可列方程为()A.(38﹣x)(160+×120)=3640B.(38﹣x﹣22)(160+120x)=3640C.(38﹣x﹣22)(160+3x×120)=3640D.(38﹣x﹣22)(160+×120)=364010.(3分)如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)已知:,则=.12.(3分)深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有个.13.(3分)如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE =°.14.(3分)如图,已知一次函数y=2x+4的图象与反比例函数y=的图象交于A,B两点,点B的横坐标是1,过点A作AC⊥y轴于点C,连接BC,则△ABC的面积是.15.(3分)如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE=90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是.三、解答题(本题共7小题,共55分)16.(5分)解方程:x2﹣4x+3=0.17.(7分)小明为探究反比例函数y=的性质,他想先画出它的图象,然后再观察、归纳得到.(1)他列出y与x的几组对应值如表:x…﹣4﹣3﹣2﹣1﹣0.50.51b34…y…﹣1﹣a﹣4﹣88421…表格中,a=,b=;(2)结合表,在如图所示的平面直角坐标系xOy中,画出当x>0时的函数y的图象;(3)①若(6,m),(10,n)在该函数的图象上,则m n(填“>”,“=”或“<”);②若(x1,y1),(x2,y2)在该函数的图象上,且x1<x2<0,则y1y2(填“>”,“=”或“<”).18.(8分)深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.(1)张红选择A安全检查口通过的概率是;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.19.(8分)如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB 于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长.20.(8分)如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.21.(9分)【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:①根据光源确定榕树在地面上的影子;②测量出相关数据,如高度,影长等;③利用相似三角形的相关知识,可求出所需要的数据.根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为米.22.(10分)(1)【探究发现】如图①,已知四边形ABCD是正方形,点E为CD边上一点(不与端点重合),连接BE,作点D关于BE的对称点D',DD'的延长线与BC的延长线交于点F,连接BD′,D'E.①小明探究发现:当点E在CD上移动时,△BCE≌△DCF.并给出如下不完整的证明过程,请帮他补充完整.证明:延长BE交DF于点G.②进一步探究发现,当点D′与点F重合时,∠CDF=°.(2)【类比迁移】如图②,四边形ABCD为矩形,点E为CD边上一点,连接BE,作点D关于BE的对称点D',DD′的延长线与BC的延长线交于点F,连接BD',CD',D'E.当CD'⊥DF,AB=2,BC=3时,求CD'的长;(3)【拓展应用】如图③,已知四边形ABCD为菱形,AD=,AC=2,点F为线段BD上一动点,将线段AD绕点A按顺时针方向旋转,当点D旋转后的对应点E落在菱形的边上(顶点除外)时,如果DF=EF,请直接写出此时OF的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是()A.B.C.D.【分析】根据简单几何体的三视图的意义,得出从正面看所得到的图形即可.【解答】解:从正面看深圳湾“春笋”大楼所得到的图形如下:故选:A.【点评】本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键.2.(3分)若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是()A.﹣2B.﹣1C.1D.2【分析】把x=1代入方程x2+mx﹣3=0,得出一个关于m的方程,解方程即可.【解答】解:把x=1代入方程x2+mx﹣3=0得:1+m﹣3=0,解得:m=2.故选:D.【点评】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m的方程.3.(3分)如图,已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.30°B.35°C.80°D.100°【分析】先根据三角形内角和定理求出∠C的度数,再根据相似三角形对应角相等即可解决问题.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣65°=80°,又∵△ABC∽△DEF,∴∠F=∠C=80°,故选:C.【点评】本题考查相似三角形的性质,掌握相似三角形对应角相等是解题的关键.也考查了三角形内角和定理.4.(3分)一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】先计算根的判别式,再根据根的判别式进行判断即可.【解答】解:∵Δ=12﹣4×1×1=1﹣4=﹣3<0,∴一元二次方程没有实数根.故选:C.【点评】此题考查了根的判别式,熟练掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac的关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根是解本题的关键.5.(3分)已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm2【分析】直接根据菱形的面积公式计算即可.【解答】解:∵菱形的两条对角线的长分别为6cm和8cm,∴这个菱形的面积=×6×8=24(cm2),故选:B.【点评】本题考查了菱形的性质,熟记菱形的面积=两对角线长乘积的一半是解题的关键.6.(3分)为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》《新中国史》《改革开放史》《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为()A.B.C.D.1【分析】直接根据概率公式求解即可.【解答】解:由题意得,他恰好选到《新中国史》这本书的概率为.故选:A.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是()A.1:4B.1:2C.2:1D.4:1【分析】根据位似图形的概念得到△A′B′C′∽△ABC,A′B′∥AB,根据△OA′B′∽△OAB,求出,根据相似三角形的性质计算,得到答案.【解答】解:∵△A′B′C′与△ABC是位似图形,∴△A′B′C′∽△ABC,A′B′∥AB,∴△OA′B′∽△OAB,∴==,∴△A′B'C′与△ABC的面积比为1:4,故选:A.【点评】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.(3分)下列命题中,是真命题的是()A.一条线段上只有一个黄金分割点B.各角分别相等,各边成比例的两个多边形相似C.两条直线被一组平行线所截,所得的线段成比例D.若2x=3y,则=【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.【解答】解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D.若2x=3y,则=,所以D选项不符合题意.故选:B.【点评】本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.(3分)文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x元,由题意可列方程为()A.(38﹣x)(160+×120)=3640B.(38﹣x﹣22)(160+120x)=3640C.(38﹣x﹣22)(160+3x×120)=3640D.(38﹣x﹣22)(160+×120)=3640【分析】由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38﹣x﹣22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.【解答】解:∵这种工艺品的销售价每个降低x元,∴每个工艺品的销售利润为(38﹣x﹣22)元,销售量为(160+×120)个.依题意得:(38﹣x﹣22)(160+×120)=3640.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.(3分)如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是()A.B.C.D.【分析】取BD的中点M,连接EM,交BF于点N,则EM=,EM∥DC,由△BEN∽△BCF,得EN=,由EM∥AB,得△EMG∽△ABG,△ENH∽△ABH,则EG=,EH=,从而解决问题.【解答】解:∵矩形ABCD中,点E,点F分别是BC,CD的中点,∴BE=,AB∥CD,CF=DF=,取BD的中点M,连接EM,交BF于点N,如图,则EM是△BCD的中位线,∴EM=,EM∥DC,∴EM=,EM∥AB,∴△BEN∽△BCF,∴,∴EN=,∴EN=,∵EM∥AB,∴△EMG∽△ABG,△ENH∽△ABH,∴,,∴EG=,EH=,∴GH=EG﹣EH=,∴,故选:B.【点评】本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出GH和HE的长是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)已知:,则=.【分析】根据比例式的合比性质可直接求出的值.【解答】解:∵,∴=.【点评】注意观察要求的式子和已知式子的关系,能够根据比例合比性质求解.12.(3分)深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有3个.【分析】设袋中红球的个数为x,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中红球的个数为x,根据题意得:,解得:x=3,答:估计袋中红球的个数为3个;故答案为:3.【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(3分)如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=40°.【分析】根据线段垂直平分线的性质得到EC=EA,根据矩形的性质得到∠DCA=∠EAC=20°,结合图形计算,得到答案.【解答】解:∵MN是AC的垂直平分线,∴EC=EA,∴∠ECA=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∠D=90°,∴∠DCA=∠EAC=90°﹣70°=20°,∴∠DCE=∠DCA+∠ECA=20°+20°=40°,故答案为:40.【点评】本题考查的是矩形的性质,线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.(3分)如图,已知一次函数y=2x+4的图象与反比例函数y=的图象交于A,B两点,点B的横坐标是1,过点A作AC⊥y轴于点C,连接BC,则△ABC的面积是12.【分析】由一次函数解析式求得B的坐标,代入y=求得k,然后两个解析式联立成方程组,解方程组求得A 的坐标,然后根据三角形面积公式求得即可.【解答】解:∵一次函数y=2x+4的图象与反比例函数y=的图象交于A,B两点,点B的横坐标是1,∴把x=1代入y=2x+4得,y=6,∴B(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=,解得或,∴A(﹣3,﹣2),∵AC⊥y轴于点C,∴AC=3,∴S△ABC==12.故答案为:12.【点评】此题是反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,三角形面积等,数形结合是解本题的关键.15.(3分)如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE=90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是.【分析】过点A作AH⊥BC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明△ABF∽△DAC,进而对应边成比例即可求出FB的长.【解答】解:如图,过点A作AH⊥BC于点H,∵∠BAC=90°,AB=AC=1,∴BC=,∵AH⊥BC,∴BH=CH=,∴AH=,∵AD=DE=,∴DH===,∴CD=DH﹣CH=,∵∠ABC=∠ACB=45°,∴∠ABF=∠ACD=135°,∵∠DAE=45°,∴∠DAF=135°,∵∠BAC=90°,∴∠BAF+∠DAC=45°,∵∠BAF+∠F=45°,∴∠F=∠DAC,∴△ABF∽△DAC,∴=,∴=,∴BF=.故答案为:.【点评】本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到△ABF∽△DAC.三、解答题(本题共7小题,共55分)16.(5分)解方程:x2﹣4x+3=0.【分析】利用因式分解法解出方程.【解答】解:x2﹣4x+3=0(x﹣1)(x﹣3)=0x﹣1=0,x﹣3=0x1=1,x2=3.【点评】本题考查的是一元二次方程的解法,掌握因式分解法解一元二次方程的一般步骤是解题的关键.17.(7分)小明为探究反比例函数y=的性质,他想先画出它的图象,然后再观察、归纳得到.(1)他列出y与x的几组对应值如表:x…﹣4﹣3﹣2﹣1﹣0.50.51b34…y…﹣1﹣a﹣4﹣88421…表格中,a=﹣2,b=2;(2)结合表,在如图所示的平面直角坐标系xOy中,画出当x>0时的函数y的图象;(3)①若(6,m),(10,n)在该函数的图象上,则m>n(填“>”,“=”或“<”);②若(x1,y1),(x2,y2)在该函数的图象上,且x1<x2<0,则y1>y2(填“>”,“=”或“<”).【分析】(1)把(﹣4,﹣1)代入y=解方程得到反比例函数的解析式为y=,把x=﹣2,把y=2时,分别代入反比例函数的解析式即可得到答案;(2)根据题意画出图象即可;(3)根据反比例函数的性质即可得到结论.【解答】解:(1)把(﹣4,﹣1)代入y=得,﹣1=,∴k=4,∴反比例函数的解析式为y=,当x=﹣2时,y==﹣2,即a=﹣2;当y=2时,2=,则x=2,即b=2;故答案为:﹣2,2;(2)如图所示,(3)∵反比例函数的解析式为y=,∴k=4>0,∴在每个象限内y随x的增大而减小,①若(6,m),(10,n)在该函数的图象上,∵6<10,∴m>n;故答案为:>;②若(x1,y1),(x2,y2)在该函数的图象上,∵x1<x2<0,∴y1>y2,故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,反比例函数的图象,正确的作出图象是解题的关键.18.(8分)深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.(1)张红选择A安全检查口通过的概率是;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.【分析】(1)根据概率公式求解即可;(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵有A.B、C三个闸口,∴张红选择A安全检查口通过的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,则她俩选择相同安全检查口通过的概率是=.【点评】本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图.19.(8分)如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB 于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长.【分析】(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵CF∥ED,∴四边形CDEF是平行四边形,∵DC=DE.∴四边形CDEF是菱形;(2)解:如图,连接GF,∵四边形CDEF是菱形,∴CF=CD=5,∵BC=3,∴BF===4,∴AF=AB﹣BF=5﹣4=1,在△CDG和△CFG中,,∴△CDG≌△CFG(SAS),∴FG=GD,∴FG=GD=AD﹣AG=3﹣AG,在Rt△FGA中,根据勾股定理,得FG2=AF2+AG2,∴(3﹣AG)2=12+AG2,解得AG=.【点评】本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.20.(8分)如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.【分析】(1)设原正方形空地的边长为xm,则剩余部分长(x﹣4)m,宽(x﹣5)m,根据剩余部分面积为650m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设小道的宽度为ym,则栽种鲜花的区域可合成长(30﹣y)m,宽(30﹣1﹣y)m的矩形,根据栽种鲜花区域的面积为812m2,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:(1)设原正方形空地的边长为xm,则剩余部分长(x﹣4)m,宽(x﹣5)m,依题意得:(x﹣4)(x﹣5)=650,整理得:x2﹣9x﹣630=0,解得:x1=30,x2=﹣21(不合题意,舍去).答:原正方形空地的边长为30m.(2)设小道的宽度为ym,则栽种鲜花的区域可合成长(30﹣y)m,宽(30﹣1﹣y)m的矩形,依题意得:(30﹣y)(30﹣1﹣y)=812,整理得:y2﹣59y+58=0,解得:y1=1,y2=58(不合题意,舍去).答:小道的宽度为1m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(9分)【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:①根据光源确定榕树在地面上的影子;②测量出相关数据,如高度,影长等;③利用相似三角形的相关知识,可求出所需要的数据.根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为米.【分析】(1)根据题意画出图形;(2)证明△ECD∽△EPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;(3)根据△BCD∽△BEF求出BD,再根据△ACD∽△AMF求出MF,进而求出EM.【解答】解:(1)图①中GH即为所求;(2)∵CD∥PB,∴△ECD∽△EPB,∴=,即=,解得:PB=9,∵FG∥PB,∴△HFG∽△HPB,∴=,即=,解得:FG=,答:榕树FG的高度为米;(3)∵CD∥EF,∴△BCD∽△BEF,∴=,即=,解得:BD=75,∵CD∥EF,∴△ACD∽△AMF,∴=,即=,解得:MF=,∴EM=EF﹣MF=70﹣=(米),故答案为:.【点评】本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.22.(10分)(1)【探究发现】如图①,已知四边形ABCD是正方形,点E为CD边上一点(不与端点重合),连接BE,作点D关于BE的对称点D',DD'的延长线与BC的延长线交于点F,连接BD′,D'E.①小明探究发现:当点E在CD上移动时,△BCE≌△DCF.并给出如下不完整的证明过程,请帮他补充完整.证明:延长BE交DF于点G.②进一步探究发现,当点D′与点F重合时,∠CDF=22.5°.(2)【类比迁移】如图②,四边形ABCD为矩形,点E为CD边上一点,连接BE,作点D关于BE的对称点D',DD′的延长线与BC的延长线交于点F,连接BD',CD',D'E.当CD'⊥DF,AB=2,BC=3时,求CD'的长;(3)【拓展应用】如图③,已知四边形ABCD为菱形,AD=,AC=2,点F为线段BD上一动点,将线段AD绕点A按顺时针方向旋转,当点D旋转后的对应点E落在菱形的边上(顶点除外)时,如果DF=EF,请直接写出此时OF的长.【分析】(1)①延长BE交DF于点G,则由对称可知∠EGD=∠EGD'=90°,结合∠DEG=∠BEC得到∠EBC =∠EDF,由正方形的性质得到∠BCE=∠DCF、BC=DC,从而证明△BCE≌△DCF;②当点D'与点F重合时,由对称可知∠DBG=∠D'BG=22.5°,然后由①得到∠EDF=∠EBC=22.5°;(2)延长BE交DF于点G,由对称可知点G是DD'的中点、∠EGD=∠EGD'=90°,结合CD'⊥DF得到CD'∥BG,从而有EG是△DCD'的中位线,得到点E是CD的中点,从而求得CE=DE=1,再由勾股定理求得BE 的长;由(1)①得∠EBC=∠FDC,∠ECB=∠EGD=90°得到△ECB∽△EGD,进而借助相似三角形的性质求得EG的长,然后由中位线的性质求得CD'的长;(3)以点A为圆心,AD的长为半径作圆弧,与CD和BC的交点即为点E,然后分点E在CD上和点E在BC 上讨论,延长AF交DE于点G,然后借助(1)(2)的思路求解.【解答】(1)①证明:如图①,延长由对称可知,∠EGD=∠EGD'=90°,∵∠DEG=∠BEC,∴∠EBC=∠EDF,∵四边形ABCD是正方形,∴∠BCE=∠DCF=90°,BC=DC,在△BCE和△DCF中,,∴△BCE≌△DCF(ASA).②解:如图1,当点D'与点F重合时,由对称可知∠DBE=∠D'BE,∵四边形ABCD是正方形,∴∠DBC=45°,∴∠DBE=∠D'BE=22.5°,由①得到∠CDF=∠EBD',∴∠CDF=22.5°,故答案为:22.5°.(2)解:如图2,延长BE交DF于点G,由对称可知,点G是DD'的中点,∠EGD=∠EGD'=90°,∵CD'⊥DF,∴CD'∥BG,∴EG是△DCD'的中位线,∴点E是CD的中点,∴CE=DE=CD=×2=1,∴BE==,由(1)①得,∠EBC=∠FDC,∠ECB=∠EGD=90°,∴△ECB∽△EGD,∴,∴,∴EG=,∴BG=BE+EG=+=,∵EG是△DCD'的中位线,∴CD'=2EG=2×=.(3)以点A为圆心,AD的长为半径作圆弧,与CD和BC的交点即为点E,①如图3,当点E在CD上时,延长AF交DE于点G,由(1)①可得,∠GDF=∠OAF,∵四边形ABCD为菱形,∴AC⊥BD,AO=CO,∠ODC=∠ODA,∴∠OAF=∠ODA,∵AC=2,∴OA=1,∵AD=,∴OD=,∴tan∠OAF=tan∠ODA==,∴,∴OF=;②如图4,当点E在BC上时,延长AF交DE于点G,则∠AGD=90°,∠DAG=∠EAG=∠DAE,∵AD=AB=AE,∴∠AEB=∠ABE,∵四边形ABCD是菱形,∴∠ABO=∠ABE,AD∥BC,∴∠DAE=∠AEB,∴∠ABO=∠DAG,在△AGD和△BOA中,,∴△AGD≌△BOA(AAS),∴DG=AO=1,AG=BO=,∴DG=AO,∵∠F AO=∠FDG,∠FOA=∠FGD,∴△FOA≌△FGD(ASA),∴OF=FG,设OF=FG=x,则DF=﹣x,在Rt△DFG中,DF2=GF2+DG2,∴(﹣x)2=x2+12,解得:x=,∴OF=,综上所述,OF的长为或.【点评】本题考查了矩形的性质、轴对称的性质、旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、解直角三角形,解题的关键是通过菱形的性质和三角形的内角和定理得到∠EBC=∠EDF,从而得到相似三角形或全等三角形,难度较大,需要学生学会利用前面所学的知识解答后面的题目,具有很强的综合性,是中考常考题型.。
北师大版九年级上册数学期末考试试卷附答案
北师大版九年级上册数学期末考试试题一、单选题1.下列方程中没有实数根的是( ) A .2220x x +=-B .2440x x -+=C .()20x x -=D .()213x -=2.矩形、菱形都具有的性质是( ) A .对角线互相垂直 B .对角线互相平分 C .对角线相等 D .对角线互相垂直且相等3.已知反比例函数ky x=经过点A ()3,2、B ()1,m -,则m 的值为( ) A .6-B .23-C .23D .64.身高1.6m 的小刚在阳光下的影长是1.2m ,在同一时刻,阳光下旗杆的影长是l5m ,则旗杆高为( ) A .14米B .16米C .18米D .20米5.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为( )A .14B .13C .12 D .346.如图,D 为△ABC 中AC 边上一点,则添加下列条件不能..判定△ABC△△BDC 的是A .2BC AC CD =⋅B .AB BDAC BC= C .△ABC=△BDC D .△A=△CBD 7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为a ,最多需要正方体个数为b ,则a+b 的值为( )A .14B .15C .16D .178是一元二次方程20x x m -+=的一个根,则方程的另外一根为( )AB 352CD9.赵爽画的“弦图”(如图),体现了数学研究的继承和发展,弦图中四边形ABCD 与EFGH 均为正方形,若,AG BH CE DF a ====,AF BG CH DE b ====且正方形EFGH 的面积为正方形ABCD 的面积的一半,则a :b 的值为( )A.2 BC .2 D.2+10.如图,已知E ,F 分别为正方形ABCD 的边AB 、BC 的中点,AF 与DE 交于点M ,则下列结论:△AF△DE ;△AE EG =;△AM=23MF ;△14AEM ADM S S ∆∆=.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题 11.已知32a b =,则a b a b +-=_______.12.矩形ABCD 的对角线AC 和BD 相交于点O ,△ACB=40°,则△AOB=_________°. 13.一个不透明的袋子中放有若干个红球,小亮往其中放入10个黑球,并采用以下实验方式估算其数量:每次摸出一个小球记录下颜色并放回,实验数据如下表:则袋中原有红色小球的个数约为__________个.14.正比例函数12y x =-和反比例函数2ky x=的图象都经过点A(-1, 2),若12y y >,则x 的取值范围是__________________. 15.已知22320x x --=.则221x x+=_______. 16.如图,菱形ABCD 边长为4,△B=60°,14DE AD =,14BF BC =,连接EF 交菱形的对角线AC 于点O ,则图中阴影部分面积等于________________.17.如图,△ABC 中AB=AC ,A (0,8),C (6,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A→D→C ,点P 在AD 上的运动速度是在CD 上的53倍,要使整个运动时间最少,则点D 的坐标应为____________.18.如图,在平面直接坐标系中,将反比例函数()320y x x =>的图象绕坐标原点O 逆时针旋转45°得到的曲线l ,过点(A ,2B 的直线与曲线l 相交于点C 、D ,则sin△COD=___ .19.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题20.解方程:()(3x x x +=21.小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况. (1)若小明任意按下一个开关,则小明打开走廊灯的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.22.如图,△ABC 中,△ACB=90°,CA=CB=D 、E 为AB 上两点,且△DCE=45°,(1)求证:△ACE△△BDC . (2)若AD=1,求DE 的长.23.如图,一次函数y=ax+b的图像与反比例函数kyx=的图像交于C、D两点,与x、y轴分别交于B、A两点,CE△x轴,且OB=4,CE=3,12 CE BE=(1)求一次函数的解析式和反比例函数的解析式.(2)求△OCD的面积.24.商场购进一批国产高档服装,进价为500元/件,售价为1000元/件时,每天可以出售40件,经市场调查发现每降价50元,一天可以多售出10件.(1)售价为850元时,当天的销售量为多少件?(2)如果每天的利润要比原来多4000元,并使顾客得到更大的优惠,问每件售价为多少元?25.如图,公路旁有两个高度相等的路灯AB、CD,小明上午上学时发现路灯AB在太阳光下的影子恰好落在路牌底部E处,他自己的影子恰好落在路灯CD的底部C处;晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在E处.(1)在图中画出小明的位置(用线段FG表示).(2)若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E恰好2米,求路灯高.26.如图,四边形OABC 为正方形,反比例函数ky x=的图象过AB 上一点E ,BE=2,35AE OE =.(1)求k 的值.(2)反比例函数的图象与线段BC 交于点D ,直线y=ax+b 过点D 及线段AB 的中点F ,探究直线OF 与直线DF 的位置关系,并证明.(3)点P 是直线OF 上一点,当PD +PC 的值最小时,求点P 的坐标.27.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A 、B 、C 、D 四个等次,绘制成如图所示的不完整的统计图,请回答下列问题.(1)a = ,b = ;(2)请将条形统计图补充完整,并计算表示C 等次的扇形所对的圆心角的度数为 ; (3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲乙两名男生同时被选中的概率.28.如图,矩形ABCD 中,点E 在边CD 上,将BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FGCD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若6,10AB AD ==,求四边形CEFG 的面积.参考答案1.A 【分析】分别计算四个方程的根的判别式的值,然后根据根的判别式的意义判断各方程根的情况即可.【详解】解:A .△2(2)4240=--⨯=-<,则方程没有实数解,所以选项符合题意; B .△2(4)440=--⨯=,则方程有两个相等的实数解,所以选项不符合题意;C .方程化为220x x -=,△2(2)4040=--⨯=>,则方程有两个不相等的实数解,所以选项不符合题意;D .方程化为2220x x --=,△2(2)4(2)120=--⨯-=>,则方程有两个不相等的实数解,所以选项不符合题意. 故选:A .【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程20(a 0)++=≠ax bx c 的根与△=-24b ac 有如下关系:当△0>时,方程有两个不相等的实数根;当△0=时,方程有两个相等的实数根;当△0<时,方程无实数根. 2.B 【分析】由矩形的性质和菱形的性质可直接求解.【详解】解:菱形的对角线互相垂直平分,矩形的对角线互相平分且相等, ∴矩形、菱形都具有的性质是对角线互相平分,故选:B .【点睛】本题考查了矩形的性质,菱形的性质,灵活运用这些性质解决问题是解题的关键.3.A 【分析】根据反比例函数图象上点的坐标的特征即可得出答案. 【详解】解:反比例函数ky x=经过点(3,2)A , 326k ∴=⨯=,6y x∴=, 将点(1,)B m -代入反比例函数解析式得:6m =-,故选:A .【点睛】本题主要考查了反比例函数图象上点的坐标的特征,明确同一反比例函数图象上的点的坐标符合=k xy 是解题的关键.4.D 【分析】利用同一时刻身高和影长之比等于旗杆与其影长之比列式计算即可. 【详解】解:设旗杆高为x 米,根据同一时刻身高和影长之比等于旗杆与其影长之比可得: 1.6 1.215x= ,解得:20x ,故旗杆高20米, 故选:D .【点睛】本题考查了相似三角形的应用,能够把实际问题抽象到相似三角形中,利用相似三角形的相似比列出方程计算出结果,是解决本题的关键.5.D 【分析】根据题意画出树状图,共有4种等可能的情况,数出其中两次摸出的数字之积为偶数的情况数,求出概率即可. 【详解】解:画树状图如下:△共有4种等可能的结果,两次摸出的数字之积为偶数的结果有3种,△两次摸出的数字之积为偶数的概率为34,故D 正确.故选:D .【点睛】本题主要考查了画树状图和列表求概率,根据题意画出树状图和列出表格是解题的关键.6.B 【分析】由相似三角形的判定方法依次进行判断,即可得到答案. 【详解】解:△BC 2=AC•CD , △BC CDAC BC=, 又△△C=△C ,△△ABC△△BDC ,故选A 不合题意, △△ABC=△BDC ,△C=△C , △△ABC△△BDC ,故选C 不合题意, △△A=△CBD ,△C=△C ,△△ABC△△BDC ,故选D 不合题意, 故选:B .【点睛】本题考查了相似三角形的判定,掌握相似三角形判定方法是关键.7.C 【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数. 【详解】解:由俯视图可得最底层有5个小正方体,由主视图可得第一列和第三列最少有2个正方体,最多有4个正方体, 那么最少需要527+=个正方体,即7a =. 最多需要549+=个正方体,即9b =. 则7916a b +=+=. 故选:C .【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.C 【分析】利用一元二次方程根与系数的关系求出两根之和,再将已知解代入求出另一解即可.【详解】解:x =是一元二次方程20x x m -+=的一个根,设方程的另一个根为n , △两根的和为:111b a --=-=,1n =,解得:n = 故选:C .【点睛】本题考查一元二次方程根与系数的关系,一次一元二次方程的解,数量掌握根与系数的关系式解决本题的关键.9.D 【分析】根据题意可得正方形EFGH 的面积为2()a b -,正方形ABCD 的面积为22()a b +,然后列出方程求解即可.【详解】解:AG BH CE DF a ====,AF BG CH DE b ====,∴正方形EFGH 的面积为2()a b -,正方形ABCD 的面积为22()a b +,正方形EFGH 的面积为正方形ABCD 的面积的一半,2221()()2a b a b ∴-=+,2240a ab b ∴-+=,∴40a bb a-+=, 设a x b=, 140x x∴-+=, 2410x x ∴-+=,解得12x =22x =,0a b >>,∴1ab>,:a b ∴的值为2故选:D.【点睛】本题考查了勾股定理的应用,正方形的面积,一元二次方程,解题的关键是掌握勾股定理.10.B【分析】先由E,F分别为正方形ABCD的边AB、BC的中点得到AE=BE=BF、△DAE=△ABF=90°、AD=AB,从而得证△DAE△△ABF,进而利用全等三角形的性质得到△BAM+△AEM=90°判定△;假设AE=EG,则AE=BE=EG,则△EBG=△EGB,△EAG=△EGA,从而推出△EAG=45°判定△;由BF=AE=BE得到,然后证明△AEM△△AFB,进而利用相似三角形的性质得到AM=23MF判定△;先证明△AEM△△DAM,然后利用AD=2AE得到14AEMADMSS∆∆=判定△.【详解】解:△E,F分别为正方形ABCD的边AB、BC的中点,△AE=BE=BF,△DAE=△ABF=90°,AD=AB,△△DAE△△ABF(SAS),△△BAF=△ADE,△△ADE+△AED=90°,△△BAM+△AEM=90°,△△AME=90°,故△正确,符合题意;假设AE=EG,则AE=BE=EG,△△EBG=△EGB,△EAG=△EGA,△四边形ABCD是正方形,△△ABD=45°,△△EBG=△EGB=45°,△△BEG=△EAG+△EGA=90°,△△EAG=45°,又△△EAG≠45°,△AE≠EG,故△错误,不符合题意△BF=AE=BE,AB=2AE,△AF =,△△EAM+△AEM=90°,△BAF+△AFB=90°,△△AEM=△AFB ,△△AME=△ABF=90°,△△AEM△△AFB , △AM AE EM AB AF BF==,即2AM AE ,, △MF=AF --AE , △AM=23MF ,故△正确,符合题意;△△AEM+△EAM=90°,△EAM+△DAM=90°,△△AEM=△DAM ,△△EMA=△AMD=90°,△△AEM△△DAM , △2211()()24AEM ADM S AE S AD ∆∆===,故△正确,符合题意; 故选:B .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知相关知识.11.5【分析】根据比例设a=3k ,b=2k ,然后代入比例式进行计算即可得解.【详解】解:△32a b =, △设a=3k ,b=2k , 则32532a b k k a b k k++==--, 故答案为:5.【点睛】本题考查了比例的性质,利用“设k 法”求解更简便.12.80【分析】根据矩形的对角线互相平分且相等可得OB OC =,再根据等边对等角可得OBC ACB ∠=∠,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:矩形ABCD 的对角线AC ,BD 相交于点O ,OB OC ∴=,40OBC ACB ∴∠=∠=︒,404080AOB OBC ACB ∴∠=∠+∠=︒+︒=︒.故答案为:80.【点睛】本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,解题的关键是熟记各性质.13.40【分析】先根据表格中的数据求出摸出红球概率,设袋中原有红色小球的个数为x ,根据求概率公式列出方程求解即可. 【详解】解:由表可知,摸出红球的概率约为45, 设袋中原有红色小球的个数为x , 根据题意,得:4105x x , 解得:x=40,经检验,x=40是所列分式方程的解,故设袋中原有红色小球的个数为40,故答案为40.【点睛】本题考查用频率估计概率、简单的概率计算、解分式方程,求得摸出红球的概率是解答的概率.14.1x <-或01x <<##0<x<1或x<-1【分析】先利用待定系数法求出反比例函数的解析式,再画出两个函数的图象,然后根据正比例函数和反比例函数的图象与性质可得两个函数图象的另一个交点的坐标为(1,2)-,据此结合函数图象即可得出答案.【详解】解:将点(1,2)A -代入反比例函数2k y x =得:122k =-⨯=-, 则反比例函数的解析式为22y x =-, 画出两个函数的图象如下:由函数图象的对称性得:正比例函数12y x =-和反比例函数22y x=-的图象的另一个交点的坐标为(1,2)-,所以结合函数图象得:若12y y >,则x 的取值范围是1x <-或01x <<,故答案为:1x <-或01x <<.【点睛】本题考查了正比例函数和反比例函数的综合,熟练掌握正比例函数和反比例函数的图象与性质是解题关键.15.174【分析】根据22320x x --=.可得2223x x -= ,且0x ≠ ,从而得到132x x -=,再利用完全平方公式,即可求解. 【详解】解:△22320x x --=.△2223x x -= ,且0x ≠ , △223x x -= , △132x x -=, △2213924x x ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭, 即221924x x +-= , △221174x x += . 故答案为:174【点睛】本题主要考查了分式的混合运算,完全平方公式,根据题意得到132x x -=是解题的关键.16AD CD =,//AD BC ,60ABC ADC ∠=∠=︒,由“AAS ”可证AEO CFO ∆≅∆,可得AO CO =,由面积的和差关系可求解.【详解】解:连接CE ,四边形ABCD 是菱形,AD CD ∴=,//AD BC ,60ABC ADC ∠=∠=︒,ADC ∴∆是等边三角形,DAC ACB ∠=∠,24ADC S AD ∆∴=⨯=, 14DE AD =,14BF BC =,AE CF ∴=,在AEO ∆和CFO ∆中,AOE COFEAC BCA AE CF∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEO CFO AAS ∴∆≅∆,AO CO ∴=, 14DE AD =,14CDE ADC S S ∆∆∴==ACE S ∆=,AO CO =,2AOE COE S S ∆∆∴==,∴阴影部分面积=【点睛】本题考查了菱形的性质,等边三角形的性质,灵活运用这些性质解决问题是解题的关键.17.90,2⎛⎫ ⎪⎝⎭【分析】过B 点作BH AC ⊥交于H 点,交AO 于D 点,连接CD ,设P 点的运动时间为t ,在CD 上的运动速度为v ,1()53AD t CD v =+,只需53ADCD +最小即可,再证明ADH ACO ∆∆∽,可得53ADDH =,则当B 、D 、H 点三点共线时,此时t 有最小值,再由BDO ADH ∆∆∽,求出OD 即可求坐标.【详解】解:过B 点作BH AC ⊥交于H 点,交AO 于D 点,连接CD ,AB AC =,BD CD ∴=,设P 点的运动时间为t ,在CD 上的运动速度为v ,点P 在AD 上的运动速度是在CD 上的53倍,1()5533ADCD AD t CD v v v ∴=+=+,90AHD AOC ∠=∠=︒,ADH ACO ∴∆∆∽, ∴ADDHAC CO =,(0,8)A ,(6,0)C ,6OC ∴=,8OA =,10AC ∴=, ∴106AD DH=,53ADDH ∴=,1()t DH CD v∴=+, 当B 、D 、H 点三点共线时,1t BH v=⨯,此时t 有最小值, BDO ADH ∠=∠,DBO OAC ∴∠=∠,BDO ADH ∴∆∆∽, ∴DO OC BO AO=,即668DO =, 92DO ∴=, 9(0,)2D ∴, 故答案为:(90,2). 【点睛】本题考查轴对称求最短距离,三角形相似的判定及性质、解题的关键是熟练掌握轴对称求最短距离和胡不归求最短距离的方法.18【分析】由题(A,(B ,可得OA△OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴,利用方程组求出C 、D 的坐标,根据勾股定理求得OC 、OD 的长,根据S △OCD =S △OBC -S △OBD 计算求得△OCD 的面积,根据三角形面积公式求得CE 的长,然后解直角三角形即可求得sin△COD 的值.【详解】△((A B ,, △A ,,△222AO +BO =AB ,△OA△OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴.在新的坐标系中,A(0,2),B(4,0),△直线AB解析式为y′=-12x′+2,由1'223'2y xyx⎧=-+⎪⎪⎨⎪=⎩'⎪,解得'13'2xy=⎧⎪⎨=⎪⎩或'31'2xy=⎧⎪⎨=⎪⎩,△C(1,32),D(3,12),△S△OCD=S△OBC-S△OBD=1311442 2222⨯⨯-⨯⨯=,△C(1,32),D(3,12),作CE△OD于E,△S△OCD=12OD•CE=2,【点睛】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.19.60.【分析】设△OAC=x,△CAB=y,根据等腰三角形的性质,则△OCA=x,△OBA=x+y,△OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设△OAC=x ,△CAB=y ,△OA=OC ,△△OCA=x ,△OA=OB ,△△OBA=x+y ,△OC=OB ,△△OBC=x+30°,△30ACB ∠=︒,△△CAB+△OBA+△OBC=150°,△y+x+y+ x+30°=150°,△2(x+y)=120°,△△AOB=180°-2△OBA=180°-2(x+y),△△AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.20.1x =22x =-【分析】先把等号右边的项移到等号左边,再利用因式分解法求解.【详解】解:(3)((0x x x +--=,(3)1]0x x -+-=.即(2)0x x +=.△0x =或20x +=,△1x 22x =-.21.(1)13;(2)13.【分析】(1)直接利用概率公式求解,即可求得答案; (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与正好客厅灯和走廊灯同时亮的情况,再利用概率公式即可求得答案.【详解】解:(1)小明任意按下一个开关,正好楼梯灯亮的概率是:13;, (2)画树状图得:△共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,△正好客厅灯和走廊灯同时亮的概率是:2163=. 22.(1)见解析 (2)53DE = 【分析】(1)由等腰直角三角形的性质得出A B ∠=∠,可证明ACE BDC ∽; (2)由勾股定理求出4AB =,由相似三角形的性质得出AC AE BD BC=,可求出DE 的长,则可得出答案.(1)解:证明:90ACB ∠=︒,CA CB =,1(18090)452A B ∴∠=∠=︒-︒=︒, 又45CDB A ACD ACD ACE ACD DCE ∠=∠+∠=︒+∠=∠=∠+∠,ACE BDC ∴∽;(2)解:由勾股定理得4AB =,设DE 长为x ,1AD =,3BD ∴=,1AE x =+,ACE BDC ∽,∴AC AE BD BC=,=, 解得53x =, 即53DE =. 23.(1)一次函数的解析式为122y x =-+,反比例函数的解析式为6y x =- (2)8【分析】(1)根据已知条件求出B 、C 点坐标,用待定系数法求出直线AB 和反比例函数的解析式;(2)由一次函数解析式求得A 的坐标,然后联立一次函数的解析式和反比例的函数解析式可得交点D 的坐标,从而根据三角形面积公式求解.(1) 解:12CE BE =,3CE =, 26BE CE ∴==,4OB =2OE BE OB ∴=-=,(2,3)C ∴-,(4,0)B将(2,3)C -代入k y x=得:236k =-⨯=-; 将(2,3)C -,(4,0)B 代入y ax b =+得2340a b a b -+=⎧⎨+=⎩,解得122a b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为122y x =-+,反比例函数的解析式为6y x =-; (2) 解:122y x =-+ (0,2)A ∴ 由1226y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1123x y =-⎧⎨=⎩,2261x y =⎧⎨=-⎩,(2,3)C -(6,1)D ∴-, ∴114143822COD BOD BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=. 24.(1)售价为850元时,当天的销售量为70件(2)800元【分析】(1)降低50元增加10件,可知若售价为850元时,降低(1000850)50-÷元,进而即可列出算式求解.(2)利润=售价-进价,根据一件商品的利润乘以销售量得到总利润,列出方程求解即可.(1)解:40(1000850)501070+-÷⨯=(件).答:售价为850元时,当天的销售量为70件;(2)解:设每件服装售价x 元,10(500)[(40(1000)]40(1000500)400050x x -⨯+-=⨯-+, 化简得2170072000x x -+=,解得:1800x =,2900x =,使顾客得到尽可能大的实惠,800x ∴=,答:每件应定价800元.25.(1)见解析(2)路灯高3.75米【分析】(1)作出太阳光线BE ,过点C 作BE 的平行线,与DE 的交点即为小明的位置; (2)易得小明的影长,利用EFG EDC ∆∆∽可得路灯CD 的长度.(1)解:如图,FG 就是所求作的线段.(2)上午上学时,高1米的木棒的影子为2米,23CG FG∴==,//FG CD,EFG D∴∠=∠,EGF ECD∠=∠,EFG EDC∴∆∆∽,∴FG EGCD EC=,∴1.525CD=,解得 3.75CD=,∴路灯高3.75米.【点睛】综合考查了中心投影和平行投影的运用,注意平行投影的光线是平行的;用到的知识点为:在相同时间段,垂直于地面的物高与影长是成比例的;两三角形相似,对应边成比例.26.(1)48(2)OF△DF,见解析(3)4080, 1313⎛⎫ ⎪⎝⎭【分析】(1)设AE=3x,则OE=5x,由勾股定理得AO=4x,则3x+2=4x,求出x即可求点E坐标为(6,8),再由E点坐标即可求k 值;(2)求出D(8,6),证明△AOF△△BFD,则△AOF=△BFD,可得△OFD=180°-(△AFO+△BFD)=90°,即可得到OF△DF;(3)延长DF交y轴于点G,连接CG交OF于点P,则点P为所求作点,证明△AFG△△BFD(AAS),得到OF为线段DG的垂直平分线,C(8,0),G(0,10),求出直线CG解析式为y=-54x+10,直线OF为y=2x,联立,即可求出点P的坐标.(1)证明:△四边形OABC是正方形,△AO=AB,△OAB=90°,△35 AEOE=,设AE=3x,则OE=5x,由勾股定理得AO=4x,△3x+2=4x,△x=2,△AE=3x=6,AO=4x=8,△点E坐标为(6,8),△k=6×8=48;(2)解:OF△DF,理由如下:将x=8代入y=48x得y=6,△D(8,6),△BD=BC-CD=8-6=2,△点F是线段AB的中点,△AF=BF=4,△12AF BDAO BF==,△OAF=△FBD=90°,△△AOF△△BFD,△△AOF=△BFD,△△AFO+△BFD=△AFO+△AOF=90°,△△OFD=180°-(△AFO+△BFD)=90°,△OF△DF;(3)(3)延长DF交y轴于点G,连接CG交OF于点P,则点P为所求作点,△四边形OABC 为正方形,△AFG=△BFD ,AF=BF ,△△AFG△△BFD (AAS ),△AG=BD=2,GF=DF ,由(2)得OF△DF ,△OF 为线段DG 的垂直平分线,△PD +PC 的最小值=PG +PC=CG ,△OC=OA=8,△C (8,0),G (0,10),设直线CG 解析式为y=mx+n ,代入C (8,0),G (0,10),得8010m n n +=⎧⎨=⎩,解得5410m n ⎧=-⎪⎨⎪=⎩, △5104y x =-+ 设直线OF 为y=ax ,代入F (4,8),△a=2,△y=2x ,联立直线OF 、CG 得25104y x y x =⎧⎪⎨=-+⎪⎩,解得40138013x y ⎧=⎪⎪⎨⎪=⎪⎩, △点P 的坐标为(4013,8013). 【点睛】本题是反比例函数的综合题,熟练掌握反比例函数的图象及性质,三角形相似的判定与性质,线段垂直平分线的性质是解题的关键.27.(1)2,45;(2)条形统计图补充见解析;72°;(3)甲、乙两名男生同时被选中的概率为16.【分析】(1)用A等次的人数除以它所占的百分比得到调查的总人数,再分别求出a和B等次的人数,然后计算出b的值;(2)先补全条形统计图,然后用360°乘以C等次所占的百分比得到C等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解.【详解】(1)△被调查的总人数为12÷30%=40(人),△a=40×5%=2;b%=40128240---×100%=45%,即b=45;故答案为:2、45;(2)表示C等次的扇形所对的圆心角的度数为360°×840=72°,B等次人数为40﹣12﹣8﹣2=18(人),条形统计图补充为:故答案为:72°;(3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2,所以甲、乙两名男生同时被选中的概率为21 126=.【点睛】本题考查了条形统计图和扇形统计图,概率的求法,解题关键是准确从统计图中获取信息,熟练运用树状图求概率.28.(1)详见解析;(2)203【分析】(1)根据题意可得BCE BFE ≌,因此可得FG EC =,又FG CE ,则可得四边形CEFG 是平行四边形,再根据,CE FE =可得四边形CEFG 是菱形.(2)设EF x =,则,6CE x DE x ==-,再根据勾股定理可得x 的值,进而计算出四边形CEFG 的面积.【详解】(1)证明:由题意可得,BCE BFE ∴≌,△,BEC BEF FE CE ∠=∠=,△FG CE ,△FGE CEB ∠=∠,△FGE FEG ∠=∠,△FG FE =,△FG EC =,△四边形CEFG 是平行四边形,又△,CE FE =△四边形CEFG 是菱形;(2)△矩形ABCD 中,6,10,AB AD BC BF === ,△90,10BAF AD BC BF ∠=︒===,△8AF =,△2DF =,设EF x =,则,6CE x DE x ==-,△90FDE ∠=︒,△()22226x x +-=, 解得,103x =, △103CE =, △四边形CEFG 的面积是:1020233CE DF ⋅=⨯=.。
北师大版九年级(上)期末数学试卷及答案
北师大版九年级(上)期末数学试卷及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.下列关于x的函数是二次函数的是( )B. y=4x3+5A. y=9xC. y=3x−2D. y=2x2−x+13.如图,将一块含45°角的三角板ABC绕点A按逆时针方向旋转到△AB′C′的位置.若∠CAB′=20°,则旋转角的度数为( )A. 20°B. 25°C. 65°D. 70°4.一元二次方程3x2+2x−1=0的根的情况是( )A. 无法确定B. 无实数根C. 有两个相等的实数根D. 有两个不等的实数根5.如图,PA,PB与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=( )A. √3B. 2C. 2√3D. 36.下列事件为随机事件的是( )A. 一个图形旋转后所得的图形与原图形全等B. 直径是圆中最长的弦第2页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………C. 方程ax 2+x =0是关于x 的一元二次方程D. 任意画一个三角形,其内角和为360°7. 一次函数y =x +a 与二次函数y =ax 2−a 在同一平面直角坐标系中的图象可能是( )A. B.C. D.8. 为响应国家传统文化进校园的号召,某校准备购进一批毕加索笔来奖励经典诵读优秀生.某文具超市为让利给学校,经过两次降价,每支毕加索笔单价由121元降为100元,两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A. 121(1−x 2)=100B. 121(1+x)2=100C. 121(1−2x)=100D. 121(1−x)2=1009. 数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB⏜于点D ,测出AB ,CD 的长度,即可计算得出轮子的半径.现测出AB =40cm ,CD =10cm ,则轮子的半径为( )A. 50cmB. 35cmC. 25cmD. 20cm10. 从−1,0,1,2中任取一个数作为a 的值,既要使关于x 的方程x 2+2x −2a =0有实数根,又要满足2a −1<−a +2,则a 符合条件的概率为( )A. 14 B. 12 C. 34 D. 111. 已知⊙O 是正六边形ABCDEF 的外接圆,P 为⊙O 上除C 、D 外任意一点,则∠CPD 的度数为( )A. 30°B. 30°或150°C. 60°D. 60°或120°12. 如图,已知二次函数y =ax 2+bx +c 的图象过点(−1,0)和(m,0),下列结论:①abc <0;②4a +c <2b ;③b =a −am ;④bc =1−1m .其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④第II卷(非选择题)二、填空题(本大题共4小题,共16.0分)13.若点A(1,a)与点B(−1,−2)关于原点对称,则a的值为______.14.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为______ m2(结果取整数).15.已知抛物线y=(x−1)2−4如图1所示,现将抛物线在x轴下方的部分沿x轴翻折,图象其余部分不变,得到一个新图象如图2.当直线y=m与新图象有四个交点时,m的取值范围是______.16.如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2022的值为______.第4页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………三、解答题(本大题共9小题,共98.0分。
北师大版九年级上学期数学《期末考试试题》及答案解析
北师大版数学九年级上学期期末测试卷一.选择题1.在实数2-,3,0,0.5中,最小的数是( )A. 2- B. 3 C. 0 D. 0.5 2.如图,该立体图形的主视图为()A. B.C. D.3. 如图所示,△ABC∽△ACD,且AB=10cm,AC=8cm,则AD的长是()A. 6.4cmB. 6cmC. 2cmD. 4cm4.如图,已知直线AB∥CD,DA⊥CE于点A,若∠D=32°,则∠EAB的度数是()A. 58°B. 78°C. 48°D. 32°5.下列说法错误的是()A. 矩形的对角线互相平分B. 矩形的对角线相等C. 有一个角是直角的四边形是矩形D. 有一个角是直角的平行四边形叫做矩形6.估计5(235-)的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间7.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy y-=⎧⎨-=⎩8.按如图所示的运算程序,能使输出的结果为15的是()A. x=﹣2,y=3B. x=2,y=﹣3C. x=﹣8,y=3D. x=8,y=﹣39.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A. 14B. 20C. 24D. 2710.如图,在平面直角坐标系中,点P在函数y=2x(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣6x(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A. 逐渐变大B. 逐渐变小C. 等于定值16D. 等于定值2411.从﹣2,﹣1,﹣12,1,2这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组2790x x a +≥⎧⎨-<⎩无解,且使分式方程2+2323a a x x ---=﹣1的解为正分数,那么这五个数中所有满足条件的a 的值之和是( ) A. ﹣3B. ﹣52C. ﹣2D. ﹣7212.如图,▱ABCD 中,AB =6,∠B =75°,将△ABC 沿AC 边折叠得到△AB′C ,B′C 交AD 于E ,∠B′AE =45°,则点A 到BC 的距离为( )A. 2B. 2C.36322363+二.填空题13127|132-⎛⎫+ ⎪⎝⎭=_____. 14.2018年,重庆有12家博物馆建成开放,备案博物馆数量达到100家,接待游客超33000000人次,请将数33000000用科学记数法表示为_____.15.一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字﹣1、2、3、4,随机抽取一张卡片不放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为奇数的概率是_____16.在菱形ABCD 中,对角线AC 、BD 交于点O ,点F 为BC 中点,过点F 作FE ⊥BC 于点F 交BD 于点E ,连接CE ,若∠ECA =20°,则∠BDC =_____°.17.A,C,B三地依次在一条笔直的道路上甲、乙两车同时分别从A,B两地出发,相向而行.甲车从A地行驶到B地就停止,乙车从B地行驶到A地后,立即以相同的速度返回B地,在整个行驶的过程中,甲、乙两车均保持匀速行驶,甲、乙两车距C地的距离之和y(km)与甲车出发的间(b)之间的函数关系如图所示,则甲车到达B地时,乙车距B地的距离为_____km.18.某超市促销活动,将A,B,C三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中A,B,C三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A,B,C三种水果6kg,3kg,1kg;乙种方式每盒分别装A,B,C三种水果2kg,6kg,2kg.甲每盒的总成本是每千克A水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%标价后打八折出售,获利为每千克A水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为2:2:5时,则销售总利润率为_____.(利润率=利润÷成本×100%)三.解答题19.化简:(1)(2x﹣y)2﹣(x﹣y)(4x﹣y)(2)2221133 a a aaa a+-⎛⎫÷--⎪++⎝⎭20.如图,等腰△ABC中,AB=AC,∠ACB=72°,(1)若BD⊥AC于D,求∠ABD的度数;(2)若CE平分∠ACB,求证:AE=BC.21.入学考试前,某语文老师为了了解所任教的甲、乙两班学生假期向的语文基础知识背诵情况,对两个班的学生进行了语文基础知识背诵检测,满分100分.现从两个班分别随机抽取了20名学生的检测成绩进行整理,描述和分析(成绩得分用x表示,共分为五组:A.0≤x<80,B.80≤x<85,C.85≤x<90,D.90≤x<95,E.95≤x<100),下面给出了部分信息:甲班20名学生的成绩为:甲组82 85 96 73 91 99 87 91 86 91 87 94 89 96 96 91 100 93 94 99乙班20名学生的成绩在D组中的数据是:93,91,92,94,92,92,92甲、乙两班抽取的学生成绩数据统计表班级甲组乙组平均数91 92中位数91 b众数 c 92 方差41.2 27.3 根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值:a=;b=;c=;(2)根据以上数据,你认为甲、乙两个班中哪个班的学生基础知识背诵情况较好?请说明理由(一条理由即可);(3)若甲、乙两班总人数为125,且都参加了此次基础知识检测,估计此次检测成绩优秀(x≥95)的学生人数是多少?22.若一个三位数t=abc(其中a、b、c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫做原数的差数,记为T(t).例如,539的差数T(539)=953﹣359=594.(1)根据以上方法求出T(268)=,T(513)=;(2)已知三位数 a 1b(其中a>b>1)的差数T( a 1b)=495,且各数位上的数字之和为3的倍数,求所有符合条件的三位数的值.23.在初中阶段的函数学习中我们经历了“确定函数的表达,利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程,在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.已知函数y=2x a+﹣b的定义域为x≥﹣3,且当x=0时y=23﹣2由此,请根据学习函数的经验,对函数y=2x a+﹣b的图象与性质进行如下探究:(1)函数的解析式为:;(2)在给定的平面直角坐标系xOy中,画出该函数的图象并写出该函数的一条性质:;(3)结合你所画的函数图象与y=x+1的图象,直接写出不等式x a+b≤x+1的解集.24.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.25.已知平行四边形ABCD,过点A作BC的垂线,垂足为点E,且满足AE=EC,过点C作AB的垂线,垂足为点F,交AE于点G,连接BG.(1)如图1,若AC=14,CD=4,求BC的长度;(2)如图2取AC上一点Q,连接EQ,在△QEC内取一点,连接QH,EH,过点H作AC的垂线,垂足为点P,若QH=EH,∠QEH=45°.求证:AQ=2HP.26.如图1,平面直角坐标系中,直线AC:y=﹣3x+33与直线AB:y=ax+b交于点A,且B(﹣9,0).(1)若F是第二象限位于直线AB上方的一点,过F作FE⊥AB于E,过F作FD∥y轴交直线AB于D,D为AB中点,其中△DFF的周长是3M为线段AC上一动点,连接EM,求EM+1010MC的最小值,此时y轴上有一个动点G,当|BG﹣MG|最大时,求G点坐标;(2)在(1)的情况下,将△AOC绕O点顺时针旋转60°后得到△A′OC',如图2,将线段OA′沿着x轴平移,记平移过程中的线段OA′为O′A″,在平面直角坐标系中是否存在点P,使得以点O′,A″,E,P为顶点的四边形为菱形,若存在,请求出点P的坐标,若不存在,请说明理由.答案与解析一.选择题1.在实数2-,3,0,0.5中,最小的数是( )A. 2- B. 3 C. 0 D. 0.5【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据题意可得:2-<0<0.5<3,所以最小的数是2-,故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.如图,该立体图形的主视图为()A. B.C. D.【答案】B【解析】【分析】从正面看所得到的图形是主视图,先看主视图有几列,再看每一列有几个正方形.【详解】从正面看可得到左边第一竖列为2个正方形,第二竖列为2个正方形,第三竖列为1个正方形.故选:B.【点睛】本题考查了简单组合体的三视图的知识,从正面看所得到的图形是主视图,找到图形有几列,每一列包含的正方形是解答本题的关键.3. 如图所示,△ABC∽△ACD,且AB=10cm,AC=8cm,则AD的长是()A. 6.4cmB. 6cmC. 2cmD. 4cm【答案】A【解析】试题解析:∵△ABC∽△ACD,∴AC AB AD AC=,∵AB=10cm,AC=8cm,∴8108 AD=,∴AD=6.4.故选A.考点:相似三角形的性质.4.如图,已知直线AB∥CD,DA⊥CE于点A,若∠D=32°,则∠EAB的度数是()A. 58°B. 78°C. 48°D. 32°【答案】A【解析】【分析】直接利用平行线的性质结合垂直的定义得出答案.【详解】∵直线AB∥CD,∠D=32°,∴∠BAD=∠D=32°,∵DA⊥CE,∴∠EAD=∠CAD=90°,∴∠EAB=90°﹣32°=58°.故选:A.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.5.下列说法错误的是()A. 矩形的对角线互相平分B. 矩形的对角线相等C. 有一个角是直角的四边形是矩形D. 有一个角是直角的平行四边形叫做矩形【答案】C【解析】【分析】根据矩形的判定与性质即可得出答案.【详解】解:A、矩形的对角线互相平分;正确;B、矩形的对角线相等;正确;C、有一个角是直角的四边形是矩形;错误;D、有一个角是直角的平行四边形叫做矩形;正确;故选C.点睛:本题主要考查的是矩形的性质与判定,属于基础题型.了解矩形的性质及判定是解题的关键.6.)A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】B【解析】【分析】原式化简后,估算即可得到结果.【详解】原式= 5∵9<15<16∴3.5 4∴2<5<3故选:B.【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道15在9和16之间,在9和16之间.7.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy y-=⎧⎨-=⎩【答案】B【解析】【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:依题意,得:8374 y xy x-=⎧⎨-=-⎩.故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.按如图所示的运算程序,能使输出的结果为15的是()A. x=﹣2,y=3B. x=2,y=﹣3C. x=﹣8,y=3D. x=8,y=﹣3【答案】D【解析】【分析】将几组数字依题意分别代入代数式中,分别计算即可.【详解】解:A. x=﹣2,y=3时,输出的结果为3×(﹣2)+32=3,不符合题意.B. x=2,y=﹣3时,输出的结果为3×2﹣(-3)2=﹣3,不符合题意.C. x=﹣8,y=3时,输出的结果为3×(﹣8)+32=﹣15,不符合题意.D. x=8,y=﹣3时,输出的结果为3×8﹣(﹣3)2=15,符合题意.【点睛】此题主要考查了多项式的计算.注意分清x是否小于等于0是关键.9.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A. 14B. 20C. 24D. 27【答案】D【解析】【分析】根据已知图形得出第n个图形中面积为1的正方形有2+3+4+…+n+1=()32n n+,据此求解可得.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=()32n n+个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:D.【点睛】本题考查了图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.10.如图,在平面直角坐标系中,点P在函数y=2x(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣6x(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A. 逐渐变大B. 逐渐变小C. 等于定值16D. 等于定值24 【答案】C【解析】【分析】根据反比例函数k的几何意义得出S△POC =12×2=1,S矩形ACOD=6,即可得出13PCAC=,从而得出14PCPA=,通过证得△POC∽△PBA,得出2POCPAB116S PCS PA⎛⎫==⎪⎝⎭,即可得出S△PAB=16S △POC=16.【详解】如图,由题意可知S△POC=12×2=1,S矩形ACOD=6,∵S△POC=12OC•PC,S矩形ACOD=OC•AC,∴POCACOD1OC?PC12OC?AC6SS==矩形,∴13PCAC=,∴14PCPA=,∵AB∥x轴,∴△POC∽△PBA,∴2POCPAB116S PCS PA⎛⎫==⎪⎝⎭,∴S△PAB=16S△POC=16,∴△PAB的面积等于定值16.故选:C.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键.11.从﹣2,﹣1,﹣12,1,2这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组279xx a+≥⎧⎨-<⎩无解,且使分式方程2+2323a ax x---=﹣1的解为正分数,那么这五个数中所有满足条件的a的值之和是()A.﹣3 B. ﹣52 C. ﹣2 D. ﹣72【答案】A 【解析】【分析】表示出不等式组的解集,由不等式组无解确定出a的值,代入分式方程计算即可作出判断.【详解】不等式整理得:1x x a≥⎧⎨<⎩,由不等式组无解,得到1212a=-﹣,﹣,,1,分式方程去分母得:223a a x+=+﹣﹣,即:522a x-=把2a=﹣代入得:92x=,符合题意;把1a=﹣代入得:72x=,符合题意;把12a=-代入得:3x=,不是正分数舍去;把1a=代入得:32x=,解为增根舍去;则满足条件a的值之和为:213=﹣﹣﹣.故选:A.【点睛】本题考查了解分式方程和一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.12.如图,▱ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A. 22B. 32C. 36322+D. 363+【答案】C 【解析】【分析】过B′作B′H⊥AD于H,根据等腰直角三角形的性质得到AH=B′H=22AB′,根据折叠的性质得到AB′=AB=6,∠AB′E=∠B=75°,求得∠AEB′=60°,解直角三角形得到HE=3B′H,B′E=26,根据平行线的性质得到∠DAC=∠ACB,推出AE=CE,根据全等三角形的性质得到DE=B′E=26,求得AD=AE+DE=32+36,过A作AG⊥BC于G,根据直角三角形的性质即可得到结论.【详解】过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H=22AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H 26=2,∴HE =3B′H ,B′E =, ∵▱ABCD 中,AD ∥BC , ∴∠DAC =∠ACB , ∵∠ACB =∠ACB′, ∴∠EAC =∠ACE , ∴AE =CE ,∵∠AB′E =∠B =∠D ,∠AEB′=∠CED , ∴△AB′E ≌△CDE (AAS ),∴DE =B′E =,∴AD =AE+DE =, ∵∠AEB′=∠EAC+∠ACE =60°, ∴∠ACE =∠CAE =30°, ∴∠BAC =75°,∴AC =AD =BC ,∠ACB =30°, 过A 作AG ⊥BC 于G ,∴AG =12AC =2, 故选:C .【点睛】本题主要考查了翻折变换的性质及其应用问题,全等三角形的判定和性质,平行四边形的性质,解直角三角形,作出常用的辅助线是解题的关键.二.填空题11|12-⎛⎫+ ⎪⎝⎭=_____.【答案】【解析】 【分析】直接利用负指数幂的性质以及绝对值的性质分别化简得出答案.【详解】原式321=++43=+.故答案为:43+.【点睛】本题主要考查了负指数幂的性质以及绝对值的性质的性质,熟练掌握基本性质是解题关键. 14.2018年,重庆有12家博物馆建成开放,备案博物馆数量达到100家,接待游客超33000000人次,请将数33000000用科学记数法表示为_____. 【答案】3.3×107 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】33000000用科学记数法表示为3.3×107. 故答案为:3.3×107. 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字﹣1、2、3、4,随机抽取一张卡片不放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为奇数的概率是_____ 【答案】23【解析】 【分析】画树状图求出所有等可能的结果数,再找出两次抽取的卡片上数字之和为奇数的结果数,然后根据概率公式求解.【详解】根据题意画树状图如下:∵共有12种等可能的结果数,其中两次抽取的卡片上数字之和为奇数的情况数为8, ∴两次抽取的卡片上数字之和为奇数的概率是:82123=, 故答案为:23. 【点睛】本题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.16.在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠ECA=20°,则∠BDC=_____°.【答案】35【解析】【分析】根据菱形的性质可求出∠DBC和∠BCA的和为90°,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠BDC的度数.【详解】∵四边形ABCD是菱形,∴AC⊥BD,∠BDC=∠DBC.∵EF垂直平分BC,∴∠ECF=∠DBC,∵∠ECA=20°,∴∠BDC=∠DBC=90ECA902022∠︒-︒-︒==35°,故答案为35.【点睛】本题考查了菱形的性质、线段垂直平分线的性质以及三角形外角的性质,熟练掌握相关性质是解题的关键.17.A,C,B三地依次在一条笔直的道路上甲、乙两车同时分别从A,B两地出发,相向而行.甲车从A地行驶到B地就停止,乙车从B地行驶到A地后,立即以相同的速度返回B地,在整个行驶的过程中,甲、乙两车均保持匀速行驶,甲、乙两车距C地的距离之和y(km)与甲车出发的间(b)之间的函数关系如图所示,则甲车到达B地时,乙车距B地的距离为_____km.【答案】150 【解析】 【分析】先根据函数图象提供的信息,求得乙车的速度和甲车的速度,还可以求AB 和AC 的长,根据甲到达B 地的时间,计算乙车距B 地的距离. 【详解】由题意得:A 地到C 地甲走了2个小时,乙走了43个小时, 设甲的速度为/akm h ,则乙的速度为3/2akm h ,根据题意得: 103220032a a ⎛⎫⎛⎫-⨯+= ⎪ ⎪⎝⎭⎝⎭, 解得:60a =,故甲的速度为60km/h ,则乙的速度为90km/h , 则A 、C 两地的距离为:2×60=120km , A 、B 两地的距离为:10603⨯=300, 甲到达B 地的时间为:300560h =, 甲车到达B 地时,乙车距B 地的距离为:3002905150km ⨯⨯﹣=. 故答案为:150【点睛】本题以行程问题为背景,主要考查了一次函数的应用,解决问题的关键是根据函数图象获得关键的信息进行计算求解.在相遇问题中,要注意区分相向而行和同向而行不同的计算方式.18.某超市促销活动,将A ,B ,C 三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中A ,B ,C 三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A ,B ,C 三种水果6kg ,3kg ,1kg ;乙种方式每盒分别装A ,B ,C 三种水果2kg ,6kg ,2kg .甲每盒的总成本是每千克A 水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%标价后打八折出售,获利为每千克A 水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为2:2:5时,则销售总利润率为_____.(利润率=利润÷成本×100%) 【答案】20% 【解析】 【分析】分别设每千克A 、B 、C 三种水果的成本为x 、y 、z ,设丙每盒成本为m ,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x 表示出来即可求解.【详解】设每千克A 、B 、C 三种水果的成本分别为为x 、y 、z ,依题意得:6312.5x y z x ++=,∴3 6.5y z x +=,∴每盒甲的销售利润12.5?20% 2.5x x ==乙种方式每盒成本26221315x y z x x x =++=+=, 乙种方式每盒售价12.5?120%125%20x x =+÷=﹣, ∴每盒乙的销售利润20155x x x ==﹣,设丙每盒成本为m ,依题意得:140%?0.8 1.2m m x +=﹣, 解得:10m x =.∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时, 总成本为:12.5?215?210?5105x x x x ++=, 总利润为:2.5?252 1.2?521x x x x +⨯+=, 销售的总利润率为:21105xx×100%=20%, 故答案为:20%.【点睛】本题主要考查了列方程解应用题的实际应用,分析题意,找到关键叙语,找到合适的等量关系是解决问题的关键.三.解答题19.化简:(1)(2x ﹣y )2﹣(x ﹣y )(4x ﹣y )(2)2221133a a a a a a +-⎛⎫÷-- ⎪++⎝⎭【答案】(1)xy ;(2)2222a aa +-【解析】 【分析】(1)先按照完全平方公式和多项式乘法法则分别计算减号前后的部分,再将其结果合并同类项即可; (2)先对第一个分式的分子进行因式分解,同时对括号内的部分按照分式加减法进行通分运算,再按照分式乘除法的法则进行计算即可.【详解】(1)(2x ﹣y )2﹣(x ﹣y )(4x ﹣y ) =4x 2﹣4xy+y 2﹣(4x 2﹣xy ﹣4xy+y 2) =4x 2﹣4xy+y 2﹣4x 2+5xy ﹣y 2 =xy(2)2221133a a a a a a +-⎛⎫÷-- ⎪++⎝⎭()()()()2132133a a a a a a a +-+--=÷++()22232133a a a a a a a ++--+=÷++ ()22332a a a a a ++=+- 2222a aa +=- 【点睛】本题考查了整式的混合运算以及分式的化简,熟练掌握乘法公式以及运算法则是解题的关键. 20.如图,等腰△ABC 中,AB=AC ,∠ACB=72°,(1)若BD ⊥AC 于D ,求∠ABD 的度数; (2)若CE 平分∠ACB ,求证:AE=BC .【答案】(1)54°;(2)见解析【解析】【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB=72°,然后计算出∠DBC,即可计算∠ABD的度数;(2)根据角平分线的性质计算有关度数,分别证明AE=EC 和BC=CE即可.【详解】(1)∵等腰△ABC中,AB=AC,∠ACB=72°,∴∠ABC=∠ACB=72°,∵BD⊥AC于D,∴∠DBC=90°-72°=18°,∴∠ABD=72°-18°=54°;(2)∵等腰△ABC中,AB=AC,∠ACB=72°,∴∠ABC=∠ACB=72°,∠A=36°∵CE平分∠ACB,∴∠ACE=∠ECB=36°,∴∠A=∠ACE,∴AE=EC,∠BEC=72°∵∠ABC=72°,∴∠ABC=∠BEC,∴BC=CE,∴AE=BC.【点睛】本题考查了等腰三角形的定义与判定、角平分线的性质,掌握性质是关键.21.入学考试前,某语文老师为了了解所任教的甲、乙两班学生假期向的语文基础知识背诵情况,对两个班的学生进行了语文基础知识背诵检测,满分100分.现从两个班分别随机抽取了20名学生的检测成绩进行整理,描述和分析(成绩得分用x表示,共分为五组:A.0≤x<80,B.80≤x<85,C.85≤x<90,D.90≤x<95,E.95≤x<100),下面给出了部分信息:甲班20名学生的成绩为:乙班20名学生的成绩在D组中的数据是:93,91,92,94,92,92,92甲、乙两班抽取的学生成绩数据统计表班级甲组乙组平均数91 92中位数91 b众数 c 92方差41.2 27.3根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值:a=;b=;c=;(2)根据以上数据,你认为甲、乙两个班中哪个班的学生基础知识背诵情况较好?请说明理由(一条理由即可);(3)若甲、乙两班总人数为125,且都参加了此次基础知识检测,估计此次检测成绩优秀(x≥95)的学生人数是多少?【答案】(1)40,92.5,91;(2)乙班,乙班的平均分,中位数都高于甲班;(3)44【解析】【分析】(1)根据D组数据求得D组所占的百分比求出a,根据中位数和众数的概念求出c d、;(2)根据平均数和中位数性质解答;(3)用样本估计总体,得到答案.【详解】(1)1﹣5%﹣10%﹣10%﹣720=40%,∴a=40;由统计表中数据可知b=92932=92.5,成绩为91的在甲班20名学生的成绩中出现了4次,最多,∴c=91;故答案为:40,92.5,91;(2)乙班的学生基础知识背诵情况较好,理由:乙班的平均分,中位数都高于甲班; (3)甲班20名学生中成绩优秀(x≥95)的学生人数有:6人, 乙班20名学生中成绩优秀(x≥95)的学生人数有:2040%8⨯=人, ∴125×6840+≈44, 答:估计此次检测成绩优秀(x≥95)的学生人数是44人.【点睛】本题主要考查了读扇形统计图的能力和利用统计图获取信息的能力,还考查了包括平均数、中位数、众数、方差的意义.利用统计图获取信息时,必须认真观察、分析、研究统计图,从中得到必要的信息是解决问题的关键.22.若一个三位数t =abc (其中a 、b 、c 不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫做原数的差数,记为T (t ).例如,539的差数T (539)=953﹣359=594.(1)根据以上方法求出T (268)= ,T (513)= ;(2)已知三位数 a 1b (其中a >b >1)的差数T ( a 1b )=495,且各数位上的数字之和为3的倍数,求所有符合条件的三位数的值. 【答案】(1)594,396;(2)615,612 【解析】 【分析】(1)根据T (t )的求法,直接代入求解;(1a b )(2)将T (1a b )用代数式表示为99a ﹣99,确定a ;再由a >b >1,确定b 的可能取值,初步确定符合条件的三位数;最后结合各数位上的数字之和为3的倍数,准确得到符合条件的三位数. 【详解】(1)T (268)862268594==﹣; T (513)531135396==﹣; 故答案为594,396;(2)T (1a b )=11100101100109999495ab ba a b b a a -=++==﹣﹣﹣﹣, ∴6a =, ∵a >b >1,∴b 的可能值为5,4,3,2,∴这个三位数可能是615,614,613,612,∵各数位上的数字之和为3的倍数, ∴615,612满足条件,∴符合条件的三位数的值为615,612.【点睛】本题主要应用“差数”的定义和整式的加减、有理数的加法、新定义,先将三位“差数”进行预选,然后再从中筛选出符合题意的数.解答本题的关键是明确题意,利用题目中的新定义解答.23.在初中阶段的函数学习中我们经历了“确定函数的表达,利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程,在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.已知函数y =2x a +﹣b 的定义域为x≥﹣3,且当x =0时y =23﹣2由此,请根据学习函数的经验,对函数y =2x a +﹣b 的图象与性质进行如下探究:(1)函数的解析式为: ;(2)在给定的平面直角坐标系xOy 中,画出该函数的图象并写出该函数的一条性质: ; (3)结合你所画的函数图象与y =x+1的图象,直接写出不等式x a +b≤x+1的解集.【答案】(1)y =3x +2;(2)当x ≥﹣3时,y 随x 的增大而增大;(3)x≥1 【解析】 【分析】(1)根据在函数y =y =x a +b 中,根据函数y =x a +b 的定义域为x≥﹣3,当x =0时y =3﹣2,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质; (3)根据图象可以直接写出所求不等式的解集. 【详解】(1)∵0x a +≥, ∴x a ≥﹣, ∵函数y =x a +b 的定义域为3x ≥﹣, ∴3a =,∵当0x =时,232y =﹣, ∴23﹣2=23﹣b , ∴2b =,∴函数的解析式为:232y x =+﹣; 故答案为:y =23x +﹣2; (2)x-3 -2 -1 0 1 2 3 y-20.81.522.52.9描点,按顺序连线该函数的图象如下图所示:性质是当3x ≥﹣时,y 随x 的增大而增大; 故答案为:当x≥﹣3时,y 随x 的增大而增大; (3)如图,由函数图象可得, 不等式x a +b≤x+1的解集是x≥1.【点睛】本题考查了函数的应用、一元一次不等式与函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该。
北师大版数学九年级上学期《期末考试题》含答案
北师大版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________满分150分时间120分钟A卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(2020•十堰)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱2.(2020春•雨花区校级期末)关于x的方程(m﹣3)x m2−2m−1−mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣13.(2019秋•长清区期末)如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长4.(2019秋•龙华区期末)如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A.22.5°B.30°C.45°D.67.5°5.(2020•大通区模拟)如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()A.4:9B.2:5C.2:3D.√2:√36.(2020春•阿城区期末)正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直7.(2020•宜城市模拟)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.112B.16C.14D.128.(2020春•安庆期末)若关于x的一元二次方程bx2+2bx+4=0有两个相等的实数根,则b的值为() A.0B.4C.0或4D.0或﹣49.(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A .2B .3C .4D .103 10.(2019秋•阜南县期末)若双曲线y =k−3x 在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( )A .k ≠3B .k <3C .k ≥3D .k >3二.填空题(共4小题,满分16分,每小题4分)11.(2019春•左贡县期中)有一个角是直角的平行四边形是 ;有一组邻边相等的平行四边形是 ;四条边都相等,四个角都是直角的四边形是 .12.(2020•浙江自主招生)如图,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为 .13.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①AF FD =12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD ,其中一定正确的是 .(填序号)14.若关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有实数根,则m 的取值范围是 .三.解答题(共6小题,满分54分)15.(12分)(1)解方程:x2﹣2x﹣24=0.(2)已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.16.(8分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.(1)试判断四边形BEGF的形状并说明理由.(2)求AEPG的值.17.(8分)(2020•宿州模拟)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.18.(8分)已知关于x的一元二次方程(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,求k的值.方程是否还有其它根?如果有,试求出来.19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有人,若该居民区有8000人,估计整个居民区爱吃D粽的有人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.20.(10分)(2019•晋江市一模)在我国古代数学著作《九章算术》中,有一名题如下:今有木去人不知远近,立四表,相去各一丈,令左两表与所望参相直,从后右表望之,入前右表三寸.问木去人几何?可译为:有一棵树C与人(A处)相距不知多远,立四根标杆A、B、G、E,前后左右的距离各为1丈(即四边形ABGE是正方形,且AB=100寸),使左两标杆A、E与所观察的树C三点成一直线.又从后右方的标杆B观察树C,测得其“入前右表”3寸(即FG=3寸),问树C与人所在的A处的距离有多远?B卷(共50分)四.填空题(共5小题,满分20分,每小题4分)21.(2020•高邮市一模)如图,由10个完全相同的小正方体堆成的几何体中,若每个小正方体的边长为2,则主视图的面积为.22.(2019秋•天峨县期末)关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0有一根为0,则m的值为.23.如图,点P的坐标为(6,4),PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=kx的图象交PM于点A,交PN于点B,若四边形OAPB的面积为18,则k=.24.(2019秋•莲湖区期末)如图,已知AD:DB=2:1,CE:EA=2:3,则CF:DF=.25.(2020•浙江自主招生)如图,在菱形ABCD中,AB=BD=2,点E,F分别在边CD,BC上,且BF=CE.连接BE,DF相交于点H,连接AH,BD相交于点G.若BF:FC=2:1,则AH=.五.解答题(共3小题,满分30分)26.(8分)某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,请仔细观察并找出规律,解答下列问题:(1)按照此规律,摆第n图时,需用火柴棒的根数是多少?(2)求摆第50个图时所需用的火柴棒的根数;(3)按此规律用1202根火柴棒摆出第n个图形,求n的值.27.(10分)如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.28.(12分)(2019•达拉特旗一模)如图,一次函数y=−12x+3的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.(1)求反比例函数的解析式;(2)在y轴上求一点P,使P A+PB的值最小,并求出其最小值和P点坐标.答案与解析A卷(共100分)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020•十堰)某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱[解析]解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.2.(3分)(2020春•雨花区校级期末)关于x的方程(m﹣3)x m2−2m−1−mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣1[解析]解:由题意得:m2﹣2m﹣1=2,m﹣3≠0,解得m=﹣1或m=3.m=3不符合题意,舍去,所以它的一次项系数﹣m=1.故选:B.3.(3分)(2019秋•长清区期末)如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长[解析]解:当他远离路灯走向B 处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A .4.(3分)(2019秋•龙华区期末)如图,已知四边形ABCD 是正方形,E 是AB 延长线上一点,且BE =BD ,则∠BDE 的度数是( )A .22.5°B .30°C .45°D .67.5°[解析]解:∵BE =DB ,∴∠BDE =∠E ,∵∠DBA =∠BDE +∠BED =45°∴∠BDE =12×45°=22.5°.故选:A .5.(3分)(2020•大通区模拟)如图,四边形ABCD 和A 'B 'C 'D '是以点O 为位似中心的位似图形,若OA :OA '=2:3,则四边形ABCD 与A 'B 'C 'D '的面积比是( )A .4:9B .2:5C .2:3D .√2:√3[解析]解:∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA :OA ′=2:3, ∴DA :D ′A ′=OA :OA ′=2:3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为:(23)2=49,故选:A.6.(3分)(2020春•阿城区期末)正方形具有而菱形不具有的性质是()A.对角线互相平分B.对角线相等C.对角线平分一组对角D.对角线互相垂直[解析]解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的对角线不一定相等,而正方形的对角线一定相等.故选:B.7.(3分)(2020•宜城市模拟)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.112B.16C.14D.12[解析]解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,所以两次都摸到白球的概率是2 12=16,故选:B.8.(3分)(2020春•安庆期末)若关于x的一元二次方程bx2+2bx+4=0有两个相等的实数根,则b的值为() A.0B.4C.0或4D.0或﹣4[解析]解:根据题意得:△=(2b)2﹣4×4×b=4b2﹣16b=0,解得b=4或b=0(舍去).故选:B.9.(3分)(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A .2B .3C .4D .103[解析]解:∵直线l 1∥l 2∥l 3,∴AB BC=DE EF,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103, 故选:D .10.(3分)(2019秋•阜南县期末)若双曲线y =k−3x在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .k ≠3B .k <3C .k ≥3D .k >3[解析]解:∵双曲线y =k−3x 在每一个象限内,y 随x 的增大而减小,∴k ﹣3>0∴k >3故选:D . 二.填空题(共4小题,满分16分,每小题4分)11.(4分)(2019春•左贡县期中)有一个角是直角的平行四边形是 矩形 ;有一组邻边相等的平行四边形是 菱形 ;四条边都相等,四个角都是直角的四边形是 正方形 .[解析]解:有一个角是直角的平行四边形是矩形;有一组邻边相等的平行四边形是菱形;四条边都相等,四个角都是直角的四边形是正方形.故答案为:矩形;菱形;正方形.12.(4分)(2020•浙江自主招生)如图,有五张点数分别为2,3,7,8,9的扑克牌,从中任意抽取两张,则其点数之积是偶数的概率为710.[解析]解:根据题意,当不考虑抽牌顺序时,可以画出如下的树形图从上图可以看出,从五张牌中任意抽取两张,共有10种抽法,其中抽取的点数之积是偶数的有7种,所以点数之积是偶数的概率:P =710.故答案为:710. 13.(4分)如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF=4,则下列结论:①AF FD=12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD ,其中一定正确的是①②③ .(填序号)[解析]解:∵在▱ABCD 中,AO =12AC ,∵点E 是OA 的中点,∴AE =13CE ,∵AD ∥BC ,∴△AFE ∽△CBE ,∴AFBC =AECE =13,∵AD =BC ,∴AF =13AD ,∴AF FD =12;故①正确;∵S △AEF =4,S △AEF S △BCE=(AF BC)2=19,∴S △BCE =36;故②正确;∵EF BE=AE CE=13,∴S △AEFS △ABE=13,∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误, 故答案为:①②③.14.(4分)若关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有实数根,则m 的取值范围是 m ≥1 .[解析]解:①当m﹣3=0,即m=3时,该方程是一元一次方程,符合题意;②当m﹣3≠0,即m≠3时,△=(﹣4)2﹣4(m﹣3)×(﹣2)≥0,整理,得m﹣1≥0,解得m≥1.则m≥1且m≠3.综合①②知,m的取值范围是:m≥1.三.解答题(共6小题,满分54分)15.(12分)(1)解方程:x2﹣2x﹣24=0.(2)已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a﹣2b+3c的值.[解析]解:(1)∵x2﹣2x﹣24=0,∴(x﹣6)(x+4)=0,即x﹣6=0或x+4=0,解得:x1=6,x2=﹣4.(2)∵a:b:c=2:3:4,∴设a=2k,则b=3k,c=4k.∵2a+3b﹣2c=10,∴4k+9k﹣8k=10,解得:k=2,∴a=2,b=6,c=8,∴a﹣2b+3c=4﹣12+24=16.16.(8分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.(1)试判断四边形BEGF的形状并说明理由.(2)求AEPG的值.[解析]解(1)四边形BEGF是菱形,理由如下:∵∠GAH=∠BAH,AH=AH,∠AHG=∠AHB=90°,∴△AHG≌△AHB,∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB,∵∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四边形BEGF是菱形.(2)设OA =OB =OC =a ,菱形BEGF 的边长为b .∵四边形BEGF 是菱形,∴GF ∥OB ,∴∠CGF =∠COB =90°,∴∠GFC =∠GCF =45°,∴CG =GF =b ,∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°∵BH ⊥AF ,∴∠GAH +∠AGH =90°=∠OBG +∠AGH .∴∠GAH =∠OBG ,∴△OAE ≌△OBG .∴OG =OE =a ﹣b .∵在Rt △GOE 中,GE =√2OG ,∴b =√2(a ﹣b ),整理得a =2+√22b . ∴AC =2a =(2+√2)b ,AG =AC ﹣CG =(1+√2)b .∵PC ∥AB ,∴BGPG =AGCG =(1+√2)bb=1+√2,由△OAE ≌△OBG 得AE =BG ,∴AE PG=1+√2.17.(8分)(2020•宿州模拟)如图,已知反比例函数y =kx 的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ).(1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.[解析]解:(1)把A 点(1,4)分别代入反比例函数y =k x,一次函数y =x +b ,得k =1×4,1+b =4,解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x的图象上,∴n =4−4=−1; (2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3), ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.18.(8分)已知关于x的一元二次方程(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,求k的值.方程是否还有其它根?如果有,试求出来.[解析]解:由题意,(k﹣1)x2﹣k2x﹣1=0的一个根是﹣1,分析有k﹣1+k2﹣1=0,即k2+k﹣2=0,(2分)解得,k1=﹣2,k2=1(不合题意,舍去),∴k=﹣2,(3分)当k=﹣2时,原方程化为:3x2+4x﹣1=0,(4分)∴x1=−1,x2=−13,(5分)∴另一根是x2=−13.(6分)19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有600人,若该居民区有8000人,估计整个居民区爱吃D粽的有3200人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.[解析]解:(1)根据题意得:240÷40%=600(人);根据题意得:8000×40%=3200(人);故答案为:600;3200;(2)A的人数为600×30%=180(人);C的人数600﹣180﹣60﹣240=120(人);如图:(3)列树状图如下:P=612=0.5.20.(10分)(2019•晋江市一模)在我国古代数学著作《九章算术》中,有一名题如下:今有木去人不知远近,立四表,相去各一丈,令左两表与所望参相直,从后右表望之,入前右表三寸.问木去人几何?可译为:有一棵树C与人(A处)相距不知多远,立四根标杆A、B、G、E,前后左右的距离各为1丈(即四边形ABGE是正方形,且AB=100寸),使左两标杆A、E与所观察的树C三点成一直线.又从后右方的标杆B观察树C,测得其“入前右表”3寸(即FG=3寸),问树C与人所在的A处的距离有多远?[解析]解:∵四边形ABGE 是正方形,∴∠A =∠G =90°,AE ∥BG ,∴∠ACB =∠GBF .∴△BAC ∽△FGB .∴AB GF=AC GB.又AB =BG =100寸,FG =3寸.∴1003=AC 100.解得AC =100003. 答:树C 与人所在的A 处的距离为100003寸.B 卷(共50分)四.填空题(共5小题,满分20分,每小题4分)21.(4分)(2020•高邮市一模)如图,由10个完全相同的小正方体堆成的几何体中,若每个小正方体的边长为2,则主视图的面积为 24 .[解析]解:主视图有3列,每列小正方数形数目分别为3,2,1;左视图有3列, ∴主视图的面积为:2×2×(3+2+1)=24.故答案为:24.22.(4分)(2019秋•天峨县期末)关于x 的一元二次方程(m ﹣3)x 2+x +m 2﹣9=0有一根为0,则m 的值为 ﹣3 . [解析]解:把x =0代入方程(m ﹣3)x 2+x +m 2﹣9=0得m 2﹣9=0,解得m 1=3,m 2=﹣3, 而m ﹣3≠0,所以m 的值为﹣3.故答案为﹣3.23.(4分)如图,点P 的坐标为(6,4),PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B ,若四边形OAPB 的面积为18,则k = 6 .[解析]解:∵点P (6,4),∴点A 的横坐标为6,点B 的纵坐标为4,代入反比例函数y =kx 得,点A 的纵坐标为k6,点B 的横坐标为k4,即AM =k 6,NB =k 4,∵S 四边形OAPB =16,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =16,6×4−12×6×k 6−12×4×k4=18,解得:k =6.故答案为:6.24.(4分)(2019秋•莲湖区期末)如图,已知AD :DB =2:1,CE :EA =2:3,则CF :DF = 2:1 .[解析]解:过D 作DM ∥AC ,交BE 于M ,∵DM ∥AC ,∴△BMD ∽△BEA ,∴DM AE=BD AB,∵AD :DB =2:1,∴DM AE=BD AB=11+2=13,即AE =3DM ,∵CE :EA =2:3,∴CE =2DM ,∵DM ∥AC ,∴△DMF ∽△CEF ,∴CFDF=CE DM=2DM DM=21,故答案为:2:1.25.(4分)(2020•浙江自主招生)如图,在菱形ABCD 中,AB =BD =2,点E ,F 分别在边CD ,BC 上,且BF =CE .连接BE ,DF 相交于点H ,连接AH ,BD 相交于点G .若BF :FC =2:1,则AH = 6√77.[解析]解:取CD的中点M,连接BM;设CF=2λ,则F=4λ,BC=6λ;∵四边形ABCD为菱形,∴AB=BC=CD,而AB=BD=2,∴BC=CD=BD=2,△BCD为等边三角形,∴CM=3λ,BM=3√3λ;∵CE=BF=4λ,ME=λ;由勾股定理得:BE2=BM2+EM2,∴BE=2√7λ;在△BDF与△CBE中,{BF=CE∠DBF=∠BCEBD=BC,∴△BDF≌△CBE(SAS),∴∠BDF=∠CBE,∴∠BHF=∠BDF+∠DBE=∠CBE=∠CBE+∠DBE=60°,∴△BFH∽△BEC,∴BFBE=BHBC,∵BF=CE,BC=AB,∴CEBE =BHAB,即CEBH=BEAB;∵AB∥CD,∴∠BEC=∠ABH,∴△BCE∽△AHB,∴BCAH =BEAB,即6λAH=2√7λ6λ,∴AH=18√7λ7,而6λ=2,∴AH=6√77,故答案为6√77.五.解答题(共3小题,满分30分)26.(8分)某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,请仔细观察并找出规律,解答下列问题:(1)按照此规律,摆第n图时,需用火柴棒的根数是多少?(2)求摆第50个图时所需用的火柴棒的根数;(3)按此规律用1202根火柴棒摆出第n个图形,求n的值.[解析]解:(1)第n个图需要的火柴棒根数为:8+6(n﹣1)=6n+2.(2)当n=50时,6n+2=6×50+2=302(根)即摆第50个图时需用火柴棒302根.(3)6n+2=1202,解得:n=200.∴用1202根火柴棒摆出第n个图形,n为200.27.(10分)如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.[解析]解:BE⊥EF.理由如下:设正方形ABCD的边长为4a,∵E是AD的中点,DF=14DC,∴AE=DE=2a,DF=a,∵ABDE=4a2a=2,AEDF=2a a =2,∴ABDE=AEDF,而∠BAE=∠EDF,∴△ABE∽△DEF,∴∠AEB=∠EFD,∵∠EFD+∠DEF=90°,∴∠AEB+∠DEF=90°,∴∠BEF=90°,∴BE⊥EF.28.(12分)(2019•达拉特旗一模)如图,一次函数y=−12x+3的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.(1)求反比例函数的解析式;(2)在y轴上求一点P,使P A+PB的值最小,并求出其最小值和P点坐标.[解析]解:(1)设A 点的坐标为(a ,b ),则OM =a ,AM =b ,∵△AOM 面积为2,∴12ab =2, ∴ab =4,∵点A 在反比例函数图象上,∴k =4,∴反比例函数的解析式为y =4x ;(2)依题意可知,A 、B 两点的坐标为方程组{y =−12x +3y =4x的解, 解方程组得:点A 的坐标为(2,2),点B 的坐标为(4,1),点A 关于y 轴的对称点A ′的坐标为(﹣2,2),连接A ′B ,交y 轴于点P ,点P 即为所求,此时P A +PB 最小,最小值为A ′B 的长.由勾股定理得:A ′B =√(4+2)2+(2−1)2=√37.设直线A ′B 的解析式为y =kx +b ,代入A ′,B 的坐标得{2=−2k +b 1=4k +b ,解得:{k =−16b =53, ∴y =−16x +53,点P 的坐标为(0,53).。
北师大版九年级(上)期末数学试卷(含答案)
北师大版九年级(上)期末数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12B .13C .14D .254.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的面积始终等于433;④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= .8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是 . 9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 名学生.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 度.11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值之和为 .12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 .三、解答题(本大题共5小题,每小题6分,共30分) 13.(6分)解方程: (1)2(21)9x +=; (2)2(4)3(4)x x +=+.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足. (1)求证:BE DF =;(2)求证:四边形AECF 是矩形.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒. (1)求k 的值及B 点坐标; (2)求ABC ∆的面积.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图 (1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =; (1)求证:BDE C ∠=∠; (2)求证:2AD AE AB =.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?22.(9分)对于两个不相等的有理数a,b,我们规定符号{max a,}b表示a,b中的较大值,如{2max,3}2-=,{1max-,0}0=.请解答下列问题:(1)2{1,1}5max--=;(2)如果{max x,2}x x-=,求x的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值. 六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合 (1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A .菱形既是轴对称图形又是中心对称图形,故此选项符合题意;B .平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C .等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意;D .等腰梯形是轴对称图形不是中心对称图形,故此选项不合题意.故选:A .【点评】本题考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义是解此题的关键. 2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-【分析】根据根与系数的关系得到121x x +=,122x x =-,然后利用整体代入的方法计算121(1)(1)x x x ++-的值. 【解答】解:根据题意得121x x +=,122x x =-, 所以1211212(1)(1)111(2)4x x x x x x x ++-=++-=+--=. 故选:A .【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a+=-,12cx x a=. 3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12 B .13C .14D .25【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让灯泡1L 发光的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:共有6种等可能的结果,能让灯泡1L 发光的有2种情况,∴能让灯泡1L 发光的概率为2163=, 故选:B .【点评】本题考查了列表法、树状图法求概率,画出树状图得出所有可能出现的结果情况是正确解答的关键. 4.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m【分析】利用平行得出三角形相似,运用相似比即可解答. 【解答】解://AB DE ,∴AB CBDE CD =, ∴40.87h=, 1.4h m ∴=,经检验: 1.4h =是原方程的根. 故选:D .【点评】此题主要考查了相似三角形的判定,根据已知得出AB CBDE CE=是解决问题的关键. 5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--【分析】首先根据A 点所在位置设出A 点坐标为(,)m m 再根据2AO =,利用勾股定理求出m 的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式. 【解答】解:A 在直线y x =上,∴设(,)A m m ,2OA =222(2)m m ∴+=,解得:1(1m m =±=-舍去), 1m ∴=,(1,1)A ∴,∴平移后的抛物线解析式为:2(1)1y x =-+,故选:C .【点评】此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的433④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4【分析】连接OB 、OC ,如图,利用等边三角形的性质得30ABO OBC OCB ∠=∠=∠=︒,再证明BOD COE ∠=∠,于是可判断BOD COE ∆≅∆,所以BD CE =,OD OE =,则可对①进行判断;利用BOD COE S S ∆∆=得到四边形ODBE 的面积14333ABC S ∆==则可对③进行判断;作OH DE ⊥,如图,则DH EH =,计算出23ODE S ∆=,利用ODE S ∆随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于BDE ∆的周长443BC DE DE OE =+=+=,根据垂线段最短,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB 、OC ,如图, ABC ∆为等边三角形, 60ABC ACB ∴∠=∠=︒,点O 是ABC ∆的中心,OB OC ∴=,OB 、OC 分别平分ABC ∠和ACB ∠,30ABO OBC OCB ∴∠=∠=∠=︒120BOC ∴∠=︒,即120BOE COE ∠+∠=︒,而120DOE ∠=︒,即120BOE BOD ∠+∠=︒, BOD COE ∴∠=∠,在BOD ∆和COE ∆中 BOD COEBO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, BOD COE ∴∆≅∆,BD CE ∴=,OD OE =,所以①正确; BOD COE S S ∆∆∴=,∴四边形ODBE 的面积21134433343OBC ABC S S ∆∆===⨯⨯=,所以③正确; 作OH DE ⊥,如图,则DH EH =,120DOE ∠=︒,30ODE OEH ∴∠=∠=︒,12OH OE ∴=,332HE OH OE ==, 3DE OE ∴=,21133224ODE S OE OE OE ∆∴=⋅⋅=, 即ODE S ∆随OE 的变化而变化,而四边形ODBE 的面积为定值,ODE BDE S S ∆∆∴≠;所以②错误;BD CE =,BDE ∴∆的周长443BD BE DE CE BE DE BC DE DE OE =++=++=+=+=+,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,此时233OE =, BDE ∴∆周长的最小值426=+=,所以④正确.故选:C .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= 75︒ . 【分析】直接利用绝对值的非负性和偶次方的非负性得出1sin 02α-=,tan 10β-=,再结合特殊角的三角函数值得出答案.【解答】解:21|sin |(tan 1)02αβ-+-=, 1sin 02α∴-=,tan 10β-=, 1sin 2α∴=,tan 1β=, 30α∴=︒,45β=︒,则304575αβ+=︒+︒=︒.故答案为:75︒.【点评】此题主要考查了特殊角的三角函数值以及非负数的性质,正确记忆特殊角的三角函数值是解题关键.8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(1,3)-- .【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(1,3)--.故答案为:(1,3)--.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 40 名学生.【分析】设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,利用九(1)班共用去贺卡的数量=人数⨯每人送出新年贺卡的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,依题意得:(1)1560x x -=,整理得:215600x x --=,解得:140x =,239x =-(不合题意,舍去),∴九(1)班有40名学生.故答案为:40.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 15度.【分析】利用菱形的性质得出DCB∠的度数,进而得出答案.∠的度数,再利用等腰三角形的性质得出DCF【解答】解:菱形ABCD中,60∠=︒,DF DC=,DAB∠=∠,AB CD,DFC DCF∴∠=︒,//60BCD⊥于点E,DF AB90∴∠=︒,FDCDFC DCF∴∠=∠=︒,45菱形ABCD中,DCA ACB∠=∠,∴∠=∠=︒,30DCA ACB︒-︒=︒.ACF∴∠的度数为:453015故答案为:15︒.【点评】此题主要考查了菱形的性质以及等腰三角形的性质等知识,得出45∠=∠=︒是解题关键.DFC DCF11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为38.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:主视图最右边可能有4或5或6个小正方体;由主视图最左边看到只有一列,俯视图也只有一列,则左边有一个小正方体;主视图中间有两列,俯视图亦有两列,则中间可以有3或4个小正方形.n∴的值可能为:1438++=,16411++=,++=,15410++=,1539++=,16310++=,1449则n的所有可能的值之和89101138=+++=.故本题答案为:38.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 4或8或43 .【分析】如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心画O 交CD 于3P .只要证明12330EPF FP F FP E ∠=∠=∠=︒,即可推出14FP =,28FP =,343FP=解决问题. 【解答】解:如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心OE 的长度为半径,画O 交CD 于3P .四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,2BF =,23BE =4AF =,43AD =3tan tan FEB ADF ∴∠=∠=, 30ADF FEB ∴∠=∠=︒, 易知4EF OF OD ===,OEF ∴∆是等边三角形,12330EPF FP F FP E ∴∠=∠=∠=︒, 14FP ∴=,28FP=,343FP =, 故答案为4或8或3【点评】本题考查矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程:(1)2(21)9x +=;(2)2(4)3(4)x x +=+.【分析】(1)两边直接开平方,继而得到两个关于x 的一元一次方程,解之即可;(2)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x 的一元一次方程,再进一步求解即可.【解答】解:(1)2(21)9x +=,213x ∴+=或213x +=-,解得11x =,22x =-;(2)2(4)3(4)x x +=+,2(4)3(4)0x x ∴+-+=,则(4)(1)0x x ++=,40x ∴+=或10x +=,解得14x =-,21x =-.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足.(1)求证:BE DF =;(2)求证:四边形AECF 是矩形.【分析】(1)由平行四边形的性质得出B D ∠=∠,AB CD =,//AD BC ,由已知得出90AEB AEC CFD AFC ∠=∠=∠=∠=︒,由AAS 证明ABE CDF ∆≅∆即可;(2)证出90EAF AEC AFC ∠=∠=∠=︒,即可得出结论.【解答】(1)证明:四边形ABCD 是平行四边形,B D ∴∠=∠,AB CD =,//AD BC ,AE BC ⊥,CF AD ⊥,90AEB AEC CFD AFC ∴∠=∠=∠=∠=︒,在ABE ∆和CDF ∆中,B D AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=;(2)证明://AD BC ,90EAF AEB ∴∠=∠=︒,90EAF AEC AFC ∴∠=∠=∠=︒,∴四边形AECF 是矩形.【点评】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒.(1)求k 的值及B 点坐标;(2)求ABC ∆的面积.【分析】(1)先把(1,)A a 代入2y x =中求出a 得到(1,2)A ;再把A 点坐标代入k y x=中可确定k 的值,然后利用反比例函数和正比例函数图象的性质确定B 点坐标;(2)设(1,)C t ,根据两点间的距离公式和勾股定理得到22222(11)(2)(11)(22)(2)t t +++++++=-,求出t 得到(1,3)C -,从而得到AC 的长,然后关键三角形面积公式求得即可.【解答】解:(1)把(1,)A a 代入2y x =得2a =,则(1,2)A ;把(1,2)A 代入k y x =得122k =⨯=, 点A 与点B 关于原点对称,(1,2)B ∴--;(2)//CA y 轴,C ∴点的横坐标为1,设(1,)C t ,90ABC ∠=︒.222BC AC AB ∴+=,即22222(11)(2)(11)(22)(2)t t +++++++=-,解得3t =-,(1,3)C ∴-,5AC ∴=,11()5(11)522ABC A B S AC x x ∆∴=-=⨯⨯+=. 【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图(1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.【分析】(1)根据矩形的对角线相等且互相平分作出图形即可;(2)根据矩形的性质和三角形中位线定理作出图形即可.【解答】解:(1)如图1,连接AC 、BD 交于点O ,延长EO 交BC 于F ,则点F 即为所求;(2)如图2,BD 交AC 于O ,延长EO 交BC 于F ,连接EB 交AC 于P ,连接DF 交AC 于Q ,则P 、Q 即为所求.【点评】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈【分析】利用已知结合锐角三角函数关系得出BM 的长.【解答】解:如图所示:连接MN ,由题意可得:90AMN ∠=︒,30ANM ∠=︒,45BNM ∠=︒,8AN km =, 在直角AMN ∆中,3cos30843()MN AN km =︒==. 在直角BMN ∆中,tan 4543 6.9BM MN km km =︒=≈.答:此时火箭所在点B 处与发射站点M 处的距离约为6.9km .【点评】本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =;(1)求证:BDE C ∠=∠;(2)求证:2AD AE AB =.【分析】(1)根据角平分线的定义得到ABD CBD ∠=∠,由2BD BE BC =,得到BD BC BE BD=,推出EBD DBC ∆∆∽,根据相似三角形的性质即可得到结论;(2)由BDE C ∠=∠,推出DBC ADE ∠=∠,等量代换得到ABD ADE ∠=∠,证得ADE ABD ∆∆∽,根据相似三角形的性质即可得到结论.【解答】证明:(1)BD 平分ABC ∠,ABD CBD ∴∠=∠, 2BD BE BC =, ∴BD BC BE BD=, EBD DBC ∴∆∆∽,BDE C ∴∠=∠;(2)BDE C ∠=∠,DBC C BDE ADE ∠+∠=∠+∠,DBC ADE ∴∠=∠,ABD CBD ∠=∠,ABD ADE ∴∠=∠,ADE ABD ∴∆∆∽, ∴AD AE AB AD=, 即2AD AE AB =.【点评】本题考查了相似三角形的判定和性质,角平分线的性质,熟练掌握相似三角形的性质即可得到结论.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.【分析】(1)根据角平分线的性质进行导角,可求得四边形EGFH 的四个内角均为90︒,进而可说明其为矩形.(2)根据题目条件可得四边形MNQP 为平行四边形,要证菱形只需邻边相等,连接GH ,由于MN EF GH ==,要证MN MP =,只需证GH MP =,只需证四边形MFHP 为平行四边形,可证G 、H 点分别为MN 、PQ 中点,即可得出结果.【解答】(1)证明:EH 平分BEF ∠,FH 平分DFE ∠,12FEH BEF ∴∠=∠,12EFH DFE ∠=∠, //AB CD ,180BEF DFE ∴∠+∠=︒,11()1809022FEH EFH BEF DFE ∴∠+∠=∠+∠=⨯︒=︒, 180FEH EFH EHF ∠+∠+∠=︒,180()1809090EHF FEH EFH ∴∠=︒-∠+∠=︒-︒=︒,同理可得:90EGF ∠=︒,EG 平分AEF ∠,EH 平分BEF ∠,12GEF AEF ∴∠=∠,12FEH BEF ∠=∠, 点A 、E 、B 在同一条直线上,180AEB ∴∠=︒,即180AEF BEF ∠+∠=︒,11()1809022FEG FEH AEF BEF ∴∠+∠=∠+∠=⨯︒=︒, 即90GEH ∠=︒,∴四边形EGFH 是矩形(2)解:他的猜想正确,理由是:////MN EF PQ ,//MP NQ ,∴四边形MNQP 为平行四边形.如图,延长EH 交CD 于点O ,PEO FEO ∠=∠,PEO FOE ∠=∠,FOE FEO ∴∠=∠,EF FD ∴=,FH EO ⊥,HE HO ∴=,EHP OHQ ∠=∠,EPH OQH ∠=∠,EHP OHQ ∴∆≅∆,HP HQ ∴=,同理可得GM GN =,MN PQ =,MG HP ∴=,∴四边形MGHP 为平行四边形,GH MP ∴=,//MN EF ,//ME NF ,∴四边形MEFN 为平行四边形,MN EF ∴=,四边形EGFH 是矩形,GH EF ∴=,MN MP∴=,∴平行四边形MNQP为菱形.【点评】本题考查矩形、菱形的性质与判定,属于综合题,熟练掌握菱形和矩形的性质及判定方法是解题关键.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.【分析】(1)根据题意得出小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)根据概率公式进行求解即可.【解答】解:(1)根据题意画图如下:小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)一共有4种情况,而过B的有3种,故小聪同学从迷宫口A到达D处经过路口B的概率为34.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,100)、(45,70)代入一次函数表达式,即可求解;(2)由题意得2(30)(2160)2(55)1250w x x x =--+=--+,即可求解;(3)由题意得(30)(2160)800x x --+,解不等式即可得到结论.【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b =+⎧⎨=+⎩, 解得:2160k b =-⎧⎨=⎩, 故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,故当55x <时,w 随x 的增大而增大,而3050x ,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该商店每天的利润最大,最大利润1200元;(3)由题意得:(30)(2160)800x x --+,解得:4070x ,又216020y x =-+,则y 的最小值为27016020-⨯+=,每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润w =得出函数关系式是解题关键.22.(9分)对于两个不相等的有理数a ,b ,我们规定符号{max a ,}b 表示a ,b 中的较大值,如{2max ,3}2-=,{1max -,0}0=.请解答下列问题:(1)2{1,1}5max --= 1- ; (2)如果{max x ,2}x x -=,求x 的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值.【分析】(1)根据定义即可得;(2)由已知等式知2x x >-,解之可得;(3)分2x x >-和2x x <-两种情况分别求解可得.【解答】解:(1)2115->-, ∴2{1,1}15max --=-. 故答案为:1-;(2){max x ,2}x x -=,2x x ∴>-.1x ∴>.x ∴的取值范围是1x >.(3)由题意,得:2x x ≠-.①若2x x >-,即1x >时,{max x ,2}x x -=,|1|1x x -=-.{max x ,2}2|1|5x x -=--,2(1)5x x ∴=--.解得7x =符合题意;)②若2x x <-,即1x <时,{max x ,2}2x x -=-,|1|(1)1x x x -=--=-.{max x ,2}2|1|5x x -=--,22(1)5x x ∴-=--.解得5x =-符合题意.综上所述,7x =或5x =-.【点评】本题主要考查解一元一次不等式,解题的关键是理解新定义,并根据新定义列出关于x 的不等式及分类讨论思想的运用.六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合(1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.【分析】(1)根据待定系数法解出解析式和对称轴即可;(2)从三种情况分析①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形;②当34t <时,DEF ∆与OBC ∆重叠部分是四边形;③当45t <时,DEF ∆与OBC ∆重叠部分是四边形得出S 关于t 的函数关系式即可;(3)直接写出当ABP ∆是直角三角形时符合条件的点P 坐标.【解答】解:(1)根据题意得042393a b a b=+⎧⎨=+⎩, 解得1a =,2b =-,∴抛物线解析式是22y x x =-,对称轴是直线1x =;(2)有3种情况:①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形,如图1:214S t =; ②当34t <时,DEF ∆与OBC ∆重叠部分是四边形,如图2:219342S t t =-+-; ③当45t <时,DEF ∆与OBC ∆重叠部分是四边形,如图3:211322S t t =-+-; (3)当ABP ∆是直角三角形时,可得符合条件的点P 坐标为(1,1)或(1,2)或1(1,)3或11(1,)3. 【点评】此题考查了难度较大的函数与几何的综合题,关键是根据03t ,34t <,45t <三种情况进行分析.。
北师大版九年级上学期数学《期末测试题》含答案
北师大版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共36分)1.一元二次方程x2+2x=0的根是( )A. x1=0,x2=-2B. x1=1,x2=2C. x1=1,x2=-2D. x1=0,x2=22.若点(3,4)是反比例函数y=kx图象上一点,此函数图象必须经过点()A. (2,6)B. (2,﹣6)C. (4,﹣3)D. (3,﹣4)3.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C. D.4.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是()A. 40B. 20C. 10D. 255.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A x1=﹣1,x2=5 B. x1=﹣2,x2=4 C. x1=﹣1,x2=2 D. x1=﹣5,x2=56.如图,四边形ABCD是平行四边形,下列说法不正确的是()A. 当AC=BD时,四边形ABCD是矩形B. 当AB=BC时,四边形ABCD是菱形C. 当AC⊥BD时,四边形ABCD是菱形D. 当∠DAB=90°时,四边形ABCD是正方形7.一件衣服的原价是500元,经过两次提价后的价格为621元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.500(1+x)2=621 B. 500(1﹣x)2=621 C. 500(1+x)=621 D. 500(1﹣x)=621 8.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A. (4,4)B. (3,3)C. (3,1)D. (4,1)9.如图,∠1=∠2,DE∥AC,则图中的相似三角形有()A. 2对B. 3对C. 4对D. 5对10. 下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A. B. C. D.11.如图,Rt△BOA与Rt△COA的斜边在x轴上,BA=6,A(10,0),AC与OB相交于点E,且CA=CO,连接BC,下列判断一定正确的是()①△ABE∽△OCE;②C(5,5);③BC=2;④S△ABC=3.A. ①③B. ②④C. ①②③D. ①②③④二、填空题(每小题3分,共12分)12.若关于x的一元二次方程2x4x k0-+=有两个相等的实数根,则k的值为______.13.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD DE AEAB BC AC++++=______.14.如图,在Rt△ABC中,∠C=90°,AB=4,BC=1,则cos A的值是_____.15.二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中的x与y的部分对应值如下表:x ﹣1 0 1 3y ﹣1 3 5 3当ax2+(b﹣1)x+c>0时,x的取值范围是_____.三、解答题(本大题有7题,其中17题8分,18题6分,19题6分,20题7分,21题8分,22题8分,23题9分,共52分)16.2cos45°﹣2sin60°+3tan230°﹣(cos60°﹣1)017.解方程:(x ﹣2)2=3(x ﹣2).18.在一个不透明的袋子里有1个红球,1个黄球和n 个白球,它们除颜色外其余都相同.(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该实验,经过大量实验后,发现摸到白球的频率稳定于0.5左右,求n 的值;(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率.19.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由.20.将一条长为56cm 的铁丝剪成两段并把每一段铁丝做成一个正方形.(1)要使这两个正方形的面积之和等于100cm 2,该怎么剪?(2)设这两个正方形的面积之和为Scm 2,当两段铁丝长度分别为何值时,S 有最小值?21.如图,在矩形OABC 中,OA =3,OC =4,分别以OA 、OC 所在直线为x 轴、y 轴,建立平面直角坐标系,D 是边CB 上的一个动点(不与C 、B 重合),反比例函数y =k x(k >0)的图象经过点D 且与边BA 交于点E ,作直线DE . (1)当点D 运动到BC 中点时,求k 的值;(2)求BD BE的值; (3)连接DA ,当△DAE 的面积为43时,求k 值.22.如图1,平面直角坐标系中,抛物线y=ax2+bx+3与直线y=x﹣3交于点A(3,0)和点B(﹣2,n),与y 轴交于点C.(1)求出抛物线的函数表达式;(2)在图1中,平移线段AC,点A、C的对应点分别为M、N,当N点落在线段AB上时,M点也恰好在抛物线上,求此时点M的坐标;(3)如图2,在(2)的条件下,在抛物线上是否存在点P(不与点A重合),使△PMC的面积与△AMC的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共36分)1.一元二次方程x2+2x=0的根是( )A. x1=0,x2=-2B. x1=1,x2=2C. x1=1,x2=-2D. x1=0,x2=2 【答案】A【解析】【分析】方程整理后,利用因式分解法求出解即可.【详解】方程整理得:x(x+2)=0,解得:x1=0,x2=−2.故选A.【点睛】本题考查了解一元二次方程-因式分解法,解题的关键是掌握因式分解的概念进行解答.2.若点(3,4)是反比例函数y=kx图象上一点,此函数图象必须经过点()A. (2,6)B. (2,﹣6)C. (4,﹣3)D. (3,﹣4)【答案】A【解析】【分析】根据题意,若点(3,4)是反比例函数y=kx图象上一点,可得m的值,结合反比例函数图象上的点的特点,分析选项可得答案.【详解】根据题意,若点(3,4)是反比例函数y=kx图象上一点,则m=3×4=12,结合反比例函数图象上的点的特点,分析选项可得,只有A的点的横纵坐标的积为12;故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.3.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.【答案】A【解析】试题解析:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.4.一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是()A. 40B. 20C. 10D. 25【答案】B【解析】根据菱形的面积=对角线之积的一半,可知菱形的面积为5×8÷2=20.故选B.5.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A. x1=﹣1,x2=5B. x1=﹣2,x2=4C. x1=﹣1,x2=2D. x1=﹣5,x2=5【答案】A【解析】【分析】根据抛物线的对称轴的定义、抛物线的图象来求该抛物线与x轴的两交点的横坐标.【详解】由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是﹣1.所以x1=﹣1,x2=5.故选A.【点睛】本题考查了抛物线与x轴的交点,解题的关键是掌握抛物线与x轴两个交点的横坐标的和除以2后等于对称轴.6.如图,四边形ABCD是平行四边形,下列说法不正确的是()A. 当AC=BD时,四边形ABCD是矩形B. 当AB=BC时,四边形ABCD是菱形C. 当AC⊥BD时,四边形ABCD是菱形D. 当∠DAB=90°时,四边形ABCD是正方形【答案】D【解析】【分析】根据对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形判断即可.【详解】解:A、∵四边形ABCD是平行四边形,AC=BD, ∴四边形ABCD是矩形,正确,故本选项错误;B、∵四边形ABCD是平行四边形,AB=BC, ∴四边形ABCD是菱形,正确,故本选项错误;C、四边形ABCD是平行四边形,AC⊥BD, ∴四边形ABCD是菱形,正确,故本选项错误;D、四边形ABCD是平行四边形,∠DAB=90°, ∴四边形ABCD是矩形,错误,故本选项正确;故选D.【点睛】本题考查正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.7.一件衣服的原价是500元,经过两次提价后的价格为621元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A. 500(1+x)2=621B. 500(1﹣x)2=621C. 500(1+x)=621D. 500(1﹣x)=621【答案】A【解析】【分析】设平均每次提价的百分率为x,根据原价为500元,表示出第一次提价后的价钱为500(1+x)元,然后再根据价钱为500(1+x)元,表示出第二次提价的价钱为500(1+x)2元,根据两次提价后的价钱为621元,列出关于x的方程.【详解】设平均每次提价的百分率为x,根据题意得:500(1+x)2=621,故选A.【点睛】此题考查了一元二次方程的应用,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.8.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A. (4,4)B. (3,3)C. (3,1)D. (4,1)【答案】A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.9.如图,∠1=∠2,DE∥AC,则图中的相似三角形有()A. 2对B. 3对C. 4对D. 5对【答案】C【解析】【分析】由∠1=∠2,DE∥AC,利用有两角对应相等的三角形相似解答即可.【详解】∵DE∥AC,∴△BED∽△BAC,∠EDA=∠DAC,∵∠1=∠2,∴△ADE∽△CAD,∵DE∥AC,∴∠2=∠EDB,∵∠1=∠2,∴∠1=∠EDB,∵∠B=∠B,∴△BDE∽△BAD,∴△ABD∽△CBA,故选C.【点睛】本题考查了相似三角形的判定,注意掌握有两角对应相等的三角形相似定理的应用,注意数形结合思想的应用.10. 下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A. B. C. D.【答案】D【解析】【详解】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x<0时,y随x的增大而减小;故本选项正确.故选D.【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.11.如图,Rt△BOA与Rt△COA的斜边在x轴上,BA=6,A(10,0),AC与OB相交于点E,且CA=CO,连接BC,下列判断一定正确的是()①△ABE∽△OCE;②C(5,5);③BC=2;④S△ABC=3.A. ①③B. ②④C. ①②③D. ①②③④【答案】D【解析】【分析】如图,作CF⊥OA于F,BH⊥OA于H,连接BF.①正确,根据两角对应相等两三角形相似即可判断;①正确,利用等腰直角三角形想的性质即可判断;③正确,求出点B坐标,利用两点间距离公式计算即可;④正确,利用分割法计算即可;【详解】如图,作CF⊥OA于F,BH⊥OA于H,连接BF.∵∠OCE=∠ABE=90°,∠OEC=∠AEB,∴△ABE∽△OCE,故①正确,∵A(10,0),∴OA=10,∵OC=CA,∠OCA=90°,CF⊥OA,∴OF=AF=CF=5,∴C(5,5),故②正确,在Rt△ABO中,∵OB=8,∵12•OA•BH=12•OB•AB,∴BH=245,∵tan∠BOH=AB BH OB OH=,∴24 658OH =,∴OH=325,∴B(325,245),∵C(5,5),∴BC=故③正确,S△ABC=S△CFB+S△AFB﹣S△ACF=12×5×(325﹣5)+12×5×245﹣252=3,故④正确,故选D.【点睛】本题考查相似三角形的判定和性质,坐标与图形的性质,解直角三角形,勾股定理,锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题(每小题3分,共12分)12.若关于x的一元二次方程2x4x k0-+=有两个相等的实数根,则k的值为______.【答案】4【解析】【分析】对于一元二次方程a x2+bx+c=0,当Δ= b2-4ac=0时,方程有两个相等的实数根.即:16-4k=0,解此方程可得.【详解】对于一元二次方程a x2+bx+c=0,当Δ= b2-4ac=0时,方程有两个相等的实数根.即:16-4k=0,解得:k=4.故答案为4【点睛】本题考核知识点:一元二次方程根的判别式.解题关键点:理解一元二次方程根的判别式的意义.13.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD DE AEAB BC AC++++=______.【答案】13.【解析】解:∵DE∥BC,∴△ADE∽△ABC,∴ADAB=AD DE AEAB BC AC++++=13.故答案为13.14.如图,在Rt△ABC中,∠C=90°,AB=4,BC=1,则cos A的值是_____.15.【解析】【分析】先根据勾股定理求得AC的长,再根据余弦函数的定义求解可得.【详解】∵∠C=90°,AB=4,BC=1,∴AC22224115AB BC-=-则cos A=154 ACAB=,故答案为154.【点睛】本题考查了锐角三角函数的定义,解题的关键是熟练掌握勾股定理及余弦函数的定义.15.二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中的x与y的部分对应值如下表:当ax2+(b﹣1)x+c>0时,x的取值范围是_____.【答案】﹣1<x<3.【解析】【分析】通过表中对应值得到抛物线与直线y=x的交点坐标为(﹣1,﹣1),(3,3),然后利用x=0,y=ax2+bx+c=3可判断在当﹣1<x<3之间抛物线在直线y=x的上方,从而得到ax2+bx+c>x的解集.【详解】由表中数据得到抛物线与直线y=x的交点坐标为(﹣1,﹣1),(3,3),所以当﹣1<x<3时,ax2+bx+c>x,即ax2+(b﹣1)x+c>0.故答案为﹣1<x<3.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.三、解答题(本大题有7题,其中17题8分,18题6分,19题6分,20题7分,21题8分,22题8分,23题9分,共52分)16.cos45°﹣2sin60°+3tan230°﹣(cos60°﹣1)0【答案】1【解析】分析】直接利用特殊角的三角函数值代入进而计算得出答案.﹣2﹣1=1﹣1=1【点睛】本题考查了实数运算,掌握实数的运算法则是解题关键.17.解方程:(x﹣2)2=3(x﹣2).【答案】x1=2,x2=5.【解析】【分析】首先移项,把等号右边的式子变成0,然后把等号左边的式子分解因式,根据几个因式的乘积是0,则至少有一个是0,即可转化成一元一次方程,从而求解.【详解】移项得:(x﹣2)2﹣3(x﹣2)=0,即:(x﹣2)(x﹣2﹣3)=0,则(x﹣2)(x﹣5)=0,则x﹣2=0或x﹣5=0,则方程的解是:x1=2,x2=5.【点睛】本题考查了一元二次方程的解法,利用因式分解法解方程的依据是:几个因式的乘积是0,则至少有一个是0,解题的关键是正确分解因式.18.在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同.(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该实验,经过大量实验后,发现摸到白球的频率稳定于0.5左右,求n的值;(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率.【答案】(1)n=2;(2)5 8 .【解析】【分析】(1)由“摸到白球的频率稳定于0.5左右”利用概率公式列方程计算可得;(2)画树状图展示所有可能的结果数,找出两次摸出的球颜色不同的结果数,然后根据概率公式求解.【详解】(1)根据题意,得:2nn=12,解得n=2;(2)画树状图如下:由树状图知,共有16种等可能结果,其中先后两次摸出不同颜色的两个球的结果数为10,∴先后两次摸出不同颜色的两个球的概率为1016=58.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可.【详解】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD ∥CE ,∴四边形BECD 是平行四边形,∵∠ACB =90°,D 为AB 中点,∴CD =BD ,∴四边形BECD 是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.20.将一条长为56cm 的铁丝剪成两段并把每一段铁丝做成一个正方形.(1)要使这两个正方形的面积之和等于100cm 2,该怎么剪?(2)设这两个正方形的面积之和为Scm 2,当两段铁丝长度分别为何值时,S 有最小值?【答案】(1)这段铁丝剪成两段后的长度分别是24cm 、32cm ;(2)当两段铁丝长度分别为28cm 时,S 有最小值.【解析】【分析】(1)这段铁丝被分成两段后,围成正方形.其中一个正方形的边长为xcm ,则另一个正方形的边长为(14﹣x ),根据“两个正方形的面积之和等于100cm 2”作为相等关系列方程,解方程即可求解;(2)设其中一个正方形的边长为xcm ,则另一个正方形的边长为(14﹣x )cm ,依题意列方程即可得到结论.【详解】(1)设其中一个正方形的边长为xcm ,则另一个正方形的边长为(14﹣x )cm ,依题意列方程得x 2+(14﹣x )2=100,整理得:x 2﹣14x +48=0,(x ﹣6)(x ﹣8)=0,解方程得x 1=6,x 2=8,6×4=24(cm ),56﹣24=32(cm );因此这段铁丝剪成两段后的长度分别是24cm 、32cm ;(2)设其中一个正方形的边长为xcm ,则另一个正方形的边长为(14﹣x )cm ,依题意列方程得S =x 2+(14﹣x )2=2x 2﹣28x +196,当x =﹣2824b a =7时,S 有最小值, ∴14﹣7=7,答:当两段铁丝长度分别为28cm 时,S 有最小值.【点睛】本题考查了二次函数的应用,一元二次方程的应用,等量关系是:两个正方形的面积之和一定.读懂题意,找到等量关系准确的列出方程是解题的关键.21.如图,在矩形OABC中,OA=3,OC=4,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=kx(k>0)的图象经过点D且与边BA交于点E,作直线DE.(1)当点D运动到BC中点时,求k的值;(2)求BDBE的值;(3)连接DA,当△DAE的面积为43时,求k值.【答案】(1)k=6;(2)34BDBE;(3)当△DAE的面积为43时,k的值为4或8.【解析】【分析】(1)由OA,OC的长度结合矩形的性质可得出BC的长度及点B的坐标,根据点D为边BC的中点可得出CD 的长度,进而可得出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由OA,OC的长度利用反比例函数图象上点的坐标特征可求出点D,E的坐标,进而可得出BD,BE的长度,二者相比后即可得出BDBE的值;(3)由(2)可得出AE,BD的长度,由三角形的面积公式结合S△DAE=43即可得出关于k的一元二次方程,解之即可得出k值.【详解】(1)∵OA=3,OC=4,四边形OABC为矩形, ∴BC=OA=3,点B的坐标为(3,4).∵点D为边BC的中点,∴CD =12BC =32, ∴点D 的坐标为(32,4). 又∵点D 在反比例函数y =k x(k >0)的图象上, ∴k =32×4=6. (2)∵点D ,E 在反比例函数y =k x (k >0)的图象上, ∴点D 的坐标为(4k ,4),点E 的坐标为(3,3k ). 又∵点B 的坐标为(3,4),∴BD =3﹣4k ,BE =4﹣3k , ∴334443KBD K BE -==-. (3)由(2)可知:AE =3k ,BD =3﹣4k , ∴S △DAE =12AE •BD =12×3k ×(3﹣4k )=43, 整理,得:k 2﹣12k +32=0,解得:k 1=4,k 2=8,∴当△DAE 的面积为43时,k 的值为4或8.【点睛】本题考查了矩形的性质、反比例函数图象上点的坐标特征、两点间的距离公式、三角形的面积以及解一元二次方程,解题的关键是:(1)利用矩形的性质找出点D 的坐标;(2)利用矩形的性质结合反比例函数图象上点的坐标特征,找出点D,E的坐标;(3)利用三角形的面积公式,找出关于k的一元二次方程.22.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与直线y=x﹣3交于点A(3,0)和点B(﹣2,n),与y 轴交于点C.(1)求出抛物线的函数表达式;(2)在图1中,平移线段AC,点A、C的对应点分别为M、N,当N点落在线段AB上时,M点也恰好在抛物线上,求此时点M的坐标;(3)如图2,在(2)的条件下,在抛物线上是否存在点P(不与点A重合),使△PMC的面积与△AMC的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)M点坐标(4,﹣2);(3)P点坐标为(14,5516)或13+21775217-)13217-7+5217).【解析】【分析】(1)先利用直线解析式确定B(﹣2,﹣5),然后利用待定系数法求抛物线解析式;(2)解方程组﹣x2+2x+3=0得A(3,0),易得C(0,3),设N(t,t﹣3),利用点利用的规律当点N先向下平移3个单位,再向右平移3个单位得到点M,则M(t+3,t﹣6),把M(t+3,t﹣6)代入y=﹣x2+2x+3得t ﹣6=﹣(t+3)2+2(t+3)+3,当点N先向上平移3个单位,再向左平移3个单位得到点M,则M(t﹣3,t),把M(t﹣3,t)代入y=﹣x2+2x+3得t=﹣(t﹣3)2+2(t﹣3)+3,然后解方程求出t得到满足条件的M点坐标;(3)利用待定系数法求出直线MC的解析式为y=﹣54x+3,利用AP∥MC可设AP的解析式为y=﹣54x+p,则AP的解析式为y=﹣54x+154,通过解方程组25154423y xy x x⎧=+⎪⎨⎪=-++⎩得此时P点坐标;再利用平移的方法得到再直线CM 下方得到直线y =﹣54x +94到直线CM 的距离等于直线y =﹣54x +154到直线CM 的距离相等,然后解方程2594423y x y x x ⎧=+⎪⎨⎪=-++⎩得此时P 点坐标. 【详解】(1)把(﹣2,n )代入y =x ﹣3得n =﹣2﹣3=﹣5,则B (﹣2,﹣5),把A (3,0),B (﹣2,﹣5)代入得93=3=04235a b a b +⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩, ∴抛物线解析式为y =﹣x 2+2x +3;(2)当y =0时,﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,则A (3,0),当x =0时,y =﹣x 2+2x +3=3,则C (0,3)设N (t ,t ﹣3),∵AC 平移得到MN ,∴AC ∥MN ,AC =MN ,而点C 先向下平移3个单位,再向右平移3个单位得到点A ,当点N 先向下平移3个单位,再向右平移3个单位得到点M ,则M (t +3,t ﹣6),把M (t +3,t ﹣6)代入y =﹣x 2+2x +3得t ﹣6=﹣(t +3)2+2(t +3)+3,解得t 1=1,t 2=﹣6,∴M 点的坐标为(4,﹣5),(﹣3,﹣12)(舍去)当点N 先向上平移3个单位,再向左平移3个单位得到点M ,则M (t ﹣3,t ),把M (t ﹣3,t )代入y =﹣x 2+2x +3得t =﹣(t ﹣3)2+2(t ﹣3)+3,解得t 1=3(舍去),t 2=4,∴M 点的坐标为(﹣1,4)(舍去),综上所述,M 点坐标为(4,﹣2);(3)设直线CM 的解析式为y =mx +n ,把C (0,3),M (4,﹣2)代入得543m n ⎧=-⎪⎨⎪=⎩,∴直线MC 的解析式为y =﹣54x +3, ∵△PMC 的面积与△AMC 的面积相等,∴AP ∥MC ,设AP 的解析式为y =﹣54x +p , 把A (3,0)代入得p =154,∴AP 的解析式为y =﹣54x +154, 解方程组25154423y x y x x ⎧=+⎪⎨⎪=-++⎩得30x y =⎧⎨=⎩或145516x y ⎧=⎪⎪⎨⎪=⎪⎩,此时P 点坐标为(14,5516); 直线AP 的解析式为y =﹣54x +154与y 轴的交点坐标为(0,154), ∵154﹣3=34, 把直线CM 向下平移34个单位得到y =﹣54x +94, 解方程2594423y x y x x ⎧=+⎪⎨⎪=-++⎩得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩,此时P 点坐标为(137832-),(137,832-+), 综上所述,P 点坐标为(14,5516)或(137,832+-)或(137832+). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平移的性质;会利用待定系数法求函数解析式,能通过解方程组求两函数的交点坐标;理解坐标与图形性质.。
最新北师大版数学九年级上学期《期末考试试题》带答案
当x=10时,该三角形为以6和8为直角边,10为斜边的直角三角形.
∴三角形的面积是6×8÷2=24,∴S=24或 .
故选C.
考点:一元二次方程 解法;分类讨论思想;三角形的面积
4.若2a=3b=4c,且abc≠0,则 的值是
A. 2B.﹣2C. 3D.﹣3
【答案】B
【解析】
北师大版九年级上学期期末测试
数学试卷
学校________班级________姓名________成绩________
一.选择题
1.用配方法解一元二次方程 时,此方程可变形为()
A. B. C. D.
2.如图,图中所示的几何体为一桶快餐面,其俯视图正确的是()
A. B. C. D.
3.三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0一个实数根,则该三角形的面积是()
(1)求函数y=kx+b和y= 的表达式;
(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
七、解答题
23.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1) 结论证明:GE=BE+GD;
【详解】解:如下图,
∵菱形的周长为20,
∴边长AB=5,
∵对角线互相垂直平分,一条对角线长为8,
∴BO=4,AO=3(勾股定理),
∴AC=6,
∴S菱形= .
【点睛】本题考查了菱形的面积,属于简单题,熟悉菱形的对角线性质是解题关键.
北师大版九年级数学上册期末考试及答案【完整】
北师大版九年级数学上册期末考试及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )A B C D 2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k ≠0C .k ≥﹣1且k ≠0D .k >﹣1且k ≠07.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.如图,点A ,B 在双曲线y=3x (x >0)上,点C 在双曲线y=1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC=BC ,则AB 等于( )A 2B .2C .4D .2二、填空题(本大题共6小题,每小题3分,共18分)12712.2.因式分解:3269a a a -+=_________.3.若式子x 2-在实数范围内有意义,则x 的取值范围是__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2211(1)m m m m +--÷,其中3.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、A5、D6、D7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)12、2(3)a a -3、x 2≥4、﹣2<x <25、40°6、10三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、33、(1)相切,略;(2).4、(1)略;(2)45°;(3)略.5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
北师大版九年级上学期数学《期末测试卷》及答案
A.25°B.50°C.65°D.75°
[答案]C
[解析]
[分析]
根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可.
[详解]解:∵根据圆周角定理得:∠AOC=2∠ABC,
∵∠ABC+∠AOC=75°,
∴∠AOC= ×75°=A= (180°﹣∠AOC)=65°,
故选C.
[点睛]本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键.
5.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的 后,得到线段CD,则点C的坐标为()
16.如图,抛物线y=﹣ (x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则 的最大值为_______.
三.解答题
17.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
24.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F
(1)如图1,求证:BD平分∠ADF;
(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;
(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3 ,DN=9.求sin∠ADB的值.
答案与解析
一.选择题
最新北师大版九年级数学上册期末考试及答案【完整版】
最新北师大版九年级数学上册期末考试及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一5的绝对值是( )A .5B .15C .15-D .-5 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤75.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .89.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)11x +有意义的x 的取值范围是__________.2.因式分解:3269a a a -+=_________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.在平面直角坐标系xOy 中,抛物线21y ax bx a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、A6、C7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥-2、2(3)a a -3、0或14、140°5、x <1或x >36、 1三、解答题(本大题共6小题,共72分)1、x=32、(1)点B 的坐标为1(2,)a -;(2)对称轴为直线1x =;(3)当12a ≤-时,抛物线与线段PQ 恰有一个公共点.3、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)略;(2)AD =.5、(1)补图见解析;50°;(2)35. 6、(1)y=﹣10x+740(44≤x ≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。
最新北师大版九年级数学上册期末考试及答案【完整版】
最新北师大版九年级数学上册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .302.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤36.已知二次函数224y x x =-++,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向上B .图象的顶点坐标是()1,3C .当1x <时,y 随x 的增大而增大D .图象与x 轴有唯一交点7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上)期末模拟试卷时间:120分钟,总分100分姓名:___________班级:___________得分:___________一、选择题(每题3分,共30分)1.下列成语所描述的事件是必然发生的是 【 】A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖2.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 23.如图是由六个完全相同的正方体堆成的物体,则这一物体的正视图是A .B .C .D .4.若x=2是关于x 的一元二次方程2x mx 80-+= 的一个解,则m 的值是( ) A .6B .5C .2D .-65.已知直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点,则x 1y 2+x 2y 1的值为( )A .﹣6B .﹣9C .0D .96.如图(1)放置的一个机器零件,其主(正)视图如图(2)所示,则其俯视图是( ) 7.若一元二次方程20ax bx c ++=有一个根为,则下列等式成立的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=8.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( )C .1-D . A . B . 9.如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是A .2B .3C .4D .5主视左视俯视A. B. C. D.10.计算:(2)(2)a a +-的结果是( )A. 24a +B. 24a - C. 24a - D. 2a二、填空题(每题3分,共18分)11.一元二次方程x 2= x 的根是 .12.把265x x ++=0化成2()x m k +=的形式,则m = .13. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.14.六·一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为 .15.关于x 的一元二次方程(a -1)x 2-x+a 2-1=0的一个根是0,那么a 的值为______. 16.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是___________.三、解答题(共52分)17.解下列方程【18分,(1)、(2)题各4分、(3)(4)题各5分】 (1)01x 3x 22=-+ (2))1x (x )1x (32-=-(3).求2(1)25x +=中x 的值。
(4).(x+3)2﹣x (x+3)=0.18.(满分6分)给出三个多项式:①2244x x +-; ②22124x x ++; ③224x x -.请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.19(满分6分).一个不透明的布袋里装有3个大小、质地均相同的乒乓球,分别标有数字1,2,3,小华先从布袋中随即取出一个乒乓球,记下数字后放回,再从袋中随机取出一个乒乓球,记下数字.求两次取出的乒乓球上数字相同的概率.20.(满分6分)某校生物兴趣小组有一块正方形种植基地,现要对它进行扩建,若把边长增加2米,则所得的新正方形种植基地面积比原来增加了32平方米,求:原来正方形种植基地的边长是多少?21.(满分8分)已知:如图,△ABC 中,∠BAC=90°,分别以AB 、BC 为边作正方形ABDE 和正方形BCFG ,延长DC 、GA 交于点P. 求证:PD ⊥PG.22.(本题满分8分)在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放同盒子摇匀 后,再由小华随机取山一个小球,记下数字为y . (1)写出(x ,y )的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数的图象上的概率.参考答案1.D【解析】解:A 、水中捞月是不可能事件,故本选项错误;B 、拔苗助长是一定不会发生的事件,是不可能事件,故本选项错误;C 、守株待兔是可能发生也可能不发生的事件,是随机事件,故本选项错误;D 、瓮中捉鳖是一定能发生的事件,属必然事件,故本选项正确; 故选D 2.B【解析】分析:将c=-a-b 代入原方程左边,再将方程左边因式分解即可. 解答:解:依题意,得c=-a-b ,原方程化为ax 2+bx-a-b=0,即a (x+1)(x-1)+b (x-1)=0,∴(x-1)(ax+a+b )=0, ∴x=1为原方程的一个根, 故选B .点评:本题考查了一元二次方程解的定义.方程的解是使方程左右两边成立的未知数的值. 3.A 【解析】试题分析:找到从正面看所得到的图形即可,从正面看易得共有2列,左边一列有2个正方形,右边一列有一个正方形。
故选A 。
4.A 【解析】将x=2代入2x mx 80-+=解得m=6 故选A 5.A 【解析】试题分析:先根据点A (x 1,y 1),B (x 2,y 2)是双曲线y=上的点可得出x 1•y 1=x 2•y 2=3,再根据直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点可得出x 1=﹣x 2,y 1=﹣y 2,再把此关系代入所求代数式进行计算即可.解:∵点A (x 1,y 1),B (x 2,y 2)是双曲线y=上的点 ∴x 1•y 1=x 2•y 2=3①, ∵直线y=kx (k >0)与双曲线y=交于点A (x 1,y 1),B (x 2,y 2)两点,∴x 1=﹣x 2,y 1=﹣y 2②,∴原式=﹣x 1y 1﹣x 2y 2=﹣3﹣3=﹣6. 故选A . 考点:反比例函数图象的对称性.点评:本题考查的是反比例函数的对称性,根据反比例函数的图象关于原点对称得出x 1=﹣x 2,y 1=﹣y 2是解答此题的关键. 6.D【解析】考点:简单组合体的三视图. 分析:找到从上面看所得到的图形即可. 解答:解:从上面看可得到左右相邻的3个矩形.故选D .点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图 7.B 【解析】 试题分析:把x=-1代入20ax bx c ++=得a-b+c=0.选B 。
考点:一元二次方程点评:本题难度较低,考查学生对一元二次方程知识点的掌握,把已知解代入原方程即可。
8.A 试题分析:概率问题,由题意已知前面三次抛硬币的均是正面朝上故选A 考点:概率的基本知识点评:概率的基本知识,在前面均确定的情况下,所以第四次只考虑一种情况就可以。
9.C 【解析】 试题分析:先根据俯视图判断出最下面一层有3个正方体,再结合主视图及左视图进行分析即可.由图可得该几何体所用的正方形的个数是3+1=4,故选C. 考点:根据三视图判断几何体的形状点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成. 10.B 【解析】(2)(2)a a +-=24a -,故选B 11.x 1 =0,x 2 =1 【解析】2120,(1)0,0,1x x x x x x -=-===。
12.m=3【解析】列举出所有情况,看甲队战胜乙队和甲队以2:0战胜乙队的情况数占总情况数的多少即可.解答:解:列出树状图如下所示:共8中情况,甲队战胜乙队的情况有4种,故其概率为4÷8=12; 甲队以2:0战胜乙队的情况有2中,故其概率为:2÷8=14. 故答案为:12,14. 14.10%【解析】设每次降价的百分率为x ,第二次降价后价格变为100(x-1)2元, 根据题意得:100(x-1)2=81,解之得x 1=1.9,x 2=0.1.因x=1.9不合题意,故舍去,所以x=0.1. 即每次降价的百分率为0.1,即10%. 15.-1 【解析】试题分析:由题意把x=0代入方程(a -1)x 2-x+a 2-1=0,即可得到关于a 的方程,再结合一元二次方程的二次项系数不为0求解即可.由题意得21010a a ⎧-=⎨-≠⎩,解得11a a =±⎧⎨≠⎩,则 1.a =-考点:方程的根的定义点评:解题的关键是熟练掌握方程的根的定义:方程的根就是使方程左右相等的未知数的值.1617.(1)X (2).X 1=1 X 2 【解析】此题考查解一元二次方程思路:解一元二次方程的两种基本方法:(1)分解因式(十字相乘法)(2)求根公式122b x a-±= (3)配方法解:(1)01x 3x22=-+12x ==(2))1x (x )1x (32-=- 23(1)(1)0x x x ---=(1)(33)0x x x ---= (1)(23)0x x --= 1231,2x x ==点评:点评:解方程后一定要检验结果是否正确 (3).124,6x x ==- 【解析】试题分析:2、2(1)25x += 15x +=± 124,6x x ==-考点:二元一次方程点评:本题难度中等,主要考查学生对一元二次方程知识点的掌握,为中考常考题型,要求学生多做训练牢固掌握解题技巧。
(4).x=﹣3 【解析】试题分析:方程左边提取公因式变形后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解:(x+3)2﹣x (x+3)=0, 分解因式得:(x+3)(x+3﹣x )=0, 可得:x+3=0, 解得:x=﹣3.点评:此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.18.①+②:24164(4)x x x +=+;①+③:2444(1)(1)x x x x -=+-; ②+③:224844(1)x x x ++=+ 【解析】试题分析:①+②:24164(4)x x x +=+; ①+③:2444(1)(1)x x x x -=+-; ②+③:224844(1)x x x ++=+考点:因式分解 点评:本题主要考查学生对整式运算知识点的掌握。
运用完全平方根及平方差公式辅助即可。
19.1/3∵有9种可能结果,两个数字相同的只有3种,∴P (两个数字相同)=3/ 9 =1/3 . 首先根据题意列出表格,然后由表格求得所有等可能的结果与两次取出的乒乓球上数字相同的情况,再利用概率公式求解即可求得答案. 20.7米 【解析】22(2)32x x +-= 224432x x x ++-= 7x =所以原来正方形种植基地的边长是7米 考点:方程的简单应用点评:设所求的数据为未知数,根据题目中各个数据的关系,可以列出相关的方程式,再进行计算 21、见解析 【解析】试题分析:先根据正方形的性质可得△ABG ≌△DBC ,即可得到∠BGA=∠BCD ,从而可以证得结论.∵正方形ABDE 和正方形BCFG∴BG=BC ,BA=BD ,∠GBC=∠ABD=90°∴∠GBA=∠CBD ∴△ABG ≌△DBC ∴∠BGA=∠BCD ∵∠BAC=90°∴∠PAC+∠PCA=90°∴∠P=90° 考点:正方形的性质,全等三角形的判定与性质 点评:全等三角形的判定与性质的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注. 22.【解析】略。