上海市名校数学真题之上海中学高一周练05(2016.10)
上海名校数学周周爽:上海中学高一下学期数学周周练3
上海中学高一周练数学卷一. 填空题1. 若cos 2sin αα+=tan α=2. 已知tan 2α=-,1tan()7αβ+=,则tan β的值为 3. 若3cos()45πα-=,则sin 2α=4. 函数cot y x =的定义域为5. 函数2cos()cos()244y x x x ππ=+-的值域为 6. 2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计 的,弦图是由四个全等直角三角形与一个小正方形拼成的大正方形,如果小正方形的面积为 1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ=7. 已知sin sin 1αβ+=,cos cos 0αβ+==8. 函数()f x 满足()()2()cos f x y f x y f x y ++-=,写出满足此条件的两个函数解析式,9. 如图,将一块半径为1的半圆形钢板截成等腰梯形ABCD 的形状,它的下底AB 是半圆直径,上底CD的端点在圆周上,这个梯形的面积y 和底角θ之间的函数式为10. 若1cos cos sin sin 2x y x y +=,2sin 2sin 23x y +=,则sin()x y += 11. 设0a ≥,函数()(cos )(sin )f x a x a x =++的最大值为252,则a = 12. 函数|sin cos tan cot sec csc |y x x x x x x =+++++的最小值为二. 选择题13. 已知tan 1θ>,且sin cos 0θθ+<,则( )A. cos 0θ>B. cos 0θ<C. cos 0θ=D. cos θ符号不确定14. 设R ϕ∈,则“0ϕ=”是“()cos()f x x ϕ=+()x R ∈为偶函数”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要15. 若函数21()sin 2f x x =-()x R ∈,则()f x 是( )A. 最小正周期为2π的奇函数 B. 最小正周期为π的奇函数 C. 最小正周期为2π的偶函数 D. 最小正周期为π的偶函数16. 已知函数11()(sin cos )|sin cos |22f x x x x x =+--,则()f x 的值域是( )A. [1,1]-B. [2-C. [1,2-D. [1,2--三. 解答题17. 已知02x y ππ<<<<,5sin()13x y +=; (1)若1tan 22x =,求cos2x 和cos y 的值; (2)比较sin y 和sin()x y +的大小,说明理由;18. 已知tan 2α=;(1)求tan()4πα+的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值;19. 函数426cos 5sin 4()cos 2x x f x x+-=,求()f x 的定义域,判断它的奇偶性,并求其值域;20. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数;(1)22sin 13cos 17sin13cos17︒︒︒︒+-;(2)22sin 15cos 15sin15cos15︒︒︒︒+-;(3)22sin 18cos 12sin18cos12︒︒︒︒+-;(4)22sin (18)cos 48sin(18)cos 48︒︒︒︒-+--;(5)22sin (25)cos 55sin(25)cos55︒︒︒︒-+--;将该同学的发现推广三角恒等式,并证明你的结论;参考答案一. 填空题1. 22. 533. 725-4. [2,2)(2,2]33k k k k ππππππ-++5. [2,2]-6. 7257. 28. ()cos f x x =,()sin f x x =9. (1cos 2)sin 2y θθ=-()42ππθ<< 10. 23 11. 212. 1二. 选择题13. B 14. A 15. D 16. C三. 解答题17.(1)7cos 225x =-,16cos 65y =-;(2)sin sin()y x y >+;18.(1)3-;(2)1; 19. {|,}42k x x k Z ππ≠+∈,偶函数,值域11[1,)(,2]22-;20. 223sin cos (30)sin cos(30)4θθθθ︒︒+---=。
上海市上海中学2016-2017学年高一上学期周练(14)数学试题
上海中学高一周练数学卷2016.12.22一. 填空题1. 函数()f x x =--(0)x ≤的反函数是1()f x -=2. 若4log 124x =,则x = 3. 函数2()lg(23)f x x x =--的递减区间是4. 函数21()12f x x =+(2)x <-的反函数是1()f x -= 5. 若函数6,2()3log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1)a ≠的值域是[4,)+∞,则实数a 的取值范 围是6. 若函数()8x f x =的图像经过点1(,)3a ,则1(2)f a -+=7. 若函数24,3()(1)1,3x x f x a x x ⎧-≥=⎨-+<⎩存在反函数,则实数a 的取值范围为8. 如果log 41a b =-,则a b +的最小值为9. 若实数t 满足()f t t =-,则称t 是函数()f x 的一个次不动点,设函数()ln f x x =与反函 数的所有次不动点之和为m ,则m =10. 设lg lg lg 111()121418x x x f x =+++++,则1()()f x f x+= 11. 设方程24x x +=的根为m ,方程2log 4x x +=的根为n ,则m n +=12. 对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的 函数()y f x =有反函数1()y f x -=,且1([0,1))[1,2)f -=,1((2,4])[0,1)f -=,若方程 ()0f x x -=有解0x ,则0x =二. 选择题13. 如果23499log 3log 4log 5log 100x =⋅⋅⋅⋅⋅⋅⋅,则x ∈( )A. (1,2)B. (2,3)C. (5,6)D. (6,7)14. 函数2x xe e y --=的反函数是( )15. 已知函数()f x 为R 上的单调函数,1()f x -是它的反函数,点(1,3)A -和点(1,1)B 均在函数()f x 的图像上,则不等式1|(2)|1x f -<的解集为( )A. (1,1)-B. (1,3)C. 2(0,log 3)D. 2(1,log 3)16. 设,,0x y z >,且12xyz y z ++=,则422log log log x y z ++的最大值为( )A. 3B. 4C. 5D. 6三. 解答题17. 已知910390x x -⨯+≤,求函数111()4()242x x y -=-+的最大值和最小值;18. 给定实数a ,0a ≠且1a ≠,设函数11x y ax -=-; (1)求证:经过这个函数图像上的任意两个不同的点的直线不平行于x 轴;(2)判断此函数的图像是否关于直线y x =对称,说明你的理由;19. 作出下列函数的大致图像;(1)3|log |||y x =;(2)12log (24)y x =+;20. 设a 是实数,函数()4|2|x xf x a =+-;(1)求证:()f x 不是奇函数;(2)当0a >时,求()f x 的值域;21. 设函数()n n f x x bx c =++,*n N ∈,b 、c R ∈; (1)设2n ≥,1b =,1c =-,证明:()n f x 在区间1(,1)2内存在唯一的零点; (2)设2n =,若对任意12,[1,1]x x ∈-,有2122|()()|4f x f x -≤,求b 的取值范围;参考答案一. 填空题1. 2x -(0)x ≤2.116 3. (,1)-∞- 4. (3)x > 5. (1,2] 6. 237. (1,2] 8. 1 9. 0 10. 3 11. 4 12. 2二. 选择题13. D 14. C 15. C 16. A三. 解答题17. max ()(0)2f x f ==,min ()(1)1f x f ==;18.(1)略;(2)1()()f x f x -=,是; 19. 略;20.(1)略;(2)当102a <<,值域为2[,)a +∞;当12a ≥,值域为1[,)4a -+∞; 21.(1)单调递增,1()02n f <,(1)0n f >;(2)[2,2]-;。
上海市上海中学2016-2017学年高一上学期数学周练05 含
上海中学高一周练数学卷2016.10.13一. 填空题1. 下列不等式的解为:①2560x x -+< ,②2560x x -++<2. 写出命题:若2017x y +≠,则2016x ≠或1y ≠的等价命题3. 已知:11a b -≤+≤,且13a b ≤-≤,则3a b -的取值范围为4. 不等式20ax bx a ++<(0)ab >的解集是空集,则222a b b +-的取值范围是5. 不等式20ax bx c ++>的解集是1(,3)2-,则不等式20cx bx a ++<的解集为 6. 已知12a ≥,22()f x a x ax c =-++,对于任意[0,1]x ∈,()1f x ≤恒成立,则实数c 的 取值范围是7. 已知实数,x y 满足2241x y xy ++=,则2x y +的最大值为8. 若不等式2051x px ≤++≤恰好有一个实数值为解,则p =9. 若下列三个方程:24430x ax a +-+=,22(1)0x a x a +-+=,2220x ax a +-=中 至少有一个方程有实根,则a 的取值范围是10. 已知,,a b c 为互不相等的整数,则22224()()a b c a b c ++-++的最小值为11. 已知,a b R ∈,关于x 的方程432210x ax x bx ++++=存在一个实根,则22a b +的最 小值为二. 选择题1. 集合{|41,}A x x k k Z ==+∈,{|42,}B x x k k Z ==+∈,{|43,}C x x k k Z ==+∈ 若a A ∈,b B ∈,c C ∈,则( )A. abc A ∈B. abc B ∈C. abc C ∈D. abc A B C ∉2. 设a 和b 都是非零实数,则不等式a b >和11a b>同时成立的充要条件是( ) A. 0a b >> B. 0a b >> C. 0a b >> D. 以上答案均不对3. 假设n 是不小于3的正整数,n 个给定的实数12,,,n x x x ⋅⋅⋅具有如下性质:对任意一个二 次函数()y f x =,数12(),(),,()n f x f x f x ⋅⋅⋅中至少有三个数相同,则下列对于12,,,n x x x ⋅⋅⋅ 的判断中,正确的是( )A. 至少有三个数是相同的B. 至少有两个数是相同的C. 至多有三个数是相同的D. 至多有两个数是相同的4. 当一个非空数集F 满足“如果,a b F ∈,则,,a b a b ab F +-∈,且0b ≠时,a F b∈” 时,我们称F 就是一个数域,以下四个关于数域的命题:① 0是任何数域的元素;② 若数 域F 有非零元素,则2016F ∈;③ 集合{|3,}P x x k k Z ==∈是一个数域;④ 有理数集 是一个数域;其中真命题有( )个A. 0B. 1C. 2D. 3三. 解答题1. 解关于x 的不等式[(3)1](1)0m x x +-+>()m R ∈;2.(1)是否存在实数p ,使得40x p +<是220x x -->成立的充分不必要条件?如果存在,求出p 的取值范围,如果不存在,说明理由;(2)是否存在实数p ,使得40x p +<是220x x -->成立的必要不充分条件?如果存在,求出p 的取值范围,如果不存在,说明理由;3. 已知集合22{|410813,,}A t t a ab b a b a Z b Z ==++--+∈∈,对于任意的x A ∈,y A ∈,判断元素xy 与集合A 的关系,并证明你的结论;4. 已知二次函数()y f x =的二次项系数是1,并且一次项系数和常数项都是整数,若(())0f f x =有四个不同的实数根,并且在数轴上四个根成等距排列,试求二次函数()y f x =的解析式,使得其所有项的系数和最小;参考答案一. 填空题1. (2,3)、(,1)(6,)-∞-+∞2. 若2016x =且1y =,则2017x y +=3. [1,7]4. 4[,)5-+∞5. 1(2,)3-6. 34c ≤ 8. 4p =± 9. 32a ≤-或1a ≥- 10. 2 11. 8二. 选择题1. B2. A3. B4. D。
上海市上海中学2015-2016学年高一下学期期末数学试题
绝密★启用前上海市上海中学2015-2016学年高一下学期期末数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.用数学归纳法证明“()()()()12213...21nn n n n n ++⋅⋅⋅+=⋅⋅⋅⋅-”,从“k 到1k +”左端需增乘的代数式为( )A .21k +B .()221k +C .211k k ++ D .231k k ++ 2.一个三角形的三边成等比数列,则公比q 的范围是( ) A .12q >B .12q <C .1122q <<D .12q <或12q +> 3.等差数列{}n a 中,50a <,60a >,65a a >,n S 是前n 项和,则下列结论中正确的是( )A .1S ,2S ,3S 均小于零,4S ,5S ,…大于零B .1S ,2S ,…,5S 均小于零,6S ,7S ,…大于零C .1S ,2S ,…,9S 均小于零,10S ,11S ,…大于零D .1S ,2S ,…,10S 均小于零,11S ,12S ,…大于零4.若()()321322nn n n nn a n ----*++--=∈N ,则()12lim n n a a a →∞++⋅⋅⋅+等于( )A.1124B.1724C.1924D.25245.已知2016cot21sin1θθ+=+,那么()()2sin2cos1θθ++的值为( )A.9 B.8 C.12 D.不确定6.已知()()2739nf n n=+⋅+,存在自然数m,使得对任意*n N∈,都能使m整除()f n,则最大的m的值为( )A.30 B.9 C.36 D.6第II卷(非选择题)请点击修改第II卷的文字说明二、填空题7.(1arcsin arccos arctan2⎛⎛⎫-++=⎪⎝⎭⎝⎭______.8.()()252lim31nnn n→∞-=-+______.9.若数列{}n a为等差数列,且满足2471144a a a a+++=,则3510a a a++=______. 10.设数列{}n a满足:112a=,()1111nnnaa na++=≥-,则2016a=______. 11.已知数列{}n a满足:()*3nna n n N=⋅∈,则此数列前n项和为nS=______.12.已知数列{}n a满足)113,1na a n+==≥.则lim nna→∞=________. 13.等差数列{}n a、{}n b的前n项和分别为n S、n T,若231nnS nT n=+,则56ab=______.14.等比数列{}n a,513a-=,前8项的几何平均为9,则3a=______.15.定义在R上的函数()442xxf x=+,121nnS f f fn n n-⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2,3,n=⋅⋅⋅,则nS=______.16.设1x,2x是方程233sin cos055x xππ-+=的两解,则12arctan arctanx x+=______.17.已知数列{}n a的前n 项和为n S ,n a =,则2016S=______.18.设正数数列{}n a 的前n 项之和为n b ,数列{}n b 的前n 项之积为n c ,且1n nb c +=,则数列的前n 项和n S 中大于2016的最小项为第______项.三、解答题19.用数学归纳法证明:()()22222222212311321n n n ++++-++-++++L L ()21213n n =+. 20.已知数列{}n a 满足11a =,其前n 项和是n S ,对任意正整数n ,2n n S n a =,求此数列的通项公式.21.已知方程cos 221x x k +=+. (1)k 为何值时,方程在区间0,2π⎡⎤⎢⎥⎣⎦内有两个相异的解α,β; (2)当方程在区间0,2π⎡⎤⎢⎥⎣⎦内有两个相异的解α,β时,求αβ+的值.22.设数列{}n a 满足12a =,26a =,()*2122n n n a a a n N ++=-+∈.(1)证明:数列{}1n n a a +-是等差数列;(2)求122016111a a a ++⋅⋅⋅+. 23.数列{}n a ,{}n b 满足11266n n nn n n a a b b a b ++=--⎧⎨=+⎩,且12a =,14b =.(1)证明:{}12n n a a +-为等比数列; (2)求{}n a ,{}n b 的通项.24.已知数列{}n a 是等比数列,且24a =,532a =,数列{}n b 满足:对于任意*n N ∈,有()11122122n n n a b a b a b n +++⋅⋅⋅+=-⋅+.(1)求数列{}n a 的通项公式;(2)若数列{}n d 满足:16d =,()11620nbn n d d a a +⎛⎫⋅⋅- ⎪⎝⎭>=,设()*123n n T d d d d n N =∈L ,当且仅当8n =时,n T 取得最大值,求a 的取值范围.参考答案1.B 【解析】 【分析】分别求出n k =时左端的表达式,和1n k =+时左端的表达式,比较可得“n 从k 到1k +”左端需增乘的代数式. 【详解】由题意知,当n k =时,有(1)(2)()213(21)kk k k k k +++=⋅⋅-L L , 当1n k =+时,等式的左边为(2)(3)(2)(21)(22)k k k k k ++++L , 所以左边要增乘的代数式为(21)(22)1k k k +++2(21)k =+.故选:B . 【点睛】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从k 到1k +,考查学生仔细观察的能力,是中档题. 2.C 【解析】 【分析】 设三边分别为:,,,(,0)a a aq a q q >,分类讨论:1q …时,a a aq q+>,01q <<时,aa aq q<+,分别解出即可得出. 【详解】 设三边分别为:,,,(,0)aa aq a q q>,则1q …时,aa aq q +>解得:1q <„当01q <<时,aa aq q <+1q <<,综上可得:公比q 的范围是11,22⎛⎫⎪ ⎪⎝⎭.故选::C . 【点睛】本题主要考查的是等比数列,同时要注意三边要构成三角形,要满足任意两边之和大于的三边,考查学生的分析问题解决问题的能力,是中档题. 3.C 【解析】 【分析】由50a <,60a >且65a a >可得650d a a =->,56560,20,20a a a a +><>,结合等差数列的求和公式及性质可判断. 【详解】50a <Q ,60a >且65a a >,650d a a ∴=->∴数列的前5项都为负数,56560,20,20a a a a +><>Q 由等差数列的性质及求和公式可得,()19959902a a S a +==<,()()1011056550S a a a a =+=+>,由公差0d >可知,1239,,S S S S ⋯均小于10110,,S S ⋯都大于0. 故选:C . 【点睛】本题主要考查的是等差数列的前n 项和,考查等差数列的性质,考查学生对等差数列知识的掌握情况,是基础题. 4.B 【解析】 【分析】分别在n 为奇数和偶数时求得n a ,得到()()135246lim 333222n ------→∞⎡⎤+++⋅⋅⋅++++⋅⋅⋅⎣⎦,根据等比数列求和公式可求得极限值. 【详解】当n 为奇数时,()322332n n n n n na -----+--==当n 为偶数时,()322322n n n n n na -----++-==()()()13524612lim lim 333222n n n a a a ------→∞→∞⎡⎤∴++⋅⋅⋅+=+++⋅⋅⋅++++⋅⋅⋅⎣⎦ 122232311713128324----=+=+=-- 故选:B 【点睛】本题考查无穷等比数列的极限的求解,关键是能够通过分类讨论将数列化为两个等比数列求和的形式. 5.A 【解析】 【分析】首先将已知等式变形化简得到2016sin 1cot θ=+,利用正弦函数的有界限得cos 0,sin 1θθ==,可求得结果.【详解】将2016cot 21sin 1θθ+=+,变形得2016sin 1cot 2θθ+=+,整理得2016sin 1cot 1θθ=+≤, 即2016cot 0θ≤, 又2016cot 0θ≥Q , 所以2016cot 0θ=, 所以cos 0,sin 1θθ==,所以22(sin 2)(cos 1)(12)9θθ++=+=. 故选:A . 【点睛】本题考查了三角函数的化简求值,关键是由已知结合正弦函数的有界性得到sin x 的值,考查学生的理解能力,是中档题. 6.C 【解析】 【分析】依题意,可求得(1)f 、(2)f 、(3)f 、(4)f 的值,从而可猜得最大的m 的值为36,再利用数学归纳法证明即可. 【详解】由()(27)39nf n n =+⋅+,得(1)36f =,(2)336f =⨯,(3)1036f =⨯, (4)3436f =⨯,由此猜想36m =.下面用数学归纳法证明: (1)当1n =时,显然成立。
2016-2017年上海市上海中学高一上周练04
上海中学高一周练数学卷2016.09.29一. 填空题1. 当且仅当,a b 满足条件 时,(2)(1)a b -+-≥2. 已知c d >,若ac bd bc ad +>+,则a b - 0(填“>”、“<”、“=”)3. 写出命题“若0m >,则方程20x x m +-=有实根”的一个等价命题4. 若,,a b x R ∈,1x ≠-,且a b >,则下列结论中,①22a b >,②1b a <,③33a b >, ④|1||1|a b x x >++,正确的是 5. 已知,,x y z 都是非负整数,且10x y z ++=,2330x y z ++=,则5330x y z ++=的 取值集合为6. 在原命题“若A B B ≠U ,则A B A ≠I ”与它的逆命题、否命题、逆否命题这四个命 题中,真命题的个数是 个7. 已知P 是正三角形ABC 内部一点,△PAB 、△PBC 、△PCA 的面积值形成集合M , 若M 的子集共有4个,则P 点需满足的条件是8. 已知221a b +=,222b c +=,222c a +=,则ab bc ca ++的最小值为9. 设,,a b c 均为正数,若c a b a b b c c a<<+++,则,,a b c 从小到大排列是 10. 小明最近在研究一个问题:“已知实数,,a b c ,若22||||1a b c a b c +++++≤,则222100a b c ++<”,老师告诉他这是假命题,那么符合条件的一个反例可以是二. 选择题11. 已知0x >,0y >,且4x y +≤,则下列不等式恒成立的是( )A. 114x y ≤+B. 111x y +≥C. 2D. 11xy≥ 12. 某校组织学生参观,,,a b c d 四处,规定:去a 就不去b ,去b 就去d ,去c 就不去d , 不去c 就去b ,则下列判断中,错误的是( )A. 不可能去b 又去cB. 去b 的人与去d 的人相同C. 去a 的人就去cD. 去d 的人就去a13. 若0a c b >>>,则a b b c c a c a b---++的值为( ) A. 正 B. 负 C. 零 D. 不确定14. 设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=, 则a b c x y z++=++( ) A. 14 B. 13 C. 12 D. 3415. 已知方程①2110x a x ++=,方程②2220x a x ++=,方程③2340x a x ++=,其中1a 、2a 、3a 是正实数,当2213a a a =⋅时,下列选项中,能推出方程③无实根的是( ) A. 方程①有实根,且②有实根 B. 方程①有实根,且②无实根C. 方程①无实根,且②有实根D. 方程①无实根,且②无实根16. 设多项式852()1Q x x x x x =-+-+,x R ∈,则()Q x 有性质( )A. 对任意x ,()Q x 总是大于零B. 对任意x ,()Q x 总是小于零C. 当0x >时,()0Q x ≤D. 以上都不对三. 解答题17. 已知,a b R ∈,且1a b +=,求证:11(1)(1)9a b ++≥;18. 若,,a b c R +∈,比较bc ca ab a b c++与a b c ++的大小;19. 某商品计划两次提价,有甲、乙、丙三种方案,其中0p q >>;经两次提价后,甲、乙、丙哪种方案的提价幅度最大?为什么?20. 已知,a b R +∈,2n ≥,n N ∈,请你仿照2221111111231223n +++⋅⋅⋅+<+++⋅⋅⋅⨯⨯ 1111111112(1)12231n n n n n +=+-+-+⋅⋅⋅+-=---的证明方法,证明下列不等式: 222111()()()1212()()22n n a b a b a nb a b a b ++⋅⋅⋅+<++++++;参考答案一. 填空题1. 2a ≥且1b ≥2. >3. 若方程20x x m +-=无实根,则0m ≤4. ③④5. {30}6. 47. 在任意中线上,且不为重心8. 129. c a b << 10. (10,10,110)-二. 选择题11. B 12. D 13. B14. C15. B 16. A三. 解答题17. 略; 18. bccaaba b c a b c ++≥++;19. 丙; 20. 略;。
上海市上海中学2016-2017学年高一上数学周练08
上海中学高一周练数学卷2016.11.03一. 填空题1. 求出下列不等式的解集:(1)||0a > (2)2103624x x ≤-+< (3)32x x<- (4)25||60x x -+>(5x < (6)22110x x x x --+≤(756x <-2. 已知集合8{|1}2A x x =>+,{|||}B x x a b =-≥,若A B R =,A B =∅,则 a = ,b =3. 若函数12y x b =+的图像与以(1,1)A 、(2,3)B 为端点的线段相交,则常数b 的取值范围 是4.在maths 先生的数学班的所有学生中,对于问题“你喜欢数学吗?”在学年开始时,有 50%回答“是”,有50%回答“不”,学年结束时,有70%回答“是”,有30%回答“不”, 在全部学生中,有x %的学生在学年开始和结束时给出了不同的回答,则x 的最大值和最小 值的差是5. 对任意正数x 和y ,不等式1()()9a x y x y++≥恒成立,则常数a 的取值范围是 6. 令,,,a b c d 是集合{3,2,2,4}--中的不同的元素,则22()()a b c d +++的最大值与最小值之差为7. 关于x 的方程2(2)210x m x m +-+-=有一个根属于(0,1),则m 取值范围是8. 若||2m ≤时不等式2210mx x m -+-<恒成立,则x 的取值范围是9. 若关于x 的不等式组22202(25)50x x x a x a ⎧--≥⎪⎨+++≤⎪⎩的解集中有且仅有两个整数,则a 的取值 范围是10. 函数42321x y x =+的最小值是11. 若正实数a 和b 满足5a b +=的最大值是二. 选择题1.“0.53k <<”是“关于x 的不等式4288(2)50x k x k +-+->的解集为R ”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2. 若面积为S 的正三角形其外接圆的半径是r ,则( )A. 2S =B. 2S =C. 2S =D. 2S =3. 已知集合{|||1}A x x =<,对任意的a A ∈,B A ∈,则1a b ab ++和1a bab --()A. 一定都属于AB. 至少有一个属于AC. 至多有一个属于AD.是否属于A 不能确定三. 解答题1. 解关于x 的不等式2(1)10ax a x -++<;2. 求函数y =的定义域和值域;3. 已知非空集合M R ⊆,定义域为R 的函数1,()0,M x M f x x M ∈⎧=⎨∉⎩,若A 、B 是R 的两个 非空真子集,试求函数()1()()()1A B A B f x F x f x f x +=++的值域;4. 列车提速可以提高铁路运输量,但并非列车速度越大,列车的流量Q (单位时间内通过 观测点的列车数量)就越大,因为列车运行时,前后两车必须要保持一个“安全间隔”,“安 全间隔”与列车的速度v 的平方成正比(比例系数0k 为定值,00k >),假设所有的列车长 度均为l ,问:列车车速多大时,列车的流量Q 最大;5. 已知0x y >>y x >;参考答案一. 填空题1.(1)(,1)(1,)-∞-+∞ (2)(3,1][4,6)-- (3)(2,)+∞ (4)(,3)(2,2)(3,)-∞--+∞ (5)R (6){1} (7)36(,)25+∞ 2. 2a =,4b = 3. 1[,2]24. 605. [4,)+∞6. 607. 1(,62-8. 11(22-++ 9. (2,1][4,5)- 10. 011.二. 选择题 1. A 2. C 3. A三. 解答题1. 当0a <,1(,)(1,)x a ∈-∞+∞;当0a =,(1,)x ∈+∞;当01a <<,1(1,)x a∈; 当1a =,x ∈∅;当1a >,1(,1)x a ∈;2. 定义域:[1,2)(2,)+∞,值域:(,8](0,)-∞-+∞; 3. 2{,1}3; 4. 20v Q l k v =+,v =Q 最大; 5. 略;。
数学上海中学高一周练(2016.09.18)
上海中学高一周练数学卷2016.09.18一. 填空题1. 已知{|2,}E x x x R =≥∈,{|8,}F x x x R =<∈,{|06,}G x x x R =≤≤∈,则 E F = ; F G = ; R C E F = ; R R C E C G = ;F CG = ; ()F C GE = ; 2. 用列举法表示集合*12{|,}5a N a Z a∈∈=- 3. 若“x a ≥”是“||2x ≤”的必要条件,则实数a 的取值集合是4. 命题“若x A ∈或x B ∈,则x A B ∈”的否命题是5. 某校一年级的200人中,爱好数学的有95人,爱好体育的有156人,则数学体育都爱好 的人数的最小值是6. 集合2{|(1)0}A x k x x k =++-=有且仅有两个子集,则实数k 的值为7. 非空集合{|121}A x a x a =+≤<-,{|25}B x x =-≤≤,若A A B ⊆,则a 的取值 范围是8. 关于x 的方程26(2)50x a x b ++++=的解集是N ,关于x 的方程220x ax b -+=的 解集是M ,1{}2M N =,则集合M 为 9. 集合*{|2,,50}A m m k k N k ==∈≤,集合{|,,,}B n n i j i j i A j A ==+<∈∈,则B中元素的个数是10. 若“存在{|12}x x x ∈≤≤使得310x a ++≥”是真命题,则a 的取值范围是11. 设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则称k 是A 的 一个“孤立元”,给定{1,2,3,4,5,6}S =,在S 的所有3元子集中,含“孤立元”的集合共 有 个12. 若集合{,,,}{1,2,3,4}a b c d =,且下列四个关系:①1a =;②1b ≠;③2c =;④4d ≠; 有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是13. 非空集合{|2}A x x a =-≤≤,{|23,}B y y x x A ==+∈,2{|,}C z z x x A ==∈, 若C B ⊆,则a 的取值范围是二. 选择题14. 对于集合A 和B ,令{|,,}A B x x a ba Ab B +==+∈∈,如果{|2,}S x x k k Z ==∈, {|21,}T x x k k Z ==+∈,则S T +=( )A. 整数集ZB. SC. TD. {|41,}x x k k Z =+∈15. 已知真命题“a b c d ≥⇒>”和“a b e f <⇒≤”,则“c d ≥”是“e f ≤”的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件16. 在下面的三个命题中,正确的个数是( )①“△ABC 和△111A B C 都是直角三角形”的否定形式是“△ABC 和△111A B C 都不是直角 三角形”;② 命题“若0xyz <,则,,x y z 中至少有两个负数”的逆否命题是“若,,x y z 中 至多有一个负数,则0xyz ≥”;③ 命题“两个无理数的积仍是无理数”的逆命题是“乘 积为无理数的两数都为无理数”;A. 0B. 1C. 2D. 317. 设Q 是有理数集,集合{|2,,,0}X x x a b a b Q x ==+∈≠,在下列集合中:①{2|x }x X ∈;②{}2x X ∈;③1{|}x X x ∈;④2{|}x x X ∈;与X 相同的集合有( ) A. ①② B. ②③ C. ①②④ D. ①②③18. 设集合0123{,,,}S A A A A =,在S 上定义运算⊕为:i j k A A A ⊕=,其中k 为i j +被4 除的余数,,{0,1,2,3}i j ∈,则满足关系式20()x x A A ⊕⊕=的x ()x S ∈的个数为( )A. 4B. 3C. 2D. 1三. 解答题19. 设2()f x x ax b =++,{|()}{}A x f x x a ===,求a 、b 的值;20. 求证:222()()()a b b c c a -=-=-的充要条件是a b c ==;参考答案一. 填空题1. {|28}x x ≤<、{|8}x x <、{|8}x x <、{|2x x <或6}x >、{|68x x <<或0}x <、 {|2x x <或68}x <<2. {7,1,1,2,3,4}--3. {|2}a a ≤-4. 若x A ∉且x B ∉,则x A B ∉5. 516. 1-或12- 7. 23a <≤ 8. 1{,4}2- 9. 97 10. 7a ≥-11. 16 12. 6 13.132a ≤≤二. 选择题14. C 15. A 16. C 17. D 18. C三. 解答题 19. 13a =,19b =; 20. 略;。
上海中学2016-2017学年高一上学期周练(9.22)数学试题 含答案
上海中学高一周练数学卷2016.09。
22一。
填空题1。
将下列用描述法表示的集合用其他适当的方式表示: (1)*{|,,}m x x m Z n N n=∈∈=(2){|||,}y y x x Z =∈= (3){(,)|,,}x y y x Z y Z ∈∈=(4)11*{|(1)(1)(1),}n n n x x x n N -+-=-+-∈=(5)221{|2,,0}x ax a R a a +≤<∈≠=(6){|x x R ∈且210}xx -+>=2. 对于实数x 和y ,在下列表格中填写所给出的原命题的逆命题、否命题和逆否命题,并在表格的第三列中指出命题的真假:二。
选择题 1. 若120aa <<,120b b <<,且12121a a b b +=+=,如果要把1122a b a b +、1221a b a b +、0.5按从小到大的顺序排列,那么,排在中间的数( )A 。
不能确定,与1212,,,a a b b 的值有关 B 。
一定是1122a b a b + C. 一定是1221a ba b + D 。
一定是0.52。
设{|4,}A a a n n N ==∈,{|6,}B b b n n N ==∈,则AB =()A 。
∅ B. {0} C 。
{|12,}c c n n N =∈ D 。
{|24,}d d n n N =∈3。
设1234,,,a a a aR ∈且都不等于零,若324123:a a a A a a a ==;222222123234:()()B aa a a a a ++++2122334()a a a a a a =++,则A 是B 的()条件A 。
充分不必要 B. 必要不充分 C 。
充要D. 既不充分也不必要4。
已知,x y R ∈,“||||x y x y +=-”的充要条件是x 和y ( )A 。
上海中学高一周练(2016.10)
上海中学高一周练数学卷2016.10.20一. 填空题1.写出下列不等式(组)的解集:(1)2654x x +<;(2)23(1)(2)(3)(4)0x x x x ----≥;(3)3||1||22x x -≥-;(4)||11x x x x-≥++;(5)|21|2|2|2x x +-->;(6)25|21|x x x -->-;(7)2112||x x ≤-;(8)13x <+;(9)2680321x x x x ⎧-+>⎪⎨+>⎪-⎩;(10)032||32x x xxx >⎧⎪--⎨>⎪++⎩;2.不等式20ax bx c ++>的解为m x n <<(0)m n <<,用,m n 表示20cx bx a -+<的 解为3.已知函数2()f x x =,()1g x x =-,若存在x R ∈,使()()f x bg x <成立,则实数b 的 取值范围为 4.1100的最小正整数x 是 5.已知三个不等式:(1)|24|5x x -<-;(2)22132x x x +≥-+;(3)2210x nx +-<; 同时满足(1)、(2)的x 也满足(3),则n 的最大值为 6.若不等式20ax bx c ++>的解集为(1,2)-,则不等式2||a bc b x x++>的解为二. 选择题7.设2()()()f x x a x bx c =+++,2()(1)(1)g x ax cx bx =+++,其中,,a b c R ∈,记集合{|()0,}S x f x x R ==∈,{|()0,}T x g x x R ==∈,若||S 、||T 分别为集合S 、T 的元素个数,则下列结论中不可能的是( )A. ||1S =且||0T =B. ||1S =且||1T =C. ||2S =且||3T =D. ||2S =且||2T =8.若12,x x 是方程280x ax ++=的两相异实根,则有( )A. 1||2x >,2||2x >B. 1||3x >,2||3x >C. 12||x x -≤D. 12||||x x +>9.已知()23f x x =+()x R ∈,若|()1|f x a -<的必要条件是|1|x b +<(,0)a b >,则a 、b 之间的关系是() A. 2a b ≥ B. 2ab <C. 2ba ≤D. 2b a >三. 解答题10.关于实数x 的不等式2211|(1)|(1)22x a a -+≤-与23(1)2(31)0x a x a -+++≤的解 集依次为A 与B ,若A B A =,求实数a 的取值范围;11.解不等式:(1)2|1|x ax -<;(2)(1)32a x x ->-;12.已知函数22()(3)3f x x a x a a =+-+-(a 为常数)(1)如果对任意[1,2]x ∈,2()f x a >恒成立,求实数a 的取值范围;(2)设实数,p q 为方程()0f x =的两实数,判断:① p q a ++;② 222p q a ++;③333p q a ++是否为定值?若是定值请求出;若不是定值,请把不是定值的项表示为关于a的解析式;参考答案一. 填空题 1.(1)41(,)32-(2)(,1]{2}[3,4]-∞(3)88[,2)(2,]33-- (4)(,1)(1,)-∞--+∞(5)5(,)4+∞ (6)(,3)(4,)-∞-+∞(7)(,2](2,0)(0,2)[2,)-∞--+∞ (8)7(,3)[,2][1,)3-∞----+∞(9)(1,2)(4,5)(10)2. 11(,)(,)m n-∞--+∞ 3.0b <或4b > 4.25005. 173-6.(1-二. 选择题7.C8.D9.A三. 解答题10.13a ≤≤或1a =-;11.(1)当0a >x <<;当0a =,x ∈∅;当0a <x <<(2)当0a <时,623a x a -<<-;当0a =时,x ∈∅;当03a <<时,623a x a -<<-; 当3a =时,2x >;当3a >时,63a x a -<-或2x >; 12.(1)2a <-;(2)3p q r ++=,2229p q r ++=,333323927p q r a a ++=-+;。
上海市上海中学2016-2017学年高一上学期数学周练11 含
上海中学高一周练数学卷2016.12.01一. 填空题1. 函数3()8f x x =-的零点为2. 设函数(1)()()x x a f x x++=为奇函数,则a = 3. 若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是 4. 命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是5. 函数,0()1,0x a x f x x x -+≥⎧=⎨--<⎩是R 上的减函数,则实数a 的取值范围是6. 函数y =的最大值为7. 设()f x ()x R ∈为奇函数,1(1)2f =,(2)()(2)f x f x f +=+,则(5)f = 8. 若()f x 是定义在R 上的偶函数,在(,0]-∞上是减函数,且(2)0f =,则使()0f x <的 x 的取值范围是9. 已知2()y f x x =+是奇函数,且(1)1f =,若()()2g x f x =+,则(1)g -=10. 已知函数1()42x f x =+,若函数1()4y f x m =+-为奇函数,则实数m =11. 已知函数()f x =(1)a ≠,若()f x 在区间(0,1]上是减函数,则实数a 的取值 范围是 12. 对于函数1()42x x f x m +=-⋅,若存在实数0x ,使得00()()f x f x -=-,则实数m 的取值范围是二. 选择题 13. 已知函数()f x 、()g x 定义在R 上,()()()h x f x g x =⋅,则“()f x 、()g x 均为奇函 数”是“()h x 为偶函数”的( )条件A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14. 若函数1()21x f x =+,则该函数在R 上( ) A. 单调递减无最小值 B. 单调递减有最小值C. 单调递增无最大值D. 单调递增有最大值15. 设奇函数()f x 在(0,)+∞上为增函数且(1)0f =,则不等式()()0f x f x x --<的解集 为( )A. (1,0)(1,)-+∞B. (,1)(0,1)-∞-C. (,1)(1,)-∞-+∞D.(1,0)(0,1)-16. 设()f x 是偶函数,且当0x ≥时,()f x 是单调函数,则满足3()()4x f x f x +=+的所有 x 之和为( )A. 3-B. 3C. 8-D. 8三. 解答题17. 根据函数单调性的定义,证明:函数31y x =-是R 上的递减函数;18. 已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围;19. 已知函数2()4x f x x =-; (1)指出函数()f x 的单调性,并予以证明;(2)画出函数()f x 的大致图像;20. 已知2()a f x x x=+()a R ∈; (1)判断函数()f x 的奇偶性,说明理由;(2)若()f x 在区间[1,)+∞上是增函数,求实数a 的取值范围;21. 设函数()f x =,其中2k <-;(1)求函数()f x 的定义域;(2)写出()f x 的单调区间;参考答案一. 填空题1. 22. 1-3. 10[2,]34. 若()f x 不是奇函数,则()f x -不是奇函数5. 1a ≤-52 8. (2,2)- 9. 1- 10. 12 11. (,0)(1,3]-∞ 12. 12m ≥二. 选择题 13. A 14. A 15. D 16. C三. 解答题17. 略;18. ([1,)-∞+∞; 19.(1)在(,2)-∞-、(2,2)-和(2,)+∞上单调递减,证明略;(2)略;20.(1)当0a =,偶函数,当0a ≠,非奇非偶函数;(2)2a ≤;21.(1)(,1(12,1)(1,12)(12,)k k k -∞--------+---+-+∞;(2)在(,1-∞-上单调递增,在(11)--单调递减,在(1,1--上单调递增,在(1)-+∞单调递减;。
上海市某校高一(上)周考数学试卷(有答案) (2)
上海市某校高一(上)周考数学试卷一、填空题(每小题4分,共48分)1. 已知A={y|y=2x, x∈R},B={y|y=x2, x∈R},则A∩B=________.2. 函数f(x)=1(x+1)⋅ln x的定义域为________.3. 不等式−12<1x<13的解集为________.4. 函数y=2|x+1|的递减区间是________5. 已知函数y=log14x与y=kx的图象有公共点A,且点A的横坐标为2,则k=________.6. 已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数,则k的值为________.7. 对于问题:“若关于x的不等式ax2+bx+c>0的解集为(−1, 2),则关于x的不等式ax2−bx+c>0”的解为________.8. 已知直线y=a与函数f(x)=2x及函数g(x)=3⋅2x的图象分别相交于A,B两点,则A,B两点之间的距离为________.9. 已知集合A={0, 1},B={a2, 2a},其中a∈R,我们把集合{x|x=x1+x2, x1∈A, x2∈B},记作A×B,若集合A×B中的最大元素是2a+1,则a的取值范围是________.10. 有限集合P中元素的个数记作card(P).已知card(M)=10,A⊆M,B⊆M,A∩B=⌀,且card(A)=2,card(B)=3.若集合X满足A⊆X⊆M,则集合X的个数是________(用数字作答)11. 对于任意实数x,[x]表示不超过x的最大整数,如[1.1]=1,[−2.1]=−3.定义R上的函数f(x)=[x]+[2x]+[4x],若A={y|y=f(x), 0≤x≤1},则A中所有元素的和为________.12. 某班共有50名学生,已知以下信息:①男生共有33人;②女团员共有7人;③住校的女生共有9人;④不住校的团员共有15人;⑤住校的男团员共有6人;⑥男生中非团员且不住校的共有8人;⑦女生中非团员且不住校的共有3人.根据以上信息,该班住校生共有________人.二、选择题(每小题5分,共20分)函数f(x)=lg(1−x2),集合A={x|y=f(x)},B={y|y=f(x)},则如图中阴影部分表示的集合为()A.[−1, 0]B.(−1, 0)C.(−∞, −1)∪[0, 1)D.(−∞, −1]∪(0, 1)函数y=2x−x2的图象大致是()A. B.C. D.已知集合A={x||x−2|<3},B={x|x2+(1−a)x−a<0},若B⊆A,则实数a的取值范围是()A.{a|−1≤a≤5}B.{a|−1<a<5}C.{a|−1≤a<5}D.{a|−1<a≤5}若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补,记φ(a, b)=√a2+b2−a−b,那么φ(a, b)=0是a与b互补的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件三、解答题(本大题共5小题,满分82分)解不等式组:{5x+3≥1log2(x2+x+2)≥2.已知命题①:函数y=ax2−2ax+a+1的图象总在x轴上方;命题②:关于x的方程(a−1)x2+(2a−4)x+a=0有两个不相等的实数根.(1)若命题①为真,求a的取值范围;(2)若命题②为真,求a的取值范围;(3)若命题①、②中至多有一个命题为真,求a的取值范围.设A={a1,a2,…,a n}⊆M(n∈N∗,n≥2),若a1+a2+...+a n=a1a2...a n,则称集合A是集合M的n元“好集”.(1)写出实数集R上的一个二元“好集”;(2)是否存在正整数集合N∗上的二元“好集”?说明理由;(3)求出正整数集合N∗的所有三元“好集”.设函数f(x)=a x−(k−1)a−x(a>0且a≠1)是定义域为R的奇函数.(1)求k的值;(2)若f(1)<0,试判断函数的单调性,并求使不等式f(x2+tx)+f(4−x)<0恒成立的t的取值范围;(3)若f(1)=32,且g(x)=a2x+a−2x−2mf(x)在[1, +∞)上的最小值为−2,求m的值.对x∈R,定义函数sgn(x)={1,x>0 0,x=0−1,x<0(1)求方程x2−3x+1=sgn(x)的根;(2)设函数f(x)=[sgn(x−2)]•(x2−2|x|)f(x)=[sgn(x−2)]•x2−2|x|,若关于x 的方程f(x)=x+a有3个互异的实根,求实数a的取值范围;(3)记点集S={(x, y)|x sgn(x−1)⋅y sgn(y−1)=10, x>0, y>0} s={(x, y),点集T={(lg x, lg y)|(x, y)∈S},求点集T围成的区域的面积.参考答案与试题解析上海市某校高一(上)周考数学试卷一、填空题(每小题4分,共48分)1.【答案】[0, +∞)【考点】交集及其运算【解析】一次函数y =2x ,由自变量x 为任意实数,求出值域为R ,确定出集合A ,二次函数y =x 2,由自变量x 为任意实数,利用二次函数的图象与性质得到值域为y 大于等于0,确定出集合B ,找出两集合的公共部分,即可得到两集合的交集.【解答】解:∵ 函数y =2x 的值域为R ,∴ 集合A =R ,∵ 函数y =x 2的值域为y ≥0,∴ 集合B =[0, +∞),则A ∩B =[0, +∞).故答案为:[0, +∞)2.【答案】(0, 1)∪(1, +∞)【考点】函数的定义域及其求法【解析】题目给出的是分式函数,求函数的定义域,只要分式的分母不等于0即可,求解分母不等于0时需要分母的两个因式均不等于0,同时保证对数式的真数大于0.【解答】解:要使原函数有意义,则(x +1)⋅ln x ≠0,即{x +1≠0①ln x ≠0②, 解①得:x ≠−1,解②得:x >0且x ≠1.所以,函数f(x)=1(x+1)⋅ln x 的定义域为(0, 1)∪(1, +∞).故答案为(0, 1)∪(1, +∞).3.【答案】(−∞, −2)∪(3, +∞)【考点】其他不等式的解法【解析】由已知可转化为{x−3x >0x+2x >0,解不等式可求【解答】解:由题意可得,{1x −13<01x+12>0 ∴ {x−3x >0x+2x >0,解可得{x >3或x <0x >0或x <−2,即x >3或x <−2 故答案为:(3, +∞)∪(−∞, −2)4.【答案】(−∞, −1]【考点】函数的单调性及单调区间【解析】此题考查的是绝对值函数、分段函数以及函数单调性问题.在解答时可以先将函数转化为分段函数,再结合自变量的范围分析函数的单调间区间即可获得解答.【解答】解:由题意可知:y ={2x +2,x >−1−2x −2,x ≤−1, ∵ −2<0,∴ 函数的单调递减间区间为(−∞, −1].故答案为(−∞, −1].5.【答案】−14【考点】对数函数图象与性质的综合应用【解析】根据函数y =log 14x 与y =kx 的图象有公共点A 的横坐标为2,先求出A 点的纵坐标,再把点A 代入y =kx ,求出k 的值.【解答】解:∵ 函数y =log 14x 与y =kx 的图象有公共点A ,且点A 的横坐标为2, ∴ 点A 的纵坐标为y =log 142=−12,把点A(2, −12)代入y =kx 得−12=2k ,∴ k =−14.故答案为−14.6.【答案】−12【考点】对数的运算性质函数奇偶性的性质偶函数【解析】利用函数为偶函数的定义寻找关于k 的方程是求解本题的关键,转化过程中要注意对数的运算性质的运用.【解答】解:(1)由函数f(x)是偶函数,可知f(x)=f(−x)∴ log 4(4x +1)+kx =log 4(4−x +1)−kx即 log 44x +14−x +1=−2kx ,log 44x =−2kx∴ x =−2kx 对一切x ∈R 恒成立,∴ k =−12故答案为−12.7.【答案】(−2, 1)【考点】一元二次不等式的应用【解析】利用不等式的解集与方程解的关系,结合韦达定理,确定a ,b ,c 之间的关系,即可求解不等式ax 2−bx +c >0.【解答】解:∵ 关于x 的不等式ax 2+bx +c >0的解集为(−1, 2),∴ {−1+2=−b a ,(−1)×2=c a ,且a <0 ∴ b =−a ,c =−2a∴ 不等式ax 2−bx +c >0可化为ax 2+ax −2a >0,∴ x 2+x −2<0.∴ −2<x <1.故答案为:(−2, 1).8.【答案】log 23【考点】指数式与对数式的互化对数及其运算【解析】先确定A ,B 两点的横坐标,再作差,即可求得A ,B 两点之间的距离.【解答】解:由2x =a ,可得x =log 2a ;由3⋅2x =a ,可得x =log 2a 3=log 2a −log 23 ∴ A ,B 两点之间的距离为log 2a −(log 2a −log 23)=log 23故答案为:log 239.【答案】0<a <2【考点】元素与集合关系的判断【解析】根据题意可知集合A ×B 中元素,然后列出不等式即可求出.【解答】解:由题意可知集合A ×B 中的元素分别是a 2,2a ,a 2+1,2a +1,∵ 2a +1为最大元素∴ 可列不等式2a +1>a 2+1解不等式得0<a <2故答案为:0<a <2.10.【答案】256【考点】集合的包含关系判断及应用【解析】理解子集的含义,根据集合中元素的个数,利用子集个数的确定方法即可得到结论.【解答】解:∵ card(M)=10,card(A)=2,集合X 满足A ⊆X ⊆M∴ 当A =X 时有一种;A ≠X 时有28−1种,相加即256;故答案为:256.11.【答案】15【考点】函数的求值【解析】根据新定义,[x]表示不超过x 的最大整数,要求y =f(x)=[x]+[2x]+[4x],需要分类讨论有几个界点x =14,24,34,44对其进行讨论,从而进行求解;【解答】解:若A ={y|y =f(x), 0≤x ≤1},当x ∈[0, 14),0≤2x <12, 0≤4x <1, f(x)=[x]+[2x]+[4x]=0;当x ∈[14,12),12≤2x <1, 1≤4x <2, f(x)=[x]+[2x]+[4x]=1;当x∈[12,34),1≤2x<32, 2≤4x<3, f(x)=[x]+[2x]+[4x]=3;当x∈[34, 1),32≤2x<2, 3≤4x<4, f(x)=[x]+[2x]+[4x]=4;f(1)=1+2+4=7;所以A中所有元素的和为0+1+3+4+7=15故答案为:1512.【答案】24【考点】进行简单的合情推理【解析】通过分类讨论得出如下表格即可求出答案.【解答】解:(1)∵女生共有50−33=17人,其中住校的有9人,则不住校的有8人,而不住校的非团员共有3人,∴不住校的团员有5人,由女团员共有7人,∴住校的女团员2人;(2)由不住校的团员共有15人,而其中女团员5人,∴不住校的男团员有10人,又男生中非团员且不住校的共有8人;综上可知:①不住校的男团员有10人,女团员5人;②不住校的男非团员8人,女非团员3人.即不住校的学生共有10+5+8+3=26人,因此该班住校生共有24人.故答案为24.二、选择题(每小题5分,共20分)【答案】D【考点】Venn图表达集合的关系及运算【解析】首先根据对数函数的定义域和值域化简集合A,B;由图知阴影部分表示的集合为将A∪B除去A∩B后剩余的元素所构成的集合,然后即可借助数轴求出结果.【解答】解:∵f(x)=lg(1−x2),集合A={x|y=f(x)},B={y|y=f(x)},∴A={x|y=lg(1−x2)}={x|1−x2>0}={x|−1<x<1},B={y|y=lg(1−x2)}={y|y≤0},∴A∪B={x|x<1},A∩B={x|−1<x≤0},根据题意,图中阴影部分表示的区域为A∪B除去A∩B后剩余的元素所构成的集合为:(−∞, −1]∪(0, 1).故选:D.【答案】A【考点】函数的图象变换【解析】充分利用函数图象中特殊点加以解决.如函数的零点2,4;函数的特殊函数值f(−2)符号加以解决即可.【解答】解:因为当x=2或4时,2x−x2=0,所以排除B,C;−4<0,故排除D,当x=−2时,2x−x2=14故选A.【答案】A【考点】集合的包含关系判断及应用【解析】先绝对值不等式的解法求出集合A,根据条件B⊆A,逐一讨论集合B,求出符号条件的a即可.【解答】解:由题意得,集合A=(−1, 5),∵B⊆A;由于x2+(1−a)x−a=(x+1)(x−a),①当a<−1时,B={x|x2+(1−a)x−a<0}=(a, −1),不满足B⊆A;②当a=−1时,B=⌀,符合题意;③当a>−1时,B={x|−1<x<a},此时a≤5,综上所述a∈{a|−1≤a≤5}.故选A.【答案】C【考点】充分条件、必要条件、充要条件【解析】我们先判断φ(a, b)=0⇒a与b互补是否成立,再判断a与b互补⇒φ(a, b)=0是否成立,再根据充要条件的定义,我们即可得到得到结论.【解答】若φ(a, b)=√a2+b2−a−b=0,则√a2+b2=(a+b),两边平方解得ab=0,故a,b至少有一为0,不妨令a=0则可得|b|−b=0,故b≥0,即a与b互补;若a与b互补时,易得ab=0,故a,b至少有一为0,若a=0,b≥0,此时√a2+b2−a−b=√b2−b=0,同理若b=0,a≥0,此时√a2+b2−a−b=√a2−a=0,即φ(a, b)=0,故φ(a, b)=0是a与b互补的充要条件.三、解答题(本大题共5小题,满分82分)【答案】解:{5x+3≥1log 2(x 2+x +2)≥2⇒{5x+3−1≥0x 2+x +2≥4… ⇒{2−x x+3≥0x 2+x −2≥0⇒{−3<x ≤2x ≥1或x ≤−1… ⇒x ∈(−3, −2]∪[1, 2]… 【考点】其他不等式的解法【解析】将分式不等式右边的1通过移项,利用对数函数的单调性将对数符号去掉,将原不等式同解变形为{5x+3−1≥0x 2+x +2≥4,解二次不等式求出原不等式的解集. 【解答】解:{5x+3≥1log 2(x 2+x +2)≥2⇒{5x+3−1≥0x 2+x +2≥4… ⇒{2−x x+3≥0x 2+x −2≥0⇒{−3<x ≤2x ≥1或x ≤−1… ⇒x ∈(−3, −2]∪[1, 2]… 【答案】解:(1)a =0时,y =1,符合题意;当a ≠0时,由{a >0△<0求得a >0,故a 的取值范围为[0, +∞). … (2)方程两个不相等的实数根⇔{a −1≠0△>0⇔{a ≠1a <43, 即a <1或1<a <43,故a 的取值范围为(−∞, 1)∪(1, 43). …(3)设A ={a|a ≥0},B ={x|a <1或1<a <43},若命题①、②全都是真命题, 则a 的范围为A ∩B ={a|0≤a <1或1<a <43},故当命题①、②中至多有一个命题为真时,a 的取值范围是∁U (A ∩B)={a|a <0或a =1或a ≥43}.… 【考点】函数零点的判定定理命题的真假判断与应用【解析】(1)当a =0时,y =1,符合题意;当a ≠0时,由{a >0△<0求得a 的取值范围. (2)方程两个不相等的实数根⇔{a −1≠0△>0⇔{a ≠1a <43,由此求得a 的取值范围. (3)设A ={a|a ≥0},B ={x|a <1或1<a <43},若命题①、②全都是真命题,则a 的范围为A ∩B ,则A ∩B 的补集为所求. 【解答】 解:(1)a =0时,y =1,符合题意;当a ≠0时,由{a >0△<0求得a >0,故a 的取值范围为[0, +∞). …(2)方程两个不相等的实数根⇔{a −1≠0△>0⇔{a ≠1a <43,即a <1或1<a <43,故a 的取值范围为(−∞, 1)∪(1, 43). …(3)设A ={a|a ≥0},B ={x|a <1或1<a <43},若命题①、②全都是真命题,则a 的范围为A ∩B ={a|0≤a <1或1<a <43},故当命题①、②中至多有一个命题为真时,a 的取值范围是∁U (A ∩B)={a|a <0或a =1或a ≥43}.… 【答案】解:(1)∵ −1+12=(−1)×12,∴ A ={−1,12}. (2)设A ={a 1, a 2}是正整数集N ∗上的二元“好集”, 则a 1+a 2=a 1a 2且a 1,a 2∈N ∗,不妨设a 2>a 1 则a 1=a 1a 2−a 2=a 2(a 1−1),a 1−1=a 1a 2,∵ 0<a 1a 2<1,∴ 满足a 1−1=a 1a 2的a 1∈N ∗不存在;故不存在正整数集合N ∗上的二元“好集”.(3)设A ={a 1, a 2, a 3}是正整数集N ∗上的三元“好集”,不妨设a 3>a 2>a 1(a 1,a 2,a 3∈N ∗),∵ a 1a 2a 3=a 1+a 2+a 3<3a 3⇒a 1a 2<3,满足a 1a 2<3的正整数只有a 1=1,a 2=2,代入a 1a 2a 3=a 1+a 2+a 3得a 3=3, 故正整数集合N ∗的所有三元“好集”为{1, 2, 3}. 【考点】子集与交集、并集运算的转换 【解析】根据集合中元素满足的性质a 1+a 2+...+a n =a 1a 2...a n ,可验证{−1, 12}符合条件求解(1); 对(2)可用反证法证明:在正整数集合N ∗上的二元“好集”不存在; 对(3)利用不等式的放缩技巧,不妨设a 3>a 2>a 1,a 1a 2a 3=a 1+a 2+a 3<3a 3,这样就可限制a 1、a 2的大小,从而求出符合条件的“好集”. 【解答】解:(1)∵ −1+12=(−1)×12,∴ A ={−1,12}.(2)设A ={a 1, a 2}是正整数集N ∗上的二元“好集”, 则a 1+a 2=a 1a 2且a 1,a 2∈N ∗,不妨设a 2>a 1 则a 1=a 1a 2−a 2=a 2(a 1−1),a 1−1=a 1a 2,∵ 0<a 1a 2<1,∴ 满足a 1−1=a1a 2的a 1∈N ∗不存在;故不存在正整数集合N ∗上的二元“好集”.(3)设A ={a 1, a 2, a 3}是正整数集N ∗上的三元“好集”,不妨设a 3>a 2>a 1(a 1,a 2,a 3∈N ∗),∵ a 1a 2a 3=a 1+a 2+a 3<3a 3⇒a 1a 2<3,满足a 1a 2<3的正整数只有a 1=1,a 2=2,代入a 1a 2a 3=a 1+a 2+a 3得a 3=3, 故正整数集合N ∗的所有三元“好集”为{1, 2, 3}. 【答案】解:(1)∵ f(x)是定义域为R 的奇函数, ∴ f(0)=0,∴ 1−(k −1)=0, 解得k =2.(2)由(1)可知,函数f(x)=a x −a −x (a >0且a ≠1), ∵ f(1)<0, ∴ a −1a <0.又a >0, ∴ 0<a <1.由于y =a x 单调递减,y =a −x 单调递增, 故f(x)在R 上单调递减.不等式化为f(x 2+tx)<f(x −4),∴ x 2+tx >x −4,即x 2+(t −1)x +4>0恒成立, ∴ Δ=(t −1)2−16<0, 解得−3<t <5.(3)∵ f(1)=32,即a −1a =32, 则2a 2−3a −2=0, 解得a =2或a =−12(舍去),∴ g(x)=22x +2−2x −2m(2x −2−x )=(2x −2−x )2 −2m(2x −2−x )+2. 令t =f(x)=2x −2−x ,故f(x)=2x −2−x ,显然是增函数. ∵ x ≥1, ∴ t ≥f(1)=32.令ℎ(t)=t 2−2mt +2=(t −m)2+2−m 2(t ≥32), 若m ≥32,当t =m 时,ℎ(t)min =2−m 2=−2, ∴ m =2.若m <32,当t =32时,ℎ(t)min =174−3m =−2,解得m =2512>32,舍去.综上可知m =−2. 【考点】函数奇偶性的性质 指数函数单调性的应用 函数的最值及其几何意义【解析】(1)根据奇函数的性质可得f(0)=0,由此求得k 值.(2)由f(x)=a x −a −x (a >0且a ≠1),f(1)<0,求得1>a >0,f(x)在R 上单调递减,不等式化为f(x 2+tx)<f(x −4),即 x 2+(t −1)x +4>0 恒成立,由△<0求得t 的取值范围.(3)由f(1)=32求得a 的值,可得 g(x)的解析式,令t =f(x)=2x −2−x ,可知f(x)=2x −2−x 为增函数,t ≥f(1),令ℎ(t)=t 2−2mt +2,(t ≥32),分类讨论求出ℎ(t)的最小值,再由最小值等于2,求得m 的值. 【解答】解:(1)∵ f(x)是定义域为R 的奇函数, ∴ f(0)=0,∴ 1−(k −1)=0, 解得k =2.(2)由(1)可知,函数f(x)=a x −a −x (a >0且a ≠1), ∵ f(1)<0, ∴ a −1a <0.又a >0, ∴ 0<a <1.由于y =a x 单调递减,y =a −x 单调递增, 故f(x)在R 上单调递减.不等式化为f(x 2+tx)<f(x −4),∴ x 2+tx >x −4,即x 2+(t −1)x +4>0恒成立, ∴ Δ=(t −1)2−16<0, 解得−3<t <5.(3)∵ f(1)=32,即a −1a=32,则2a 2−3a −2=0, 解得a =2或a =−12(舍去),∴ g(x)=22x +2−2x −2m(2x −2−x )=(2x −2−x )2 −2m(2x −2−x )+2. 令t =f(x)=2x −2−x ,故f(x)=2x −2−x ,显然是增函数.∵ x ≥1, ∴ t ≥f(1)=32.令ℎ(t)=t 2−2mt +2=(t −m)2+2−m 2(t ≥32), 若m ≥32,当t =m 时,ℎ(t)min =2−m 2=−2, ∴ m =2.若m <32,当t =32时,ℎ(t)min =174−3m =−2,解得m =2512>32,舍去. 综上可知m =−2.【答案】 解:(1)当x >0时,sgn(x)=1,解方程x 2−3x +1=1,得x =3(x =0不合题意舍去); 当x =0时,sgn(x)=0,0不是方程x 2−3x +1=0的解; 当x <0时,sgn(x)=−1,解方程x 2−3x +1=−1,得x =1或x =2(均不合题意舍去). 综上所述,x =3是方程x 2−3x +1=sgn(x)的根.(2)由于函数f(x)={x 2−2x ,x ≥2−x 2+2x ,0<x <2−x 2−2x ,x ≤0,则原方程转化为:a ={x 2−3x ,x ≥2−x 2+x ,0<x <2−x 2−3x ,x ≤0.数形结合可知:①a <−2时,原方程有1个实根; ②当a =−2时,原方程有2个实根; ③当−2<a <0时,原方程有3个实根; ④当a =0时,原方程有4个实根; ⑤当0<a <14时,原方程有5个实根; ⑥当a =14时,原方程有4个实根;⑦当14<a <94时,原方程有3个实根; ⑧当a =94时,原方程有2个实根; ⑨当a >94时,原方程有1个实根. 故当a ∈(−2,0)∪(14,94)时,关于x 的方程f(x)=x +a 有3个互异的实根. (3)设点P(x, y)∈T ,则(10x , 10y )∈S .于是有(10x)sgn(10x−1)⋅(10y)sgn(10y−1)=10,得x⋅sgn(10x−1)+y⋅sgn(10y−1)=1.当x>0时,10x−1>0,sgn((10x−1),xsgn(10x−1);当x<0时,10x−1<0,sgn(10x−1)=−1,xsgn(10x−1)=−1;当x=0时,xsgn(10x−1)=0=0.∴x⋅sgn(10x−1)=|x|,同理,y⋅sgn(10y−1)=|y|.∴T={(x, y)||x|+|y|=1},点集T围成的区域是一个边长为√2的正方形,面积为2.【考点】函数与方程的综合运用函数的图象变换根的存在性及根的个数判断【解析】(1)根据分段落函数的性质,利用分类讨论思想能够推导方程x2−3x+1=sgn(x)的根.(2)由于函数f(x)={x2−2x,x≥2−x2+2x,0<x<2−x2−2x,x≤0,把原方程转化为:a={x2−3x,x≥2−x2+x,0<x<2−x2−3x,x≤0.利用数形结合思想能推导出关于x的方程f(x)=x+a有3个互异的实根.(3)设点P(x, y)∈T,则(10x, 10y)∈S.于是有x⋅sgn(10x−1)+y⋅sgn(10y−1)=1.由此利用分类讨论思想能求出点集T围成的区域的面积.【解答】解:(1)当x>0时,sgn(x)=1,解方程x2−3x+1=1,得x=3(x=0不合题意舍去);当x=0时,sgn(x)=0,0不是方程x2−3x+1=0的解;当x<0时,sgn(x)=−1,解方程x2−3x+1=−1,得x=1或x=2(均不合题意舍去).综上所述,x=3是方程x2−3x+1=sgn(x)的根.(2)由于函数f(x)={x2−2x,x≥2−x2+2x,0<x<2−x2−2x,x≤0,则原方程转化为:a={x2−3x,x≥2−x2+x,0<x<2−x2−3x,x≤0.数形结合可知:①a<−2时,原方程有1个实根;②当a=−2时,原方程有2个实根;③当−2<a<0时,原方程有3个实根;④当a=0时,原方程有4个实根;⑤当0<a<14时,原方程有5个实根;⑥当a=14时,原方程有4个实根;⑦当14<a<94时,原方程有3个实根;⑧当a=94时,原方程有2个实根;⑨当a>94时,原方程有1个实根.故当a∈(−2,0)∪(14,94)时,关于x的方程f(x)=x+a有3个互异的实根.(3)设点P(x, y)∈T,则(10x, 10y)∈S.于是有(10x)sgn(10x−1)⋅(10y)sgn(10y−1)=10,得x⋅sgn(10x−1)+y⋅sgn(10y−1)=1.当x>0时,10x−1>0,sgn((10x−1),xsgn(10x−1);当x<0时,10x−1<0,sgn(10x−1)=−1,xsgn(10x−1)=−1;当x=0时,xsgn(10x−1)=0=0.∴x⋅sgn(10x−1)=|x|,同理,y⋅sgn(10y−1)=|y|.∴T={(x, y)||x|+|y|=1},点集T围成的区域是一个边长为√2的正方形,面积为2.。
2016-2017年上海市上海中学高一上周练12
上海中学高一周练数学卷2016.12.08一. 填空题1. 幂函数23y x -=的定义域为 ,值域为2. 定义在[4,4]-上的偶函数()g x 满足:当0x ≤时,()g x 单调递增,若(1)()g m g m -<, 则m 的取值范围是3. 若函数2()|21|f x x x a a =++-+的图像关于y 轴对称,则实数a =4. 若函数()y f x =是定义在(0,)+∞上的减函数,则函数2(2)y f x x =-的单调递增区间 是5. 已知点(,)A a b ()a b ≠位于直角坐标平面的第一象限,点A 以及点A 关于直线y x =的 对称点B 都在一个幂函数()y f x =的图像上,则()f x =6. 设函数()y f x =对一切实数x 均满足(5)(5)f x f x +=-,且方程()0f x =恰有7个不 同的实根,则这7个实根的和为7. 已知函数()||f x x a x b =-+,给出下列命题:(1)当0a =时,()f x 的图像关于点(0,)b 成中心对称;(2)当(,)x a ∈+∞时,()f x 是递增函数;(3)当0x a ≤≤时,()f x 的最大值为24a b +,其中正确的序号是 8. 已知函数()y f x =是R 上的增函数,则0a b +>是()()()()f a f b f a f b +>-+-的 条件9. 函数(2)y f x =+的图像过点(1,3)-,则函数()y f x =的图像关于x 轴对称的图像一定 经过点10. 函数122010()1232011x x x x f x x x x x +++=+++⋅⋅⋅+++++的图像的对称中心为 11. 设函数1()f x x x=+的图像为1C ,1C 关于点(2,1)A 对称的图像为2C ,2C 对应的函数 为()g x ,则()g x 的解析式为 12. 若函数()f x 满足(||)|()|f x f x =,则称()f x 为对等函数,给出以下三个命题:(1)定义域为R 的对等函数,其图像一定过原点(2)两个定义域相同的对等函数的乘积一定是对等函数(3)若定义域是D 的函数()y f x =是对等函数,则{|(),}{|0}y y f x x D y y =∈⊆≥ 其中真命题的个数是二. 选择题13. 幂函数223()(1)m m f x m m x +-=--在(0,)+∞上是减函数,则实数m =( )A. 2或1-B. 1-C. 2D. 2-或114. 已知函数:f R R →,则对所有实数x ,满足221()(())4f x f x -≥,且对不同的x , ()f x 也不同,这样的函数()f x ( )A. 不存在B. 有限多个C. 唯一存在D. 无穷多个15. 函数()y f x =的定义域和值域都是(,0)-∞,则()y f x =-的图像一定位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限16. 已知集合{()|()A f x f x =是幂函数且为奇函数},集合{()|()B f x f x =是幂函数且 在R 上单调递增},集合{()|()C f x f x =是幂函数且图像过原点},则( )A. A B C =IB. B A C =IC. C A B =ID. A B C =U17. 定义域和值域均为[,]a a -(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:(1)方程(())0f g x =有且仅有三个解;(2)方程(())0g f x =有且仅 有三个解;(3)方程(())0f f x =有且仅有九个解;(4)方程(())0g g x =有且仅有一个解; 那么,其中正确命题的个数是( )A. 4B. 3C. 2D. 1三. 解答题18. 画出下列函数图像:(1)34y x =;(2)2y x -=;19. 若函数34220()(42)(1)f x mx x m x mx -=++++-+的定义域为R ,求实数m 的范围;20. 已知函数22()k k f x x -++=()k Z ∈满足(2)(3)f f <;(1)求k 的值并求出相应的()f x 的解析式;(2)对于(1)中的()f x ,试判断是否存在q (0)q >,使函数()1()(21)g x qf x q x =-+- 在区间[1,2]-上的值域为17[4,]8-?若存在,求出q ;若不存在,请说明理由;21. 已知函数()f x =; (1)求函数()f x 的定义域和值域;(2)若00()f x x =,求0x 的值;参考答案一. 填空题1. (,0)(0,)-∞+∞U ,(0,)+∞2. 1[3,)2-3. 124. (,0)-∞5. 1x -6. 357. (1)(3)8. 充要9. (1,3)-10. (1006,2011)- 11. 1()24g x x x =-+- 12. 1二. 选择题13. B 14. A 15. D 16. B 17. C三. 解答题18. 略;19. 1,2);20.(1)0k =或1,2()f x x =;(2)2q =;21.(1)定义域[1,0)[1,)-+∞U ,值域[0,)+∞;(2)12;。
上海市上海中学高一上周练05
上海中学高一周练数学卷一.填空题1.下列不等式的解为:①2560x x -+<,②2560x x -++<2.写出命题:若2017x y +≠,则2016x ≠或1y ≠的等价命题3.已知:11a b -≤+≤,且13a b ≤-≤,则3a b -的取值范围为4.不等式20ax bx a ++<(0)ab >的解集是空集,则222a b b +-的取值范围是5.不等式20ax bx c ++>的解集是1(,3)2-,则不等式20cx bx a ++<的解集为6.已知12a ≥,22()f x a x ax c =-++,对于任意[0,1]x ∈,()1f x ≤恒成立,则实数c 的取值范围是7.已知实数,x y 满足2241x y xy ++=,则2x y +的最大值为8.若不等式2051x px ≤++≤恰好有一个实数值为解,则p =9.若下列三个方程:24430x ax a +-+=,22(1)0x a x a +-+=,2220x ax a +-=中至少有一个方程有实根,则a 的取值范围是10.已知,,a b c 为互不相等的整数,则22224()()a b c a b c ++-++的最小值为11.已知,a b R ∈,关于x 的方程432210x ax x bx ++++=存在一个实根,则22a b +的最小值为二.选择题1.集合{|41,}A x x k k Z ==+∈,{|42,}B x x k k Z ==+∈,{|43,}C x x k k Z ==+∈若a A ∈,b B ∈,c C ∈,则()A.abc A ∈B.abc B ∈C.abc C∈ D.abc A B C∉ 2.设a 和b 都是非零实数,则不等式a b >和11a b >同时成立的充要条件是()A.0a b >> B.0a b >> C.0a b >> D.以上答案均不对3.假设n 是不小于3的正整数,n 个给定的实数12,,,n x x x ⋅⋅⋅具有如下性质:对任意一个二次函数()y f x =,数12(),(),,()n f x f x f x ⋅⋅⋅中至少有三个数相同,则下列对于12,,,nx x x ⋅⋅⋅的判断中,正确的是()A.至少有三个数是相同的B.至少有两个数是相同的C.至多有三个数是相同的D.至多有两个数是相同的奥孚培优奥孚培优孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚奥孚培优奥孚4.当一个非空数集F 满足“如果,a b F ∈,则,,a b a b ab F +-∈,且0b ≠时,aF b∈”时,我们称F 就是一个数域,以下四个关于数域的命题:①0是任何数域的元素;②若数域F 有非零元素,则2016F ∈;③集合{|3,}P x x k k Z ==∈是一个数域;④有理数集是一个数域;其中真命题有()个A.0B.1C.2D.3三.解答题1.解关于x 的不等式[(3)1](1)0m x x +-+>()m R ∈;2.(1)是否存在实数p ,使得40x p +<是220x x -->成立的充分不必要条件?如果存在,求出p 的取值范围,如果不存在,说明理由;(2)是否存在实数p ,使得40x p +<是220x x -->成立的必要不充分条件?如果存在,求出p 的取值范围,如果不存在,说明理由;3.已知集合22{|410813,,}A t t a ab b a b a Z b Z ==++--+∈∈,对于任意的x A ∈,y A ∈,判断元素xy 与集合A 的关系,并证明你的结论;4.已知二次函数()y f x =的二次项系数是1,并且一次项系数和常数项都是整数,若(())0f f x =有四个不同的实数根,并且在数轴上四个根成等距排列,试求二次函数()y f x =的解析式,使得其所有项的系数和最小;奥孚培优奥孚培优孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚奥孚培优奥孚参考答案一.填空题1.(2,3)、(,1)(6,)-∞-+∞2.若2016x =且1y =,则2017x y +=3.[1,7]4.4[,)5-+∞ 5.1(2,3- 6.34c ≤7.58.4p =±9.32a ≤-或1a ≥-10.211.8二.选择题1.B2.A3.B4.D奥孚培优奥孚培优孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚奥孚培优奥孚培优。
上海名校数学周周爽:上海中学高一下学期数学周周练6
上海中学高一数学周练卷一. 填空题1. 函数sin cos()3y x x π=-的最小正周期T = ,增区间为 2. 函数21arccos()2y x =-的定义域为 ,值域为 3. 方程cos()cos()sin()sin()16363x x x x ππππ++-++=在(0,)π上的解集是 4. 函数2sin()cos()189y x x ππ=++的最小值=5. ABC ∆中,已知2AB =,AC =ACB ∠的最大值为6. 在ABC ∆中,设角A 、B 、C 所对的边分别是a 、b 、c ,若222b c a +=,且a =,则C ∠=7. 在ABC ∆中,已知sin :sin :sin A B C =,则最大角等于8. 若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M 、N 两点,则||MN 的最大值为9. 定义函数sin sin cos ()cos sin cos x x x f x x x x ≥⎧=⎨<⎩,给出下列四个命题:(1)该函数的值域为[1,1]-; (2)当且仅当22x k ππ=+(k Z ∈)时,该函数取得最大值;(3)该函数是以π为最小 正周期的周期函数;(4)当且仅当3222k x k ππππ+<<+(k Z ∈)时,()0f x <;上 述命题中正确的个数是 个10. 某人在距离水面高5米的岸上看到水中鸟的倒影,俯角为60°,抬头看鸟时仰角为45°, 则此时鸟离水面的高度是 米11. 设()sin()2n n f x x π=+(*n N ∈),若ABC ∆的内角A 满足 1220181()()()2f A f A f A ++⋅⋅⋅+=,则sin cos A A += 12. 定义:关于x 的两个不等式()0f x <和()0g x <的解集分别为(,)a b 和11(,)b a,则称这两个不等式为对偶不等式,如果不等式2cos 220x θ-+<与不等式 224sin 210x x θ++<为对偶不等式,且(,)2πθπ∈,则θ=二. 选择题13. 在ABC ∆中,“3A π>”是“sin 2A >”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要14. 方程sin 2cos x x =在区间[0,2]π内解的个数为( )A. 6个B. 5个C. 4个D. 3个15. 若函数()cos()f x M x ωϕ=+(0ω>)在[,]a b 上是增函数,且()f a M =-,()f b M =,则()sin()g x M x ωϕ=+在[,]a b 上( )A. 单调递增B. 单调递减C. 有最大值MD. 有最小值M -16. 直角POB ∆中,90PBO ∠=︒,以O 为圆心,OB 为半径作圆弧交OP 于A 点,若弧AB 等分POB ∆的面积,且AOB α∠=弧度,则( )A. tan αα=B. tan 2αα=C. sin 2cos αα=D. 2sin cos αα=三. 简答题17. 在ABC ∆中,cos A =,cos B =,AB =,求ABC ∆的面积;18. 如图所示,湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的A 点处,乙船在中间的B 点处,丙船在最后面的C 点处,且:3:1BC AB =,一架无人机在空中的P 点处对它们进行数据测量,在同一时刻测得30APB ∠=︒,90BPC ∠=︒(船只与无人机的大小及其它因素忽略不计);(1)求此时无人机到甲、丙两船的距离之比;(2)若此时甲、乙两船相距100米,求无人机到丙船的距离(精确到1米);19. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知sin sin sin A C p B +=⋅ (p R ∈),且214ac b =; (1)当54p =,1b =时,求a 、c 的值; (2)若B 为锐角,求实数p 的取值范围;参考答案一. 填空题1. π,5(,)()1212k k k Zππππ-++∈2. [,[0,]π3.3{|}4x xπ=4.34- 5. 45︒ 6. 105︒7. 135︒8. 9. 110.(10+11. 12.56π二. 选择题13. B 14. C 15. D 16. B三. 简答题17.65ABCS∆=;18.(1)23;(2)275米;19.(1)141ac⎧=⎪⎨⎪=⎩或114ac=⎧⎪⎨=⎪⎩;(2)p∈;。
上海市上海中学2016-2017学年高一上数学周练15
上海中学高一周练数学卷2016.12.29一. 填空题1. 若2(25)6255x xx =,则x =2. 方程22333330x x x ++--+=的解是3. 若11(,)22a k k ∈-+,k Z ∈,则称k 是与a 最接近的整数,设30.618n =,则与n 最 接近的整数是4. 已知()f x 是定义在R 上的偶函数,且在区间(,0)-∞上单调递增,若实数a 满足 |1|(2)(2)a f f ->,则a 的取值范围是5. 不等式lg ||0x x >的解是6. 函数22()log log )f x x x =的最小值为7. 已知1a b >>,若5log log 2a b b a +=,b a a b =,则a = 8. 若函数()||f x x a b =--+与()||g x x c d =-+的图像相交于点(2,5)和(8,3),则 a c +=9. 已知集合{(,)|lg()lg lg }A x y x y x y =+=+,集合{(,)|,}B x y x R y k =∈=,若 A B =∅,则常数k 的取值范围是10. 函数20()1log 0x x f x x x ⎧--≤⎪=⎨>⎪⎩,则使得00()()f x f x =-成立的实数0x 的个数是 11. 指出函数44y x x=+--的单调性: 12. 函数32()8331f x x x x =---的零点是二. 选择题1. 设集合{|2,}x A y y x R ==∈,2{|10}B x x =-<,则A B =A. (1,1)-B. (0,1)C. (1,)-+∞D. (0,)+∞2. 函数21()log (1)f x x =+(0x >)的反函数1()f x -=A. 121x -(0)x >B. 121x -()x R ∈ C. 21x -()x R ∈ D. 21x -(0)x > 3. 设a 、b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的A. 充要条件B. 充分不必要条件C. 必要不充分件D. 既不充分也不必要条件4. 函数()y f x =的图像与函数()y g x =的图像关于直线0x y +=对称,则()y f x =的反 函数是A. ()y g x =B. ()y g x =-C. ()y g x =-D. ()y g x =--5. 已知函数()f x (x R ∈)满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的 交点为1122(,),(,),,(,)m m x y x y x y ⋅⋅⋅,则1122()()()m m x y x y x y ++++⋅⋅⋅++=A. 0B. mC. 2mD. 4m6. 方程组2332x y x y ⎧=⎪⎨=⎪⎩ A. 无解 B. 有且仅有一组解C.有不止一组的有限组解D. 有无穷多组解7. 函数1()lg 1x f x x-=+是 A. 是奇函数且在定义域上单调递增B. 是奇函数且在定义域上单调递减C. 是非奇非偶函数且在定义域上单调递增D. 是非奇非偶函数且在定义域上单调递减8. 某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130 万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资 金开始超过200万元的年份是A. 2018年B. 2019年C. 2020年D. 2021年参考答案一. 填空题1. 2±2. 2-或13. 04. 13(,)225. (1,0)(1,)-+∞6. 14- 7. 4a =,2b = 8.10 9. 1k ≤ 10. 2 11. 在[4,0)-和(0,4]上单调递减二. 选择题1. C2. A3. B4. D5. B6. B7. B8. B。
2016-2017学年上海市上海中学高一上学期期末考数学试卷含详解
上海中学2016学年第一学期高一期末试卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应編号的空格内直接填写结果,毎填对得3分.1.函数2()lg(31)f x x =+的定义域是__________.2.函数2()(1)f x x x =的反函数为1()f x -=______.3.若幂函数()f x 的图像经过点127,9⎛⎫ ⎪⎝⎭,则该函数解析式为()f x =______.4.若对任意不等于1的正数a ,函数2()3x f x a -=-的图象都过点P ,则点P 的坐标是______.5.已知2()f x ax bx =+是定义在[]3,2a a -上的偶函数,那么=a ______,b =______.6.方程224log (1)log (1)5x x +++=的解集为_________________.7.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()()sgn sgn y x x =+的值域为______.8.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式为()f x =______.9.函数2650.3x x y -+=的单调增区间为______.10.设函数()y f x =存在反函数1()f x -,若满足1()()f x f x -=恒成立,则称()f x 为“自反函数”,如函数()f x x =,()g x b x =-,()(0)kh x k x =≠等都是“自反函数”,试写出一个不同于上述例子的“自反函数”y =______.11.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x =的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,L ,(4)k x k 所对应的点4,i i x x ⎛⎫ ⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,则实数a 的取值范围是______.12.对于函数()y f x =,若存在定义域D 内某个区间[,]a b ,使得()y f x =在[,]a b 上的值域也是[,]a b ,则称函数()y f x =在定义域D 上封闭.如果函数()(0)1||kxf x k x =≠+在R 上封闭,那么实数k 的取值范围是______.二、选择题(本大题共有4题,满分16分)每题有且仅有一个正确答案,考生应在答题纸的相应编号的空格内填写答案,每题填对得4分,否则一律得零分.13.已知3()1(0)f x ax bx ab =++≠,若(2017)f k =,则(2017)f -=A.k B.k - C.1k - D.2k-14.定义在R 上的函数()y f x =在区间(,2)-∞上是增函数,且函数(2)y f x =+的图像关于直线1x =对称,则()A.(1)(5)f f <B.(1)(5)f f >C.(1)(5)f f = D.(0)(5)f f =15.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油16.设函数()22,0log ,0x x f x x x ⎧+≤⎪=⎨⎪⎩,若关于x 的方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是()A.()3,∞-+ B.(),3-∞ C.[)3,3- D.(]3,3-三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应編号的相应区域內写出必要的步骤.17.在平面直角坐标系中,作出下列函数的图像.(1)13y x =;(2)||112x y ⎛⎫=- ⎪⎝⎭.18.已知集合{}226|310330,xx D x x +=-⋅+∈R ,求函数2()log ()22x f x x =⋅∈D 的值域.19.设函数()x xf x ka a -=-(a>0且a≠1)是奇函数.(1)求常数k 的值;(2)若已知f (1)=,且函数22()2()x x g x a a mf x -=+-在区间[1,+∞])上的最小值为—2,求实数m 的值.20.已知函数()||1m f x x x=+-.(1)当2m =时,判断()f x 在(,0)-∞上的单调性并证明;(2)若对任意x R ∈,不等式(2)0x f >恒成立,求m 的取值范围;(3)讨论函数()y f x =的零点个数.21.已知a ∈R ,函数2()log [(3)34]f x a x a =-+-.(1)当2a =时,解不等式10f x ⎛⎫<⎪⎝⎭;(2)若函数()24y f x x =-的值域为R ,求a 的取值范围;(3)若关于x 的方程21()log 20f x a x ⎛⎫-+=⎪⎝⎭的解集中恰好只有一个元素,求a 的取值范围.上海中学2016学年第一学期高一期末试卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应編号的空格内直接填写结果,毎填对得3分.1.函数2()lg(31)f x x =+的定义域是__________.【答案】1,13⎛⎫- ⎪⎝⎭【分析】根据函数的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】要使函数()f x=()2lg 31x +有意义,则10310x x ->⎧⎨+>⎩,解得113x -<<,即函数()f x()2lg 31x +的定义域为1,13⎛⎫- ⎪⎝⎭.故答案为1,13⎛⎫- ⎪⎝⎭.【点睛】本题考查了根据函数解析式求定义域的应用问题,是基础题目.2.函数2()(1)f x x x =的反函数为1()fx -=______.1)x ≥【分析】由2y x =解出x =再交换,x y 的位置,注明定义域即可得到反函数.【详解】由2y x =且1x ≥得x =,所以1()1)f x x -=≥.故答案为1)x ≥.【点睛】本题考查了求反函数,属于基础题.3.若幂函数()f x 的图像经过点127,9⎛⎫ ⎪⎝⎭,则该函数解析式为()f x =______.【答案】23x -【分析】设幂函数()f x x α=,由1(27)9f =可解得.【详解】设幂函数()f x x α=,依题意可得1(27)9f =,所以1279α=,解得23α=-.所以()f x =23x -.故答案为:23x -【点睛】本题考查了幂函数的解析式,属于基础题.4.若对任意不等于1的正数a ,函数2()3x f x a -=-的图象都过点P ,则点P 的坐标是______.【答案】()2,2-【分析】根据指数函数x y a =的图象恒过定点(0,1)以及图象的平移变换可得答案.【详解】因为函数x y a =的图象恒过定点(0,1),所以将函数x y a =的图象向右平移2个单位,向下平移3个单位后所得函数23x y a -=-的图象恒过定点(2,2)-,所以点P 的坐标为(2,2)-.故答案为:(2,2)-.【点睛】本题考查了指数型函数过定点,函数图象的平移变换,属于基础题.5.已知2()f x ax bx =+是定义在[]3,2a a -上的偶函数,那么=a ______,b =______.【答案】①.1②.0【分析】由题可得定义域关于原点O 对称,所以321a a a -=-⇒=,再根据偶函数的定义得0b =.【详解】因为2()f x ax bx =+是定义在[]3,2a a -上的偶函数,所以32a a -=-且()()f x f x -=恒成立,所以1a =,22ax bx ax bx -=+恒成立,所以1a =,20bx =恒成立,所以1,0a b ==.故答案为(1)1;(2)0【点睛】考查了函数奇偶性的定义以及奇偶函数的定义域特征,属于基础题.6.方程224log (1)log (1)5x x +++=的解集为_________________.【答案】{}3【分析】直接利用对数运算公式化简得到答案.【详解】将224log (1)log (1)5x x +++=化简为:2212log (1)log (1)52x x +++=即2log (1)2,3x x +==故答案为{}3【点睛】本题考查了对数方程,属于简单题型.7.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()()sgn sgn y x x =+的值域为______.【答案】{}0,2【分析】分三段求出各段的值域,再相并即可得到答案.【详解】当0x >时,sgn()|sgn()|112y x x =+=+=,当0x =时,sgn()|sgn()|000y x x =+=+=,当0x <时,sgn()|sgn()|1|1|2y x x =-+=+-=,所以函数()()sgn sgn y x x =+的值域为:{0,2}.故答案为{0,2}.【点睛】本题考查了分段函数的值域,属于基础题.8.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式为()f x =______.【答案】22,0,0x x x x x x ⎧-+≥⎨+<⎩【分析】根据()f x 为奇函数,求出0x =,0x >的解析式后,可得分段函数()f x 的解析式.【详解】因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-,当0x =时,(0)(0)f f =-,所以(0)0f =,当0x >时,222()()[()()]()f x f x x x x x x x =--=--+-=--=-+,所以()f x =22,0,0x x x x x x ⎧-+≥⎨+<⎩.故答案为:22,0,0x x x x x x ⎧-+≥⎨+<⎩.【点睛】本题考查了函数的奇函数的性质,分段函数的解析式,属于基础题.9.函数2650.3xx y -+=的单调增区间为______.【答案】(,1]-∞和[3,5].【分析】首先通过函数图象讨论2|65|y x x =-+的递减区间,再根据指数函数0.3x y =递减以及复合函数的同增异减原则可得.【详解】作出函数2|65|y x x =-+的图象如图所示:观察函数图象可知,函数2|65|y x x =-+的递增区间为[1,3]和[5,)+∞,递减区间为(,1]-∞和[3,5],因为指数函数0.3x y =在定义域内递减,根据复合函数的同增异减原则可得2650.3x x y -+=的递增区间为(,1]-∞和[3,5].故答案为:(,1]-∞和[3,5].【点睛】本题考查了二次函数,指数函数的单调性,复合函数的同增异减原则,属于基础题.10.设函数()y f x =存在反函数1()f x -,若满足1()()f x f x -=恒成立,则称()f x 为“自反函数”,如函数()f x x =,()g x b x =-,()(0)kh x k x=≠等都是“自反函数”,试写出一个不同于上述例子的“自反函数”y =______.【答案】1)x ≤≤【分析】根据题意,只要写出一个满足条件的函数即可,如1)y x =≤≤.【详解】根据题意,设1)y x =≤≤,则221y x =-,所以221x y =-,所以x =(01y ≤≤),交换,x y 得反函数1)y x =≤≤.故答案为:1)x ≤≤.【点睛】本题考查了求反函数的解析式,属于基础题.11.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x=的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,L ,(4)k x k 所对应的点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,则实数a 的取值范围是______.【答案】()(),66,-∞-+∞ 【分析】原方程等价于34x a x +=,分别作出3y x a =+和4y x=的图象,分0a >和a<0讨论,利用数形结合即可得到结论.【详解】因为方程440x ax +-=等价于34x a x+=,原方程的实根是3y x a =+与曲线4y x=的交点的横坐标,曲线3y x a =+是由曲线3y x =纵向平移||a 个单位而得到,若交点4,i i x x ⎛⎫ ⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,因y x =与4y x =的交点为(2,2),(2,2)--,所以结合图象可得:3022a x a x >⎧⎪+>-⎨⎪≥-⎩或322a x a x <⎧⎪+<⎨⎪≤⎩恒成立,所以32a x >--在[2,)-+∞上恒成立,或32a x <-+在(,2]-∞上恒成立,所以3max (2)a x >--=3(2)26---=,或33min (2)226a x <-+=-+=-,即实数a 的取值范围是()(),66,-∞-+∞ .故答案为:()(),66,-∞-+∞ .【点睛】本题考查了数形结合思想,等价转化思想,函数与方程,幂函数的图象,属于中档题.12.对于函数()y f x =,若存在定义域D 内某个区间[,]a b ,使得()y f x =在[,]a b 上的值域也是[,]a b ,则称函数()y f x =在定义域D 上封闭.如果函数()(0)1||kxf x k x =≠+在R 上封闭,那么实数k 的取值范围是______.【答案】()(),11,-∞-+∞U 【分析】先用定义证明函数1||x y x =+在[0,)+∞上递增,再根据奇偶性可得函数1||xy x =+在R 上为增函数,然后讨论0k >和0k <可得()f x 的单调性,当0k >时,依题意可得,a b 是1||kxx x =+的两个不同的实数解,由此可解得1k >.当0k <时,依题意可得()()f a bf b a =⎧⎨=⎩,由此可推出1k <-.【详解】.设120x x ≤<,则121221121212(1)(1)11(1)(1)x x x x x x y y x x x x +-+-=-=++++1212(1)(1)x x x x -=++,因为120x x ≤<,所以12y y <,所以函数1||xy x =+在[0,)+∞上递增,又函数1||x y x =+为奇函数,所以函数1||xy x =+在R 上为增函数,当0k >时,函数()1||kx f x x =+为增函数,因为()y f x =在[,]a b 上的值域也是[,]a b ,所以()()f a af b b =⎧⎨=⎩,即11kaa a kb b b⎧=⎪+⎪⎨⎪=⎪+⎩,即,a b 是1||kxx x =+的两个不同的实数解,解得0x =或||1x k =-,由||10x k =->得1k >,当0k <时,()1||kx f x x =+为递减函数,因为()y f x =在[,]a b 上的值域也是[,]a b ,所以()()f a b f b a =⎧⎨=⎩,即11kaba kb ab⎧=⎪+⎪⎨⎪=⎪+⎩,因为0,k a b <<,所以0a b <<,所以ka b abkb a ab =-⎧⎨=+⎩,所以()k a b a b +=+,因为0k <,所以0a b +=,即=-b a ,所以()ka a a a =---,所以1011k a =-<-=-,即1k <-.综上所述:1k <-或1k >.故答案为:()(),11,-∞-+∞U .【点睛】本题考查了对新概念的理解转化能力,函数的单调性,奇偶性,函数的定义域和值域,本题是较难题.二、选择题(本大题共有4题,满分16分)每题有且仅有一个正确答案,考生应在答题纸的相应编号的空格内填写答案,每题填对得4分,否则一律得零分.13.已知3()1(0)f x ax bx ab =++≠,若(2017)f k =,则(2017)f -=A.kB.k -C.1k -D.2k-【答案】D【分析】由(2017)f k =可得3201720171a b k ++=,即3(20172017)1a b k -+=-,将其代入到(2017)f -=3201720171a b --+即可得到答案.【详解】因为3()1(0)f x ax bx ab =++≠,所以3201720171a b k ++=,即3(20172017)1a b k -+=-,所以(2017)f -=3201720171a b --+=3(20172017)1112a b k k -++=-+=-.故选:D.【点睛】本题考查了整体替换法,求函数值,属于基础题.14.定义在R 上的函数()y f x =在区间(,2)-∞上是增函数,且函数(2)y f x =+的图像关于直线1x =对称,则()A.(1)(5)f f <B.(1)(5)f f >C.(1)(5)f f =D.(0)(5)f f =【答案】C【分析】根据平移变换可得,()y f x =的图像关于直线3x =对称,根据对称性可得答案.【详解】因为(2)y f x =+的图像关于直线1x =对称,所以()y f x =的图像关于直线3x =对称,故(1)(5)f f =.故选:C.【点睛】本题考查了函数的图象的平移变换以及函数的对称性,本题为基础题.15.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油【答案】D【详解】解:对于A ,由图象可知当速度大于40km /h 时,乙车的燃油效率大于5km /L ,∴当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误;对于C ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故C 错误;对于D ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D 正确故选D .考点:1、数学建模能力;2、阅读能力及化归思想.16.设函数()22,0log ,0x x f x x x ⎧+≤⎪=⎨⎪⎩,若关于x 的方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是()A.()3,∞-+ B.(),3-∞ C.[)3,3- D.(]3,3-【答案】D【分析】由题意,根据图象得到12x a +=-,22x a +=,23log x a =-,24log x a =,(02)a <≤,推出312234()2214a a x x x x x ++=-.令2a t =,(]1,4t ∈,而函数2y t t=-.即可求解.【详解】()3122234414422222a a a a a x x x x x --++=-⋅+=-⋅【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应編号的相应区域內写出必要的步骤.17.在平面直角坐标系中,作出下列函数的图像.(1)13y x =;(2)||112x y ⎛⎫=- ⎪⎝⎭.【答案】(1)见解析,(2)见解析【分析】(1)直接作出幂函数的图象;(2)根据图像变换规律将指数函数先关于y 轴对称,再向下平移一个单位即可.【详解】(1)幂函数13y x =的图象如下:(2)先作出1()2x y =的图象,再去掉y 轴左边图象,保留y 轴右边图象,并将y 轴右边图象翻折到左边,然后向下平移一个单位即可得到.图象如下:【点睛】考查了幂函数、指数函数的图像以及图像的变换,本题为基础题.18.已知集合{}226|310330,x x D x x +=-⋅+∈R ,求函数22()log ()22x x f x x =⋅∈D 的值域.【答案】1,04⎡⎤-⎢⎥⎣⎦【分析】首先解指数不等式得到[2,4]D =,再化简函数表达式,换元变成二次函数求值域可得到答案.【详解】由226310330x x +-⋅+,得2(3)9037290x x -⋅+≤,所以(39)(381)0x x --≤,所以9381x ≤≤,所以24x ≤≤.所以[2,4]D =因为22()log [2,4])22x x f x x =⋅∈,所以()()22()log 1log 2y f x x x ==--,令2log t x =,因为[2,4]x ∈,所以t ∈[1,2],则232y t t =-+,t ∈[1,2],所以32t =时,min 14y =-,1t =或2t =时,max 0y =,函数2()log [2,4])22x f x x =⋅∈的值域为1[,0]4-.【点睛】本题考查了指数不等式,对数的运算以及复合函数的值域问题.本题为中档题,19.设函数()x x f x ka a -=-(a>0且a≠1)是奇函数.(1)求常数k 的值;(2)若已知f (1)=,且函数22()2()x x g x a a mf x -=+-在区间[1,+∞])上的最小值为—2,求实数m 的值.【答案】(1);(2).【详解】试卷分析:(1)函数()x x f x ka a -=-的定义域为R ,∵函数()x x f x ka a -=-(a>0且a≠1)是奇函数∴f (0)=k -1=0,∴k=1.(2)∵f (1)=,∴=,解得a=3或∵a>0且a≠1,∴a=3g (x )=32x +3-2x -2m (3x -3-x )=(3x -3-x )2-2m (3x -3-x )+2(x≥1)令3x -3-x =t (t≥),则y=t 2-2mt+2=(t—m )2—m 2+2)当m≥时,min y =—m 2+2=-2,解得m=2或m=-2,舍去当m<时,min y =()2-2m×+2=-2,解得m=∴m=.试卷解析:(1)函数()x x f x ka a -=-的定义域为R∵函数()x x f x ka a -=-(a>0且a≠1)是奇函数∴f (0)=k -1=0∴k=1(2)∵f (1)=∴=,解得a=3或∵a>0且a≠1∴a=3g (x )=32x +3-2x -2m (3x -3-x )=(3x -3-x )2-2m (3x -3-x )+2(x≥1)令3x -3-x =t (t≥)则y=t 2-2mt+2=(t—m )2—m 2+2当m≥时,min y =—m 2+2=-2,解得m=2或m=-2,舍去当m<时,min y =()2-2m×+2=-2,解得m=∴m=考点:指数函数的应用.20.已知函数()||1m f x x x=+-.(1)当2m =时,判断()f x 在(,0)-∞上的单调性并证明;(2)若对任意x R ∈,不等式(2)0x f >恒成立,求m 的取值范围;(3)讨论函数()y f x =的零点个数.【答案】(1)()f x 在(,0)-∞上的单调递减,证明见解析;(2)14m >;(3)见解析.【分析】(1)当2m =时,利用函数单调性的定义可判断()f x 在(,0)-∞上的单调性,并用定义法证明.(2)利用分离参数的方法将不等式(2)0x f >恒成立,化为22(2)x x m >-,然后求最值即可.(3)函数()y f x =的零点个数,即方程||(0)m x x x x =-+≠的实根的个数,可数形结合分析得出答案.【详解】(1)当2m =,0x <时,2()1f x x x=-+-在(,0)-∞单调递减.证明:任取120x x <<,12121222()()1(1)f x f x x x x x -=-+---+-211222()+()x x x x =--=2121122()()+x x x x x x -=-212121+2=()x x x x x x -⋅由120x x <<,有210x x ->,210x x >,所以212121+2()0x x x x x x -⋅>,即12())0(f x f x ->.则12()()f x f x >,所以当2m =时,()f x 在(,0)-∞上的单调递减.(2)不等式(2)0x f >恒成立,即|2|102x x m +->所以22(2)x x m >-在x R ∈上恒成立.而221112(2)=(2)244x x x ---+≤(当12=2x 即=1x -时取得等号),所以14m >.(3)由()0f x =即||0(0)x x x m x -+=≠,所以22(0)=(0)x x x m x x x x x x ⎧-+>=-+⎨+<⎩,设22(0)g()(0)x x x x x x x ⎧-+>=⎨+<⎩作出函数g()x的图象,如下.由图可知:当14m >或14m <-时,有1个零点;当14m =或0m =或14m =-时,有2个零点;当104m -<<或104m <<时,有3个零点;【点睛】本题考查函数单调性的判断,以及不等式恒成立问题的求解,利用参数分离的方法解决恒成立问题是基本方法,属于中档题.21.已知a ∈R ,函数2()log [(3)34]f x a x a =-+-.(1)当2a =时,解不等式10f x ⎛⎫< ⎪⎝⎭;(2)若函数()24y f x x =-的值域为R ,求a 的取值范围;(3)若关于x 的方程21()log 20f x a x ⎛⎫-+= ⎪⎝⎭的解集中恰好只有一个元素,求a 的取值范围.【答案】(1)1,12⎛⎫ ⎪⎝⎭(2)[8,)+∞(3){}1,12,32⎛⎤ ⎥⎝⎦【分析】(1)根据对数函数的单调性可解得,注意真数大于零;(2)化简得到22log (3)4(3)34y a x a x a ⎡⎤=---+-⎣⎦的值域为R ,故2(3)4(3)34a x a x a ---+-能够取到一切大于0的实数,由于二次项系数含参,故需要分类讨论,当3a =时,显然不符合题意;故只能3a >,再结合0∆≥即得答案.(3)化简对数方程得到2(3)(4)10a x a x -+--=,在120a x +>的条件下只有一个根,然后分类讨论即可得到答案.【详解】(1)2a =时,不等式10f x ⎛⎫<⎪⎝⎭等价于21o 2(l g )0x +>-,所以1021x <-<,所以112x<<,所以112x <<,所以不等式10f x ⎛⎫<⎪⎝⎭的解集为1(,1)2.(2)因为函数()24y f x x =-的值域为R ,即22log (3)4(3)34y a x a x a ⎡⎤=---+-⎣⎦的值域为R ,故2(3)4(3)34a x a x a ---+-能够取到一切大于0的实数,当3a =时,2(3)4(3)345a x a x a ---+-=,不符合题意;当3a <时,222(3)4(3)34(3)(4)34(3)(2)8a x a x a a x x a a x a ---+-=--+-=--+-8a ≤-不符合题意,当3a >时,根据二次函数的图象和性质可得216(3)4(3)(34)0a a a ∆=----≥,解得8a ≥;综上所述:a 的取值范围是[8,)+∞.(3)关于x 的方程21()log 20f x a x ⎛⎫-+= ⎪⎝⎭的解集中恰好只有一个元素,所以221log [(3)34]log (2)a x a a x -+-=+的解集中恰好只有一个元素,即120a x +>且1(3)342a x a a x-+-=+的解集中恰好只有一个元素,所以2(3)(4)10a x a x -+--=,即[(3)1](1)0a x x --+=,①当3a =时,解得=1x -,此时121650a x+=-+=>,满足题意;②当2a =时,121x x ==-,此时1230a x +=>也满足题意;③当3a ≠且2a ≠时,两根为113x a =-,21x =-,当13x a =-时,由12330a a x +=->得1a >,当=1x -时,由12210a a x +=->得12a >,因为13x a =-和=1x -只能取一个值,所以只能取=1x -,所以330a -≤且210a ->,解得112a <≤.综上所述:a 的取值范围是1(,1]{2,3}2⋃.【点睛】考查了对数不等式,复合函数的值域问题和对数方程的问题.,分类讨论思想,本题为较难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海中学高一周练数学卷
2016.10.13
一. 填空题
1. 下列不等式的解为:①2560x x -+< ,②2560x x -++<
2. 写出命题:若2017x y +≠,则2016x ≠或1y ≠的等价命题
3. 已知:11a b -≤+≤,且13a b ≤-≤,则3a b -的取值范围为
4. 不等式20ax bx a ++<(0)ab >的解集是空集,则222a b b +-的取值范围是
5. 不等式20ax bx c ++>的解集是1(,3)2-
,则不等式20cx bx a ++<的解集为 6. 已知12
a ≥,22()f x a x ax c =-++,对于任意[0,1]x ∈,()1f x ≤恒成立,则实数c 的 取值范围是 7. 已知实数,x y 满足2241x y xy ++=,则2x y +的最大值为
8. 若不等式2
051x px ≤++≤恰好有一个实数值为解,则p =
9. 若下列三个方程:24430x ax a +-+=,22(1)0x a x a +-+=,2220x ax a +-=中 至少有一个方程有实根,则a 的取值范围是
10. 已知,,a b c 为互不相等的整数,则22224()()a b c a b c ++-++的最小值为
11. 已知,a b R ∈,关于x 的方程432210x ax x bx ++++=存在一个实根,则22a b +的最 小值为
二. 选择题
1. 集合{|41,}A x x k k Z ==+∈,{|42,}B x x k k Z ==+∈,{|43,}C x x k k Z ==+∈ 若a A ∈,b B ∈,c C ∈,则( )
A. abc A ∈
B. abc B ∈
C. abc C ∈
D. abc A
B C ∉ 2. 设a 和b 都是非零实数,则不等式a b >和11a b
>同时成立的充要条件是( ) A. 0a b >> B. 0a b >> C. 0a b >> D. 以上答案均不对
3. 假设n 是不小于3的正整数,n 个给定的实数12,,,n x x x ⋅⋅⋅具有如下性质:对任意一个二 次函数()y f x =,数12(),(),,()n f x f x f x ⋅⋅⋅中至少有三个数相同,则下列对于12,,,n x x x ⋅⋅⋅ 的判断中,正确的是( )
A. 至少有三个数是相同的
B. 至少有两个数是相同的
C. 至多有三个数是相同的
D. 至多有两个数是相同的
4. 当一个非空数集F 满足“如果,a b F ∈,则,,a b a b ab F +-∈,且0b ≠时,a F b
∈” 时,我们称F 就是一个数域,以下四个关于数域的命题:① 0是任何数域的元素;② 若数 域F 有非零元素,则2016F ∈;③ 集合{|3,}P x x k k Z ==∈是一个数域;④ 有理数集 是一个数域;其中真命题有( )个
A. 0
B. 1
C. 2
D. 3
三. 解答题
1. 解关于x 的不等式[(3)1](1)0m x x +-+>()m R ∈;
2.(1)是否存在实数p ,使得40x p +<是220x x -->成立的充分不必要条件?如果存 在,求出p 的取值范围,如果不存在,说明理由;
(2)是否存在实数p ,使得40x p +<是2
20x x -->成立的必要不充分条件?如果存在, 求出p 的取值范围,如果不存在,说明理由;
3. 已知集合22{|410813,,}A t t a ab b a b a Z b Z ==++--+∈∈,对于任意的x A ∈, y A ∈,判断元素xy 与集合A 的关系,并证明你的结论;
4. 已知二次函数()y f x =的二次项系数是1,并且一次项系数和常数项都是整数,若(())0f f x =有四个不同的实数根,并且在数轴上四个根成等距排列,试求二次函数()y f x =的解析式,使得其所有项的系数和最小;
参考答案
一. 填空题
1. (2,3)、(,1)(6,)-∞-+∞
2. 若2016x =且1y =,则2017x y +=
3. [1,7]
4. 4[,)5
-+∞ 5. 1(2,)3- 6. 34c ≤ 7. 5 8. 4p =± 9. 3
2a ≤-或1a ≥-
10. 2 11. 8
二. 选择题
1. B
2. A
3. B
4. D。