成都市田家炳中学必修第一册第五单元《三角函数》测试卷(有答案解析)
成都市必修第一册第五单元《三角函数》测试题(含答案解析)
一、选择题1.已知0>ω,函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( ) A .15,36⎡⎤⎢⎥⎣⎦B .17,36⎡⎤⎢⎥⎣⎦C .15,46⎡⎤⎢⎥⎣⎦D .17,46⎡⎤⎢⎥⎣⎦2.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性 D .函数()f x 的值域为R 3.在ABC 中,tan sin cos A B B <,则ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定4.函数()[sin()cos()]f x A x x ωθωθ=+++部分图象如图所示,当[,2]x ππ∈-时()f x 最小值为( )A .1-B .2-C .2-D .3-5.函数()(13)cos f x x x =的最小正周期为( ) A .π B .32πC .2πD .2π 6.设31cos 29sin 2922a =-,1cos662b -=22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>7.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=-⎪⎝⎭D .()2sin 212g x x π⎛⎫=+ ⎪⎝⎭8.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .9.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=- 10.已知,2παπ⎛⎫∈ ⎪⎝⎭且1sin 23πα⎛⎫+=- ⎪⎝⎭,则()tan απ+=( )A .22-B .22C .2-D .2 11.函数cos 2y x =的单调减区间是( ) A .ππ,π,Z2k k k ⎡⎤+∈⎢⎥⎣⎦B .π3π2π,2π,Z22k k k ⎡⎤++∈⎢⎥⎣⎦ C .[]2π,π2π,Z k k k +∈D .πππ,π,Z 44k k k ⎡⎤-+∈⎢⎥⎣⎦ 12.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 二、填空题13.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.14.已知函数()sin 2cos 2f x x a x =+,对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,则a =_______.15.田忌赛马是中国古代对策论与运筹思想的著名范例,故事中齐将田忌与齐王赛马,孙膑献策以下马对齐王上马,以上马对齐王中马,以中马对齐王下马,结果田忌一负两胜从而获胜,该故事中以局部的牺牲换取全局的胜利成为军事上一条重要的用兵规律,在比大小游戏中(大者为胜),已知我方的三个数为cos a θ=,sin cos b θθ=+,cos sin c θθ=-,对方的三个数以及排序如表:第一局 第二局 第三局对方 2tan θ sin θ当04θ<<时,则我方必胜的排序是______.16.若函数()|2cos |f x a x =+的最小正周期为π,则实数a 的值为____. 17.下列四个命题中:①已知()()()sin cos 21,sin cos 2πααπαπα-+-=++则tan 1α=-;②()003tan 30tan 303-=-=-③若3sin ,2α=-则1cos 2;2α=-④在锐角三角形ABC 中,已知73sin ,cos ,255A B ==则119sin .125C =其中真命题的编号有_______. 18.设函数2()2cos 23cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 19.已知函数()3sin cos f x x x =+.若关于x 的方程()f x m =在[0,2)π上有两个不同的解α和β(其中1010m <<cos()αβ-=_____(结果用m 表示).20.已知函数()sin cos f x x a x =+的图象关于直线6x π=对称,1x 是()f x 的一个极大值点,2x 是()f x 的一个极小值点,则12x x +的最小值为______.三、解答题21.已知函数()cos f x x =.(1)已知α,β为锐角,()5f αβ+=-,4tan 3α=,求cos2α及()tan βα-的值;(2)函数()()321g x f x =+,若关于x 的不等式()()()2133g x a g x a ≥+++有解,求实数a 的最大值. 22.已知函数31()sin 2cos 24f x x x =+ (1)求()f x 的最小正周期; (2)求()f x 在区间50,12π⎡⎤⎢⎥⎣⎦上的值域.23.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭求sin()αβ+,cos()αβ-,tan2α的值.24.已知在扇形OPQ 中,半径1OP =,圆心角3POQ π∠=.从该扇形中截取一个矩形ABCD ,有以下两种方案:方案一:(如图1)C 是扇形弧上的动点,记COP a ∠=,矩形ABCD 内接于扇形;方案二:(如图2)M 是扇形弧的中点,A 、B 分别是弧PM 和MQ 上的点,记AOM BOM β∠=∠=,矩形ABCD 内接于扇形.要使截取的矩形面积最大,应选取哪种方案?并求出矩形的最大面积.25.如图,扇形ABC 是一块半径为2千米,圆心角为60的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、RQ 每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?26.在①1cos 3B =,②2b =,ABC 的周长为8,③3c =,ABC 的外接圆半径为2,这三个条件中任选一个,补充到下面的问题中,并加以解答.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,2sin b a C =, ?求sin A .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 由322232k x k ππππωπ+++求得22766k k x ππππωωωω++,k z ∈.可得函数()f x 的一个减区间为[6πω,7]6πω.再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得ω的范围.【详解】函数()sin()3f x x πω=+在(,)2ππ上单调递减, 设函数的周期22T T πππω⇒=-,2ω∴. 再由函数()sin()3f x x πω=+满足322232k x k ππππωπ+++,k z ∈, 求得22766k k x ππππωωωω++,k z ∈. 取0k =,可得766x ππωω,故函数()f x 的一个减区间为[6πω,7]6πω. 再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得1736ω, 故选:B . 【点睛】函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,由2222k x k πππωϕπ-+≤+≤+求得增区间2.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.D解析:D 【分析】首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++ ⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D5.C解析:C 【分析】由切化弦,及两角和的正弦公式化简函数,然后由正弦函数的周期性得结论. 【详解】 由已知,()(1)cos f x x x =+cos x x =+12cos 2x x ⎛⎫=+⎪⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭, ∴最小正周期为221T ππ==, 故选:C .6.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si3n 2912n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.7.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, ∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 8.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.9.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出. 【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误;对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x x x xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.10.A解析:A 【分析】由条件可得1cos 3α=-,然后可得sin 3α=,然后()sin tan tan cos ααπαα+==,即可算出答案. 【详解】因为1sin cos 23παα⎛⎫+==- ⎪⎝⎭,,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 3α=所以()sin tan tan cos ααπαα+===-故选:A11.A解析:A 【分析】根据余弦函数的性质,令222,k x k k Z πππ≤≤+∈求解. 【详解】令222,k x k k Z πππ≤≤+∈, 解得2,2k x k k Z πππ≤≤+∈,所以函数cos 2y x =的单调减区间是ππ,π,Z2k k k ⎡⎤+∈⎢⎥⎣⎦,故选:A12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 二、填空题13.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒122224=⨯-=, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒122224=⨯+⨯=,31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 60h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos155062h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.14.1【分析】利用辅助角公式和为的形式:根据已知可得是f(x)的图象的对称轴进而求得利用的关系和诱导公式求得的值【详解】解:其中∵对成立∴是f(x)的图象的对称轴即∴故答案为:1【点睛】本题考查三角函数解析:1 【分析】利用辅助角公式和为()Asin x ωϕ+的形式:2()sin 2cos21)f x x a x a x ϕ=+=++,根据已知可得π8x =是f(x)的图象的对称轴,进而求得ϕ,利用,a ϕ的关系tan a ϕ=和诱导公式求得a 的值. 【详解】解:2()sin 2cos21)f x x a x a x ϕ=+=++, 其中22sin tan 11a aaϕϕϕ===++.∵对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立, ∴π8x =是f(x)的图象的对称轴,即π2,82k k Z πϕπ⨯+=+∈, ∴,4k k Z πϕπ=+∈,tan 1a ϕ==,故答案为:1. 【点睛】本题考查三角函数的图象和性质,涉及辅助角公式化简三角函数,利用辅助角化简是前提,理解,a ϕ的关系是基础,由对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立,得出π8x =是f(x)的图象的对称轴是关键.15.【分析】由三角函数值的大小比较得:当时结合田忌赛马的事例进行简单的推理即可得答案【详解】因为当时故答案为:【点睛】关键点点睛:本题的关键点是当时比较出以及的大小关系利用田忌赛马的事例进行推理即可解析:c ,b ,a【分析】由三角函数值的大小比较得:当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,结合田忌赛马的事例进行简单的推理,即可得答案. 【详解】因为当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,tan sin cos θθθ<+,sin cos θθ<. 故答案为:c ,b ,a 【点睛】关键点点睛:本题的关键点是当04πθ<<时,比较出sin tan θθ<<,以及a 、b 、c 的大小关系,利用田忌赛马的事例进行推理即可.16.【分析】利用来求解【详解】因为函数的最小正周期为所以都有成立故则故答案为: 解析:0【分析】利用()()f x f x π=+来求解. 【详解】因为函数()f x 的最小正周期为π,所以x R ∀∈,都有()()f x f x π=+成立, 故()2cos 2cos 2cos a x a x a x π+=++=-,则0a =. 故答案为:0.17.②③【分析】对于①:运用诱导公式化简再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系切化弦再运用诱导公式可判断;对于③:运用余弦的二倍角公式计算可判断;对于④:运用同角三角函数求解析:②③ 【分析】对于①:运用诱导公式化简,再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系“切化弦”,再运用诱导公式可判断; 对于③:运用余弦的二倍角公式计算可判断; 对于④:运用同角三角函数求得244cos ,sin ,255A B ==再用正弦的和角公式代入可判断. 【详解】对于①:因为()()()sin -cos 21,sin cos 2πααπαπα+-=++所以sin cos 1,sin cos 2αααα+=-所以sin 11cos ,sin 21cos αααα+=-即tan 11,tan 12αα+=-解得tan 3α=-,故①不正确; 对于②:因为()()()000sin 30sin 30tan 30tan 30cos30cos 30---===-=-故②正确; 对于③:因为sin 2α=-所以221cos 212sin 122αα⎛=-=-⨯=- ⎝⎭,故③正确;对于④:因为在锐角三角形ABC 中, 73sin ,cos ,255A B ==所以00,0222A B C πππ<<<<<<,,所以244cos ,sin ,255A B ====所以 ()()sin sin +sin +C A B A B π⎡⎤=-=⎣⎦ 73244117sin cos +cos sin +255255125A B A B ==⨯⨯=,故④不正确,故答案为:②③.18.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余 解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案.【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦. ()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.19.【分析】先利用辅助角公式化简再利用同角三角函数关系计算出与最后利用化简计算即可【详解】解:其中为锐角且又在上有两个不同的解和即由题意知:与异号不妨设则故答案为:【点睛】关键点点睛:本题解题的关键是利解析:215m - 【分析】先利用辅助角公式化简()f x ,再利用同角三角函数关系计算出()cos αϕ+与()cos βϕ+,最后利用()()cos()cos αβαϕβϕ-=+-+⎡⎤⎣⎦化简计算即可.【详解】解:()()3sin cos f x x x x ϕ=+=+,其中ϕ为锐角且1tan 3ϕ=, 又()f x m =在[0,2)π上有两个不同的解α和β,()()m mαϕβϕ+=∴+=, 即()sin 10m αϕ+=,()sin 10βϕ+=, ()cos αϕ∴+== ()cos βϕ∴+== 由题意知:()cos αϕ+与()cos βϕ+异号,不妨设()cos αϕ+=,则()cos βϕ+=, cos()αβ-()()cos αϕβϕ=+-+⎡⎤⎣⎦()()()()cos cos sin sin αϕβϕαϕβϕ=+++++(1010m m =-⨯ 215m =-. 故答案为:215m -.【点睛】关键点点睛:本题解题的关键是利用辅助角公式对()f x 进行化简.20.【分析】根据图象关于对称分析得到为函数最值由此分析计算出的值并化简根据条件表示出然后分析出的最小值【详解】因为的图象关于对称所以所以解得所以又因为所以所以又因为所以所以所以所以显然当时有最小值所以故解析:23π 【分析】 根据图象关于6x π=对称,分析得到6f π⎛⎫⎪⎝⎭为函数最值,由此分析计算出a 的值并化简()f x ,根据条件表示出12,x x ,然后分析出12x x +的最小值.【详解】因为()f x 的图象关于6x π=对称,所以162f π⎛⎫==⎪⎝⎭,所以解得a =()sin 2sin 3f x x x x π⎛⎫=+=+⎪⎝⎭, 又因为()112sin 23f x x π⎛⎫=+= ⎪⎝⎭,所以1112,32x k k Z πππ+=+∈,所以1112,6x k k Z ππ=+∈,又因为()222sin 23f x x π⎛⎫=+=- ⎪⎝⎭,所以2222,32x k k Z πππ+=-+∈所以22252,6x k k Z ππ=-+∈, 所以121212522,,66x x k k k Z k Z ππππ+=+-+∈∈, 所以()12121222,,3x x k k k Z k Z ππ+=-++∈∈,显然当120k k +=时有最小值, 所以12min2233x x ππ+=-=, 故答案为:23π. 【点睛】思路点睛:已知正、余弦型函数的一条对称轴求解参数的两种思路:(1)根据对称轴对应的是正、余弦型函数的最值,代入计算出函数值等于对应的最值,由此计算出参数值;(2)已知对称轴为x a =,则根据()()2f a x f x -=,代入具体x 的值求解出a 的值.三、解答题21.(1)7cos 225α=-,()2tan 11βα-=;(2)a 的最大值为3. 【分析】(1)利用二倍角公式,求出cos2α,然后分别求出()cos αβ+,sin()αβ+,进而求出()tan αβ+,最后,利用()()tan tan 2βααβα-=+-求解即可(2)由()()[]3213cos212,4g x f x x =+=+∈-,得关于x 的不等式()()()2133g x a g x a ≥+++有解,化简得,即()()()213g x a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解即可【详解】解:(1)∵4tan 3α=,∴222222cos sin cos 2cos sin cos sin ααααααα-=-=+ 2222411tan 73251tan 413αα⎛⎫- ⎪-⎝⎭===-+⎛⎫+ ⎪⎝⎭,∵α,β为锐角,即α,0,2πβ⎛⎫∈ ⎪⎝⎭, ∴()20,απ∈,()0,αβπ+∈.22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, ∵()cos f x x =,∴()()cos 5f αβαβ+=+=-, ∴()sin αβ+==,∴()()()sin tan 2cos αβαβαβ++==-+, ∴()()()()242tan tan 227tan tan 2241tan tan 211127αβαβααβααβα-++--=+-===+++⨯. 综上,7cos 225α=-,()2tan 11βα-=. (2)()()[]3213cos212,4g x f x x =+=+∈-, 关于x 的不等式()()()2133g x a g x a ≥+++有解,即()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,则[]1,7t ∈,()()231t a t -≥+有解,即916a t t+≤+-有解, max97a t t ⎛⎫+≤+ ⎪⎝⎭,设()9h t t t =+,则()h x 在[)1,3上单调递减,在(]3,7上单调递增,则()(){}max9max 1,710t h h t ⎛⎫+== ⎪⎝⎭,∴3a ≤,故实数a 的最大值为3. 【点睛】关键点睛:(1)利用二倍角公式,以及正切函数的两角和差公式求解; (2)通过化简,把问题转化为()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解;主要考查学生的转化化归思想以及运算能力,属于中档题 22.(1)π;(2)10,2⎡⎤⎢⎥⎣⎦.【分析】(1)利用辅助角公式化简1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,再利用周期公式即可求解; (2)由50,12x π⎡⎤∈⎢⎥⎣⎦,求出26x π+的范围,再利用正弦函数的性质即可求解.【详解】(1)因为1111()2cos 2sin 2cos 2sin 24422226f x x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭所以()f x 的最小正周期为22T ππ==, (2)因为5012x π≤≤, 所以5026x π≤≤,所以266x πππ≤+≤所以0sin 216x π⎛⎫≤+≤ ⎪⎝⎭, 所以110sin 2262x π⎛⎫≤+≤ ⎪⎝⎭, 所以()f x 在区间50,12π⎡⎤⎢⎥⎣⎦上的值域为10,2⎡⎤⎢⎥⎣⎦. 23.1665-;3365;247- 【分析】由已知条件,利用同角三角函数基本关系结合角所在的象限求出cos α,sin β,以及tan α的值,再利用两角和的正弦公式,两角差的余弦公式,正切的二倍角公式即可求解.【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos 5α===-,因为3,2πβπ⎛⎫∈ ⎪⎝⎭,12cos 13,所以5sin 13β===-, 所以3124516sin()sin cos cos sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫+=+=⨯-+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为sin 3tan cos 4ααα==-,所以22322tan 244tan 21tan 7314ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭, 综上所述:16sin()65αβ+=-,33cos()65αβ-=,24tan 27α=-. 24.答案见解析【分析】方案1:分别利用α 表示sin BC α=,cos AB OB OA αα=-=,再计算矩形面积,利用辅助角公式结合三角函数的图象和性质求出最大值;方案2:22sin AB AE β==,cos AD EF OE OF ββ==-=,再计算矩形面积的最大值;两个最大值比较即可作出判断.【详解】方案1:由已知得:cos OB α=,sin BC α=,3sin tan 60tan 60AD BCOA α===, 所以cos AB OB OA αα=-=, 设矩形ABCD 的面积为S ,则 cos sin S AB BC ααα⎛⎫=⋅= ⎪⎪⎝⎭1sin 22226πααα⎛⎫=+ ⎪⎝⎭ 由03πα<<,得52666πππα<+<, 所以当262ππα+=,即6πα=时,矩形ABCD 的最大面积为1366S =-=. 方案2:由题意可知:22sin AB AE β==,cos OE β=, 又3sin tan 30tan 30DF AE OF β===,cos AD EF OE OF ββ==-=,设矩形ABCD 的面积为S ,则()2sin cos S AB AD βββ=⋅=sin 222sin 23πβαβ⎛⎫=+-=+ ⎪⎝⎭ 又0<<6πβ,得2<2<333πππβ+, 所以当232ππβ+=,即12πβ=时,矩形ABCD 面积取最大为22S =.由于249>4612⎛= ⎝⎭>2>212S S >,故应选择方案1,当6πα=时,矩形ABCD 【点睛】关键点点睛:本题的关键是能用角表示各条线段的长,能表利用角表示出矩形的面积,会利用辅助角公式结合三角函数的图象和性质求出两种方案下面积的最值.25.(1)2+(千米);(2).【分析】(1)根据P 位于弧BC 的中点,则P 位于BAC ∠的角平分线上,然后分别在,,Rt APQ Rt APR 正AQR 中求解. (2)设PAB θ∠=,060θ<<︒,然后分别在,Rt APQ Rt APR 表示 PQ ,PR ,在AQR 中由余弦定理表RQ ,再由300200400W PQ PR RQ =⨯+⨯+⨯求解.【详解】(1)由P 位于弧BC 的中点,在P 位于BAC ∠的角平分线上,则1||||||sin 2sin30212PQ PR PA PAB ==∠=⨯︒=⨯=,||cos 2AQ PA PAB =∠== 由60BAC ∠=︒,且AQ AR =,∴QAR 为等边三角形,则||RQ AQ ==三条街道的总长||||||112l PQ PR RQ =++=++ ;(2)设PAB θ∠=,060θ︒<<︒, 则sin 2sin PQ AP θθ==,PR AP =()()sin 602sin 603cos sin θθθθ-=-=-,cos 2cos AQ AP θθ==,||||cos(60)2cos(60)cos AR AP θθθθ=-=-=+,由余弦定理可知:2222cos60RQ AQ AR AQ AR =+-,22(2cos )(cos )22cos (cos )cos 603θθθθθθ=+-⨯+=,则|RQ =设三条街道每年能产生的经济总效益W , 300200400W PQ PR RQ =⨯+⨯+⨯,3002sin sin )200θθθ=⨯+-⨯+,400sin θθ=++200(2sin )θθ=++)θϕ=++tan ϕ=,当()sin 1θϕ+=时,W 取最大值,最大值为【点睛】方法点睛:解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.26.答案见解析.【分析】利用正弦定理,作边化角,然后利用正弦的两角和与差的公式,再利用三角函数的诱导公式即可求解【详解】若选条件①,由正弦定理2cos b a C =可化为sin 2sin cos B A C =,又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=,sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =,则()22cos cos()cos(2)cos 212sin 2sin 1B A C A A A A ππ=--=-=-=--=-,又1cos 3B =,所以212sin 13A -=,22sin 3A =,sin 3A =. 若选条件②, 由正弦定理,2cos b a C =可化为sin 2sin cosB AC =,又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=, sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =,所以a c =,因为ABC 的周长为8,2b =,所以3a c ==,由余弦定理可得2223231cos 2233A +-==⨯⨯,所以sin A =. 若选条件③,由正弦定理,2cos b a C =可化为sin 2sin cosB AC =,又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=,sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =,所以a c =,又3c =,所以3a =,因为ABC 的外接圆半径为2,所以34sin A =,所以3sin 4A =. 【点睛】本题考查正弦定理、正弦的两角和与差的公式以及三角函数的诱导公式,主要考查学生的运算能力,属于中档题。
成都市第三中学必修第一册第五单元《三角函数》测试卷(含答案解析)
一、选择题1.若将函数1()sin 223f x x π⎛⎫=+ ⎪⎝⎭图象上的每一个点都向左平移3π个单位长度,得到()g x 的图象,则函数()g x 的单调递增区间为( )A .3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,()44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦2.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7253.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43- C .53- D .45-4.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-5.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B .()2sin 26f x x π⎛⎫=- ⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭6.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫=⎪⎝⎭,则()f x 图象的一条对称轴是( ) A .6x π=B .56x π=C .512x π=D .712x π=7.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭8.已知将向量13,2a ⎛= ⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( ) A .6262-+⎝⎭ B .6262+-⎝⎭ C .2662-+⎝⎭D .262644⎛ ⎝⎭9.sin 20cos10cos160sin10-=( ) A .3B .12C .12-D .3210.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-11.要得到cos 26y x π⎛⎫=- ⎪⎝⎭的图像,只需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图像( ) A .向左平移12π个单位B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________ 14.若tan 4α=,则2cos 2sin 2αα+= ________.15.设ABC 的内角,,A B C 所对的边分别为,,,a b c 若2sin cos sin A B C =,则ABC 的形状为________.16.已知角θ的终边经过点(,3)P x (0x <)且cos 10x θ=,则x =___________. 17.若3sin 45πα⎛⎫-=- ⎪⎝⎭,则sin2α=_____; 18.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________.19.在①a ,②S =2ccos B ,③C =3π这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,b cos A =a cos C +c cos A ,b =1,____________,求c 的值.注:如果选择多个条件分别解答,按第一个解答计分.20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数()cos f x x =.(1)已知α,β为锐角,()f αβ+=,4tan 3α=,求cos2α及()tan βα-的值;(2)函数()()321g x f x =+,若关于x 的不等式()()()2133g x a g x a ≥+++有解,求实数a 的最大值.22.已知()()3sin f x x a ωϕ=++0,2πωϕ⎛⎫>< ⎪⎝⎭的图象过点,12a π⎛⎫⎪⎝⎭,且图象的相邻两条对称轴的距离为2π. (1)求函数()f x 的单调区间; (2)若()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为3,求实数a 的值. 23.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式;(2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 24.已知函数25()23cos()2cos (0)32f x wx wx wx w π=+-+>的图像上相邻的两个最低点的距离为π. (1)求w 的值;(2)求函数()f x 的单调递增区间.25.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 26.已知函数π()2sin 6f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的单调递减区间;(2)设π()()6g x f x f x ⎛⎫=- ⎪⎝⎭. 当[0,]x m ∈时,()g x 的取值范围为0,2⎡⎣,求m 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 求出()1sin 22g x x =-,令()322222k x k k Z +≤≤+∈ππππ即可解出增区间. 【详解】 由题可知()()111sin 2sin 2sin 223322g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦, 令()322222k x k k Z +≤≤+∈ππππ,解得()344k x k k Z ππππ+≤≤+∈, ∴()g x 的单调递增区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故选:A.2.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.3.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求.∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .4.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.5.A解析:A 【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【详解】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 故选:A.方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.6.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π= 故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题7.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, ∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 8.C解析:C 【分析】先求出a 与x 轴正方向的夹角为3πθ=,即可得b 与x 轴正方向的夹角为73412πππα=+=, 再利用向量坐标的定义即可求解. 【详解】设a 的起点是坐标原点,a 与x 轴正方向的夹角为θ,1a =由13,22a ⎛= ⎝⎭可得2tan 12θ==3πθ=, 设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b=因为7sinsin sin cos cos sin 124343434y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭,7coscos cos cos sin sin 124343434x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭,故2,44b ⎛⎫-= ⎪ ⎪⎝⎭, 故选:C.9.B解析:B 【分析】利用诱导公式cos160cos 20=-,再利用两角和的正弦公式即可求解. 【详解】sin 20cos10cos160sin10-()sin 20cos10cos 18020sin10=-- sin 20cos10cos 20sin10=+()sin 2010=+sin30=12=故选:B10.B解析:B 【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 11.B解析:B 【分析】化简函数cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,即可判断. 【详解】cos 2cos 2612y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 22y x x π⎛⎫=+= ⎪⎝⎭,∴需将函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移12π个单位.故选:B.12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12-【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】 若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.1【分析】把求值式转化为关于的二次齐次分式然后转化为代入求值【详解】∵∴故答案为:1【点睛】方法点睛:本题考查二倍角公式考查同角间的三角函数关系在已知求值时对关于的齐次式一般转化为关于的式子再代入值解析:1 【分析】把求值式转化为关于sin ,cos αα的二次齐次分式.然后转化为tan α,代入求值. 【详解】 ∵tan 4α=,∴222222cos 4sin cos 14tan 144cos 2sin 21sin cos tan 141ααααααααα+++⨯+====+++.故答案为:1. 【点睛】方法点睛:本题考查二倍角公式,考查同角间的三角函数关系.在已知tan α求值时,对关于sin ,cos αα的齐次式,一般转化为关于tan α的式子.再代入tan α值计算.如一次齐次式:sin cos sin cos a b c d αααα++,二次齐次式:2222sin sin cos cos sin sin cos cos a b c d e f αααααααα++++, 另外二次式22sin sin cos cos m n p αααα++也可化为二次齐次式.15.等腰三角形【分析】由整理可得角的关系即可【详解】由的内角知所以又所以为等腰三角形故答案为:等腰三角形【点睛】此题考查两角和与差的正弦公式的正向和逆向使用属于基础题解析:等腰三角形 【分析】由()sin sin sin cos cos sin C A B A B A B π=-+=+⎡⎤⎣⎦,整理可得角的关系即可. 【详解】由ABC 的内角,,A B C 知,()C A B π=-+,所以 ()sin sin sin cos cos sin 2sin cos C A B A B A B A B π=-+=+=⎡⎤⎣⎦,sin cos cos sin 0A B A B -=,()sin 0A B -=,又()()()0,π,0,π,π,πA B A B ∈∈-∈-所以A B =,ABC 为等腰三角形. 故答案为:等腰三角形. 【点睛】此题考查两角和与差的正弦公式的正向和逆向使用,属于基础题.16.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为: 解析:1-【分析】由余弦函数的定义可得cos x θ==,解出即可. 【详解】由余弦函数的定义可得cos x θ==, 解得0x =(舍去),或1x =(舍去),或1x =-,1x ∴=-.故答案为:1-.17.【分析】逆用诱导公式结合二倍角公式得出答案【详解】故答案为: 解析:725【分析】逆用诱导公式结合二倍角公式得出答案. 【详解】27sin 2cos 2cos 212sin 24425πππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-=-=--= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故答案为:72518.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值. 【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 19.答案见解析【分析】利用正弦定理进行边化角得到然后利用余弦定理以及正弦函数的两角和与差公式进行选择①②或③进行求解即可【详解】在中因为所以根据正弦定理得所以因为所以选择①由余弦定理得解得选择②所以所以解析:答案见解析. 【分析】利用正弦定理进行边化角,得到cos 3A =,然后利用余弦定理以及正弦函数的两角和与差公式进行选择①,②或③,进行求解即可 【详解】在ABC cos cos cos A a C c A =+,cos sin cos sin cos B A A C C A =+cos sin B A B =,因为sin 0B ≠,所以cos 3A =选择①,由余弦定理2222cos a b c bc A =+-得210c -=,解得c =选择②,1cos sin 22c S B bc A ==,所以cos sin cos()2B A A π==-所以2B A π=-,即2C π=,解得c =选择③,3C π=,因为sin sin()sin cos cos sin 333B A A A πππ=+=+所以由sin sin c b C B=得sin 4sin b Cc B == 【点睛】关键点睛:解题关键在于由正弦定理进行边化角,得到cos 3A =,然后利用三角函数的相关公式进行求解,难度属于中档题20.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞;④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)7cos 225α=-,()2tan 11βα-=;(2)a 的最大值为3. 【分析】(1)利用二倍角公式,求出cos2α,然后分别求出()cos αβ+,sin()αβ+,进而求出()tan αβ+,最后,利用()()tan tan 2βααβα-=+-求解即可(2)由()()[]3213cos212,4g x f x x =+=+∈-,得关于x 的不等式()()()2133g x a g x a ≥+++有解,化简得,即()()()213g x a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解即可【详解】解:(1)∵4tan 3α=,∴222222cos sin cos 2cos sin cos sin ααααααα-=-=+ 2222411tan 73251tan 413αα⎛⎫- ⎪-⎝⎭===-+⎛⎫+ ⎪⎝⎭,∵α,β为锐角,即α,0,2πβ⎛⎫∈ ⎪⎝⎭,∴()20,απ∈,()0,αβπ+∈.22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, ∵()cos f x x =,∴()()cos f αβαβ+=+= ∴()sin 5αβ+==,∴()()()sin tan 2cos αβαβαβ++==-+, ∴()()()()242tan tan 227tan tan 2241tan tan 211127αβαβααβααβα-++--=+-===+++⨯. 综上,7cos 225α=-,()2tan 11βα-=. (2)()()[]3213cos212,4g x f x x =+=+∈-, 关于x 的不等式()()()2133g x a g x a ≥+++有解,即()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,则[]1,7t ∈,()()231t a t -≥+有解,即916a t t+≤+-有解, max 97a t t ⎛⎫+≤+ ⎪⎝⎭,设()9h t t t =+,则()h x 在[)1,3上单调递减,在(]3,7上单调递增,则()(){}max9max 1,710t h h t ⎛⎫+== ⎪⎝⎭, ∴3a ≤,故实数a 的最大值为3. 【点睛】关键点睛:(1)利用二倍角公式,以及正切函数的两角和差公式求解; (2)通过化简,把问题转化为()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解;主要考查学生的转化化归思想以及运算能力,属于中档题22.(1)单调递增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)34. 【分析】(1)根据图象上相邻两条对称轴的距离为2π可知周期为π,可确定2ω=,然后将点,12a π⎛⎫⎪⎝⎭代入求解出ϕ的值,利用整体法求解原函数的单调区间即可.(2)由(1)中的结果可知()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上的单调性,确定出()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上,得到关于a 的方程求解即可. 【详解】(1)由函数()f x 图象的相邻两条对称轴间的距离为2π, 得函数()f x 的最小正周期T π=, ∴22πωπ==.又函数()f x 的图象过点,12a π⎛⎫⎪⎝⎭,∴21212f a a ππϕ⎛⎫⎛⎫=⨯++=⎪ ⎪⎝⎭⎝⎭, ∴sin 2012πϕ⎛⎫⨯+= ⎪⎝⎭,6k πϕπ+=.∵||2ϕπ<,∴6πϕ=-,则()26f x x a π⎛⎫=-+ ⎪⎝⎭.令222262k x k πππππ-≤-≤+,解得63x k πππ-≤≤+,()k ∈Z ,3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+,()k ∈Z ∴函数()f x 的单调递增区间为,()63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z , 单调递减区间为5,(k )36k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)由(1)知,函数()f x 在,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在,32ππ⎛⎤⎥⎝⎦上单调递减,又3122f a π⎛⎫-=-+ ⎪⎝⎭,3f a π⎛⎫= ⎪⎝⎭,2f a π⎛⎫=+ ⎪⎝⎭,∴()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为32a a -++=∴34a =.【点睛】本题考查三角函数图象性质的综合应用,解答时只要方法如下:(1)求解三角函数单调区间时一般采用整体代换法,将自变量部分的代数式当做一个整体,利用正弦函数、余弦函数的单调性列出不等式求解即可;(2)求解三角函数在某固定区间上的最值或值域时,关键是分析清楚原函数在所给区间上的单调性,利用单调性确定取得最大值或最小值的点,确定最值;也可以采用换元法,将函数()sin y A ωx φ=+的最值转化为求sin y A t =的最值问题,只需根据格据正弦函数的图像性质确定即可.23.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(223x π⎛⎫+≥ ⎪⎝⎭,可得sin 23x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 232x π⎛⎫+≥ ⎪⎝⎭, 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤,因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 24.(1)1;(2)()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【分析】本题考查三角函数的图像和性质、三角恒等变换,根据三角恒等变换公式()f x 化简函数解析式,根据图像和性质求单调递增区间. 【详解】(1)5()(cos cossin sin )(1cos 2)332f x wx wx wx wx ππ=--++23sin 23sin cos 222wx wx wx =--+1cos 2323cos 222wx wx wx -=-⨯-+12cos 22wx wx =+ sin(2)6wx π=+又因为()f x 图象上相邻的两个最低点间的距离为π,0w >, 所以22w,解得1w =.(2)据(1)求解知,()sin(2)6f x x π=+令222()262k x k k Z πππππ-+≤+≤+∈,所以()36k x k k Z ππππ-+≤≤+∈,所以所求的单调递增区间是()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【点睛】思路点睛:三角恒等变换综合应用的解题思路:(1)利用降幂、升幂公式将()f x 化为sin cos a x b x 的形式;(2)构造())f x x x +;(3)和差公式逆用,得())f x x ϕ=+ (其中ϕ为辅助角,tan b aϕ=);(4)利用())f x x ϕ=+研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范.25.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为. 26.(1)42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)56π.【分析】 (1)令322262πππk πx k π+≤+≤+,()k Z ∈,解不等式即可求解;(2)先求出并化简()2sin 23g x x π⎛⎫=-+ ⎪⎝⎭()g x 的值域可得出sin 232π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦x ,结合正弦函数的图象可知42233m πππ≤-≤,即可求出m 的最大值. 【详解】 (1)令322262πππk πx k π+≤+≤+,k Z ∈. 所以42233ππk πx k π+≤≤+,()k Z ∈. 所以函数()f x 的单调递减区间42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)()()4sin sin 66g x f x f x x x ππ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭14cos sin 22x x x ⎛⎫=+ ⎪⎝⎭22cos sin x x x =+cos2)sin 2x x =-+2sin 23x π⎛⎫=-+ ⎪⎝⎭因为0x m ≤≤, 所以22333x m πππ-≤-≤-.因为()g x 的取值范围为0,2⎡⎣,所以sin 23x π⎛⎫- ⎪⎝⎭的取值范围为2⎡⎤-⎢⎥⎣⎦所以42233m πππ≤-≤. 解得:55126m ππ≤≤. 所以m 的最大值为56π.【点睛】关键点点睛:本题的关键点是要熟记正弦函数的图象,灵活运用三角恒等变换将()g x化为一名一角,能结合正弦函数的图象得出42233mπππ≤-≤.。
(人教版)成都市必修第一册第五单元《三角函数》测试卷(包含答案解析)
一、选择题1.已知0>ω,函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( ) A .15,36⎡⎤⎢⎥⎣⎦B .17,36⎡⎤⎢⎥⎣⎦C .15,46⎡⎤⎢⎥⎣⎦D .17,46⎡⎤⎢⎥⎣⎦2.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-3.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( ) A .362k -,k ∈N B .362k +,k ∈N C .32D .34.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=5.函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .sin 6x ππ⎛⎫+⎪⎝⎭B .sin 3x ππ⎛⎫+⎪⎝⎭C .sin 6x ππ⎛⎫-⎪⎝⎭D .sin 3x ππ⎛⎫-⎪⎝⎭6.化简求值1tan12tan 72tan12tan 72+-( )A .3-B .3-C .3 D .37.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 8.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π 9.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .10.下面函数中最小正周期为π的是( ).A .cos y x =B .π3y x ⎛⎫=- ⎪⎝⎭C .tan2xy = D .22cos sin 2y x x =+11.若角α,β均为锐角,sin α=,()4cos 5αβ+=-,则cos β=( )A B C D . 12.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .35二、填空题13.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________.14.已知角θ的终边经过点(,3)P x (0x <)且cos x θ=,则x =___________. 15.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______. 16.设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________. ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点. 17.已知1cos cos 2αβ+=,1sin sin 3αβ+=,则()cos αβ-=________.18.方程21sin cos 2x x x =在[0,]4π上的解为___________19.已知1cos 3α=-,则|sin |α=___________ 20.已知2sin 3θ=-,3,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ=______. 三、解答题21.已知函数()2sin cos f x x x = (1)求函数()f x 的最小正周期和最大值; (2)求函数()f x 的单调递减区间. 22.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min7x x π-=,求ϕ的值.23.设函数22()cos 2cos 32x f x x π⎛⎫=++ ⎪⎝⎭. (1)求3f π⎛⎫⎪⎝⎭的值; (2)求()f x 的最小值及()f x 取最小值时x 的集合; (3)求()f x 的单调递增区间. 24.已知22sin 2sin12αα=-. (1)求sin cos cos2ααα+的值;(2)已知()0,απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭,且2tan 6tan 1ββ-=,求2αβ+的值.25.已知向量a =cos x ,-1),b =(sin x ,cos 2x ),函数()f x a b =⋅. (1)求函数()f x 的单调递增区间; (2)求函数()f x 在区间[2π-,0]上的最大值和最小值,并求出相应的x 的值.26.设函数2()cos sin 3f x x x x π⎛⎫=⋅+ ⎪⎝⎭. (1)求()f x 的最小正周期; (2)当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由322232k x k ππππωπ+++求得22766k k x ππππωωωω++,k z ∈.可得函数()f x 的一个减区间为[6πω,7]6πω.再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得ω的范围.【详解】函数()sin()3f x x πω=+在(,)2ππ上单调递减, 设函数的周期22T T πππω⇒=-,2ω∴. 再由函数()sin()3f x x πω=+满足322232k x k ππππωπ+++,k z ∈, 求得22766k k x ππππωωωω++,k z ∈. 取0k =,可得766x ππωω, 故函数()f x 的一个减区间为[6πω,7]6πω. 再由6276ππωππω⎧⎪⎪⎨⎪⎪⎩,求得1736ω, 故选:B . 【点睛】函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,由2222k x k πππωϕπ-+≤+≤+求得增区间2.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-,∴sin 3tan cos 4ααα==-. 故选:A .3.C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项. 【详解】 由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.4.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D5.C解析:C 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而得到函数的解析式. 【详解】解:由图象可得1A =,再根据35134362T =-=,可得2T =, 所以22πωπ==, 再根据五点法作图可得1,6k k Z πϕπ⨯+=∈,求得6πϕ=-, 故函数的解析式为()sin 6f x x ππ⎛⎫=- ⎪⎝⎭. 故选:C.6.A解析:A 【分析】逆用两角差的正切公式先求出tan12tan 721tan12tan 72-+,即可求解.【详解】 因为()tan 1272-tan12tan 721tan12tan 72-=+()tan 60=-=-所以()1tan12tan 721tan12tan 723tan 60+===---.故选:A7.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断;对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确; 对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 8.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值,所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.9.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.10.D解析:D 【分析】根据三角函数的周期公式结合图象对选项进行逐一判断,可得答案. 【详解】()cos cos x x -=,cos cos y x x ∴==,周期为2π,故A 不符合题意; π3y x ⎛⎫=- ⎪⎝⎭的周期为2π,故B 不符合题意;画出函数tan2x y =的图象,易得函数tan 2xy =的周期为2π,故C 不符合题意;2π2cos sin 2cos 21sin 2214x x x x x ⎛⎫+=++=++ ⎪⎝⎭,周期为π,故D 符合题意. 故选:D11.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,5sin 5α=,()4cos 5αβ+=-,2255cos 155α⎛⎫∴=-= ⎪ ⎪⎝⎭,()243sin 155αβ⎛⎫+=--= ⎪⎝⎭, cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4532555=-25=. 故选:B .12.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以222234sin ,cos 554343αα====++, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C二、填空题13.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3514.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为: 解析:1-【分析】由余弦函数的定义可得cos x θ==,解出即可. 【详解】由余弦函数的定义可得cos x θ==, 解得0x =(舍去),或1x =(舍去),或1x =-,1x ∴=-.故答案为:1-.15.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-.16.①②③【分析】对①根据即可判断①正确对②根据函数和的最小正周期即可判断②正确对③首先得到再利用二次函数的性质即可判断③正确对④令解方程即可判断④错误【详解】对①因为函数的定义域为所以是偶函数故①正确解析:①②③ 【分析】对①,根据()()f x f x -=即可判断①正确,对②,根据函数cos 2y x =和sin y x=的最小正周期即可判断②正确,对③,首先得到()2192sin 48f x x ⎛⎫=--+ ⎪⎝⎭,再利用二次函数的性质即可判断③正确,对④,令()cos 2sin 0f x x x =+=,解方程即可判断④错误. 【详解】对①,因为函数()f x 的定义域为R ,()()()cos 2sin =cos 2sin f x x x x x f x -=-+-+=,所以()f x 是偶函数,故①正确;对②,因为cos 2cos2y x x ==,最小正周期为π,sin y x =的最小正周期为π,所以函数()cos 2sin f x x x =+的最小正周期为π,故②正确; 对③,()2cos 2sin cos2sin 12sin sin f x x x x x x x =+=+=-+2192sin 48x ⎛⎫=--+ ⎪⎝⎭.因为0sin 1x ≤≤,当sin 1x =时,()f x 取得最小值为0,故③正确. 对④,令()cos 2sin 0f x x x =+=,即212sin sin 0x x -+=,解得sin 1x =或1sin 2x =-(舍去). 当[]0,2x π∈时,sin 1x =,解得2x π=或32x π=, 所以()f x 在[]0,2π上有2个零点.故④错误. 故选:①②③17.【分析】将和两边同时平方然后两式相加再由两角差的余弦公式即可求解【详解】由两边同时平方可得由两边同时平方可得两式相加可得即所以故答案为:【点睛】本题主要考查同角三角函数基本关系以及两角差余弦公式解题解析:5972-【分析】将1cos cos 2αβ+=和1sin sin 3αβ+=两边同时平方,然后两式相加,再由两角差的余弦公式即可求解. 【详解】 由1cos cos 2αβ+=两边同时平方可得221cos cos 2cos cos 4αβαβ++=,由1sin sin 3αβ+=两边同时平方可得221sin sin 2sin sin 9αβαβ++=,两式相加可得22221113cos cos 2cos cos +sin sin 2sin sin 946=3+αβαβαβαβ++++=即cos cos sin si 5972n αβαβ+=-,所以()cos cos cos sin s 9n 7i 52αβαβαβ-=+=-. 故答案为:5972- 【点睛】本题主要考查同角三角函数基本关系以及两角差余弦公式,解题的关键是熟练掌握公式()cos cos cos sin sin αβαβαβ-=+,,22cos sin 1αα+=并应用,属于中档题. 18.【分析】由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论【详解】由得得∴又∴故答案为:【点睛】方法点睛:本题考查求解三角方程解题方法:(1)利用三角函数的恒等变换公式化方程为的形式然后解析:12π 【分析】 由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论. 【详解】由21sin cos 2x x x =得1cos 21222x x -+=,得sin 206x π⎛⎫-= ⎪⎝⎭, ∴26x k ππ-=,,212k x k Z ππ=+∈, 又0,4x π⎡⎤∈⎢⎥⎣⎦,∴12x π=. 故答案为:12π.【点睛】方法点睛:本题考查求解三角方程,解题方法:(1)利用三角函数的恒等变换公式化方程为sin()x k ωϕ+=的形式,然后由正弦函数的定义得出结论.(2)用换元法,如设sin x t =,先求得方程()0f t =的解0t ,然后再解方程0sin x t =.19.【分析】根据同角三角函数的关系即可求出【详解】故答案为:解析:3【分析】根据同角三角函数的关系即可求出. 【详解】1cos 3α=-,|sin |α∴==.. 20.【分析】根据角的范围和同角三角函数的关系求得从而求得答案【详解】因为所以所以故答案为:【分析】根据角的范围和同角三角函数的关系求得cos θ,从而求得答案. 【详解】 因为2sin 3θ=-,3,2πθπ⎛⎫∈ ⎪⎝⎭,所以cos 0θ<,cos θ===,所以sin tan cos θθθ==,. 三、解答题21.(1)T π=;最大值为1;(2)3[,]()44k k k Z ππππ++∈ 【分析】(1)应用二倍角公式,将函数化为正弦型三角函数,即可求解;(2)根据正弦函数的单调递减区间结合整体代换,即可求出结论. 【详解】(1)()2sin cos sin 2f x x x x ==, 最小正周期为22T ππ==,最大值为1; (2)由3222()22k x k k Z ππππ+≤≤+∈, 解得3()44k x k k Z ππππ+≤≤+∈, ()f x ∴单调递减区间是3[,]()44k k k Z ππππ++∈.22.(1)37π;(2)14π. 【分析】(1)题意说明周期6T π≥,4x π=是最小值点,由最小值点得ω表达式,由6T π≥得ω的范围,从而得ω的值;(2)()()122f x g x -=∣∣说明()()12,f x g x 中一个对应最大值,一个对应最小值.对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π,由此可得. 【详解】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤.又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值.对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min314x x πϕ-+=. 即314714πππϕ=-=.【点睛】关键点点睛:本题考查三角函数的周期,解题关键是由足()()122f x g x -=得出12,x x 是函数的最值点,一个是最大值点,一个是最小值点,由此分析其其差的最小值与周期结合可得结论. 23.(1)12;(2)min ()0f x =,22,3x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭;(3)单调递增区间为252,2,()33k k k z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】(1)利用两角和的余弦公式,二倍角公式以及两角差的正弦公式化简函数解析式可得()1sin()6f x x π=--,代入3x π=,即可计算得解.(2)由(1)利用正弦函数的性质即可求解. (3)利用正弦函数的单调性即可求解. 【详解】解:(1)221313()cos()2cos cos cos 1cos 11sin()32226x f x x x x x x x x ππ=++=-++=+=--,所以1()1sin()3362f πππ=--=.(2)由于()sin()16f x x π=--+,所以当sin()16x π-=时,()0min f x =,此时2,62x k k z πππ-=+∈,所以()f x 取最小值时x 的集合为2|2,3x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭, 故()f x 的最小值为0,()f x 取最小值时x 的集合为2|2,3x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭. (3)令322262k x k πππππ+≤-≤+,k Z ∈,解得252233k x k ππππ+≤≤+,k Z ∈,所以()f x 的单调递增区间为25[2,2]33k k ππππ++,()k z ∈. 【点睛】本题主要考查了两角和的余弦公式,二倍角公式、两角差的正弦公式以及正弦函数的图象和性质,考查了转化思想和函数思想的应用,属于中档题. 24.(1)15;(2)74π. 【分析】(1)先求出1tan 2α=-,再化简22tan 1tan sin cos cos 2tan 1αααααα+-+=+即得解;(2)先求出1tan 23β=-,再求出tan(2)1αβ+=-,求出52,23παβπ⎛⎫+∈⎪⎝⎭,即得解. 【详解】(1)由已知得2sin cos αα=-,所以1tan 2α=-222222sin cos cos sin tan 1tan 1sin cos cos 2sin cos tan 15αααααααααααα+-+-+===++ (2)由2tan 6tan 1ββ-=,可得22tan 1tan 21tan 3βββ==--,则11tan tan 223tan(2)1111tan tan 2123αβαβαβ--++===---⨯. 因为0,2πβ⎛⎫∈ ⎪⎝⎭,所以()20,βπ∈,又1tan 233β=->-,则52,6πβπ⎛⎫∈ ⎪⎝⎭,因为()0,απ∈,1tan 23α=->-, 则5,6παπ⎛⎫∈⎪⎝⎭,则52,23παβπ⎛⎫+∈ ⎪⎝⎭, 所以724παβ+=. 【点睛】易错点睛:本题容易得出两个答案,724παβ+=或34π.之所以得出两个答案,是没有分析缩小,αβ的范围,从而得到52,23παβπ⎛⎫+∈⎪⎝⎭.对于求角的大小的问题,一般先求出角的某三角函数值,再求出角的范围,再得到角的大小. 25.(1),,63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ;(2)=2x π-时,最大值为0;=6x π-时, 最小值为32-. 【分析】(1)由()f x a b =⋅,根据向量的数量积的运算可得()f x 的解析式,将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间. (2)在0,2π⎡⎤⎢⎥⎣⎦上时,求出内层函数的取值范围,结合三角函数的图象和性质,可得出()f x 的最大值和最小值.【详解】解:(1)2()=3sin cos cos f x a b x x x =⋅-cos 21222x x -- 1=sin 2coscos 2sin662x x ππ-- 1=sin 2)62x π--(由2,262k x k k πππππ--+∈Z 2≤≤2,解得:,63k x k k ππππ-+∈Z ≤≤,所以函数()f x 的单调递增区间为:[,],63k k k ππππ-+∈Z .(2)因为02x π⎡⎤∈-⎢⎥⎣⎦,,所以72666x πππ⎡⎤-∈--⎢⎥⎣⎦,, 所以1sin2)62x π--1≤(≤,即31sin 2)0262x π---≤(≤, 当=2x π-时,()f x 有最大值为0;当=6x π-时, ()f x 有最小值为32-.【点睛】关键点睛:利用三角函数的二倍角公式,化简得到, 2()=3sin cos cos f x a b x x x =⋅-1=sin2)62x π--(, 进而利用复合函数的单调性进行求解,难度属于中档题26.(1)π;(2)最小值为 【分析】(1)利用二倍角公式、两角和与差的正弦公式化函数为一个角的一个三角函数形式,然后利用正弦函数性质求解. (2)求出23x π-的取值范围,然后由正弦函数性质得最值.【详解】 (1)2211()cos (sin )sin cos 22f x x x x x x x x ==-11sin 22sin(2)423x x x π==-, ∴()f x 的最小正周期是22T ππ==(2)0,3x π⎡⎤∈⎢⎥⎣⎦时,2,333x πππ⎡⎤-∈-⎢⎥⎣⎦,此时()44f x ⎡∈-⎢⎣⎦.()f x 最大值为4,此时233x ππ-=,3x π=,()f x 最小值为4-,此时233x ππ-=-,0x =.综上,()f x 的最小值为4-,最大值为4. 【点睛】关键点睛:解题关键在于利用二倍角公式、两角和与差的正弦公式化简为标准的形态,然后利用正弦函数的性质求解,难度属于中档题。
最新人教版高中数学必修第一册第五单元《三角函数》测试卷(包含答案解析)(1)
一、选择题1.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两条对称轴之间的距离为2π,且该函数图象关于点()0,0x 成中心对称,00,2x π⎡⎤∈⎢⎥⎣⎦,则0x 等于( ) A .512π B .4π C .3π D .6π2.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .123.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7254.已知()3sin 5πα+=,则sin()cos()sin 2απαπα--=⎛⎫- ⎪⎝⎭( ) A .45-B .45 C .35D .355.函数πsin 25y x ⎛⎫=- ⎪⎝⎭的最小正周期是( ) A .2π B .πC .2πD .4π6.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π7.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于(). A .1B .2C .2.5D .48.若2cos 23sin 2cos()4θθπθ=-,则sin 2θ=( )A .13 B .23C .23-D .13-9.若4cos 5θ=-,θ是第三象限的角,则1tan21tan 2θθ-=+( ) A .12B .12-C .35D .-210.若函数sin 3y x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后与函数cos y x ω=的图象重合,则ω的值可能为( ) A .1- B .2- C .1 D .211.已知,2παπ⎛⎫∈ ⎪⎝⎭且1sin 23πα⎛⎫+=- ⎪⎝⎭,则()tan απ+=( )A .22-B .22C .24-D .2 12.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭二、填空题13.已知角θ的终边经过点(,3)P x (0x <)且10cos 10x θ=,则x =___________. 14.已知()tan 3πα+=,则2tan 2sin αα-的值为_______. 15.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号). 16.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则()f x =______.17.已知α是第一象限角,且4tan 3α=,则sin 2α=_______ 18.先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y 轴对称,则ϕ=________. 19.将函数()y f x =图象右移6π个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到sin 3y x π⎛⎫=-⎪⎝⎭,则6f π⎛⎫=⎪⎝⎭______. 20.某学生对函数()2cos f x x x =进行研究后,得出如下四个结论: (1)函数()f x 在[]π,0-上单调递增,在[]0,π上单调递减; (2)存在常数0M >,使()f x M x ≤对一切实数x 均成立; (3)点π,02⎛⎫⎪⎝⎭是函数()y f x =图像的一个对称中心; (4)函数()y f x =图像关于直线πx =对称;其中正确的是______(把你认为正确命题的序号都填上)参考答案三、解答题21.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭只能同时....满足下列三个条件中的两个:①图象上一个最低点为2,23M π⎛⎫-⎪⎝⎭;②函数()f x 的图象可由4y x π⎛⎫=- ⎪⎝⎭的图象平移得到;③若对任意x ∈R ,()()()12f x f x f x ≤≤恒成立,且12x x -的最小值为2π. (1)请写出这两个条件序号,并求出()f x 的解析式; (2)求方程()10f x -=在区间[],ππ-上所有解的和. 22.已知函数π()2sin 6f x x ⎛⎫=+ ⎪⎝⎭. (1)求()f x 的单调递减区间;(2)设π()()6g x f x f x ⎛⎫=- ⎪⎝⎭. 当[0,]x m ∈时,()g x 的取值范围为0,2⎡⎣,求m 的最大值.23.已知函数())2sin cos 3f x x x x π=--.(1)求()f x 的最小正周期、最大值、最小值; (2)求函数的单调区间;24.已知函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤ ⎪⎝⎭的最小正周期为π. (1)求ω的值及()6g f ϕπ⎛⎫= ⎪⎝⎭的值域; (2)若3πϕ=,sin 2cos 0αα-=. 求()fα的值.25.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值. (2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知条件求得函数()f x 的最小正周期T ,可求得ω的值,再由已知可得()026x k k Z ππ+=∈,结合00,2x π⎡⎤∈⎢⎥⎣⎦可求得0x 的值. 【详解】由题意可知,函数()f x 的最小正周期T 满足22T π=,T π∴=,22T πω∴==,()sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,由于函数()f x 的图象关于点()0,0x 成中心对称,则()026x k k Z ππ+=∈,解得()0212k x k Z ππ=-∈,由于00,2x π⎡⎤∈⎢⎥⎣⎦,解得0512x π=. 故选:A. 【点睛】结论点睛:利用正弦型函数的对称性求参数,可利用以下原则来进行: (1)函数()()sin f x A x =+ωϕ关于直线0x x =对称()02x k k Z πωϕπ⇔+=+∈;(2)函数()()sin f x A x =+ωϕ关于点()0,0x 对称()0x k k Z ωϕπ⇔+=∈.2.B解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B.3.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.4.C解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】 ∵3sin()sin 5παα+==-,∴3sin 5α=-,则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C5.B解析:B 【分析】按照三角函数的周期公式求最小正周期即可. 【详解】解:函数πsin 25y x ⎛⎫=- ⎪⎝⎭的最小正周期为22T ππ==. 故选:B.6.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.7.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.8.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin 2cos()coscos sinsin 444θθθπππθθθ-=-+()cos sin cos sin 2cos sin 2θθθθθθ+-==-,()2cos sin 2θθθ∴-=,两边平方得()241sin 23sin 2θθ-=,解得sin 22θ=-(舍去)或2sin 23θ=. 故选:B. 【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin 2θθθ-=,再平方求解.9.D解析:D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan21tan 2θθ-+求解. 【详解】因为θ为第三象限角, 所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan1322131tan2θθ-+==--+. 故选:D.10.A解析:A 【分析】先求解出sin 3y x πω⎛⎫=+ ⎪⎝⎭右移6π个单位后的函数解析式,然后根据诱导公式求解出ω的可取值. 【详解】 因为sin 3y x πω⎛⎫=+⎪⎝⎭右移6π个单位后得到sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭, 又因为sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭与cos sin 2y x x πωω⎛⎫==+ ⎪⎝⎭的图象重合,所以令2,632k k Z ωππππ-+=+∈,所以121,k k Z ω=--∈,所以ω可取1-,此时0k =, 故选:A. 【点睛】思路点睛:根据三角函数的图象重合求解参数ω或ϕ的思路: (1)先根据诱导公式将函数名统一;(2)然后分析三角函数初相之间的关系;(3)对k 进行取值(有时注意结合所给范围),确定出满足条件的ω或ϕ的值.11.A解析:A 【分析】由条件可得1cos 3α=-,然后可得sin 3α=,然后()sin tan tan cos ααπαα+==,即可算出答案. 【详解】因为1sin cos 23παα⎛⎫+==- ⎪⎝⎭,,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 3α=所以()sin tan tan cos ααπαα+===-故选:A12.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<,所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选:B本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.二、填空题13.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为: 解析:1-【分析】由余弦函数的定义可得cos 10x θ==,解出即可. 【详解】由余弦函数的定义可得cos x θ==, 解得0x =(舍去),或1x =(舍去),或1x =-,1x ∴=-.故答案为:1-.14.【分析】利用诱导公式求出再利用二倍角公式求出以及同角三角函数的基本关系求出即可得解;【详解】解:由题意所以所以所以故答案为: 解析:3320-【分析】利用诱导公式求出tan α,再利用二倍角公式求出tan2α,以及同角三角函数的基本关系求出2sin α,即可得解; 【详解】解:由题意()tan 3πα+=,所以tan 3α=,所以22tan 3tan 21tan 4ααα==--,222222sin tan 9sin sin cos tan 110αααααα===++,所以23933tan 2sin 41020αα-=--=-. 故答案为:3320-15.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.16.【分析】由图可得利用周期求出又函数过点解得进而得出函数的解析式【详解】由图可得:解得又函数过点则解得故答案为:解析:sin 23x π⎛⎫+ ⎪⎝⎭ 【分析】由图可得A ,利用周期求出ω,又函数过点7,112π⎛⎫-⎪⎝⎭,解得3πϕ=,进而得出函数的解析式. 【详解】由图可得:1A =,37341264T πππ⎛⎫=--= ⎪⎝⎭,解得,2T πω==,()()sin 2f x x ϕ=+又函数过点7,112π⎛⎫-⎪⎝⎭,则732122ππϕ⨯+=,解得3πϕ=,()sin 23f x x π⎛⎫=+ ⎪⎝⎭故答案为:sin 23x π⎛⎫+ ⎪⎝⎭ 17.【分析】根据同角三角函数的关系解出根据二倍角公式即可求出【详解】是第一象限角且则解得故答案为:解析:2425【分析】根据同角三角函数的关系解出43sin ,cos 55αα==,根据二倍角公式即可求出sin 2α. 【详解】α是第一象限角,且4tan 3α=, 则22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,解得43sin ,cos 55αα==,∴24sin 22sin cos 25ααα==. 故答案为:2425. 18.【分析】由题意利用函数的图象变换规律三角函数的图象的对称性求得的值【详解】先将函数的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变)可得的图象;再向左平移个单位长度可得函数的图象根据所得函数图象关 解析:56π 【分析】由题意利用函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,求得ϕ的值. 【详解】先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得1cos 2y x ϕ⎛⎫=+ ⎪⎝⎭的图象; 再向左平移3π个单位长度,可得函数1cos 26y x πϕ⎛⎫=++ ⎪⎝⎭的图象,根据所得函数图象关于y 轴对称,可得6k πϕπ+=,k Z ∈,因为()0,ϕπ∈,所以1k =,56πϕ=. 故答案为:56π. 【点睛】关键点点睛:熟练掌握函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性是解题关键..19.【分析】把的图象反过来变换可得的图象得然后再计算函数值【详解】把的图象上点的横坐标缩小为原来的纵坐标不变得的图象再向左平移个单位得∴故答案为:【点睛】结论点睛:本题考查三角函数的图象变换三角函数的图解析:2 【分析】 把sin 3y x π⎛⎫=- ⎪⎝⎭的图象反过来变换可得()f x 的图象,得()f x ,然后再计算函数值. 【详解】 把sin 3y x π⎛⎫=-⎪⎝⎭的图象上点的横坐标缩小为原来的12,纵坐标不变得sin 23y x π⎛⎫=- ⎪⎝⎭的图象,再向左平移6π个单位得sin 2sin 263y x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,∴()sin 2f x x =.sin 63f ππ⎛⎫= ⎪⎝⎭【点睛】结论点睛:本题考查三角函数的图象变换,三角函数的图象中注意周期变换与相位变换的顺序不同时,平移单位的变化.()y f x =向右平移ϕ个单位,再把横坐标变为原来的1ω倍得图象的解析式为()y f x ωϕ=+,而()y f x =的图象的横坐标变为原来的1ω倍,纵坐标不变,所得图象再向右平移ϕ个单位得图象的解析式为[]()y fx ωϕ=+.20.(2)【分析】根据奇偶性奇函数在关于原点对称区间单调性相同确定(1)错误;取M=2可判定(2)正确;可判断(3)不正确;取特殊值判定(3)错误【详解】定义域为R 所以是奇函数在关于原点对称的区间上单调解析:(2) 【分析】根据奇偶性,奇函数在关于原点对称区间单调性相同,确定(1)错误; 取M=2,可判定(2)正确;202f x f x ππ++-⎛⎫⎛⎫≠⎪ ⎪⎝⎭⎝⎭可判断(3)不正确;取2233f ππ⎛⎫⎪=- ⎝⎭,4433f ππ⎛⎫⎪=- ⎝⎭特殊值判定(3)错误. 【详解】()2cos f x x x =定义域为R ,()()2cos f x x x f x -=-=-,所以()2cos f x x x =是奇函数,在关于原点对称的区间上单调性相同,所以(1)错误;cos 1x ≤,令2M =,()f x M x ≤成立,所以(2)正确;()()2sin 2sin 4sin 022x x x x x x f x f x ππππ⎛⎫⎛⎫=-+++-+-=-≠ ⎪ ⎪⎝⎭⎝⎭, 所以点π,02⎛⎫⎪⎝⎭不是函数()y f x =图像的一个对称中心,所以(3)不正确; 2422cos 3333f ππππ⎛⎫= =-⎪⎝⎭,4844cos 3333f ππππ⎛⎫= =-⎪⎝⎭, 函数()y f x =图像不关于直线πx =对称,所以(4)不正确. 故答案为:(2) 【点睛】此题考查与三角函数性质相关命题的判定,需要熟练掌握奇偶性、单调性、对称性在解题中的处理方法.三、解答题21.(1)①③,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)3π-. 【分析】(1)由题意分析出①②矛盾,可知③满足题意,由③可得出函数()f x 的最小正周期为π,可求得2ω=,可说明②不符合条件,进而可知符号题意的条件序号为①③,可得出2A =,由此可得出函数()f x 的解析式; (2)由()10f x -=可得1sin 262x π⎛⎫+= ⎪⎝⎭,解得()x k k Z π=∈或()3x k k Z ππ=+∈,再由[],x ππ∈-可求得结果.【详解】(1)函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件为①③; 理由如下:由题意可知条件①②互相矛盾, 故③为函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件之一, 由③可知,函数()f x 的最小正周期为T π=,所以2ω=,故②不合题意,所以函数()sin 6f x A x πω⎛⎫=+ ⎪⎝⎭满足的条件为①③;由①可知2A =,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)因为()10f x -=,所以1sin 262x π⎛⎫+= ⎪⎝⎭, 所以()2266x k k Z πππ+=+∈或()52266x k k Z πππ+=+∈, 所以()x k k Z π=∈或()3x k k Z ππ=+∈又因为[],x ππ∈-,所以x 的取值为π-、23π-、0、3π、π, 所以方程()10f x -=在区间[],ππ-上所有的解的和为3π-. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的基本性质求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值. 22.(1)42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)56π. 【分析】 (1)令322262πππk πx k π+≤+≤+,()k Z ∈,解不等式即可求解;(2)先求出并化简()2sin 23g x x π⎛⎫=-+ ⎪⎝⎭()g x 的值域可得出sin 232π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦x ,结合正弦函数的图象可知42233m πππ≤-≤,即可求出m 的最大值.【详解】 (1)令322262πππk πx k π+≤+≤+,k Z ∈. 所以42233ππk πx k π+≤≤+,()k Z ∈. 所以函数()f x 的单调递减区间42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)()()4sin sin 66g x f x f x x x ππ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭14cos sin 2x x x ⎫=+⎪⎝⎭22cos sin x x x =+cos2)sin 2x x =-+2sin 23x π⎛⎫=-+ ⎪⎝⎭因为0x m ≤≤, 所以22333x m πππ-≤-≤-.因为()g x 的取值范围为0,2⎡⎣,所以sin 23x π⎛⎫- ⎪⎝⎭的取值范围为2⎡⎤-⎢⎥⎣⎦所以42233m πππ≤-≤. 解得:55126m ππ≤≤. 所以m 的最大值为56π.【点睛】关键点点睛:本题的关键点是要熟记正弦函数的图象,灵活运用三角恒等变换将()g x 化为一名一角,能结合正弦函数的图象得出42233m πππ≤-≤. 23.(1)T π=,最大值1,最小值-1;(2)在()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增;()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上单调递减; 【分析】(1)利用两角差余弦公式、两角和正弦公式化简函数式,进而求()f x 的最小正周期、最大值、最小值;(2)利用()sin()f x A x ωϕ=+的性质求函数的单调区间即可. 【详解】(1)())2sin cos sin(2)33f x x x x x ππ=--=+, ∴2||T ππω==,且最大值、最小值分别为1,-1; (2)由题意,当222232k x k πππππ-≤+≤+时,()f x 单调递增,∴51212k x k ππππ-≤≤+,k Z ∈,()f x 单调递增; 当3222232k x k πππππ+≤+≤+时,()f x 单调递减, ∴71212k x k ππππ+≤≤+,k Z ∈,()f x 单调递减; 综上,当()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,()f x 单调递增; ()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,()f x 单调递减; 【点睛】关键点点睛:应用两角和差公式化简三角函数式并求最小正周期、最值;根据()sin()f x A x ωϕ=+性质确定三角函数的单调区间.24.(1)2ω=,()g ϕ的值域为1,12⎡⎤-⎢⎥⎣⎦;(2)()f α= 【分析】(1)由函数()f x 的最小正周期可求得ω的值,求得()sin 3g πϕϕ⎛⎫=- ⎪⎝⎭,结合ϕ的取值范围可求得()g ϕ的值域;(2)求得tan 2α=,利用二倍角的正、余弦公式以及弦化切思想可求得()f α的值.【详解】(1)由于函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤⎪⎝⎭的最小正周期为π,则22πωπ==,()()sin 2f x x ϕ∴=-,()sin 63g f ππϕϕ⎛⎫⎛⎫∴==- ⎪ ⎪⎝⎭⎝⎭,22ππϕ-≤≤,5636πππϕ∴-≤-≤,所以,()1sin ,132g πϕϕ⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦; (2)sin 2cos 0αα-=,可得tan 2α=,3πϕ=,所以,())21sin 2sin 22sin cos 2cos 132f πααααααα⎛⎫=-==- ⎪⎝⎭22222sin cos tan sin cos 2sin cos 2tan 12αααααααααα=-+=+=+++245210-+=+=. 【点睛】求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤:第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式.第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值). 25.(1)15(2)13-【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】 (1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭. (2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+.【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.26.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-, 又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。
新人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)(3)
一、选择题1.下列三个关于函数()sin 2sin 23f x x x π⎛⎫=-+ ⎪⎝⎭的命题:①只需将函数()2g x x =的图象向右平移6π个单位即可得到()f x 的图象;②函数()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称; ③函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增. 其中,真命题的个数为( ) A .3B .2C .1D .02.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7253.如果函数()cos 3f x x θ⎛⎫=+ ⎪⎝⎭的图象关于直线2x π=对称,那么θ的最小值为( )A .6π B .4πC .3π D .2π 4.计算cos 20cos80sin160cos10+=( ).A .12B .2C .12-D .5.函数()(1)cos f x x x =的最小正周期为( ) A .πB .32π C .2πD .2π 6.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π 7.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭ C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭8.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭9.若角α,β均为锐角,25sin α=,()4cos 5αβ+=-,则cos β=( )A .25B .25C .25或25 D .25-10.3tan 26tan 34tan 26tan 34++=( ) A .3 B .3- C .3 D .3-11.函数()()cos f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示.为了得到()cos g x A x ω=-的图象,只需把()y f x =的图象上所有的点( )A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度D .向左平移512π个单位长度 12.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫-⎪⎝⎭C .,012π⎛⎫⎪⎝⎭D .,03π⎛⎫⎪⎝⎭二、填空题13.已知22034sin παα=<<,,则sin cos αα-=_____________________. 14.若tan 4α=,则2cos 2sin 2αα+= ________.15.已知()sin()cos()1f x a x b x παπβ=++-+,其中α,β,a ,b 均为非零实数,若()20202f =,则()2021f =________. 16.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 17.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______.18.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号). 19.已知7sin cos 17αα+=,()0,απ∈,则tan α= ________. 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知向量()cos ,sin m x x =,()cos x n x =,设函数()12f x m n =⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦. (1)讨论()f x 的单调性; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值.22.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.23.已知函数()sin 1f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.24.在①函数()()sin 20,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象向右平移6π个单位长度得到()g x 的图像,()g x 图像关于,012π⎛⎫⎪⎝⎭对称;②函数()()12cos sin 062f x x x πωωω⎛⎫=+-> ⎪⎝⎭这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,求a 的取值范围; (2)求函数()f x 在[]0,2π上的单调递增区间. 25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间;(2)若23f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值.26.已知函数())2cos cos 1f x xx x =-+(1)求函数()f x 的最小正周期及单调递增区间. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】先对函数()f x 进行化简,得到()26f x x π⎛⎫- ⎪⎝⎭,对于①运用三角函数图像平移进行判断;对于②计算出函数()f x 的对称中心进行判断;对于③计算出函数()f x 的单调增区间进行判断. 【详解】因为1()sin 2sin 2sin 22sin 2322f x x x x x x π⎛⎫=-+=-+ ⎪⎝⎭3sin 222x x =26x π⎛⎫=- ⎪⎝⎭对于①,将函数()2g x x =的图像向右平移6π个单位可得函数23y x π⎛⎫=- ⎪⎝⎭的图像,得不到()26f x x π⎛⎫=- ⎪⎝⎭,故①错误; 对于②,令()26x k k Z ππ-=∈,解得()122k x k Z ππ=+∈,故无论k 取何整数,函数()f x 的图像不会关于点5,012π⎛⎫⎪⎝⎭对称,故②错误; 对于③,当()222262k x k k Z πππππ-+≤-≤+∈,即()63k x k k Z ππππ-+≤≤+∈时函数()f x 递增,当0k =时,()f x 的一个递增区间为,63ππ⎡⎤-⎢⎥⎣⎦,故③正确.只有1个命题正确. 故选:C 【点睛】思路点睛:解答此类题目需要熟练掌握正弦型函数的单调性、对称性,以及三角函数的图像平移,在计算单调区间和对称中心时要能够通过整体代入计算求出结果,如()222262k x k k Z πππππ-+≤-≤+∈等.2.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果.【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.3.A解析:A 【分析】利用余弦函数的对称轴以及整体思想可得:θ的表达式,进而得到θ的最小值. 【详解】由题意函数()cos 3f x x θ⎛⎫=+ ⎪⎝⎭的图象关于直线2x π=对称,则有 1,32k πθπ⋅+= 解得 θ=k π6π-,k ∈Z ,所以由此得|θmin 6π=.故选:A . 【点睛】方法点睛:求正余弦函数的对称轴及对称中心一般利用整体思想求解4.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .5.C解析:C 【分析】由切化弦,及两角和的正弦公式化简函数,然后由正弦函数的周期性得结论. 【详解】 由已知,()(1)cos f x x x =+cos x x =+12cos 2x x ⎛⎫=+⎪⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭, ∴最小正周期为221T ππ==, 故选:C .6.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.7.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.8.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, ∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 9.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++435555=-⨯+⨯=. 故选:B .10.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】26tan34tan 26tan34︒︒+︒+︒26tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒26tan 34tan 26tan 34)=︒︒+-︒︒26tan3426tan34=︒︒︒︒=故选:C .11.B解析:B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【详解】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈,所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【点睛】关键点点睛:本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.12.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A二、填空题13.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:3-【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以sin cos αα-====,故答案为: -14.1【分析】把求值式转化为关于的二次齐次分式然后转化为代入求值【详解】∵∴故答案为:1【点睛】方法点睛:本题考查二倍角公式考查同角间的三角函数关系在已知求值时对关于的齐次式一般转化为关于的式子再代入值解析:1 【分析】把求值式转化为关于sin ,cos αα的二次齐次分式.然后转化为tan α,代入求值. 【详解】 ∵tan 4α=,∴222222cos 4sin cos 14tan 144cos 2sin 21sin cos tan 141ααααααααα+++⨯+====+++.故答案为:1. 【点睛】方法点睛:本题考查二倍角公式,考查同角间的三角函数关系.在已知tan α求值时,对关于sin ,cos αα的齐次式,一般转化为关于tan α的式子.再代入tan α值计算.如一次齐次式:sin cos sin cos a b c d αααα++,二次齐次式:2222sin sin cos cos sin sin cos cos a b c d e f αααααααα++++, 另外二次式22sin sin cos cos m n p αααα++也可化为二次齐次式.15.0【分析】由题设条件结合周期性及诱导公式运算即可得解【详解】由题意所以所以故答案为:0解析:0 【分析】由题设条件结合周期性及诱导公式运算即可得解. 【详解】由题意,()sin(2020)cos(2020)1sin cos()12020a b a b f παπβαβ++-++-=+=sin cos 12a b αβ=++=,所以sin cos 1αβ+=a b ,所以()sin(2021)cos(202)201211f a b παπβ++-+=sin()cos()1sin cos 1110a b a b παπβαβ==++-+-+=-+=-.故答案为:0.16.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 17.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 18.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】 如图所示:由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.19.【分析】根据已知条件求得的值由此求得的值【详解】依题意两边平方得而所以所以由解得所以故答案为:【点睛】知道其中一个可通过同角三角函数的基本关系式求得另外两个在求解过程中要注意角的范围 解析:158-【分析】根据已知条件求得sin ,cos αα的值,由此求得tan α的值. 【详解】依题意7sin cos 17αα+=,两边平方得 4924012sin cos ,2sin cos 0289289αααα+==-<, 而()0,απ∈,所以sin 0,cos 0αα><,所以23sin cos 17αα-====. 由7sin cos 1723sin cos 17αααα⎧+=⎪⎪⎨⎪-=⎪⎩解得158sin ,cos 1717αα==-, 所以sin 15tan cos 8ααα==-. 故答案为:158-【点睛】sin cos ,sin cos αααα±知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.20.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,cos 1a≤≤2cos 2a ≤≤,则1122cos 2a ≤≤,即122k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈ ⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==,由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)π0,6x ⎡⎤∈⎢⎥⎣⎦时,()f x 单调递增;ππ,63x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递减;(2)()121cos 2x x +=,()122cos 3x x -=. 【分析】(1)根据平面向量的数量积和三角恒等变换,求出函数()f x 的解析式,再根据x 的范围,即可得到()f x 的单调性; (2)由方程()23f x =有两个不相等的实数根1x 、2x ,根据对称性求出12x x +的值,再计算()12cos x x +和()12cos x x -的值即可. 【详解】(1)因为向量()cos ,sin m x x =,()cos x n x =,所以函数()12f x m n =⋅-21cos cos 2x x x =-1cos 212222x x +=+-πcos 23x ⎛⎫=- ⎪⎝⎭,π0,3x ⎡⎤∈⎢⎥⎣⎦,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π203x -=,解得π6x =, 所以π0,6x ⎡⎤∈⎢⎥⎣⎦时,即ππ2,033x ⎡⎤-∈-⎢⎥⎣⎦时,()f x 单调递增, ππ,63x ⎛⎤∈ ⎥⎝⎦时,即ππ20,33x ⎛⎤-∈ ⎥⎝⎦时,()f x 单调递减;(2)当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦;所以π1cos 2,132x ⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即()1,12f x ⎡⎤∈⎢⎥⎣⎦; 又方程()23f x =在π0,3x ⎡⎤∈⎢⎥⎣⎦上有两个不相等的实数根1x 、2x , 所以12ππ2220033x x ⎛⎫⎛⎫-+-=⨯= ⎪ ⎪⎝⎭⎝⎭,解得12π3x x +=, 所以()12π1cos cos 32x x +==; 由12π3x x =-, 所以()122πcos cos 23x x x ⎛⎫-=- ⎪⎝⎭2πcos 23x ⎛⎫=- ⎪⎝⎭()223f x ==.【点睛】解题的关键是熟练掌握三角函数的图象与性质、数量积公式、三角恒等变换公式,并灵活应用,()23f x =需结合余弦函数的对称性与值域进行求解,综合性较强,属中档题. 22.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣, 解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 23.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤,∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解. 24.(1),63ππ⎡⎤⎢⎥⎣⎦;(2)06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【分析】先选条件①或条件②,结合函数的性质及图像变换,求得函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭, (1)由[]0,x α∈,得到2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,根据由正弦函数图像,即可求解; (2)根据函数正弦函数的形式,求得36k x k ππππ-+≤≤+,k Z ∈,进而得出函数的单调递增区间. 【详解】 方案一:选条件①由函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,解得1ω=, 所以()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤,所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.方案二:选条件②: 由()12cos sin 62f x x x πωω⎛⎫=+- ⎪⎝⎭12cos sin cos cos sin 662x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 2cos 222x x x x x ωωωωω=+-=+sin 26x πω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,所以1ω=, 可得()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤,所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为()sin()f x A wx ϕ=+或()cos()f x A wx ϕ=+的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫- ⎪⎝⎭的值; 【详解】(1)1()cos2cos 2cos2cos2232f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos22223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由已知得23f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 39πα⎤⎛⎫=-+=- ⎪⎥⎝⎭⎦. 【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角.26.(1)T π=,,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)()()max min 2,1f x f x ==-. 【分析】(1)先利用二倍角公式和辅助角公式化简()f x ,然后根据周期计算公式求解出T ,再采用整体替换法求解出单调递增区间;(2)采用整体替换的方法先分析出26x π-的取值范围,然后再结合正弦函数的单调性,求解出()f x 的最值.【详解】(1)因为())22cos cos 1212cos 2cos 2f x x x x x x x x =-+=+-=-, 所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭,所以最小正周期22T ππ==, 令222,262k x k k Z πππππ-≤-≤+∈,所以,63k x k k Z ππππ-≤≤+∈, 所以单调递增区间为:,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦; (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 又因为sin y x =在,62ππ⎡⎫-⎪⎢⎣⎭上单调递增,在5,26ππ⎛⎤ ⎥⎝⎦上单调递减, 所以()max 2sin 22f x π==,此时3x π=,又()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时0x =, 综上可知:()()max min 2,1f x f x ==-.【点睛】思路点睛:求解形如()sin y A ωx φ=+在指定区间上的值域或最值的一般步骤如下: (1)先确定t x ωϕ=+这个整体的范围;(2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.。
(常考题)人教版高中数学必修第一册第五单元《三角函数》检测卷(答案解析)(1)
一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .2C .15D .1523.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-4.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( ) A .362k -,k ∈N B .362k +,k ∈N C .32D .35.cos45sin15sin 45cos15︒︒-︒︒=( ). A .1B .12-C 3D .126.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 7.若4cos 5θ=-,θ是第三象限的角,则1tan21tan 2θθ-=+( ) A .12B .12-C .35D .-28.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .9.下面函数中最小正周期为π的是( ). A .cos y x = B .π23y x ⎛⎫=- ⎪⎝⎭C .tan2xy = D .22cos sin 2y x x =+10.若角α,β均为锐角,25sin 5α=,()4cos 5αβ+=-,则cos β=( )A 25B 25C 2525D .2511.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫- ⎪⎝⎭C .,012π⎛⎫ ⎪⎝⎭D .,03π⎛⎫ ⎪⎝⎭12.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( ) A .79 B .19C .-19D .-79二、填空题13.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.14.设函数22(1)sin(2)()(2)1x x f x x -+-=-+的最大值为M ,最小值为m ,则M m +=_________.15.已知函数()sin f x x =,若存在1x 、2x 、⋅⋅⋅、m x 满足1206m x x x π≤≤<⋅⋅⋅<≤,且()()()()()()()12231120,N m m f x f x f x f x f x f x m m *--+-+⋅⋅⋅+-=≥∈,则m的最小值为______. 16.先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y 轴对称,则ϕ=________. 17.设函数2()2cos 23cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 18.已知2sin 3θ=-,3,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ=______. 19.已知:3sin 25πα⎛⎫+= ⎪⎝⎭,且α为第四象限角,则cos 4πα⎛⎫+= ⎪⎝⎭___________. 20.某学生对函数()2cos f x x x =进行研究后,得出如下四个结论: (1)函数()f x 在[]π,0-上单调递增,在[]0,π上单调递减; (2)存在常数0M >,使()f x M x ≤对一切实数x 均成立;(3)点π,02⎛⎫⎪⎝⎭是函数()y f x =图像的一个对称中心; (4)函数()y f x =图像关于直线πx =对称; 其中正确的是______(把你认为正确命题的序号都填上)参考答案三、解答题21.已知()()1sin 2cos 3παπα+--=(2παπ<<),求: (1)sin cos αα⋅; (2)sin cos αα-.22.已知函数()2sin cos ,3f x x x x R π⎛⎫⎪⎝=-∈⎭. (1)求函数()f x 的最小正周期; (2)当,34x ππ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的最大值与最小值,并指出相应的x 值. 23.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)写出函数()f x 的最小正周期T 及ω、ϕ的值; (2)求函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调增区间. 24.已知m =(b sin x ,a cos x ),n =(cos x ,﹣cos x ),()f x m n a =⋅+,其中a ,b ,x ∈R .且满足()26f π=,(0)3f '=.(1)求a 和b 的值;(2)若关于x 的方程3()log 0f x k +=在区间[0,23π]上总有实数解,求实数k 的取值范围.25.已知函数()sin (sin 3)1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间. 26.已知α∈(0,)2π,tan α=12,求tan 2α和sin ()4πα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A.根据32()f x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断.【详解】A. 32()f x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误; D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.C解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠= ∴30PE DE PD CD ====∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE 中,AE =15PA =.故选:C .3.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .4.C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项. 【详解】 由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.5.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.6.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确; 对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 7.D解析:D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan21tan 2θθ-+求解. 【详解】因为θ为第三象限角, 所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan1322131tan2θθ-+==--+. 故选:D. 8.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.9.D解析:D 【分析】根据三角函数的周期公式结合图象对选项进行逐一判断,可得答案. 【详解】()cos cos x x -=,cos cos y x x ∴==,周期为2π,故A 不符合题意; π2sin 3y x ⎛⎫=- ⎪⎝⎭的周期为2π,故B 不符合题意;画出函数tan2x y =的图象,易得函数tan 2xy =的周期为2π,故C 不符合题意; 2π2cos sin 2cos 21sin 22sin 214x x x x x ⎛⎫+=++=++ ⎪⎝⎭,周期为π,故D 符合题意. 故选:D10.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,25sin α=()4cos 5αβ+=-,2255cos 155α⎛⎫∴=-= ⎪ ⎪⎝⎭,()243sin 155αβ⎛⎫+=--= ⎪⎝⎭, cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4532555=-525=. 故选:B .11.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒12==, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒12=+=,31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 60h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos155062h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.14.2【分析】可考虑向左平移2个单位对函数解析式进行化简根据左右平移值域不变求解【详解】令则定义域为R 且故是奇函数故其最大值与最小值的和为零所以函数的最大值与最小值的和为2故在函数中解析:2 【分析】可考虑向左平移2个单位对函数解析式进行化简,根据左右平移值域不变求解. 【详解】22(1)sin(2)()(2)1x x f x x -+-=-+222(1)sin 2sin (2)111x x x xf x x x +++∴+==+++, 令22sin ()1x xg x x +=+,则定义域为R ,且()()g x g x -=-, 故()g x 是奇函数,故其最大值与最小值的和为零,所以函数(2)y f x =+的最大值与最小值的和为2, 故在函数()f x 中,2M m +=.15.【分析】本题首先可根据正弦函数的性质得出然后根据当最大时最小即可得出结果【详解】因为所以因此要使成立的最小须取即故答案为:【点睛】关键点点睛:本题考查正弦函数的性质能否结合正弦函数性质得出是解决本题 解析:8【分析】本题首先可根据正弦函数的性质得出()()max min ()()2m n f x f x f x f x -≤-=,然后根据当()()m n f x f x -最大时m 最小即可得出结果. 【详解】因为()sin f x x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使()()()()()()1223112m m f x f x f x f x f x f x --+-+⋅⋅⋅+-=成立的m 最小,须取10x =、22x π=、332x π=、452x π=、572x π=、692x π=、7112x π=、86x π=,即8m =,故答案为:8. 【点睛】关键点点睛:本题考查正弦函数的性质,能否结合正弦函数性质得出()()max min ()()2m n f x f x f x f x -≤-=是解决本题的关键,考查转化与化归思想,考查学生分析问题和讨论问题的能力,是中档题.16.【分析】由题意利用函数的图象变换规律三角函数的图象的对称性求得的值【详解】先将函数的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变)可得的图象;再向左平移个单位长度可得函数的图象根据所得函数图象关 解析:56π【分析】由题意利用函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,求得ϕ的值. 【详解】先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得1cos 2y x ϕ⎛⎫=+ ⎪⎝⎭的图象;再向左平移3π个单位长度,可得函数1cos 26y x πϕ⎛⎫=++ ⎪⎝⎭的图象,根据所得函数图象关于y 轴对称,可得6k πϕπ+=,k Z ∈,因为()0,ϕπ∈,所以1k =,56πϕ=. 故答案为:56π. 【点睛】关键点点睛:熟练掌握函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性是解题关键..17.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余 解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案.【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦. ()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.18.【分析】根据角的范围和同角三角函数的关系求得从而求得答案【详解】因为所以所以故答案为:【分析】根据角的范围和同角三角函数的关系求得cos θ,从而求得答案. 【详解】 因为2sin 3θ=-,3,2πθπ⎛⎫∈ ⎪⎝⎭,所以cos 0θ<,cos θ===,所以sin tan cos θθθ==,. 19.【分析】由诱导公式求得然后由平方关系求得再由两角和的余弦公式可得结论【详解】由已知又为第四象限角∴∴故答案为:解析:10【分析】由诱导公式求得cos α,然后由平方关系求得sin α,再由两角和的余弦公式可得结论. 【详解】 由已知3sin cos 25παα⎛⎫+== ⎪⎝⎭,又α为第四象限角,∴4sin 5α=-,∴34cos cos cos sin sin ()444525210πππααα⎛⎫+=-=⨯--⨯= ⎪⎝⎭故答案为:10. 20.(2)【分析】根据奇偶性奇函数在关于原点对称区间单调性相同确定(1)错误;取M=2可判定(2)正确;可判断(3)不正确;取特殊值判定(3)错误【详解】定义域为R 所以是奇函数在关于原点对称的区间上单调解析:(2) 【分析】根据奇偶性,奇函数在关于原点对称区间单调性相同,确定(1)错误; 取M=2,可判定(2)正确;202f x f x ππ++-⎛⎫⎛⎫≠⎪ ⎪⎝⎭⎝⎭可判断(3)不正确;取2233f ππ⎛⎫⎪=- ⎝⎭,4433f ππ⎛⎫⎪=- ⎝⎭特殊值判定(3)错误. 【详解】()2cos f x x x =定义域为R ,()()2cos f x x x f x -=-=-,所以()2cos f x x x =是奇函数,在关于原点对称的区间上单调性相同,所以(1)错误;cos 1x ≤,令2M =,()f x M x ≤成立,所以(2)正确;()()2sin 2sin 4sin 022x x x x x x f x f x ππππ⎛⎫⎛⎫=-+++-+-=-≠ ⎪ ⎪⎝⎭⎝⎭, 所以点π,02⎛⎫⎪⎝⎭不是函数()y f x =图像的一个对称中心,所以(3)不正确; 2422cos 3333f ππππ⎛⎫= =-⎪⎝⎭,4844cos 3333f ππππ⎛⎫= =-⎪⎝⎭, 函数()y f x =图像不关于直线πx =对称,所以(4)不正确. 故答案为:(2) 【点睛】此题考查与三角函数性质相关命题的判定,需要熟练掌握奇偶性、单调性、对称性在解题中的处理方法.三、解答题21.(1)49-;(2)3. 【分析】(1)用诱导公式化简已知式为1sin cos 3αα+=,已知式平方后可求得sin cos αα; (2)已知式平方后减去4sin cos αα,再考虑到sin cos αα>就可求得sin cos αα-. 【详解】(1)由()()1sin 2cos 3παπα+--=可得1sin cos 3αα+=,所以()2221sin cos sin 2sin cos cos 12sin cos 9αααααααα+=++=+=, 所以4sin cos 9αα=-; (2)()()221417sin cos sin cos 4sin cos 4999αααααα⎛⎫-=+-=-⨯-= ⎪⎝⎭, 又因为,2παπ⎛⎫∈⎪⎝⎭,所以sin 0cos αα>>,sin cos 0αα->,所以sin cos 3αα-=. 【点睛】关键点点睛:本题解题的关键是熟记诱导公式,以及sin cos αα+,sin cos αα,sin cos αα-之间的联系即()2sin cos 12sin cos αααα+=+,()2sin cos 12sin cos αααα-=-.22.(1)π;(2)当(),12x f x π=-取得最大值为22+-;当4x π=时,()f x 取得. 【分析】(1)由两角差的正弦公式、二倍角公式化函数为一个角的一个三角函数形式(一次的),然后由正弦函数性质求得最小正周期; (2)求出23x π-的范围,利用正弦函数性质可得最值.【详解】 (1)根据题意得:()2sin cos 2sin cos cos sin cos333f x x x x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭2sin cos x x x=1cos 211sin 2sin 22sin 2222232x x x x x π+⎛⎫==-=--⎪⎝⎭所以最小正周期22T ππ== (2)因为,34x ππ⎡⎤∈-⎢⎥⎣⎦所以2,36x πππ⎡⎤-∈-⎢⎥⎣⎦当232x ππ-=-时,即12x π=-()min 22f x =-当236x ππ-=时,即4x π=()min 11222f x =-=所以当(),12x f x π=-取得最大值为22+-当4x π=时,()f x . 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 23.(1)T π=,2ω=,3πϕ=;(2),412ππ⎛⎫-⎪⎝⎭ 【分析】(1)由函数sin()y A x ωϕ=+的部分图象求解析式,由周期求出ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)由以上可得,()sin(2)3f x x π=+,再利用正弦函数的性质,求出函数在区间上的单调性. 【详解】解:(1)根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象,可得32134123πππω=-,解得2ω=,∴最小正周期22T ππ==.所以()sin(2)f x x ϕ=+ 因为函数过13,112π⎛⎫⎪⎝⎭,所以13sin 2112πϕ⎛⎫⋅+= ⎪⎝⎭,所以()13262k k Z ππϕπ+=+∈,解得()523k k Z πϕπ=-+∈ 因为2πϕ<,所以3πϕ=.所以()sin(2)3f x x π=+(2)由以上可得,()sin(2)3f x x π=+,在区间,44ππ⎡⎤-⎢⎥⎣⎦上,所以2[36x ππ+∈-,5]6π,令2632x πππ-≤+≤,解得412x ππ-≤≤ 即函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,412ππ⎡⎤-⎢⎥⎣⎦【点睛】求三角函数的解析式时,由2Tπω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 24.(1)2a =,b =2)1[,1]27.【分析】(1)化简函数()sin 2cos 2222b a a f x x x =-+,由()26f π=,解得8a =,再由(0)f '=,进而求得,a b 的值;(2)由(1)化简得()2sin(2)16f x x π=-+,根据2[0,]3x π∈,得到0()3f x ≤≤,结合方程3()log 0f x k +=在区间2[0,]3π上总有实数解,转化为3()log f x k =-在区间2[0,]3π上成立,列出不等式,即可求解. 【详解】 (1)由题意,函数2()sin cos cos f x m n a b x x a x a =⋅+=-+1cos 2sin 222b x x a a +=-+sin 2cos 2222b a a x x =-+,由()26f π=得,8a =,因为()cos 2sin 2f x b x a x '=+,又(0)f '=,所以b =2a =.(2)由(1)得()2cos 212sin(2)16f x x x x π=-+=-+,因为2[0,]3x π∈,所以72[,]666x πππ-∈-, 所以1sin(2)126x π-≤-≤,所以02sin(2)136x π≤-+≤,即0()3f x ≤≤,又因为方程3()log 0f x k +=在区间2[0,]3π上总有实数解, 所以3()log f x k =-在区间2[0,]3π上成立, 所以30log 3k ≤-≤,33log 0k -≤≤,3333log 3log log 1k -≤≤所以1127k ≤≤,所以实数k 的取值范围为1[,1]27. 【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程()0f x =的根就是函数()f x 与x 轴的交点的横坐标,方程()()f x g x =的根据就是函数()f x 和()g x 图象的交点的横坐标;利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.an 2α=43,sin ()4πα-=10-. 【分析】 先由tan α=12可得tan 2α=43,再由sin cos αα=12,结合角的范围可得sin α和cos α的值,再由in ()4πα-的展开求解即可.【详解】∵tan α=12,∴tan 2α=22tan 1tan a a -=122114⨯-=43. 且sin cos αα=12,即cos α=2sin α. 又sin 2α+cos 2α=1,∴5sin 2α=1.而α∈(0,)2π,∴sin α,cos α.∴sin ()4πα-=sin αcos4π-cos αsin 4π×2×2=-10.。
高中数学必修一第五章三角函数单元测试(1)(含答案解析)
⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。
(常考题)人教版高中数学必修第一册第五单元《三角函数》测试(答案解析)(1)
一、选择题1.已知曲线1:sin C y x =,曲线2:sin 23C y x π⎛⎫=-⎪⎝⎭,则下列结论正确的是( ) A .把曲线1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2C B .把曲线1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C C .把曲线1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2C D .把曲线1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C 2.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两条对称轴之间的距离为2π,且该函数图象关于点()0,0x 成中心对称,00,2x π⎡⎤∈⎢⎥⎣⎦,则0x 等于( )A .512πB .4π C .3π D .6π3.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定4.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=5.cos75cos15sin75sin15︒⋅︒+︒⋅︒的值是( )A .0B .12C D .16.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫=⎪⎝⎭,则()f x 图象的一条对称轴是( )A .6x π=B .56x π=C .512x π=D .712x π=7.要得到函数3sin 224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数3cos 22y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度8.若角α,β均为锐角,25sin 5α=,()4cos 5αβ+=-,则cos β=( )A .25B .25C .25或25 D .25-9.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭10.已知3cos()45x π-=-,177124x ππ<<,则2sin 22sin 1tan x xx-+的值为( ) A .2875B .21100-C .2875-D .2110011.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( )A .4π B .6π C .2π D .94π 12.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 二、填空题13.已知22034sin παα=<<,,则sin cos αα-=_____________________. 14.将函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移4π单位,所得到的函数解析式是_________. 15.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______. 16.下列四个命题中:①已知()()()sin cos 21,sin cos 2πααπαπα-+-=++则tan 1α=-;②()003tan 30tan 30-=-=③若3sin α=则1cos 2;2α=-④在锐角三角形ABC 中,已知73sin ,cos ,255A B ==则119sin .125C =其中真命题的编号有_______. 17.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______. 18.已知:3sin 25πα⎛⎫+= ⎪⎝⎭,且α为第四象限角,则cos 4πα⎛⎫+= ⎪⎝⎭___________.19.若0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,则m 的取值范围为_______________. 20.将函数()y f x =图象右移6π个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到sin 3y x π⎛⎫=-⎪⎝⎭,则6f π⎛⎫= ⎪⎝⎭______.三、解答题21.已知α,β为锐角,4tan 3α=,()tan 2αβ+=-. (1)求cos2α的值. (2)求()tan αβ-的值.22.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)写出函数()f x 的最小正周期T 及ω、ϕ的值; (2)求函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调增区间. 23.(1)求值:4cos130tan140︒︒-;(2)已知3177cos ,45124x x πππ⎛⎫+=<< ⎪⎝⎭,求2sin 22sin 1tan x x x+-的值.24.函数()()()f x g x h x =+,其中()g x 是定义在R 上的周期函数,()h x ax b =+,,a b 为常数(1)()sin g x x =,讨论()f x 的奇偶性,并说明理由;(2)求证:“()f x 为奇函数“的一个必要非充分条件是”()f x 的图象有异于原点的对称中心(),m n ”(3)()sin cos g x x x =+,()f x 在[]0,3x π∈上的最大值为M ,求M 的最小值. 25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间; (2)若323f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值.26.已知函数())2cos cos 1f x xx x =-+(1)求函数()f x 的最小正周期及单调递增区间. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三角函数的伸缩变换与平移变换原则,可直接得出结果. 【详解】 因为sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以将sin y x =图象上各点的横坐标缩短为原来的12,纵坐标不变,可得sin 2y x =的图象,再将sin 2y x =的图象向右平移6π个单位,即可得到sin 23y x π⎛⎫=- ⎪⎝⎭的图象. 故选:D.2.A解析:A 【分析】由已知条件求得函数()f x 的最小正周期T ,可求得ω的值,再由已知可得()026x k k Z ππ+=∈,结合00,2x π⎡⎤∈⎢⎥⎣⎦可求得0x 的值. 【详解】由题意可知,函数()f x 的最小正周期T 满足22T π=,T π∴=,22T πω∴==,()sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,由于函数()f x 的图象关于点()0,0x 成中心对称,则()026x k k Z ππ+=∈,解得()0212k x k Z ππ=-∈, 由于00,2x π⎡⎤∈⎢⎥⎣⎦,解得0512x π=. 故选:A. 【点睛】结论点睛:利用正弦型函数的对称性求参数,可利用以下原则来进行: (1)函数()()sin f x A x =+ωϕ关于直线0x x =对称()02x k k Z πωϕπ⇔+=+∈;(2)函数()()sin f x A x =+ωϕ关于点()0,0x 对称()0x k k Z ωϕπ⇔+=∈.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D5.B解析:B 【分析】由两角和的余弦公式化简计算. 【详解】原式=1cos(7515)cos 602︒-︒=︒=. 故选:B .6.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π= 故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题7.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得 224y x π⎛⎫=++ ⎪⎝⎭的图像,故选:B8.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4355=-=. 故选:B .9.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===,又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<,所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.10.A解析:A 【分析】 根据177124x ππ<<以及3cos()45x π-=-求出4sin()45x π-=-,进而求出4tan()43x π-=,根据诱导公式和二倍角的余弦公式得7sin 225x =-,然后利用恒等变换公式将2sin 22sin 1tan x xx-+化简为sin 2tan()4x x π-⋅-后,代入计算可得结果.【详解】因为177124x ππ<<,所以73642x πππ<-<, 因为3cos()45x π-=-,所以4sin()45x π-===-, sin()4tan()4cos()4x x x πππ--==-4535--43=, sin 2cos(2)cos 2()24x x x ππ⎡⎤=-=-⎢⎥⎣⎦2972cos 12142525x π⎛⎫=--=⨯-=- ⎪⎝⎭,所以2sin 22sin 1tan x x x-+2sin (cos sin )sin 1cos x x x x x-=+2sin cos (cos sin )cos sin )x x x x x x -=+sin 2(1tan )1tan x x x -=+tantan 4sin 21tan tan 4xx x ππ-=⋅+sin 2tan()4x x π=-⋅-7428()25375=--⨯=.故选:A 【点睛】本题考查了同角公式,考查了诱导公式,考查了二倍角的正弦公式,考查了两角差的正切公式,属于中档题.11.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A二、填空题13.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以3sin cos αα-====-,故答案为: 3-. 14.【分析】利用三角函数图象的平移和伸缩变换即可得正确答案【详解】函数的图象上各点的纵坐标不变横坐标伸长到原来的倍得到再向右平移个单位得到故最终所得到的函数解析式为:故答案为: 解析:()sin f x x =【分析】利用三角函数图象的平移和伸缩变换即可得正确答案. 【详解】 函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象上各点的纵坐标不变,横坐标伸长到原来的2倍, 得到sin 4y x π⎛⎫=+ ⎪⎝⎭, 再向右平移4π个单位,得到sin sin 44y x x ππ⎛⎫=-+= ⎪⎝⎭,故最终所得到的函数解析式为:()sin f x x =. 故答案为:()sin f x x =.15.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 16.②③【分析】对于①:运用诱导公式化简再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系切化弦再运用诱导公式可判断;对于③:运用余弦的二倍角公式计算可判断;对于④:运用同角三角函数求解析:②③ 【分析】对于①:运用诱导公式化简,再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系“切化弦”,再运用诱导公式可判断; 对于③:运用余弦的二倍角公式计算可判断; 对于④:运用同角三角函数求得244cos ,sin ,255A B ==再用正弦的和角公式代入可判断. 【详解】对于①:因为()()()sin -cos 21,sin cos 2πααπαπα+-=++所以sin cos 1,sin cos 2αααα+=-所以sin 11cos ,sin 21cos αααα+=-即tan 11,tan 12αα+=-解得tan 3α=-,故①不正确; 对于②:因为()()()000sin 30sin 30tan 30tan 30cos303cos 30---===-=--故②正确;对于③:因为sin α=所以221cos 212sin 1222αα⎛⎫=-=-⨯-=- ⎪ ⎪⎝⎭,故③正确;对于④:因为在锐角三角形ABC 中, 73sin ,cos ,255A B ==所以00,0222A B C πππ<<<<<<,,所以244cos ,sin ,255A B ====所以 ()()sin sin +sin +C A B A B π⎡⎤=-=⎣⎦73244117sin cos +cos sin +255255125A B A B ==⨯⨯=,故④不正确, 故答案为:②③.17.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.18.【分析】由诱导公式求得然后由平方关系求得再由两角和的余弦公式可得结论【详解】由已知又为第四象限角∴∴故答案为:解析:10【分析】由诱导公式求得cos α,然后由平方关系求得sin α,再由两角和的余弦公式可得结论. 【详解】 由已知3sin cos 25παα⎛⎫+== ⎪⎝⎭,又α为第四象限角,∴4sin 5α=-,∴34cos cos cos sin sin ()444525210πππααα⎛⎫+=-=⨯--⨯= ⎪⎝⎭.19.【分析】根据三角函数的性质求得的最大值进而可求出结果【详解】因为由可得所以则因为恒成立所以只需故答案为:解析:)+∞【分析】根据三角函数的性质,求得sin cos x x +的最大值,进而可求出结果. 【详解】因为sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭,由0,2x π⎛⎫∈ ⎪⎝⎭可得3,444x πππ⎛⎫+∈ ⎪⎝⎭,所以sin 42x π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,则(sin cos 4x x x π⎛⎫+=+∈ ⎪⎝⎭,因为0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,所以只需m ≥故答案为:)+∞.20.【分析】把的图象反过来变换可得的图象得然后再计算函数值【详解】把的图象上点的横坐标缩小为原来的纵坐标不变得的图象再向左平移个单位得∴故答案为:【点睛】结论点睛:本题考查三角函数的图象变换三角函数的图解析:2 【分析】 把sin 3y x π⎛⎫=- ⎪⎝⎭的图象反过来变换可得()f x 的图象,得()f x ,然后再计算函数值. 【详解】 把sin 3y x π⎛⎫=-⎪⎝⎭的图象上点的横坐标缩小为原来的12,纵坐标不变得sin 23y x π⎛⎫=- ⎪⎝⎭的图象,再向左平移6π个单位得sin 2sin 263y x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,∴()sin 2f x x =.sin 63f ππ⎛⎫= ⎪⎝⎭【点睛】结论点睛:本题考查三角函数的图象变换,三角函数的图象中注意周期变换与相位变换的顺序不同时,平移单位的变化.()y f x =向右平移ϕ个单位,再把横坐标变为原来的1ω倍得图象的解析式为()y f x ωϕ=+,而()y f x =的图象的横坐标变为原来的1ω倍,纵坐标不变,所得图象再向右平移ϕ个单位得图象的解析式为[]()y fx ωϕ=+.三、解答题21.(1)725-;(2)211-.【分析】(1)利用同角三角函数的关系以及二倍角公式即可求值; (2)先求出24tan 27α=-,再利用()()tan tan 2αβααβ-=-+⎡⎤⎣⎦即可求解. 【详解】解:(1)由题意知:α为锐角,且22sin 4tan cos 3sin cos 1ααααα⎧==⎪⎨⎪+=⎩,解得:4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,229167cos 2cos sin 252525ααα∴=-=-=-; (2)由(1)知,4324sin 22sin cos 25525ααα==⨯⨯=, 则24sin 22425tan 27cos 2725ααα===--, ()()()()tan 2tan tan tan 21tan 2tan ααβαβααβααβ-+-=-+=⎡⎤⎣⎦+⋅+,()()241022775524111277----===-⎛⎫+-⨯- ⎪⎝⎭, 故()2tan 11αβ-=-.22.(1)T π=,2ω=,3πϕ=;(2),412ππ⎛⎫-⎪⎝⎭【分析】(1)由函数sin()y A x ωϕ=+的部分图象求解析式,由周期求出ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)由以上可得,()sin(2)3f x x π=+,再利用正弦函数的性质,求出函数在区间上的单调性. 【详解】解:(1)根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象,可得32134123πππω=-,解得2ω=,∴最小正周期22T ππ==.所以()sin(2)f x x ϕ=+ 因为函数过13,112π⎛⎫⎪⎝⎭,所以13sin 2112πϕ⎛⎫⋅+= ⎪⎝⎭,所以()13262k k Z ππϕπ+=+∈,解得()523k k Z πϕπ=-+∈ 因为2πϕ<,所以3πϕ=.所以()sin(2)3f x x π=+(2)由以上可得,()sin(2)3f x x π=+,在区间,44ππ⎡⎤-⎢⎥⎣⎦上,所以2[36x ππ+∈-,5]6π,令2632x πππ-≤+≤,解得412x ππ-≤≤ 即函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,412ππ⎡⎤-⎢⎥⎣⎦【点睛】求三角函数的解析式时,由2Tπω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.23.(1)2)2875-. 【分析】(1)先利用诱导公式将4cos130tan140︒︒-,转化为4cos50tan 40︒︒-+,然后利用三角恒等变换求解. (2)由3177cos ,45124x x πππ⎛⎫+=<<⎪⎝⎭,利用平方关系求得4sin 45x π⎛⎫+=- ⎪⎝⎭,得到cos cos 44x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,然后由 2sin 22sin 2sin (cos sin )1tan 1tan x x x x x x x ++=--求解. 【详解】(1)4cos130tan140︒︒-,sin 404cos50tan 404cos50cos 40︒︒︒︒︒=-+=-+, 04cos50cos 40sin 404sin 40cos 40sin 40cos 40cos 40︒︒︒︒︒︒︒-+-+==, 02sin 80sin 402cos10sin 40cos 40cos 40︒︒︒︒︒-+-+==, ()2cos 4030sin 40cos 40︒︒︒︒--+=,040sin 40sin 40cos 40︒︒︒-+=,== (2)1775,212434x x πππππ<<∴<+<, 4sin 45x π⎛⎫∴+=- ⎪⎝⎭,cos cos cos cos sin sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,3455⎫=-=⎪⎝⎭, sin tan 7x x ∴===, 22sin 22sin 2sin cos 2sin 2sin (cos sin )1tan 1tan 1tan x x xx x x x x xx x +++∴==---, 2101010281775⎛⨯--- ⎝⎭⎝⎭==--.24.(1)0b =,奇函数;0b ≠,非奇非偶函数;(2)证明见解析;(3. 【分析】(1)就0,0b b =≠分类讨论,后者利用反例说明()f x 为非奇非偶函数.(2)通过反例说明非充分性成立,设()g x 的周期为2T m =,可以证明当()f x 为奇函数时()()224f x m f x m am ++-+=成立,从而可得()f x 有异于原点的对称中心. (3)先考虑0ab时,M =,再通过反证法可证明M <min M =,也可以利用绝对值不等式证明M ≥成立,结合0a b时,M =可得min M . 【详解】(1)()sin f x x ax b =++,0b =时,()()()sin f x x ax f x -=--=-,()f x 为奇函数,0b ≠时,∵()00f ≠,∴()f x 不是奇函数.()1sin1f a b =++,()1sin1f a b -=--+,()2sin 22f a b =++, ()2sin 22f a b -=--+.若()f x 为偶函数,则()()()()1122f f f f ⎧=-⎪⎨=-⎪⎩即sin11sin 22a a =-⎧⎪⎨=-⎪⎩, 因为1sin1sin 22-≠-,故sin11sin 22a a =-⎧⎪⎨=-⎪⎩无解, ∴()f x 不是偶函数,所以()f x 是非奇非偶函数. (2)非充分性:举反例,()()()cos ,1,cos 1g x x h x f x x ===+有异于原点的对称中心,12π⎛⎫⎪⎝⎭,但()f x 不是奇函数;必要性:设奇函数()()f x g x ax b =++,且()()g x T g x +=,令2T m = ,()()()()2222f x m g x m a x m b g x ax b am +=++++=+++,而()()()()()22222f x m f x m g x m a x m b g x ax am b -+=--=-----=--+-, 故()()224f x m f x m am ++-+=, 令2n am =,则()f x 的图象关于(),m n 对称. (3)法一:()sin cos 4f x x x ax b x ax b π⎛⎫=+++=+++ ⎪⎝⎭,取0a b ,则()4f x x π⎛⎫=+ ⎪⎝⎭,∴()max 4M f x f π⎛⎫=== ⎪⎝⎭M的最小值为,反证法:假设M <()4f x x ax b π⎛⎫==+++ ⎪⎝⎭,∵4f M π⎛⎫≤< ⎪⎝⎭∴4a b π++<∴044a b a b ππ+<+<,①;同理∵54f M π⎛⎫≤< ⎪⎝⎭,∴504a b π+>②;∵94f M π⎛⎫≤<⎪⎝⎭,∴904a b π+<,③; ②-①得0a π>,③-②得0a π<,矛盾,所以假设不成立,得证.法二:()sin cos 4f x x x ax b x ax b π⎛⎫=+++=+++ ⎪⎝⎭5922444a b a b a b πππ⎛⎫⎛⎫⎫++-+++= ⎪ ⎪⎪⎝⎭⎝⎭⎭ 592444a b a b a b πππ⎫⎛⎫⎫∴=+-+++⎪ ⎪⎪⎭⎝⎭⎭592444a b a b a b πππ≤+++++ 5924444f f f M πππ⎛⎫⎛⎫⎛⎫=++≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,M ∴≥当0ab 时, |()|4f x x π⎛⎫=+ ⎪⎝⎭,max min ()4f x M f M π⎛⎫==⎪⎭== ⎝【点睛】 方法点睛:(1)说明一个函数为非奇非偶函数,一般利用反例来说明;(2)如果函数()f x 满足()()2f a x f a x b -++=,则()f x 的图象有对称中心(),a b . (3)双重最值问题,可以利用绝对值不等式先求出范围,再验证等号可以成立.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)9-. 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得23f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫- ⎪⎝⎭的值; 【详解】(1)1()cos2cos 2cos2cos22322f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos222223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 3πα⎤⎛⎫=-+= ⎪⎥⎝⎭⎦.【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角.26.(1)T π=,,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)()()max min 2,1f x f x ==-.【分析】(1)先利用二倍角公式和辅助角公式化简()f x ,然后根据周期计算公式求解出T ,再采用整体替换法求解出单调递增区间; (2)采用整体替换的方法先分析出26x π-的取值范围,然后再结合正弦函数的单调性,求解出()f x 的最值. 【详解】 (1)因为())22cos cos 1212cos 2cos 2f x xx x x x x x =-+=+-=-, 所以()2sin 26f x x π⎛⎫=-⎪⎝⎭,所以最小正周期22T ππ==,令222,262k x k k Z πππππ-≤-≤+∈,所以,63k x k k Z ππππ-≤≤+∈, 所以单调递增区间为:,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 又因为sin y x =在,62ππ⎡⎫-⎪⎢⎣⎭上单调递增,在5,26ππ⎛⎤ ⎥⎝⎦上单调递减, 所以()max 2sin 22f x π==,此时3x π=,又()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时0x =, 综上可知:()()max min 2,1f x f x ==-.【点睛】思路点睛:求解形如()sin y A ωx φ=+在指定区间上的值域或最值的一般步骤如下: (1)先确定t x ωϕ=+这个整体的范围;(2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.。
最新人教版高中数学必修第一册第五单元《三角函数》检测(含答案解析)(1)
一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725-C .7-D .17-3.先将函数()sin (0)f x x ωω=>的图象向左平移2π个单位长度,再向上平移2个单位长度后得到函数()g x 的图象,若方程()()f x g x =有实根,则ω的值可以为( )A .12B .1C .2D .44.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-5.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定6.函数()[sin()cos()]f x A x x ωθωθ=+++部分图象如图所示,当[,2]x ππ∈-时()f x 最小值为( )A .1-B .2-C .2-D .3-7.计算cos 20cos80sin160cos10+=( ). A .12B 3C .12-D .3 8.要得到函数3224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数322y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度9.sin15cos15+=( ) A .12B .22C .32D .6210.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .411.若角α,β均为锐角,25sin 5α=,()4cos 5αβ+=-,则cos β=( )A .25B .2525 C .25或2525D .25-12.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________14.设函数22(1)sin(2)()(2)1x x f x x -+-=-+的最大值为M ,最小值为m ,则M m +=_________.15.化简cos()sin()2sin()cos()πααπααπ+-=--___________.16.设ABC 的内角,,A B C 所对的边分别为,,,a b c 若2sin cos sin A B C =,则ABC 的形状为________.17.已知α是第一象限角,且4tan 3α=,则sin 2α=_______ 18.已知函数()log (21)3a f x x =-+的图象过定点P ,且角α的终边过点P ,始边与x 轴的正半轴重合,则tan3α的值为__________. 19.已知7sin cos 17αα+=,()0,απ∈,则tan α= ________. 20.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,且在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数,则ω的取值范围为______. 三、解答题21.已知向量()cos ,sin m x x =,()cos x n x =,设函数()12f x m n =⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦. (1)讨论()f x 的单调性; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值.22.已知函数()()0,22f x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π. (1)求ω和ϕ的值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()y f x =的最大值和最小值. 23.已知函数()2sin cos f x x x x ωωω=的周期为π,其中0>ω;(1)求ω的值,并写出函数()f x 的解析式;(2)设ABC 的三边a ,b ,c 依次成等比数列,角B 的取值范围为集合P ,则当x P ∈时求函数()f x 的值域.24.已知()π2sin cos cos 44f x x x x x π⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的单调递减区间:(2)若函数()()42sin 2g x f x k x =--在区间7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围.25.函数()()()f x g x h x =+,其中()g x 是定义在R 上的周期函数,()h x ax b =+,,a b 为常数(1)()sin g x x =,讨论()f x 的奇偶性,并说明理由;(2)求证:“()f x 为奇函数“的一个必要非充分条件是”()f x 的图象有异于原点的对称中心(),m n ”(3)()sin cos g x x x =+,()f x 在[]0,3x π∈上的最大值为M ,求M 的最小值. 26.已知()()cos 0f x x ωω=>(1)若f (x )的周期是π,求ω,并求此时()12f x =的解集;(2)若()()()21,2g x f x x f x πω⎛⎫==+-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,求()g x 的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A.根据32()f x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断. 【详解】A. 32()f x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误;D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.D解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.3.C解析:C 【分析】先根据三角函数图象的变换得出()g x 的解析式,然后根据三角函数的图象性质分析()()f x g x =的条件并求解ω的值.【详解】由题意可知()sin 22g x x πωω⎛⎫=++ ⎪⎝⎭,则函数()g x 的最大值为3,最小值为1,又()sin (0)f x x ωω=>的最大值为1,所以当()()f x g x =有实根时,()f x 的最大值点与()g x 的最小值点重合,故应平移(21),2T n n N +∈个单位,所以()212n ππω=+, 得42,n n N ω=+∈,故只有C 选项符合.故选:C. 【点睛】本题考查根据三角函数图象的平移变换、考查根据函数图象有交点求参数的取值范围,难度一般. 解答的关键在于: (1)得出函数()g x 的解析式;(2)分析出()()f x g x =时,()f x 的最大值点与()g x 的最小值点重合.4.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.5.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .6.D解析:D 【分析】首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++ ⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D7.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .8.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可 【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得224y x π⎛⎫=++ ⎪⎝⎭的图像,故选:B9.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 60+=+==. 故选:D.10.B解析:B【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.11.B解析:B【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos 5α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4355=-25=. 故选:B .12.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<, 所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12- 【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】 若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.2【分析】可考虑向左平移2个单位对函数解析式进行化简根据左右平移值域不变求解【详解】令则定义域为R 且故是奇函数故其最大值与最小值的和为零所以函数的最大值与最小值的和为2故在函数中解析:2 【分析】可考虑向左平移2个单位对函数解析式进行化简,根据左右平移值域不变求解. 【详解】22(1)sin(2)()(2)1x x f x x -+-=-+222(1)sin 2sin (2)111x x x xf x x x +++∴+==+++, 令22sin ()1x xg x x +=+,则定义域为R ,且()()g x g x -=-,故()g x 是奇函数,故其最大值与最小值的和为零, 所以函数(2)y f x =+的最大值与最小值的和为2, 故在函数()f x 中,2M m +=.15.【分析】利用诱导公式直接化简即可【详解】故答案为: 解析:tan α-【分析】利用诱导公式直接化简即可. 【详解】cos()sin()(sin )(sin )2tan sin()cos()sin (cos )παααααπααπαα+--⋅-==----,故答案为:tan α-.16.等腰三角形【分析】由整理可得角的关系即可【详解】由的内角知所以又所以为等腰三角形故答案为:等腰三角形【点睛】此题考查两角和与差的正弦公式的正向和逆向使用属于基础题解析:等腰三角形 【分析】由()sin sin sin cos cos sin C A B A B A B π=-+=+⎡⎤⎣⎦,整理可得角的关系即可. 【详解】由ABC 的内角,,A B C 知,()C A B π=-+,所以 ()sin sin sin cos cos sin 2sin cos C A B A B A B A B π=-+=+=⎡⎤⎣⎦,sin cos cos sin 0A B A B -=,()sin 0A B -=,又()()()0,π,0,π,π,πA B A B ∈∈-∈-所以A B =,ABC 为等腰三角形. 故答案为:等腰三角形. 【点睛】此题考查两角和与差的正弦公式的正向和逆向使用,属于基础题.17.【分析】根据同角三角函数的关系解出根据二倍角公式即可求出【详解】是第一象限角且则解得故答案为: 解析:2425【分析】根据同角三角函数的关系解出43sin ,cos 55αα==,根据二倍角公式即可求出sin 2α. 【详解】α是第一象限角,且4tan 3α=, 则22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,解得43sin ,cos 55αα==,∴24sin 22sin cos 25ααα==. 故答案为:2425. 18.【分析】先求出定点为再利用正切函数的两角和公式求解即可【详解】函数的图象过定点可得定点为又由角的终边过点且始边与轴的正半轴重合故答案为:解析:913【分析】先求出定点P 为(1,3),再利用正切函数的两角和公式求解即可 【详解】函数()log (21)3a f x x =-+的图象过定点P ,可得定点P 为(1,3),又由角α的终边过点P ,且始边与x 轴的正半轴重合,3tan 31α,22tan 3tan 21tan 4ααα∴==--, tan 2tan 9tan 31tan 2tan 13ααααα+==-故答案为:91319.【分析】根据已知条件求得的值由此求得的值【详解】依题意两边平方得而所以所以由解得所以故答案为:【点睛】知道其中一个可通过同角三角函数的基本关系式求得另外两个在求解过程中要注意角的范围 解析:158-【分析】根据已知条件求得sin ,cos αα的值,由此求得tan α的值. 【详解】依题意7sin cos 17αα+=,两边平方得 4924012sin cos ,2sin cos 0289289αααα+==-<, 而()0,απ∈,所以sin 0,cos 0αα><, 所以23sin cos 17αα-====. 由7sin cos 1723sin cos 17αααα⎧+=⎪⎪⎨⎪-=⎪⎩解得158sin ,cos 1717αα==-, 所以sin 15tan cos 8ααα==-. 故答案为:158-【点睛】sin cos ,sin cos αααα±知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.20.【分析】由函数图象关于原点对称可得再由在区间上是增函数可得解不等式即可【详解】由函数的图象关于原点对称得即因为在区间上是减函数所以在区间上是增函数又是函数的单调递增区间所以又解得故答案为:解析:30,4⎛⎤⎥⎝⎦【分析】由函数图象关于原点对称可得2ϕπ=,再由2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,可得22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解不等式即可.【详解】由函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,得2ϕπ=, 即()2cos 2sin 2f x x x πωω⎛⎫=+=- ⎪⎝⎭,因为()f x 在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数, 所以2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数, 又,22ππωω⎡⎤-⎢⎥⎣⎦是函数2sin y x ω=的单调递增区间, 所以22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,又0>ω,解得304ω<≤.故答案为:30,4⎛⎤ ⎥⎝⎦三、解答题21.(1)π0,6x ⎡⎤∈⎢⎥⎣⎦时,()f x 单调递增;ππ,63x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递减;(2)()121cos 2x x +=,()122cos 3x x -=. 【分析】(1)根据平面向量的数量积和三角恒等变换,求出函数()f x 的解析式,再根据x 的范围,即可得到()f x 的单调性;(2)由方程()23f x =有两个不相等的实数根1x 、2x ,根据对称性求出12x x +的值,再计算()12cos x x +和()12cos x x -的值即可. 【详解】(1)因为向量()cos ,sin m x x =,()cos x n x =,所以函数()12f x m n =⋅-21cos cos 2x x x =-1cos 21222x x +=+- πcos 23x ⎛⎫=- ⎪⎝⎭,π0,3x ⎡⎤∈⎢⎥⎣⎦,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π203x -=,解得π6x =, 所以π0,6x ⎡⎤∈⎢⎥⎣⎦时,即ππ2,033x ⎡⎤-∈-⎢⎥⎣⎦时,()f x 单调递增, ππ,63x ⎛⎤∈ ⎥⎝⎦时,即ππ20,33x ⎛⎤-∈ ⎥⎝⎦时,()f x 单调递减;(2)当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦;所以π1cos 2,132x ⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即()1,12f x ⎡⎤∈⎢⎥⎣⎦; 又方程()23f x =在π0,3x ⎡⎤∈⎢⎥⎣⎦上有两个不相等的实数根1x 、2x , 所以12ππ2220033x x ⎛⎫⎛⎫-+-=⨯= ⎪ ⎪⎝⎭⎝⎭,解得12π3x x +=, 所以()12π1cos cos 32x x +==; 由12π3x x =-, 所以()122πcos cos 23x x x ⎛⎫-=- ⎪⎝⎭2πcos 23x ⎛⎫=- ⎪⎝⎭()223f x ==.【点睛】解题的关键是熟练掌握三角函数的图象与性质、数量积公式、三角恒等变换公式,并灵活应用,()23f x =需结合余弦函数的对称性与值域进行求解,综合性较强,属中档题.22.(1)2ω=,6πϕ=-;(2)max ()f x =min ()f x =【分析】(1)由图象上相邻两个最高点的距离为π得()f x 的最小正周期T π=,故2ω=,由函数图象关于直线3x π=对称得232k ππϕπ⨯+=+,k Z ∈,再结合范围得6πϕ=-;(2)由(1)得()26f x x π⎛⎫=- ⎪⎝⎭,进而得52666x πππ-≤-≤,再结合正弦函数的性质即可得答案. 【详解】(1)因为()f x 的图象上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又因为()f x 的图象关于直线3x π=对称,所以232k ππϕπ⨯+=+,k Z ∈,又22ππϕ-≤<,所以2236ππϕπ=-=-. 综上,2ω=,6πϕ=-.(2)由(1)知()26f x x π⎛⎫=- ⎪⎝⎭.当0,2x π⎡⎤∈⎢⎥⎣⎦时,可知52666x πππ-≤-≤.故当226x ππ-=,即3x π=时,max ()f x =当266x ππ-=-,即0x =时,min ()f x =. 【点睛】本题解题的关键在于先根据0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,进而结合正弦函数的性质,采用整体思想求解,考查运算求解能力,是中档题.23.(1)1ω=,()sin 32+f x x π⎛⎫= ⎪⎝⎭2)⎣⎦.【分析】(1)先逆用两角差的正弦公式化成正弦型函数的标准形式,然后利用周期公式2T ωπ=求ω的值,进而写出函数()f x 的解析式;(2)利用余弦定理结合基本不等式求出cos B 的范围,再根据B 为三角形的内角求出B 的范围,得出()f x 的定义域,从而求出()f x 的值域. 【详解】解:(1)()2sin cos f x x x x ωωω=)1cos 21sin 2+22x x ωω+=sin 2+3x πω⎛⎫= ⎪⎝⎭由22T ππω==,解得1ω=,所以函数()f x 的解析式为()sin 32++2f x x π⎛⎫= ⎪⎝⎭; (2)因为2b ac =,所以222cos 2a c b B ac +-==22121122222a c ac ac ac +-≥-=,当且仅当a c =时取“=”;又B 为三角形内角,所以03B π<≤,即03x π<≤,所以2+33x πππ<≤,所以0sin 2+13x π⎛⎫ ⎪⎝⎭,所以sin 2++2322x π⎛⎫≤≤ ⎪⎝⎭,即函数()f x 的值域是,1+22⎣⎦. 【点睛】关键点点睛:运用三角恒等变换将函数化成正弦型函数的标准形式,利用余弦定理和基本不等式将三角形的边的关系转化为角的范围. 24.(1)7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭.【分析】(1)化简()f x ,利用正弦函数的递减区间列式可解得结果; (2)转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象可得结果. 【详解】(1)()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 244x x x πππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭sin 223sin cos 44x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭sin 23sin 22x x π⎛⎫=++ ⎪⎝⎭sin 23cos 22sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,令3222232k x k πππππ+≤+≤+,k Z ∈,解得:71212k x k ππππ+≤≤+,k Z ∈, ∴()f x 的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)由(1)知,函数2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,()g x =2sin 242sin 23x k x π⎛⎫+-- ⎪⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点等价于132sin 2sin 2sin 2cos 2cos 23226k x x x x x ππ⎛⎫⎛⎫=+-=-+=+ ⎪ ⎪⎝⎭⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一实根,设()cos 26h x x π⎛⎫=+ ⎪⎝⎭,7,1212x ππ⎡⎤∈⎢⎥⎣⎦,依题意可知2y k =与()y h x =的图象有唯一交点,函数()h x 在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知实数k 应满足11222k -<≤或21k =-, ∴1144k -<≤或12k =-,故实数k 的取值范围11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭.【点睛】关键点点睛:转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象求解是解题关键.25.(1)0b =,奇函数;0b ≠,非奇非偶函数;(2)证明见解析;(3. 【分析】(1)就0,0b b =≠分类讨论,后者利用反例说明()f x 为非奇非偶函数.(2)通过反例说明非充分性成立,设()g x 的周期为2T m =,可以证明当()f x 为奇函数时()()224f x m f x m am ++-+=成立,从而可得()f x 有异于原点的对称中心. (3)先考虑0ab时,M =,再通过反证法可证明M <min M =,也可以利用绝对值不等式证明M ≥成立,结合0a b时,M =可得min M . 【详解】(1)()sin f x x ax b =++,0b =时,()()()sin f x x ax f x -=--=-,()f x 为奇函数,0b ≠时,∵()00f ≠,∴()f x 不是奇函数.()1sin1f a b =++,()1sin1f a b -=--+,()2sin 22f a b =++, ()2sin 22f a b -=--+.若()f x 为偶函数,则()()()()1122f f f f ⎧=-⎪⎨=-⎪⎩即sin11sin 22a a =-⎧⎪⎨=-⎪⎩, 因为1sin1sin 22-≠-,故sin11sin 22a a =-⎧⎪⎨=-⎪⎩无解, ∴()f x 不是偶函数,所以()f x 是非奇非偶函数. (2)非充分性:举反例,()()()cos ,1,cos 1g x x h x f x x ===+有异于原点的对称中心,12π⎛⎫⎪⎝⎭,但()f x 不是奇函数;必要性:设奇函数()()f x g x ax b =++,且()()g x T g x +=,令2T m = ,()()()()2222f x m g x m a x m b g x ax b am +=++++=+++,而()()()()()22222f x m f x m g x m a x m b g x ax am b -+=--=-----=--+-, 故()()224f x m f x m am ++-+=,令2n am =,则()f x 的图象关于(),m n 对称. (3)法一:()sin cos 4f x x x ax b x ax b π⎛⎫=+++=+++ ⎪⎝⎭,取0a b ,则()4f x x π⎛⎫=+ ⎪⎝⎭,∴()max4M f x f π⎛⎫=== ⎪⎝⎭M 的最小值为,反证法:假设M <()4f x x ax b π⎛⎫==+++ ⎪⎝⎭,∵4f M π⎛⎫≤< ⎪⎝⎭∴4a b π++<∴044a b a b ππ+<+<,①;同理∵54f M π⎛⎫≤< ⎪⎝⎭,∴504a b π+>②;∵94f M π⎛⎫≤<⎪⎝⎭,∴904a b π+<,③; ②-①得0a π>,③-②得0a π<,矛盾,所以假设不成立,得证.法二:()sin cos 4f x x x ax b x ax b π⎛⎫=+++=+++ ⎪⎝⎭5922444a b a b a b πππ⎛⎫⎛⎫⎫++-+++= ⎪ ⎪⎪⎝⎭⎝⎭⎭ 592444a b a b a b πππ⎫⎛⎫⎫∴=+-+++⎪ ⎪⎪⎭⎝⎭⎭592444a b a b a b πππ≤+++++ 5924444f f f M πππ⎛⎫⎛⎫⎛⎫=++≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,M ∴≥当0ab 时, |()|4f x x π⎛⎫=+ ⎪⎝⎭,max min ()4f x M f M π⎛⎫==⎪⎭== ⎝【点睛】 方法点睛:(1)说明一个函数为非奇非偶函数,一般利用反例来说明;(2)如果函数()f x 满足()()2f a x f a x b -++=,则()f x 的图象有对称中心(),a b .(3)双重最值问题,可以利用绝对值不等式先求出范围,再验证等号可以成立. 26.(1)2ω=;{|,}6ππ=±∈x x k k Z ;(2)1[-,1]2. 【分析】(1)由条件求出2ω=,然后可得答案;(2)将()g x 化为()1cos(2)32g x x π=++,然后可算出其值域.【详解】 (1)由2T ππω==得2ω=;此时令1()cos22f x x ==得223x k ππ=±,6x k k Z ππ∴=±∈ 所求方程的解集为{|,}.6x x k k Z ππ=±∈(2)()2cos )cos()2g x x x x π=-+2cos sin x x x =1cos212cos(2)232x x x π+==++ 4022333x x ππππ≤≤∴≤+≤11cos(2)32x π∴-≤+≤ 11cos(2)1232x π∴-≤++≤即()g x 的值域为1[-,1]2。
成都市必修第一册第五单元《三角函数》检测题(有答案解析)
一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.已知曲线1:sin C y x =,曲线2:sin 23C y x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .把曲线1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2C B .把曲线1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C C .把曲线1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2C D .把曲线1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2C 3.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43- C .53- D .45-4.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-5.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦π C .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦6.函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .sin 6x ππ⎛⎫+⎪⎝⎭B .sin 3x ππ⎛⎫+⎪⎝⎭C .sin 6x ππ⎛⎫-⎪⎝⎭D .sin 3x ππ⎛⎫-⎪⎝⎭7.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .48.sin34sin64cos34sin 206︒︒-︒︒的值为( ) A .12B .2 C .3 D .19.sin 20cos10cos160sin10-=( ) A .3-B .12C .12-D .3210.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭11.在ABC 中,2,6AB C π==,则AC 的最大值为( )A .B .C .D .12.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-二、填空题13.已知()sin()cos()1f x a x b x παπβ=++-+,其中α,β,a ,b 均为非零实数,若()20202f =,则()2021f =________. 14.设函数()sin (0,0)6f x A x A πωω⎛⎫=->> ⎪⎝⎭,[]0,2x π∈,若()f x 恰有4个零点,则下述结论中:①0()()f x f x ≥恒成立,则0x 的值有且仅有2个;②存在0>ω,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增;③方程1()2f x A =一定有4个实数根,其中真命题的序号为_________.15.已知锐角α满足1cos()35πα+=,则sin α=______. 16.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 17.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________. 18.已知1cos 3α=-,则|sin |α=___________19.已知0sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 20.已知sin θ+cos θ=15,则tan θ+cos sin θθ的值是____________________. 三、解答题21.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min7x x π-=,求ϕ的值.22.如图为一个观览车示意图,该观览车圆半径为4.8m ,圆上最低点与地面距离为0.8m ,60秒转动一圈.图中OA 与地面垂直,以OA 为始边,逆时针转动θ到OB .设B 点与地面的距离为h .(1)求h 与θ的函数关系式;(2)设从OA 开始转动,经过10秒到达OB ,求h . 23.设函数21()sin 3sin cos 2f x x x x ωωω=+-的图象关于直线x π=对称,其中ω为常数,且1,12ω⎛⎫∈⎪⎝⎭. (1)求函数()f x 的解析式; (2)将函数()f x 的图象向右平移10π个单位长度后,再将得到的图象上各点的横坐标缩短到原来的56倍,得到函数()y g x =的图象,若关于x 的方程()0g x k +=在区间0,2π⎡⎤⎢⎥⎣⎦上有实数解,求实数k 的取值范围. 24.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭只能同时....满足下列三个条件中的两个:①图象上一个最低点为2,23M π⎛⎫-⎪⎝⎭;②函数()f x 的图象可由24y x π⎛⎫=- ⎪⎝⎭的图象平移得到;③若对任意x ∈R ,()()()12f x f x f x ≤≤恒成立,且12x x -的最小值为2π. (1)请写出这两个条件序号,并求出()f x 的解析式; (2)求方程()10f x -=在区间[],ππ-上所有解的和. 25.已知函数212()2cos sin 1f x x x ωω=+-. (Ⅰ)求(0)f 的值;(Ⅱ)从①11ω=,21ω=; ②11ω=,22ω=这两个条件中任选一个,作为题目的已知条件,求函数()f x 在[,]26ππ-上的最小值,并求函数()f x 的最小正周期. 26.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间;(2)若23f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】 将函数sin 4y x π⎛⎫=-⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=-⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭.故选:C2.D解析:D 【分析】根据三角函数的伸缩变换与平移变换原则,可直接得出结果. 【详解】 因为sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以将sin y x =图象上各点的横坐标缩短为原来的12,纵坐标不变,可得sin 2y x =的图象,再将sin 2y x =的图象向右平移6π个单位,即可得到sin 23y x π⎛⎫=- ⎪⎝⎭的图象. 故选:D.3.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .4.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.5.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x xx π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤,所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.6.C解析:C 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而得到函数的解析式. 【详解】解:由图象可得1A =,再根据35134362T =-=,可得2T =, 所以22πωπ==, 再根据五点法作图可得1,6k k Z πϕπ⨯+=∈,求得6πϕ=-, 故函数的解析式为()sin 6f x x ππ⎛⎫=- ⎪⎝⎭. 故选:C.7.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.8.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒= 故选:C .9.B解析:B 【分析】利用诱导公式cos160cos 20=-,再利用两角和的正弦公式即可求解. 【详解】sin 20cos10cos160sin10-()sin 20cos10cos 18020sin10=-- sin 20cos10cos 20sin10=+()sin 2010=+sin30=12=故选:B10.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈,解得 2,3k k Z πϕπ=-∈, 又因为 0πϕ-<<,所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.11.B解析:B 【分析】将AC +表示为角的形式,结合三角函数最值的求法,求得AC 的最大值. 【详解】有正弦定理得24sin sin sin sin 6a b c A B C π====, 所以4sin ,4sin a A b B ==,所以AC+4sin b B A =+=+()4sin 4sin 6B B C B B π⎛⎫=++=++ ⎪⎝⎭4sin sin cos cos sin 66B B B ππ⎫=++⎪⎭14sin cos 2B B B ⎫=++⎪⎪⎭()()10sin B B B B ϕϕ=+=+=+.其中tan 06πϕϕ==<⇒<<, 由于566B ππ<<,所以3B πϕπ<+<,故当2B πϕ+=时,AC +的最大值为故选:B 【点睛】要求与三角形边长有关的最值问题,可以利用正弦定理将边转化为角,然后利用三角函数的最值的求法来求最值.12.B解析:B 【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 二、填空题13.0【分析】由题设条件结合周期性及诱导公式运算即可得解【详解】由题意所以所以故答案为:0解析:0 【分析】由题设条件结合周期性及诱导公式运算即可得解. 【详解】由题意,()sin(2020)cos(2020)1sin cos()12020a b a b f παπβαβ++-++-=+=sin cos 12a b αβ=++=,所以sin cos 1αβ+=a b ,所以()sin(2021)cos(202)201211f a b παπβ++-+=sin()cos()1sin cos 1110a b a b παπβαβ==++-+-+=-+=-.故答案为:0.14.①②③【分析】可把中的整体当作来分析结合三角函数的图象与性质即可得解【详解】由于恰有4个零点令由有4个解则解得①即由上述知故的值有且仅有个正确;②当时当时解得又故存在使得在上单调递增正确;③而所以可解析:①②③ 【分析】可把sin()y A x ωθ=+中的x ωθ+整体当作t 来分析,结合三角函数的图象与性质即可得解. 【详解】由于()f x 恰有4个零点,令6t x πω=-,266t ππωπ⎡⎤∈--⎢⎥⎣⎦,, 由sin 0t =有4个解,则3246x ππωπ≤-<,解得19251212ω≤<, ①()0f x A =即0262ππωx k π-=+,由上述知0,1k =,故0x 的值有且仅有2个,正确; ②当0x =时,66ππωx -=-,当819πx =时,81962πππω⋅-≤,解得1912ω≤, 又19251212ω≤<,故存在1912ω=,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增,正确; ③11()sin 262f x A x πω⎛⎫=⇒-= ⎪⎝⎭,而2[3,4)6ππωππ-∈, 所以6x πω-可取51317,,,6666ππππ,共4个解,正确,综上,真命题的序号是①②③. 故答案为:①②③. 【点睛】三角函数的性质分析一般用数形结合,图象的简化十分重要。
成都八一学校必修第一册第五单元《三角函数》检测题(有答案解析)
一、选择题1.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .B .19-C .3D .192.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =3.若把函数sin y x =的图象沿x 轴向左平移3π个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数()y f x =的图象,则()y f x =的解析式为( )A .sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 23y x π⎛⎫=+⎪⎝⎭C .1sin 23y x π⎛⎫=+⎪⎝⎭D .12sin 23y x π⎛⎫=+⎪⎝⎭4.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性 D .函数()f x 的值域为R5.7sin 6π⎛⎫-= ⎪⎝⎭( )A .BC .12-D .126.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦7.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .48.已知函数()()π2tan 010,2f x x ωϕωϕ⎛⎫=+<<<⎪⎝⎭,()0f =,π,012⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心.现给出以下四种说法:①π6ϕ=;②2ω=;③函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增;④函数()f x 的最小正周期为π4.则上述说法正确的序号为( ) A .①④B .③④C .①②④D .①③④926tan 34tan 26tan 34++=( )A B .C D .10.已知函数()()()cos >0,0<<f x x ωθωθπ=+的最小正周期为π,且()()0f x f x -+=,若tan 2α=,则()f α等于( )A .45-B .45C .35D .3511.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( ) A .79 B .19C .-19D .-7912.函数()log 44a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则7πcos 2θ⎛⎫+= ⎪⎝⎭( ) A .35 B .35C .45-D .45第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.设函数()sin (0,0)6f x A x A πωω⎛⎫=->> ⎪⎝⎭,[]0,2x π∈,若()f x 恰有4个零点,则下述结论中:①0()()f x f x ≥恒成立,则0x 的值有且仅有2个;②存在0>ω,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增;③方程1()2f x A =一定有4个实数根,其中真命题的序号为_________.14.已知函数()22sin cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为π4,则当π0,4x⎡⎤∈⎢⎥⎣⎦时,()f x的最小值为______.15.已知函数()sinf x x=,若存在1x、2x、⋅⋅⋅、mx满足1206mx x xπ≤≤<⋅⋅⋅<≤,且()()()()()()() 12231120,Nm mf x f x f x f x f x f x m m*--+-+⋅⋅⋅+-=≥∈,则m 的最小值为______.16.若1cos()2αβ-=,3cos()5αβ+=-,则tan tanαβ=__________.17.已知定义在R上的偶函数()f x的最小正周期为π,且当[0,]2xπ∈时,()sinf x x=,则5()3fπ=_______.18.若()()2sin03f x xπωω⎛⎫=+>⎪⎝⎭的最小正周期为4π,则()()tan06g x xπωω⎛⎫=+>⎪⎝⎭的最小正周期为______.19.先将函数()()()cos0,y xϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y轴对称,则ϕ=________. 20.已知α为第二象限角,且22sin3α=,求sin()63sin2cos21πααα+++___________.三、解答题21.已知函数()2sin cosf x x x=(1)求函数()f x的最小正周期和最大值;(2)求函数()f x的单调递减区间.22.如图,在ABC中,CD AB⊥于D,且3BD AD=.(1)若2BCD ACD∠=∠,求角A的大小;(2)若1cos3A=,求tan C的值.23.已知向量a=3cos x,-1),b=(sin x,cos2x),函数()f x a b=⋅.(1)求函数()f x的单调递增区间;(2)求函数()f x在区间[2π-,0]上的最大值和最小值,并求出相应的x的值.24.已知函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤⎪⎝⎭的最小正周期为π. (1)求ω的值及()6g f ϕπ⎛⎫= ⎪⎝⎭的值域;(2)若3πϕ=,sin 2cos 0αα-=. 求()fα的值.25.在①1cos 3B =,②2b =,ABC 的周长为8,③3c =,ABC 的外接圆半径为2,这三个条件中任选一个,补充到下面的问题中,并加以解答.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,2sin b a C =, ?求sin A .26.已知函数())2cos cos 1f x xx x =-+(1)求函数()f x 的最小正周期及单调递增区间. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算. 【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 2.C解析:C 【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解. 【详解】π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-. 故选:C3.C解析:C 【分析】根据三角函数图象平移、伸缩的公式,结合题中的变换加以计算,可得函数()y f x =的解析式. 【详解】 解:将函数sin y x =的图象沿x 轴向左平移3π个单位,得到函数sin()3y x π=+的图象; 将sin()3y x π=+的图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到1sin()23y x π=+的图象.∴函数sin y x =的图象按题中变换得到函数()y f x =的图象,可得1()sin 23y f x x π⎛⎫==+ ⎪⎝⎭.故选:C .4.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B5.D解析:D【分析】直接利用诱导公式求解. 【详解】771sin sin sin sin 66662πππππ⎛⎫⎛⎫-=-=-+== ⎪ ⎪⎝⎭⎝⎭, 故选:D6.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.7.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.8.D解析:D 【分析】 根据()03f =,代入数据,结合ϕ的范围,即可求得ϕ的值,即可判断①的正误;根据对称中心为π,012⎛⎫⎪⎝⎭,代入公式,可解得ω的表达式,结合ω的范围,即可判断②的正误;根据()f x 解析式,结合x 的范围,即可验证③的正误;根据正切函数的周期公式,即可判断④的正误,即可得答案. 【详解】 对于①:由()0f =知2tan ϕ=,即tan ϕ=π2ϕ<,解得π6ϕ=.故①正确;对于②:因为π,012⎛⎫⎪⎝⎭为()f x 图象的一个对称中心,故πππ,1262k k Z ω+=∈,解得62,k k Z ω=-∈,因为010ω<<,所以4ω=,故②错误;对于③:当5ππ,243x ⎛⎫∈⎪⎝⎭时,π3π4π,62x ⎛⎫+∈ ⎪⎝⎭,故函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增,故③正确;对于④:因为4ω=,所以()f x 的最小正周期π4T =,故④正确. 综上,正确的序号为①③④.故选:D .9.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】26tan34tan 26tan34︒︒+︒+︒26tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒26tan 34tan 26tan 34)=︒︒+-︒︒26tan3426tan34=︒︒︒︒=故选:C .10.A解析:A 【分析】利用三角函数的周期性和奇偶性得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,进而求出()f α 【详解】 由2ππω=,得2ω=,又()()0f x f x -+=,()()()cos cos 2f x x x ωθθ=+=+为奇函数,()2k k Z πθπ∴=+∈,,又0θπ<<,得2πθ=,()cos 2sin 22f x x x π⎛⎫∴=+=- ⎪⎝⎭,又由tan 2α=,可得()2222sin cos 2tan 4sin 2sin cos tan 15f αααααααα-=-==-=-++故选:A 【点睛】关键点睛:解题关键在于通过三角函数性质得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,难度属于基础题11.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C12.D解析:D 【分析】先利用对数函数图象的特点求出点()3,4A -,再利用三角函数的定义求出sin θ的值,利用诱导公式可得7πcos sin 2θθ⎛⎫+= ⎪⎝⎭,即可求解. 【详解】 对数函数log ay x =恒过点()1,0,将其图象向左平移4个单位,向上平移4个单位可得()log 44a y x =++的图象,点()1,0平移之后为点()3,4-,所以()3,4A -,令3x =-,4y =,则5OA ===,所以4sin 5y OA θ==, 由诱导公式可得:7π4cos sin 25θθ⎛⎫+== ⎪⎝⎭, 故选:D 【点睛】关键点点睛:本题的关键点是求出()3,4A -,会利用三角函数的定义求出θ的三角函数值,会利用诱导公式化简7πcos 2θ⎛⎫+⎪⎝⎭. 二、填空题13.①②③【分析】可把中的整体当作来分析结合三角函数的图象与性质即可得解【详解】由于恰有4个零点令由有4个解则解得①即由上述知故的值有且仅有个正确;②当时当时解得又故存在使得在上单调递增正确;③而所以可解析:①②③ 【分析】可把sin()y A x ωθ=+中的x ωθ+整体当作t 来分析,结合三角函数的图象与性质即可得解. 【详解】由于()f x 恰有4个零点,令6t x πω=-,266t ππωπ⎡⎤∈--⎢⎥⎣⎦,, 由sin 0t =有4个解,则3246x ππωπ≤-<,解得19251212ω≤<, ①()0f x A =即0262ππωx k π-=+,由上述知0,1k =, 故0x 的值有且仅有2个,正确; ②当0x =时,66ππωx -=-,当819πx =时,81962πππω⋅-≤,解得1912ω≤, 又19251212ω≤<,故存在1912ω=,使得()f x 在80,19π⎡⎤⎢⎥⎣⎦上单调递增,正确; ③11()sin 262f x A x πω⎛⎫=⇒-= ⎪⎝⎭,而2[3,4)6ππωππ-∈, 所以6x πω-可取51317,,,6666ππππ,共4个解,正确,综上,真命题的序号是①②③. 故答案为:①②③. 【点睛】三角函数的性质分析一般用数形结合,图象的简化十分重要。
新人教版高中数学必修第一册第五单元《三角函数》测试卷(包含答案解析)(4)
一、选择题1.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7252.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =3.已知一个扇形的半径与弧长相等,且扇形的面积为22cm ,则该扇形的周长为( ) A .6cm B .3cm C .12cm D .8cm 4.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( ) A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定5.cos75cos15sin75sin15︒⋅︒+︒⋅︒的值是( )A .0B .12C D .16.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( )A .12B .12-C .D .3-7.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .B .12-C .2D .128.化简求值1tan12tan 72tan12tan 72+-( )A .3-B .C .3D 9.sin15cos15+=( )A .12B C D 10.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1 B .2C .2.5D .411.设129sin 292a =-,b =22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>12.若角α,β均为锐角,25sin 5α=,()4cos 5αβ+=-,则cos β=( )A .25B .25C .25或25 D .25-二、填空题13.若ππ2α<<,π02β<<,且5sin α=,3π3cos 85β⎛⎫+=- ⎪⎝⎭,则3πcos 8αβ⎛⎫++= ⎪⎝⎭______.14.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.15.已知()0,απ∈且tan 3α=,则cos α=______. 16.设函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,若()4f x f π⎛≤⎫⎪⎝⎭对任意的实数x 都成立,则ω的最小值为___________________.17.若1sin cos (0)5x x x π+=-≤<,则cos2x =___________. 18.下列四个命题中:①已知()()()sin cos 21,sin cos 2πααπαπα-+-=++则tan 1α=-;②()003tan 30tan 30-=-=③若3sin α=则1cos 2;2α=-④在锐角三角形ABC 中,已知73sin ,cos ,255A B ==则119sin .125C =其中真命题的编号有_______. 19.在①a 2,②S =2ccos B ,③C =3π这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,3b cos A =a cos C +c cos A ,b =1,____________,求c 的值.注:如果选择多个条件分别解答,按第一个解答计分. 20.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.已知函数2()2sin cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 23.已知m =(b sin x ,a cos x ),n =(cos x ,﹣cos x ),()f x m n a =⋅+,其中a ,b ,x ∈R .且满足()26f π=,(0)f '=.(1)求a 和b 的值;(2)若关于x 的方程3()log 0f x k +=在区间[0,23π]上总有实数解,求实数k 的取值范围.24.已知02a π<<,02πβ<<,4sin 5α,5cos()13αβ+=. (1)求cos β的值;(2)求2sin sin 2cos 21ααα+-的值.25.已知函数212()2cos sin 1f x x x ωω=+-. (Ⅰ)求(0)f 的值;(Ⅱ)从①11ω=,21ω=; ②11ω=,22ω=这两个条件中任选一个,作为题目的已知条件,求函数()f x 在[,]26ππ-上的最小值,并求函数()f x 的最小正周期.26.设函数2()cos sin 3f x x x x π⎛⎫=⋅+ ⎪⎝⎭. (1)求()f x 的最小正周期; (2)当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.2.C解析:C 【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解. 【详解】π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈ 当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-. 故选:C3.A解析:A 【分析】由题意利用扇形的面积公式可得2122R =,解得R 的值,即可得解扇形的周长的值.【详解】解:设扇形的半径为Rcm ,则弧长l Rcm =, 又因为扇形的面积为22cm , 所以2122R =,解得2R cm =, 故扇形的周长为6cm . 故选:A .4.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .5.B解析:B 【分析】由两角和的余弦公式化简计算. 【详解】原式=1cos(7515)cos 602︒-︒=︒=. 故选:B .6.C解析:C 【分析】先计算三角函数值得(1,P ,再根据三角函数的定义sin ,yr rα==可. 【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin 22y r α===-. 故选:C.7.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.8.A解析:A 【分析】逆用两角差的正切公式先求出tan12tan 721tan12tan 72-+,即可求解.【详解】 因为()tan 1272-tan12tan 721tan12tan 72-=+()tan 60=-=-所以()1tan12tan 721tan12tan 723tan 60+===---.故选:A9.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 602+=+==. 故选:D.10.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.11.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 29122n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++, 显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.12.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==, coscos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++435555=-⨯+⨯=.故选:B .二、填空题13.【分析】先根据题意求出和再根据两角和的余弦公式求解即可【详解】由可得因为所以所以故答案为:【点睛】本题主要考和角公式的应用解题时会判断所求角所在的象限属于基础题【分析】先根据题意求出cos α和3πsin 8β⎛⎫+ ⎪⎝⎭,再根据两角和的余弦公式求解即可. 【详解】由ππ2α<<,sin α=,可得cos 5α==-,因为π3π3π7π02888ββ<<⇒<+<,3π3cos 85β⎛⎫+=- ⎪⎝⎭,所以3π4sin 85β⎛⎫+== ⎪⎝⎭, 所以3π3π3πcos cos cos sin sin 888αβαβαβ⎛⎫⎛⎫⎛⎫++=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3455⎛⎛⎫=⨯-= ⎪ ⎝⎭⎝⎭.故答案为:25【点睛】本题主要考和角公式的应用,解题时会判断所求角所在的象限,属于基础题.14.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒23216222224-=⨯-⨯=, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒23216222224+=⨯+⨯=, 31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 60h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos1550623h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.15.【分析】本题考查同角三角函数及其关系借助公式求解即可求解时需要判定符号的正负【详解】解:法一:由可得代入解得因为所以所以法二:由且可取终边上的一点坐标为根据三角函数终边定义公式故答案为:【点睛】方法 10 【分析】本题考查同角三角函数及其关系,借助公式sin tan cos ααα=,22sin +cos =1αα求解即可,求解时需要判定符号的正负.【详解】解:法一:由sin tan =3cos ααα=可得sin =3cos αα,代入22sin +cos =1αα解得cos α= 因为()0,tan 30απα∈=>,,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以cos α=. 法二:由()0,απ∈且tan 3α=可取α终边上的一点坐标为(1,3),根据三角函数终边定义公式cos 10α===.故答案为:10. 【点睛】方法点睛:同角三角函数基本关系的3个应用技巧: (1)弦切互化利用公式sin tan ()cos 2k απααπα=≠+实现角α的弦切互化; (2)和(差)积转换利用2(sin cos )=1sin 2ααα±±进行变形、转化;(3)巧用“1”的变换22222211sin+cos =cos (tan 1)sin (1)tan αααααα=+=+. 16.【分析】由是最大值点结合正弦函数的最大值可得的表达式再求得的最小值即可【详解】由可知时函数取得最大值故有解得所以最小值为故答案为:解析:43【分析】 由4x π=是最大值点,结合正弦函数的最大值可得ω的表达式,再求得ω的最小值即可.【详解】 由()4f x f π⎛≤⎫⎪⎝⎭可知4x π=时函数取得最大值. 故有2()462k k Z πππωπ+=+∈,解得48()3k k Z ω=+∈,所以最小值为43.故答案为:43. 17.【分析】将已知等式两边平方可得结合已知的范围可得从而可求进而利用二倍角公式平方差公式即可求解【详解】解:因为两边平方可得可得所以可得所以故答案为: 解析:725【分析】将已知等式两边平方,可得242sin cos 025x x =-<,结合已知x 的范围可得sin 0x ≥,cos 0x <,从而可求7cos sin 5x x -==-,进而利用二倍角公式,平方差公式即可求解. 【详解】解:因为1sin cos (0)5x x x π+=-≤<,两边平方,可得112sin cos 25x x +=,可得242sin cos 025x x =-<,所以sin 0x ≥,cos 0x <,可得7cos sin 5x x -===-,所以22177cos 2cos sin (cos sin )(cos sin )()5525x x x x x x x =-=+-=-⨯-=. 故答案为:725. 18.②③【分析】对于①:运用诱导公式化简再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系切化弦再运用诱导公式可判断;对于③:运用余弦的二倍角公式计算可判断;对于④:运用同角三角函数求解析:②③ 【分析】对于①:运用诱导公式化简,再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系“切化弦”,再运用诱导公式可判断; 对于③:运用余弦的二倍角公式计算可判断; 对于④:运用同角三角函数求得244cos ,sin ,255A B ==再用正弦的和角公式代入可判断. 【详解】对于①:因为()()()sin -cos 21,sin cos 2πααπαπα+-=++所以sin cos 1,sin cos 2αααα+=-所以sin 11cos ,sin 21cos αααα+=-即tan 11,tan 12αα+=-解得tan 3α=-,故①不正确;对于②:因为()()()000sin 30sin 30tan 30tan 30cos30cos 30---===-=-故②正确; 对于③:因为sin α=所以221cos 212sin 122αα⎛=-=-⨯=- ⎝⎭,故③正确;对于④:因为在锐角三角形ABC 中, 73sin ,cos ,255A B ==所以00,0222A B C πππ<<<<<<,,所以244cos ,sin ,255A B ====所以 ()()sin sin +sin +C A B A B π⎡⎤=-=⎣⎦ 73244117sin cos +cos sin +255255125A B A B ==⨯⨯=,故④不正确, 故答案为:②③.19.答案见解析【分析】利用正弦定理进行边化角得到然后利用余弦定理以及正弦函数的两角和与差公式进行选择①②或③进行求解即可【详解】在中因为所以根据正弦定理得所以因为所以选择①由余弦定理得解得选择②所以所以解析:答案见解析. 【分析】利用正弦定理进行边化角,得到cos3A =,然后利用余弦定理以及正弦函数的两角和与差公式进行选择①,②或③,进行求解即可 【详解】在ABCcos cos cos A a C c A =+,cos sin cos sin cos B A A C C A =+cos sin B A B =,因为sin 0B ≠,所以cos 3A =选择①,由余弦定理2222cos a b c bc A =+-得2103c --=,解得c =选择②,1cos sin 22c S B bc A ==,所以cos sin cos()2B A A π==-所以2B A π=-,即2C π=,解得c =选择③,3C π=,因为sin sin()sin cos cos sin 333B A A A πππ=+=+所以由sin sin c b C B=得sin 4sin b Cc B == 【点睛】关键点睛:解题关键在于由正弦定理进行边化角,得到cos 3A =,然后利用三角函数的相关公式进行求解,难度属于中档题20.【分析】由结合诱导公式和二倍角公式得出答案【详解】故答案为:解析:19-【分析】 由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案. 【详解】2sin 63πα⎛⎫+= ⎪⎝⎭,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭, 1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣, 解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 22.(1)π;(2)最小值为1,最大值为4. 【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 23.(1)2a =,b =2)1[,1]27. 【分析】(1)化简函数()sin 2cos 2222b a a f x x x =-+,由()26f π=,解得8a =,再由(0)f '=,进而求得,a b 的值;(2)由(1)化简得()2sin(2)16f x x π=-+,根据2[0,]3x π∈,得到0()3f x ≤≤,结合方程3()log 0f x k +=在区间2[0,]3π上总有实数解,转化为3()log f x k =-在区间2[0,]3π上成立,列出不等式,即可求解. 【详解】 (1)由题意,函数2()sin cos cos f x m n a b x x a x a =⋅+=-+1cos 2sin 222b x x a a +=-+sin 2cos 2222b a a x x =-+,由()26f π=得,8a =,因为()cos 2sin 2f x b x a x '=+,又(0)f '=,所以b =2a =.(2)由(1)得()2cos 212sin(2)16f x x x x π=-+=-+,因为2[0,]3x π∈,所以72[,]666x πππ-∈-, 所以1sin(2)126x π-≤-≤,所以02sin(2)136x π≤-+≤,即0()3f x ≤≤,又因为方程3()log 0f x k +=在区间2[0,]3π上总有实数解, 所以3()log f x k =-在区间2[0,]3π上成立, 所以30log 3k ≤-≤,33log 0k -≤≤,3333log 3log log 1k -≤≤所以1127k ≤≤,所以实数k 的取值范围为1[,1]27. 【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程()0f x =的根就是函数()f x 与x 轴的交点的横坐标,方程()()f x g x =的根据就是函数()f x 和()g x 图象的交点的横坐标;利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解. 24.(1)6365;(2)54-.【分析】(1)由已知利用同角三角函数基本关系式可求cos α,sin()αβ+的值,进而根据()βαβα=+-,利用两角差的余弦函数公式即可求解.(2)利用二倍角公式可求sin 2α,cos2α的值,进而即可代入求解. 【详解】 (1)因为02πα<<,4sin 5α所以3cos 5α== 又因为02πβ<<,5cos()13αβ+=所以12sin()13αβ+== 所以[]cos cos ()ββαα=+-cos()cos sin()sin βααβαα=+++53124135135=⨯+⨯ 6365=(2)因为3cos 5α=,4sin 5α 所以4324sin 22sin cos 25525ααα==⨯⨯=2237cos 22cos 12()1525αα=-=⨯-=-所以22424()sin sin 255257cos 214125ααα++==---- 【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想. 25.(Ⅰ)1;(Ⅱ)选择条件①,最小正周期为2π,在[,]26ππ-取得最小值2-;选择条件②,最小正周期为π,在[,]26ππ-取得最小值. 【分析】(I)将0x =代入求值即可;(II)①121,1ωω==,()222cos sin 2sin sin 2f x x x x x =+=-++利用抛物线知识求解②用二倍角和辅助角公式化简可得()+)+14f x x π=,再由[,]26x ππ∈-可得372[,]4412x πππ+∈-,结合正弦函数图象求解最值; 【详解】解:(Ⅰ)2(0)2cos 0sin 011f =+-=. (Ⅱ)选择条件①.()f x 的一个周期为2π.2()2cos sin 1f x x x =+-22(1sin )sin 1x x =-+-2192(sin )48x =--+.因为[,]26x ππ∈-,所以1sin [1,]2x ∈-.所以 当sin =1x -时,即π=2x -时,()f x 在[,]26ππ-取得最小值2-. 选择条件②.()f x 的一个周期为π.2()2cos sin 21f x x x =+-sin2+cos2x x =22)x x =+2)4x π=+(. 因为[,]26x ππ∈-,所以372+[,]4412x πππ∈-.当2=42x ππ+-时,即3π=8x -时,()f x 在[,]26ππ-取得最小值. 【点睛】本题考查三角恒等变换在三角函数图象和性质中的应用.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成sin()A xk 或cos()A xk 的形式;(2)根据自变量的范围确定x ωϕ+的范围,根据相应的正弦曲线或余弦曲线求值域或最值.(3)换元转化为二次函数研究最值.26.(1)π;(2)最小值为4- 【分析】(1)利用二倍角公式、两角和与差的正弦公式化函数为一个角的一个三角函数形式,然后利用正弦函数性质求解. (2)求出23x π-的取值范围,然后由正弦函数性质得最值.【详解】 (1)2211()cos (sin )sin cos 22f x x x x x x x x ==-11sin 22sin(2)423x x x π==-, ∴()f x 的最小正周期是22T ππ==(2)0,3x π⎡⎤∈⎢⎥⎣⎦时,2,333x πππ⎡⎤-∈-⎢⎥⎣⎦,此时()f x ⎡∈⎢⎣⎦.()f x 233x ππ-=,3x π=,()f x 最小值为-233x ππ-=-,0x =.综上,()f x 的最小值为- 【点睛】关键点睛:解题关键在于利用二倍角公式、两角和与差的正弦公式化简为标准的形态,然后利用正弦函数的性质求解,难度属于中档题。
新人教版高中数学必修第一册第五单元《三角函数》测试卷(包含答案解析)(1)
一、选择题1.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两条对称轴之间的距离为2π,且该函数图象关于点()0,0x 成中心对称,00,2x π⎡⎤∈⎢⎥⎣⎦,则0x 等于( ) A .512π B .4π C .3π D .6π2.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( ) A .2425-B .725-C .7-D .17-3.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .124.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7255.要得到函数3224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数322y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度6.设1cos 3x =-,则cos2x =( ) A .13B .223C .79D .79-7.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭8.sin34sin64cos34sin 206︒︒-︒︒的值为( ) A .12B .22C .3 D .19.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若2sin 3α=,则()cos αβ-=( ) A .19B .45C .19-D .45-10.已知1sin cos 3αα+=,则sin 2α的值是( ). A .89B .89-C .17 D .17-11.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭12.函数()log 44a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则7πcos 2θ⎛⎫+= ⎪⎝⎭( ) A .35 B .35C .45-D .45第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.求值tan 2010︒=_______.14.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______.15.已知一扇形的圆心角为3π,弧长是cm π,则扇形的面积是__________2cm . 16.若函数cos()y x ϕ=+为奇函数,则最小的正数ϕ=_____;17.已知tan 3α=,则2sin 21sin cos 2ααα-=+_________. 18.若函数()πsin 26g x x ⎛⎫=+ ⎪⎝⎭在区间0,3a ⎡⎤⎢⎥⎣⎦和7π4,6a ⎡⎤⎢⎥⎣⎦上均递增,则实数a 的取值范围是______. 19.若0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,则m 的取值范围为_______________. 20.若6x π=是函数()3sin 2cos2f x x a x =+的一条对称轴,则函数()f x 的最大值是___________.三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.已知函数()22sin cos 3f x x x x π⎛⎫=-- ⎪⎝⎭. (1)求()f x 的最小正周期和单调减区间;(2)求证:当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()12f x ≥-. 23.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象的相邻两条对称轴之间的距离为4π,且()23f x f π⎛⎫≤⎪⎝⎭恒成立. (1)求函数()f x 的解析式;(2)将函数()f x 图象上各点的横坐标缩短为原来的12,再向右平移3π个单位长度得到()g x 的图象,求()g x 图象的对称中心.24.已知函数2()cos sin 12cos f x a x x x =⋅+-,且(0)3f f π⎛⎫-= ⎪⎝⎭. (1)求函数()y f x =的最小正周期; (2)求()f x 在52,243ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值. 25.已知1cos cos 634ππαα⎛⎫⎛⎫+-=-⎪ ⎪⎝⎭⎝⎭,,32ππα.(1)求sin 2α的值; (2)求1tan tan αα-的值. 26.已知函数π()2sin 6f x x ⎛⎫=+ ⎪⎝⎭. (1)求()f x 的单调递减区间;(2)设π()()6g x f x f x ⎛⎫=- ⎪⎝⎭. 当[0,]x m ∈时,()g x 的取值范围为0,2⎡⎣,求m 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知条件求得函数()f x 的最小正周期T ,可求得ω的值,再由已知可得()026x k k Z ππ+=∈,结合00,2x π⎡⎤∈⎢⎥⎣⎦可求得0x 的值. 【详解】由题意可知,函数()f x 的最小正周期T 满足22T π=,T π∴=,22T πω∴==,()sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,由于函数()f x 的图象关于点()0,0x 成中心对称,则()026x k k Z ππ+=∈,解得()0212k x k Z ππ=-∈, 由于00,2x π⎡⎤∈⎢⎥⎣⎦,解得0512x π=. 故选:A. 【点睛】结论点睛:利用正弦型函数的对称性求参数,可利用以下原则来进行: (1)函数()()sin f x A x =+ωϕ关于直线0x x =对称()02x k k Z πωϕπ⇔+=+∈;(2)函数()()sin f x A x =+ωϕ关于点()0,0x 对称()0x k k Z ωϕπ⇔+=∈.2.D解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.3.B解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B. 4.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.5.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可 【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得 224y x π⎛⎫=++ ⎪⎝⎭的图像,故选:B6.D解析:D 【分析】利用二倍角的余弦公式可得解. 【详解】1cos 3x =-,2212723cos 22cos 11199x x ⎛⎫=-== ⎪⎝⎭∴=----故选:D.7.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.8.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒=故选:C .9.C解析:C 【分析】由对称写出两角的关系,然后利用诱导公式和二倍角公式计算. 【详解】由题意2,k k Z αβππ+=+∈,即2k βππα=+-,2221cos()cos(22)cos(2)cos 22sin 12139k αβαπππααα⎛⎫-=--=-=-=-=⨯-=-⎪⎝⎭.故选:C .10.B解析:B 【分析】已知条件平方后,利用sin 22sin cos ααα=,直接计算结果. 【详解】 ∵1sin cos 3αα+=,平方得,)(21sin cos 9αα+=,∴)()(221sin 2sin cos cos 9αααα++=,∴82sin cos 9αα=-,∴8sin29α=-.故选:B11.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭,所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<, 所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.12.D解析:D 【分析】先利用对数函数图象的特点求出点()3,4A -,再利用三角函数的定义求出sin θ的值,利用诱导公式可得7πcos sin 2θθ⎛⎫+= ⎪⎝⎭,即可求解. 【详解】 对数函数log ay x =恒过点()1,0,将其图象向左平移4个单位,向上平移4个单位可得()log 44a y x =++的图象,点()1,0平移之后为点()3,4-,所以()3,4A -,令3x =-,4y =,则5OA ===,所以4sin 5y OA θ==, 由诱导公式可得:7π4cos sin 25θθ⎛⎫+== ⎪⎝⎭,故选:D 【点睛】关键点点睛:本题的关键点是求出()3,4A -,会利用三角函数的定义求出θ的三角函数值,会利用诱导公式化简7πcos 2θ⎛⎫+⎪⎝⎭. 二、填空题13.【分析】根据诱导公式化为锐角后可求得结果【详解】故答案为:解析:3【分析】根据诱导公式化为锐角后可求得结果. 【详解】tan 2010tan(5360210)=⨯+tan 210=3tan(18030)tan 30=+==。
(常考题)人教版高中数学必修第一册第五单元《三角函数》检测题(含答案解析)
一、选择题1.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725-C .7-D .17-2.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =3.已知()3sin 5πα+=,则sin()cos()sin 2απαπα--=⎛⎫- ⎪⎝⎭( ) A .45-B .45 C .35D .354.已知函数()1cos 2f x x x ωω=-(0>ω)的图象与直线1y =的相邻两个交点距离等于π,则()f x 的图象的一条对称轴是( ) A .12x π=-B .12x π=C .3x π=-D .3x π=5.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性D .函数()f x 的值域为R6.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ). A. B .12-CD .127.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭8.若4cos 5θ=-,θ是第三象限的角,则1tan21tan 2θθ-=+( ) A .12B .12-C .35D .-29.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .10.已知3cos()45x π-=-,177124x ππ<<,则2sin 22sin 1tan x xx-+的值为( ) A .2875B .21100-C .2875-D .2110011.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想,可以说他是中国古代极限思想的杰出代表.运用此思想,当π取3.1416时可得cos89︒的近似值为( ) A .0.00873B .0.01745C .0.02618D .0.0349112.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 二、填空题13.若ππ2α<<,π02β<<,且5sin α,3π3cos 85β⎛⎫+=- ⎪⎝⎭,则3πcos 8αβ⎛⎫++= ⎪⎝⎭______.14.若tan 4α=,则2cos 2sin 2αα+= ________. 15.已知函数()()sin cos 0f x x x ωωω=+>,若()f x 在()π,π-上有且只有3个零点,则ω的取值范围为______.16.已知角θ的终边经过点(,3)P x (0x <)且10cos x θ=,则x =___________. 17.若3sin θ=,2πθπ⎛⎫∈ ⎪⎝⎭则cos 6πθ⎛⎫-=⎪⎝⎭______. 18.设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________. ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点. 19.已知一扇形的圆心角为3π,弧长是cm π,则扇形的面积是__________2cm . 20.先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y 轴对称,则ϕ=________. 三、解答题21.如图,在ABC 中,CD AB ⊥于D ,且3BD AD =.(1)若2BCD ACD ∠=∠,求角A 的大小; (2)若1cos 3A =,求tan C 的值. 22.(1)求值:4cos130tan140︒︒-;(2)已知3177cos ,45124x x πππ⎛⎫+=<< ⎪⎝⎭,求2sin 22sin 1tan x x x+-的值.23.如图,以坐标原点O 为圆心的单位圆与x 轴正半轴相交于点A ,点B ,P 在单位圆上,且525,B ⎛⎫- ⎪ ⎪⎝⎭,AOB α∠=.(1)求4cos 3sin 5cos 3sin -+αααα的值;(2)若四边形OAQP 是平行四边形,(i )当P 在单位圆上运动时,求点Q 的轨迹方程;(ii )设0)2(POA θθπ∠=≤≤,点(,)Q m n ,且()3f m n θ=+.求关于θ的函数()f θ的解析式,并求其单调增区间.24.在①函数()()sin 20,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象向右平移6π个单位长度得到()g x 的图像,()g x 图像关于,012π⎛⎫⎪⎝⎭对称;②函数()()12cos sin 062f x x x πωωω⎛⎫=+-> ⎪⎝⎭这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,求a 的取值范围; (2)求函数()f x 在[]0,2π上的单调递增区间.25.已知2sin ()cos(2)tan()()sin()tan(3)f παπαπααπααπ-⋅-⋅-+=-+⋅-+.(1)化简()f α;(2)若()18fα=,且42ππα<<,求cos sin αα-的值26.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边在直线430x y -=上.(1)求sin()απ+的值;(2)求2sin cos sin cos 1tan ααααα+--值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.2.C解析:C 【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解. 【详解】π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈ 当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-.故选:C3.C解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】 ∵3sin()sin 5παα+==-,∴3sin 5α=-, 则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C4.D解析:D 【分析】首先化简函数,根据条件确定函数的周期,求ω,再求函数的对称轴. 【详解】()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭,max 1y =,由题意可知T π=,22ππωω∴=⇒=,()sin 26f x x π⎛⎫∴=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,解得:32k x ππ=+,k Z ∈ 当0k =时,3x π=.故选:D5.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B6.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.7.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .8.D解析:D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan21tan 2θθ-+求解. 【详解】因为θ为第三象限角, 所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan1322131tan2θθ-+==--+. 故选:D. 9.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.10.A解析:A 【分析】 根据177124x ππ<<以及3cos()45x π-=-求出4sin()45x π-=-,进而求出4tan()43x π-=,根据诱导公式和二倍角的余弦公式得7sin 225x =-,然后利用恒等变换公式将2sin 22sin 1tan x xx-+化简为sin 2tan()4x x π-⋅-后,代入计算可得结果.【详解】因为177124x ππ<<,所以73642x πππ<-<, 因为3cos()45x π-=-,所以4sin()45x π-===-, sin()4tan()4cos()4x x x πππ--==-4535--43=, sin 2cos(2)cos 2()24x x x ππ⎡⎤=-=-⎢⎥⎣⎦2972cos 12142525x π⎛⎫=--=⨯-=- ⎪⎝⎭,所以2sin 22sin 1tan x x x-+2sin (cos sin )sin 1cos x x x x x-=+2sin cos (cos sin )cos sin )x x x x x x -=+sin 2(1tan )1tan x x x -=+tantan 4sin 21tan tan 4xx x ππ-=⋅+sin 2tan()4x x π=-⋅-7428()25375=--⨯=.故选:A 【点睛】本题考查了同角公式,考查了诱导公式,考查了二倍角的正弦公式,考查了两角差的正切公式,属于中档题.11.B解析:B 【分析】根据cos89sin1︒=,将一个单位圆分成360个扇形,由这360个扇形的面积之和近似为单位圆的面积求解. 【详解】因为()cos89cos 901sin1︒=-=,所以将一个单位圆分成360个扇形,则每一个扇形的圆心角为1︒, 所以这360个扇形的面积之和近似为单位圆的面积,即2136011sin112π⨯⨯⨯⨯≈,所以 3.1416sin10.01745180180π≈≈≈,故选:B12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 二、填空题13.【分析】先根据题意求出和再根据两角和的余弦公式求解即可【详解】由可得因为所以所以故答案为:【点睛】本题主要考和角公式的应用解题时会判断所求角所在的象限属于基础题【分析】先根据题意求出cos α和3πsin 8β⎛⎫+ ⎪⎝⎭,再根据两角和的余弦公式求解即可. 【详解】 由ππ2α<<,sin α=,可得cos 5α==-,因为π3π3π7π02888ββ<<⇒<+<,3π3cos 85β⎛⎫+=- ⎪⎝⎭,所以3π4sin 85β⎛⎫+== ⎪⎝⎭,所以3π3π3πcos cos cos sin sin 888αβαβαβ⎛⎫⎛⎫⎛⎫++=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭34555525⎛⎛⎫=-⨯--= ⎪ ⎝⎭⎝⎭.【点睛】本题主要考和角公式的应用,解题时会判断所求角所在的象限,属于基础题.14.1【分析】把求值式转化为关于的二次齐次分式然后转化为代入求值【详解】∵∴故答案为:1【点睛】方法点睛:本题考查二倍角公式考查同角间的三角函数关系在已知求值时对关于的齐次式一般转化为关于的式子再代入值解析:1 【分析】把求值式转化为关于sin ,cos αα的二次齐次分式.然后转化为tan α,代入求值. 【详解】 ∵tan 4α=,∴222222cos 4sin cos 14tan 144cos 2sin 21sin cos tan 141ααααααααα+++⨯+====+++.故答案为:1. 【点睛】方法点睛:本题考查二倍角公式,考查同角间的三角函数关系.在已知tan α求值时,对关于sin ,cos αα的齐次式,一般转化为关于tan α的式子.再代入tan α值计算.如一次齐次式:sin cos sin cos a b c d αααα++,二次齐次式:2222sin sin cos cos sin sin cos cos a b c d e f αααααααα++++, 另外二次式22sin sin cos cos m n p αααα++也可化为二次齐次式.15.【分析】利用辅助角公式对进行化简得令解得故即可解得答案【详解】解:令解得的零点为:……若在上有且只有3个零点则需满足解得:故答案为:【点睛】关键点点睛:本题解题的关键是:将的解析式利用辅助角公式化为 解析:5744ω<≤ 【分析】利用辅助角公式对()sin cos f x x x ωω=+进行化简,得()4f x x πω⎛⎫=+ ⎪⎝⎭,令()4x k k z πωπ+=∈,解得()4k x k z ππωω=-+∈,故37449544πππωωπππωω<≤-≤-<-⎧⎨⎩,即可解得答案. 【详解】解:()sin cos f x x x ωω=+,()4f x x πω⎛⎫∴=+ ⎪⎝⎭,令()4x k k z πωπ+=∈,解得()4k x k z ππωω=-+∈, ()f x ∴的零点为:…,94πω-,54πω-,4πω-,34πω,74πω,…若()f x 在()π,π-上有且只有3个零点,则需满足37449544πππωωπππωω<≤-≤-<-⎧⎨⎩, 解得:5744ω<≤. 故答案为:5744ω<≤. 【点睛】关键点点睛:本题解题的关键是:将()f x 的解析式利用辅助角公式化为()sin y A ωx φ=+的形式,或者()cos y A x ωϕ=+,再结合正余弦函数的图象计算即可. 16.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为: 解析:1-【分析】由余弦函数的定义可得cos x θ==,解出即可. 【详解】由余弦函数的定义可得cos x θ==, 解得0x =(舍去),或1x =(舍去),或1x =-,1x ∴=-.故答案为:1-.17.0【分析】先求出再利用差角的余弦公式求解【详解】因为所以所以故答案为:0解析:0 【分析】先求出1cos 2θ=-,再利用差角的余弦公式求解. 【详解】因为sin θ=,2πθπ⎛⎫∈ ⎪⎝⎭,所以1cos 2θ=-,所以11cos 062222πθ⎛⎫-=-⨯+= ⎪⎝⎭. 故答案为:018.①②③【分析】对①根据即可判断①正确对②根据函数和的最小正周期即可判断②正确对③首先得到再利用二次函数的性质即可判断③正确对④令解方程即可判断④错误【详解】对①因为函数的定义域为所以是偶函数故①正确解析:①②③ 【分析】对①,根据()()f x f x -=即可判断①正确,对②,根据函数cos 2y x =和sin y x=的最小正周期即可判断②正确,对③,首先得到()2192sin 48f x x ⎛⎫=--+ ⎪⎝⎭,再利用二次函数的性质即可判断③正确,对④,令()cos 2sin 0f x x x =+=,解方程即可判断④错误. 【详解】对①,因为函数()f x 的定义域为R ,()()()cos 2sin =cos 2sin f x x x x x f x -=-+-+=,所以()f x 是偶函数,故①正确;对②,因为cos 2cos2y x x ==,最小正周期为π,sin y x =的最小正周期为π,所以函数()cos 2sin f x x x =+的最小正周期为π,故②正确; 对③,()2cos 2sin cos2sin 12sin sin f x x x x x x x =+=+=-+2192sin 48x ⎛⎫=--+ ⎪⎝⎭.因为0sin 1x ≤≤,当sin 1x =时,()f x 取得最小值为0,故③正确. 对④,令()cos 2sin 0f x x x =+=,即212sin sin 0x x -+=,解得sin 1x =或1sin 2x =-(舍去). 当[]0,2x π∈时,sin 1x =,解得2x π=或32x π=, 所以()f x 在[]0,2π上有2个零点.故④错误. 故选:①②③19.【分析】先由弧长公式求出扇形所在圆的半径再根据扇形面积公式即可得出结果【详解】因为一扇形的圆心角为弧长是所以其所在圆的半径为因此该扇形的面积是故答案为:解析:32π【分析】先由弧长公式求出扇形所在圆的半径,再根据扇形面积公式,即可得出结果. 【详解】因为一扇形的圆心角为3π,弧长是cm π, 所以其所在圆的半径为33r ππ==,因此该扇形的面积是1133222S lr ππ==⨯⨯=. 故答案为:32π. 20.【分析】由题意利用函数的图象变换规律三角函数的图象的对称性求得的值【详解】先将函数的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变)可得的图象;再向左平移个单位长度可得函数的图象根据所得函数图象关 解析:56π 【分析】由题意利用函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,求得ϕ的值. 【详解】先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得1cos 2y x ϕ⎛⎫=+ ⎪⎝⎭的图象; 再向左平移3π个单位长度,可得函数1cos 26y x πϕ⎛⎫=++ ⎪⎝⎭的图象,根据所得函数图象关于y 轴对称,可得6k πϕπ+=,k Z ∈,因为()0,ϕπ∈,所以1k =,56πϕ=. 故答案为:56π. 【点睛】关键点点睛:熟练掌握函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性是解题关键..三、解答题21.(1)π3A =;(2【分析】(1)设ACD θ∠=,则2BCD θ∠=,从而可得tan 23tan θθ=,利用二倍角公式正切公式即可求解.(2)根据题意可得tan 3tan A B =,由同角三角函数的基本关系可得tan A =,即tan B ()tan tan C A B =-+,利用两角和的正切公式即可求解.【详解】(1)设ACD θ∠=,则π0,2θ⎛⎫∈ ⎪⎝⎭,2BCD θ∠=, 因为tan AD CD θ=,tan 2BDCD θ=,又因为3BD AD =,所以tan 23tan θθ=,即22tan 3tan 1tan θθθ=-,所以tan θ=, 因为π0,2θ⎛⎫∈ ⎪⎝⎭,所以π6θ=,所以π3A =. (2)因为tan CD A AD=,tan CDB BD =,3BD AD =,所以tan 3tan A B =,又因为1cos 3A =,π(0,)2A ∈,所以sin =A ,所以tan A =,tan B ,又因为()tan tan C A B =-+,所以tan tan tan 1tan tan 5A B C A B +=-=-⋅. 22.(1)2)2875-. 【分析】(1)先利用诱导公式将4cos130tan140︒︒-,转化为4cos50tan 40︒︒-+,然后利用三角恒等变换求解.(2)由3177cos ,45124x x πππ⎛⎫+=<< ⎪⎝⎭,利用平方关系求得4sin 45x π⎛⎫+=- ⎪⎝⎭,得到cos cos 44x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,然后由 2sin 22sin 2sin (cos sin )1tan 1tan x x x x x x x ++=--求解. 【详解】(1)4cos130tan140︒︒-,sin 404cos50tan 404cos50cos 40︒︒︒︒︒=-+=-+, 04cos50cos 40sin 404sin 40cos 40sin 40cos 40cos 40︒︒︒︒︒︒︒-+-+==, 02sin 80sin 402cos10sin 40cos 40cos 40︒︒︒︒︒-+-+==, ()2cos 4030sin 40cos 40︒︒︒︒--+=,040sin 40sin 40cos 40︒︒︒-+=,040cos 40︒== (2)1775,212434x x πππππ<<∴<+<, 4sin 45x π⎛⎫∴+=- ⎪⎝⎭,cos cos cos cos sin sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,3425510⎫=-=-⎪⎝⎭, sin ,tan 710x x ∴==-=,22sin 22sin 2sin cos 2sin 2sin (cos sin )1tan 1tan 1tan x x x x x x x x x x x+++∴==---,2101010281775⎛⨯--- ⎝⎭⎝⎭==--. 23.(1)10-;(2)(i )22(1)1x y -+=;(ii )()2sin 16f πθθ⎛⎫=++ ⎪⎝⎭;增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)由三角函数定义得tan 2α,再弦化切代入计算,即可求4cos 3sin 5cos 3sin -+αααα的值;(2)(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭,由此可求点O 的轨迹方程;(ii)确定()cos 12sin 16f πθθθθ⎛⎫=++=++ ⎪⎝⎭,即可求其单调增区间. 【详解】解:(1)由三角函数定义得tan 25α==-,所以44cos 3sin 5cos 3si 3tan 1010tan 1n 53αααααα-===-+--+.(2)∵四边形OAQP 是平行四边形,∴PA 与OQ 互相平分,(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭, 又,22x y H ⎛⎫⎪⎝⎭,所以111x x y y =-⎧⎨=⎩, 代入上式得点Q 的轨迹方程为22(1)1x y -+=.(ii )因为0)2(POA θθπ∠=≤≤,所以11cos sin x y θθ=⎧⎨=⎩,又由(i )知111x m y n =-⎧⎨=⎩,∴cos 1sin m n θθ=+⎧⎨=⎩,∴()cos 12sin 16f πθθθθ⎛⎫=+=++ ⎪⎝⎭∵22,26202k k k ππππθπθπ⎧-≤+≤+∈⎪⎨⎪≤≤⎩Z , ∴03πθ≤≤或423πθπ≤≤, ∴()fθ的增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程.24.(1),63ππ⎡⎤⎢⎥⎣⎦;(2)06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦. 【分析】先选条件①或条件②,结合函数的性质及图像变换,求得函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭,(1)由[]0,x α∈,得到2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,根据由正弦函数图像,即可求解; (2)根据函数正弦函数的形式,求得36k x k ππππ-+≤≤+,k Z ∈,进而得出函数的单调递增区间. 【详解】 方案一:选条件①由函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,解得1ω=,所以()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤,所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.方案二:选条件②: 由()12cos sin 62f x x x πωω⎛⎫=+- ⎪⎝⎭12cos sin cos cos sin 662x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 2cos 2222x x x x x ωωωωω=+-=+sin 26x πω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,所以1ω=, 可得()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x,又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤,所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为()sin()f x A wx ϕ=+或()cos()f x A wx ϕ=+的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质.25.(1)sin cos αα⋅;(2). 【分析】(1)由诱导公式运算即可得解; (2)由平方关系可得()23cos sin 4αα-=,再由cos sin αα<即可得解. 【详解】(1)由诱导公式()2sin cos tan ()sin cos sin tan f αααααααα⋅⋅==⋅-⋅-;(2)由()1sin cos 8f ααα==可知 ()222cos sin cos 2sin cos sin αααααα-=-+1312sin cos 1284αα=-=-⨯=, 又∵42ππα<<,∴cos sin αα<,即cos sin 0αα-<,∴cos sin 2αα-=-. 26.(1)45-或45;(2)75-或75; 【分析】 (1)在直线430x y -=上任取一点4(,)3P m m (0)m ≠,由已知角α的终边过点4(,)3P m m , 利用诱导公式与三角函数定义即可求解,要注意分类讨论m 的正负.(2)先利用商的关系化简原式为sin cos αα+,结合第一问利用三角函数定义分别求得cos α与sin α,要注意分类讨论m 的正负.【详解】(1)在直线430x y -=上任取一点4(,)3P m m (0)m ≠,由已知角α的终边过点4(,)3P m m , x m ∴=,43y m =,53r OP m == 利用诱导公式与三角函数定义可得:sin()sin 443553m m m m απα=-=-+=-, 当0m >时,4in()5s απ-+=;当0m <时,4sin()5απ+= (2)原式22222sin cos sin cos sin cos sin sin cos sin cos cos sin sin cos 1cos αααααααααααααααα-=+=+=----- ()()sin cos sin cos sin cos sin cos αααααααα+-==+- 同理(1)利用三角函数定义可得:3553cos m m mm α==, 当0m >时,4sin 5α,3cos 5α=,此时原式75=; 当0m <时,4sin 5α=-,3cos 5α=-,此时原式75=-; 【点睛】易错点睛:本题考查三角函数化简求值,解本题时要注意的事项:角α的终边在直线-=上,但未确定在象限,要分类讨论,考查学生的转化能力与运算解能力,属于x y430中档题.。
(常考题)人教版高中数学必修第一册第五单元《三角函数》测试卷(有答案解析)(4)
一、选择题1.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .122.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程是( ) A .π2x =-B .π4x =-C .π8x =-D .πx =3.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( ) A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定4.函数()(13)cos f x x x =的最小正周期为( ) A .πB .32π C .2πD .2π 5.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ). A .3 B .12-C 3D .126.函数πsin 25y x ⎛⎫=- ⎪⎝⎭的最小正周期是( ) A .2π B .πC .2πD .4π7.已知函数 ()3cos f x x a x =+,[0,]3x π∈的最小值为a ,则实数a 的取值范围是( ) A .[0,2] B .[2,2]-C .(],1-∞D .(],3-∞8.设1cos 3x =-,则cos2x =( ) A .13B 22C .79D .79-9.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭ C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭ 10.已知1sin cos 3αα+=,则sin 2α的值是( ).A .89B .89-C D . 11.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫- ⎪⎝⎭C .,012π⎛⎫ ⎪⎝⎭D .,03π⎛⎫ ⎪⎝⎭12.在ABC 中,2,6AB C π==,则AC 的最大值为( )A .B .C .D .二、填空题13.已知22034sin παα=<<,,则sin cos αα-=_____________________. 14.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______.15.已知角θ的终边经过点(,3)P x (0x <)且cos 10x θ=,则x =___________. 16.若1cos()2αβ-=,3cos()5αβ+=-,则tan tan αβ=__________. 17.下列四个命题中:①已知()()()sin cos 21,sin cos 2πααπαπα-+-=++则tan 1α=-;②()00tan 30tan 30-=-=③若sin α=则1cos 2;2α=-④在锐角三角形ABC 中,已知73sin ,cos ,255A B ==则119sin .125C =其中真命题的编号有_______.18.设函数2()2cos cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 19.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________. 20.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 三、解答题21.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭ 求sin()αβ+,cos()αβ-,tan2α的值. 22.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围. 23.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式; (2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 24.如图,以坐标原点O 为圆心的单位圆与x 轴正半轴相交于点A ,点B ,P 在单位圆上,且525,B ⎛⎫- ⎪ ⎪⎝⎭,AOB α∠=.(1)求4cos 3sin 5cos 3sin -+αααα的值;(2)若四边形OAQP 是平行四边形,(i )当P 在单位圆上运动时,求点Q 的轨迹方程;(ii )设0)2(POA θθπ∠=≤≤,点(,)Q m n ,且()f m θ=+.求关于θ的函数()f θ的解析式,并求其单调增区间. 25.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 26.已知函数()()1cos sin cos 2f x x x x =+-. (Ⅰ)若0,2πα<<且1sin 3α=.求()f α; (Ⅱ)求函数()f x 的最小正周期及单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B. 2.C解析:C 【分析】根据余弦函数的对称轴可得π22π4x k +=,解方程即可求解.π22π4x k +=,k Z ∈,则有ππ8x k =-+,k Z ∈ 当0k =时,πcos 24y x ⎛⎫=+ ⎪⎝⎭的一条对称轴方程为π8x =-. 故选:C3.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .4.C解析:C 【分析】由切化弦,及两角和的正弦公式化简函数,然后由正弦函数的周期性得结论. 【详解】 由已知,()(1)cos f x x x =+cos x x =+12cos 22x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭, ∴最小正周期为221T ππ==, 故选:C .5.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒2=. 故选:C.6.B【分析】按照三角函数的周期公式求最小正周期即可.【详解】解:函数πsin25y x⎛⎫=-⎪⎝⎭的最小正周期为22Tππ==.故选:B. 7.D解析:D 【分析】通过参变分离转化为2cos222sin tan22x xax≤==,即mintan2a≤⎪⎝⎭.【详解】()cosf x x a x=+的最小值是a,并且观察当0x=时,()0f a=,所以当0,3xπ⎡⎤∈⎢⎥⎣⎦cosx a x a+≥恒成立,即()1cosa x x-≤,当0x=时,a R∈,当0,3xπ⎛⎤∈ ⎥⎝⎦时,2cos221cos2sin tan22x xxax xx≤==-恒成立,即mintan2ax⎛⎫⎪≤ ⎪⎪⎝⎭0,3xπ⎛⎤∈ ⎥⎝⎦时,tan2xtan2的最小值是3,所以3a≤.故选:D【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 8.D解析:D【分析】利用二倍角的余弦公式可得解.【详解】1cos 3x =-,2212723cos 22cos 11199x x ⎛⎫=-== ⎪⎝⎭∴=----故选:D.9.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.10.B解析:B 【分析】已知条件平方后,利用sin 22sin cos ααα=,直接计算结果. 【详解】 ∵1sin cos 3αα+=,平方得,)(21sin cos 9αα+=,∴)()(221sin 2sin cos cos 9αααα++=,∴82sin cos 9αα=-,∴8sin29α=-.故选:B11.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A12.B解析:B 【分析】将AC +表示为角的形式,结合三角函数最值的求法,求得AC 的最大值. 【详解】有正弦定理得24sin sin sin sin 6a b c A B C π====, 所以4sin ,4sin a A b B ==,所以AC+4sin b B A =+=+()4sin 4sin 6B B C B B π⎛⎫=++=++ ⎪⎝⎭4sin sin cos cos sin 66B B B ππ⎫=++⎪⎭14sin sin cos 22B B B ⎫=++⎪⎪⎭()()10sin B B B B ϕϕ=+=+=+.其中tan 010536πϕϕ==<⇒<<, 由于566B ππ<<,所以3B πϕπ<+<,故当2B πϕ+=时,AC +的最大值为故选:B 【点睛】要求与三角形边长有关的最值问题,可以利用正弦定理将边转化为角,然后利用三角函数的最值的求法来求最值.二、填空题13.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以sin cos αα-====,故答案为: -14.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1 215.【分析】由余弦函数的定义可得解出即可【详解】由余弦函数的定义可得解得(舍去)或(舍去)或故答案为:解析:1-【分析】由余弦函数的定义可得cos10xθ==,解出即可.【详解】由余弦函数的定义可得cos10xθ==,解得0x=(舍去),或1x=(舍去),或1x=-,1x∴=-.故答案为:1-.16.【分析】由已知利用两角和与差的余弦公式可求的值进而根据同角三角函数基本关系式即可求解【详解】解:因为所以因为所以所以则故答案为:解析:11-【分析】由已知利用两角和与差的余弦公式可求cos cosαβ,sin sinαβ的值,进而根据同角三角函数基本关系式即可求解.【详解】解:因为1cos()2αβ-=,所以1cos cos sin sin2αβαβ+=,因为3cos()5αβ+=-,所以3cos cos sin sin5αβαβ-=-,所以1131cos cos()22520αβ=-=-,11311sin sin()22520αβ=+=,则1120tan tan11120αβ==--.故答案为:11-.17.②③【分析】对于①:运用诱导公式化简再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系切化弦再运用诱导公式可判断;对于③:运用余弦的二倍角公式计算可判断;对于④:运用同角三角函数求解析:②③ 【分析】对于①:运用诱导公式化简,再运用同角三角函数的关系可判断;对于②:先运用同角三角函数的商数关系“切化弦”,再运用诱导公式可判断; 对于③:运用余弦的二倍角公式计算可判断; 对于④:运用同角三角函数求得244cos ,sin ,255A B ==再用正弦的和角公式代入可判断. 【详解】对于①:因为()()()sin -cos 21,sin cos 2πααπαπα+-=++所以sin cos 1,sin cos 2αααα+=-所以sin 11cos ,sin 21cos αααα+=-即tan 11,tan 12αα+=-解得tan 3α=-,故①不正确; 对于②:因为()()()000sin 30sin 30tan 30tan 30cos30cos 30---===-=-故②正确; 对于③:因为sin α=所以221cos 212sin 122αα⎛=-=-⨯=- ⎝⎭,故③正确;对于④:因为在锐角三角形ABC 中, 73sin ,cos ,255A B ==所以00,0222A B C πππ<<<<<<,,所以244cos ,sin ,255A B ====所以 ()()sin sin +sin +C A B A B π⎡⎤=-=⎣⎦ 73244117sin cos +cos sin +255255125A B A B ==⨯⨯=,故④不正确, 故答案为:②③.18.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余 解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案.【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦. ()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.19.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,cos 1a ≤≤2cos 2a ≤≤,则1122cos 2a ≤≤,即122k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,sin 1a ≤≤,即k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.20.【分析】由结合诱导公式和二倍角公式得出答案【详解】故答案为:解析:19-【分析】由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案. 【详解】2sin 63πα⎛⎫+= ⎪⎝⎭,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭, 1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-三、解答题21.1665-;3365;247- 【分析】由已知条件,利用同角三角函数基本关系结合角所在的象限求出cos α,sin β,以及tan α的值,再利用两角和的正弦公式,两角差的余弦公式,正切的二倍角公式即可求解. 【详解】因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos 5α===-,因为3,2πβπ⎛⎫∈⎪⎝⎭,12cos 13, 所以5sin 13β===-, 所以3124516sin()sin cos cos sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫+=+=⨯-+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为sin 3tan cos 4ααα==-,所以22322tan 244tan 21tan 7314ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,综上所述:16sin()65αβ+=-,33cos()65αβ-=,24tan 27α=-. 22.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞. 【分析】(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 21226x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭ 所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan baϕ=)23.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(2232x π⎛⎫+≥ ⎪⎝⎭,可得sin 232x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(223x π⎛⎫+≥ ⎪⎝⎭,即sin 232x π⎛⎫+≥ ⎪⎝⎭, 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 24.(1)10-;(2)(i )22(1)1x y -+=;(ii )()2sin 16f πθθ⎛⎫=++ ⎪⎝⎭;增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)由三角函数定义得tan 2α,再弦化切代入计算,即可求4cos 3sin 5cos 3sin -+αααα的值;(2)(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭,由此可求点O 的轨迹方程;(ii)确定()cos 12sin 16f πθθθθ⎛⎫=++=++ ⎪⎝⎭,即可求其单调增区间. 【详解】解:(1)由三角函数定义得tan 2α==-,所以44cos 3sin 5cos 3si 3tan 1010tan 1n 53αααααα-===-+--+.(2)∵四边形OAQP 是平行四边形,∴PA 与OQ 互相平分,(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫ ⎪⎝⎭, 又,22x y H ⎛⎫⎪⎝⎭,所以111x x y y =-⎧⎨=⎩, 代入上式得点Q 的轨迹方程为22(1)1x y -+=.(ii )因为0)2(POA θθπ∠=≤≤,所以11cos sin x y θθ=⎧⎨=⎩,又由(i )知111x m y n =-⎧⎨=⎩,∴cos 1sin m n θθ=+⎧⎨=⎩,∴()cos 12sin 16f πθθθθ⎛⎫=+=++ ⎪⎝⎭∵22,26202k k k ππππθπθπ⎧-≤+≤+∈⎪⎨⎪≤≤⎩Z , ∴03πθ≤≤或423πθπ≤≤, ∴()fθ的增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程. 25.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为.26.(Ⅰ;(Ⅱ)最小正周期为π.3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【分析】(Ⅰ)根据1sin 3α=以及α的范围,得到cos α,代入到()f α中,得到答案;(Ⅱ)对()f x 进行整理化简,得到()π24f x x ⎛⎫=+ ⎪⎝⎭,根据正弦型函数的图像和性质,求出其周期和单调减区间. 【详解】(Ⅰ)解:因为π02α<<.且1sin 3α=.所以cos 3α==.故()()1cos sin cos 2f αααα=+-=(Ⅱ)解:因为 ()21sin cos cos 2f x x x x =+-11cos 21sin 2222x x +=+-11πsin 2cos 222224x x x ⎛⎫=+=+ ⎪⎝⎭. 所以函数()f x 的最小正周期为π.设π24t x =+.由2y t =的单调递增区间是ππ2π 2π22k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈. 令πππ2π22π242k x k -++≤≤.解得3ππππ88k x k -+≤≤.k Z ∈. 故函数()f x 的单调递增区间为3ππππ88k k ⎡⎤-+⎢⎥⎣⎦,.k Z ∈.【点睛】本题考查同角三角函数关系,利用二倍角公式、降幂公式、辅助角公式对三角函数进行化简,求正弦型函数的周期和单调区间,属于基础题.。
成都大学附属中学必修第一册第五单元《三角函数》检测(有答案解析)
一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则错误的是( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2 B .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 23.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .B .19-C D .194.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 的图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4πx =-C .524x π=-D .12x π=5.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7256.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( )A .函数()f x 不为奇函数B .函数()f x 存在反函数C .函数()f x 具有周期性D .函数()f x 的值域为R7.函数()[sin()cos()]f x A x x ωθωθ=+++部分图象如图所示,当[,2]x ππ∈-时()f x 最小值为( )A .1-B .2-C .2-D .3-8.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 9.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦10.已知函数 ()3cos f x x a x =+,[0,]3x π∈的最小值为a ,则实数a 的取值范围是( ) A .[0,2]B .[2,2]-C .(],1-∞D .(],3-∞11.若函数sin 3y x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后与函数cos y x ω=的图象重合,则ω的值可能为( ) A .1-B .2-C .1D .212.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( )A .79B .19C .-19D .-79二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________ 14.设函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,若()4f x f π⎛≤⎫⎪⎝⎭对任意的实数x 都成立,则ω的最小值为___________________.15.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 16.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______. 17.已知一扇形的圆心角为3π,弧长是cm π,则扇形的面积是__________2cm . 18.已知7sin cos 17αα+=,()0,απ∈,则tan α= ________.19.设函数2()2cos cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 20.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______.三、解答题21.已知函数()2sin cos f x x x = (1)求函数()f x 的最小正周期和最大值; (2)求函数()f x 的单调递减区间.22.已知函数()2sin cos f x x x x ωωω=的周期为π,其中0>ω;(1)求ω的值,并写出函数()f x 的解析式;(2)设ABC 的三边a ,b ,c 依次成等比数列,角B 的取值范围为集合P ,则当x P ∈时求函数()f x 的值域.23.已知p :x R ∀∈,||1x m +≥.q :0,3x π⎡⎤∃∈⎢⎥⎣⎦,tan x m ≥. (1)若p 为真命题,求实数m 的取值范围.(2)若p ⌝为真命题,p q ∨也为真命题,求实数m 的取值范围.24.已知()()sin2f x x x x R =∈(1)求56f π⎛⎫⎪⎝⎭的值;(2)若0,4x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的取值范围. 25.已知函数23()3cos sin()sin()36f x x x x ππ=++--(1)求()f x 的最小正周期及对称中心; (2)若1()6f α=,且()123ππα∈,,求cos2α的值. 26.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值. (2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 A.根据332()f x x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断.【详解】 A. 332()f x x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误; D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.D解析:D 【分析】利用函数()sin +y A x ωϕ=的图象变换规律对各个选项进行检验即可. 【详解】A. 1C 上各点横坐标缩短到原来的12倍,得到2sin 2y x =,再向左平移6π个单位长度,得到2sin 2+=2sin 2+63y x x ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,正确; B. 1C 上各点的横坐标缩短到原来的12倍,得到2sin 2y x =,再向右平移56π个单位长度,得到5552sin 2=2sin 2=2sin 222sin 26333y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,正确; C. 1C 向左平移3π个单位长度,得到2sin +3y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+3y x π⎛⎫= ⎪⎝⎭,正确;D. 1C 向左平移6π个单位长度,得到2sin +6y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+6y x π⎛⎫= ⎪⎝⎭,错误. 故选:D3.D解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算. 【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D4.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+⎪⎝⎭, 再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A5.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.6.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B7.D解析:D 【分析】首先结合图像求得()f x 的解析式,然后根据三角函数最值的求法,求得()f x 在区间[],2ππ-上的最小值.【详解】由已知()()sin 04f x x πωθω⎛⎫=⋅++> ⎪⎝⎭,由图象可知取A =,52433T πππ=-=, 故最小正周期4T π=,所以212T πω==, 所以()12sin 24f x x πθ⎛⎫=++ ⎪⎝⎭,由55152sin 2sin 0332464f πππππθθ⎛⎫⎛⎫⎛⎫=⨯++=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,及图象单调性知,取564ππθπ++=,则46ππθ+=所以()12sin 26x f x π⎛⎫=+⎪⎝⎭,[],2x ππ∈-,17,2636x πππ⎡⎤+∈-⎢⎥⎣⎦, ()f x 最小值为()2sin 3f ππ⎛⎫-=-= ⎪⎝⎭故选:D8.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确; 对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 9.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增,又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.10.D解析:D 【分析】通过参变分离转化为2cos 221cos 2sin tan22x x x a x x x ≤==-,即min tan 2a ≤ ⎪⎝⎭. 【详解】()cos f x x a x =+的最小值是a ,并且观察当0x =时,()0f a =,所以当0,3x π⎡⎤∈⎢⎥⎣⎦cos x a x a +≥恒成立,即()1cos a x x -≤,当0x =时,a R ∈,当0,3x π⎛⎤∈ ⎥⎝⎦时,2cos222sin tan 22x xa x ≤==恒成立,即mintan 2a x ⎛⎫⎪≤ ⎪ ⎪⎝⎭0,3x π⎛⎤∈ ⎥⎝⎦时,tan 2x的最大值是3,所以tan 2x 的最小值是3,所以3a ≤.故选:D 【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.11.A解析:A 【分析】先求解出sin 3y x πω⎛⎫=+ ⎪⎝⎭右移6π个单位后的函数解析式,然后根据诱导公式求解出ω的可取值. 【详解】 因为sin 3y x πω⎛⎫=+⎪⎝⎭右移6π个单位后得到sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭, 又因为sin 63y x ωππω⎛⎫=-+⎪⎝⎭与cos sin 2y x x πωω⎛⎫==+⎪⎝⎭的图象重合, 所以令2,632k k Z ωππππ-+=+∈,所以121,k k Z ω=--∈,所以ω可取1-,此时0k =, 故选:A. 【点睛】思路点睛:根据三角函数的图象重合求解参数ω或ϕ的思路: (1)先根据诱导公式将函数名统一; (2)然后分析三角函数初相之间的关系;(3)对k 进行取值(有时注意结合所给范围),确定出满足条件的ω或ϕ的值.12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12- 【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.【分析】由是最大值点结合正弦函数的最大值可得的表达式再求得的最小值即可【详解】由可知时函数取得最大值故有解得所以最小值为故答案为:解析:43【分析】 由4x π=是最大值点,结合正弦函数的最大值可得ω的表达式,再求得ω的最小值即可.【详解】 由()4f x f π⎛≤⎫⎪⎝⎭可知4x π=时函数取得最大值. 故有2()462k k Z πππωπ+=+∈,解得48()3k k Z ω=+∈,所以最小值为43.故答案为:43.15.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 16.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25- 【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 17.【分析】先由弧长公式求出扇形所在圆的半径再根据扇形面积公式即可得出结果【详解】因为一扇形的圆心角为弧长是所以其所在圆的半径为因此该扇形的面积是故答案为:解析:32π【分析】先由弧长公式求出扇形所在圆的半径,再根据扇形面积公式,即可得出结果. 【详解】因为一扇形的圆心角为3π,弧长是cm π, 所以其所在圆的半径为33r ππ==,因此该扇形的面积是1133222S lr ππ==⨯⨯=. 故答案为:32π. 18.【分析】根据已知条件求得的值由此求得的值【详解】依题意两边平方得而所以所以由解得所以故答案为:【点睛】知道其中一个可通过同角三角函数的基本关系式求得另外两个在求解过程中要注意角的范围 解析:158-【分析】根据已知条件求得sin ,cos αα的值,由此求得tan α的值. 【详解】依题意7sin cos 17αα+=,两边平方得 4924012sin cos ,2sin cos 0289289αααα+==-<,而()0,απ∈,所以sin 0,cos 0αα><, 所以23sin cos 17αα-====. 由7sin cos 1723sin cos 17αααα⎧+=⎪⎪⎨⎪-=⎪⎩解得158sin ,cos 1717αα==-, 所以sin 15tan cos 8ααα==-. 故答案为:158-【点睛】sin cos ,sin cos αααα±知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.19.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余 解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案.【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦. ()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.20.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.三、解答题21.(1)T π=;最大值为1;(2)3[,]()44k k k Z ππππ++∈ 【分析】(1)应用二倍角公式,将函数化为正弦型三角函数,即可求解; (2)根据正弦函数的单调递减区间结合整体代换,即可求出结论. 【详解】(1)()2sin cos sin 2f x x x x ==,最小正周期为22T ππ==,最大值为1; (2)由3222()22k x k k Z ππππ+≤≤+∈, 解得3()44k x k k Z ππππ+≤≤+∈, ()f x ∴单调递减区间是3[,]()44k k k Z ππππ++∈.22.(1)1ω=,()sin 32+f x x π⎛⎫= ⎪⎝⎭2)⎣⎦.【分析】(1)先逆用两角差的正弦公式化成正弦型函数的标准形式,然后利用周期公式2T ωπ=求ω的值,进而写出函数()f x 的解析式;(2)利用余弦定理结合基本不等式求出cos B 的范围,再根据B 为三角形的内角求出B 的范围,得出()f x 的定义域,从而求出()f x 的值域. 【详解】解:(1)()2sin cos f x x x x ωωω=)1cos 21sin 2+22x x ωω+=sin 2+3x πω⎛⎫= ⎪⎝⎭由22T ππω==,解得1ω=,所以函数()f x 的解析式为()sin 32+f x x π⎛⎫= ⎪⎝⎭; (2)因为2b ac =,所以222cos 2a c b B ac +-==22121122222a c ac ac ac +-≥-=,当且仅当a c =时取“=”;又B 为三角形内角,所以03B π<≤,即03x π<≤,所以2+33x πππ<≤,所以0sin 2+13x π⎛⎫ ⎪⎝⎭,所以sin 2++2322x π⎛⎫≤≤ ⎪⎝⎭,即函数()f x 的值域是,1+22⎣⎦. 【点睛】关键点点睛:运用三角恒等变换将函数化成正弦型函数的标准形式,利用余弦定理和基本不等式将三角形的边的关系转化为角的范围.23.(1)(,1]-∞;(2). 【分析】(1)根据p 为真命题,得到||1x m +≥,在x ∈R 上恒成立,求出()min ||1x +即可得实数m 的取值范围;(2)应用复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真,判断出q 为真命题,求出()max tan x ,即可得出实数m 的取值范围. 【详解】(1)若p 为真命题,则||1x m +≥,在x ∈R 上恒成立, 即()min ||1x m +≥, 当0x =时,()min ||11x +=, ∴1m ,即m 的取值范围为(],1-∞. (2)若p ⌝为真命题, 则p 为假命题, ∴1m ,∵p q ∨为真命题, ∴q 为真命题,q :0,3x π⎡⎤∃∈⎢⎥⎣⎦,tan x m ≥,即()max tan x m ≥,即tan tan 3x π≤=∴m ≤, ∴1m <≤综上m 的取值范围是. 【点睛】方法点睛:不等式成立问题中要注意等价转化,不等式()f x A ≥恒成立,则min ()f x A ≥;存在x ,使不等式()f x A ≥成立,则max ()f x A ≥,不存在x ,使不等式()f x A ≥成立,则max ()f x A <.24.(1)0;(2)[]1,2. 【分析】(1)本题可直接将56x π=代入函数()f x 中,通过计算即可得出结果;(2)本题首先可根据两角和的正弦公式将函数()f x 转化为()2sin 23f x x π⎛⎫=+⎪⎝⎭,然后根据0,4x π⎡⎤∈⎢⎥⎣⎦得出52,336x πππ⎡⎤+∈⎢⎥⎣⎦,最后根据正弦函数的性质即可得出结果. 【详解】(1)555sin 063322f πππ⎛⎫==-+=⎪⎝⎭,(2)()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤+∈⎢⎥⎣⎦, 则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,函数()f x 的取值范围为[]1,2.25.(1)T π=;对称中心为(,0),Z 26k k ππ-∈;(2)6. 【分析】(1)利用二倍角公式、辅助角公式化简得1()sin(2)23f x x π=+求得最小正周期及对称中心;(2)求得1sin(2)33πα+=,对角拆分2(2)33ππαα=+-利用两角和差的余弦公式得解.【详解】(1) 1cos2()sin()sin()2266x f x x x πππ+=++--12cos()sin()266x x x ππ=+⨯--1sin(2)23x x π=+-1111(sin 2cos2(sin 2cos22222x x x x x =+⋅-=⋅+ 1sin(2)23x π=+. 所以()f x 的最小正周期22T ππ==. 由2,Z 3x k k ππ+=∈得,Z 26k x k ππ=-∈,所以()f x 的对称中心为(,0),Z 26k k ππ-∈. (2) 由1()6f α=得1sin(2)33πα+=,因为(,)123ππα∈,所以2(,)32ππαπ+∈,所以cos(2)3πα+==,所以cos2cos[(2)]cos(2)cos sin(2)sin 333333ππππππαααα=+-=+⋅++⋅1123=+=. 【点睛】熟练运用二倍角公式、辅助角公式、两角和差的余弦公式及合理拆分角是解题关键,属于基础题. 26.(1)15(2)13-【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】 (1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭. (2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.。
(人教版)成都市必修第一册第五单元《三角函数》检测(有答案解析)
一、选择题1.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两条对称轴之间的距离为2π,且该函数图象关于点()0,0x 成中心对称,00,2x π⎡⎤∈⎢⎥⎣⎦,则0x 等于( ) A .512π B .4π C .3π D .6π2.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( ) A .2425-B .725-C .7-D .17-3.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定4.cos45sin15sin 45cos15︒︒-︒︒=( ).A .1B .12-C .2D .125.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦6.要得到函数224y x π⎛⎫=++ ⎪⎝⎭的图象只需将函数22y x π⎛⎫=- ⎪⎝⎭的图象( )A .先向右平移8π个单位长度,再向下平移2个单位长度 B .先向左平移8π个单位长度,再向上平移2个单位长度C .先向右平移4π个单位长度,再向下平移2个单位长度D .先向左平移4π个单位长度,再向上平移2个单位长度7.已知函数 ()cos f x x a x =+,[0,]3x π∈的最小值为a ,则实数a 的取值范围是( )A .[0,2]B .[2,2]-C .(],1-∞D .(],3-∞8.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .9.已知1cos 2α=,322παπ<<,则sin(2)πα-=( ) A .3-B .12C .12-D .3 10.3tan 26tan 34tan 26tan 34++=( ) A .33B .3-C .3D .33-11.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .3512.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 二、填空题13.若ππ2α<<,π02β<<,且sin α,3π3cos 85β⎛⎫+=- ⎪⎝⎭,则3πcos 8αβ⎛⎫++= ⎪⎝⎭______.14.已知22034sin παα=<<,,则sin cos αα-=_____________________. 15.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________.16.若函数()|2cos |f x a x =+的最小正周期为π,则实数a 的值为____. 17.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______. 18.已知2sin 3θ=-,3,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ=______.19.已知0sin 245ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,,则tan α=__________. 20.已知7sin cos 5αα+=-,22sin cos 5αα-=-,则cos2=α_______.三、解答题21.已知函数()21()2cos 1sin 2cos 42=-+f x x x x . (1)求()f x 的最小正周期;(2)求()f x 的最大和最小值以及相应的x 的取值;(3)若,2παπ⎛⎫∈⎪⎝⎭,且()f α=,求α的值. 22.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭只能同时....满足下列三个条件中的两个:①图象上一个最低点为2,23M π⎛⎫-⎪⎝⎭;②函数()f x 的图象可由2sin 4y x π⎛⎫=- ⎪⎝⎭的图象平移得到;③若对任意x ∈R ,()()()12f x f x f x ≤≤恒成立,且12x x -的最小值为2π. (1)请写出这两个条件序号,并求出()f x 的解析式; (2)求方程()10f x -=在区间[],ππ-上所有解的和. 23.在①函数()()sin 20,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象向右平移6π个单位长度得到()g x 的图像,()g x 图像关于,012π⎛⎫⎪⎝⎭对称;②函数()()12cos sin 062f x x x πωωω⎛⎫=+-> ⎪⎝⎭这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,求a 的取值范围; (2)求函数()f x 在[]0,2π上的单调递增区间.24.已知函数()()sin f x A x =+ωϕ,其中0A >,0>ω,22ππϕ-<<,x ∈R ,其部分图象如图所示.(1)求函数()y f x =的解析式;(2)已知函数()()cos g x f x x =,求函数()g x 的单调递增区间. 25.已知函数2()322cos 1f x x x =-+.(1)求()f x 的最小正周期; (2)若对任意[,]6x m π∈,都有()()6f x f π≥,求m 的最大值.26.已知函数()33sin 22f x x x =.(1)若62A f ⎛⎫= ⎪⎝⎭,0A π<<,求A 的值.(2)先将函数()y f x =的图像上所有点向左平移3π个单位,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数y g x 的图像,求函数y g x 的单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知条件求得函数()f x 的最小正周期T ,可求得ω的值,再由已知可得()026x k k Z ππ+=∈,结合00,2x π⎡⎤∈⎢⎥⎣⎦可求得0x 的值. 【详解】由题意可知,函数()f x 的最小正周期T 满足22T π=,T π∴=,22T πω∴==,()sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,由于函数()f x 的图象关于点()0,0x 成中心对称,则()026x k k Z ππ+=∈,解得()0212k x k Z ππ=-∈, 由于00,2x π⎡⎤∈⎢⎥⎣⎦,解得0512x π=. 故选:A. 【点睛】结论点睛:利用正弦型函数的对称性求参数,可利用以下原则来进行: (1)函数()()sin f x A x =+ωϕ关于直线0x x =对称()02x k k Z πωϕπ⇔+=+∈;(2)函数()()sin f x A x =+ωϕ关于点()0,0x 对称()0x k k Z ωϕπ⇔+=∈.2.D解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解.因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解.由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.5.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.6.B解析:B 【分析】根据三角函数图像平移规则,进行平移即可 【详解】解:由函数222248y x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,222y x x π⎛⎫=-= ⎪⎝⎭,所以先向左平移8π个单位长度,得2())84y x x ππ=+=+的图像,再向上平移2个单位长度,得224y xπ⎛⎫=++⎪⎝⎭的图像,故选:B7.D解析:D 【分析】通过参变分离转化为2cos222sin tan22x xax≤==,即mintan2a≤⎪⎝⎭.【详解】()cosf x x a x=+的最小值是a,并且观察当0x=时,()0f a=,所以当0,3xπ⎡⎤∈⎢⎥⎣⎦cosx a x a+≥恒成立,即()1cosa x x-≤,当0x=时,a R∈,当0,3xπ⎛⎤∈ ⎥⎝⎦时,2cos221cos2sin tan22x xxax xx≤==-恒成立,即mintan2ax⎛⎫⎪≤ ⎪⎪⎝⎭0,3xπ⎛⎤∈ ⎥⎝⎦时,tan2xtan2的最小值是3,所以3a≤.故选:D【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 8.B解析:B【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项.【详解】()()1sin2f x x x f x-=-+=-,()f x∴为奇函数,∴图象关于原点对称,故排除A,D;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.9.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】 解:因为1cos 2α=,322παπ<<,所以sin 2α==-,所以sin(2)sin 2παα-=-=. 故选:D .10.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】26tan34tan 26tan34︒︒+︒+︒26tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒26tan 34tan 26tan 34)=︒︒+-︒︒26tan3426tan34=︒︒︒︒=故选:C .11.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P ,所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+ ⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 二、填空题13.【分析】先根据题意求出和再根据两角和的余弦公式求解即可【详解】由可得因为所以所以故答案为:【点睛】本题主要考和角公式的应用解题时会判断所求角所在的象限属于基础题【分析】先根据题意求出cos α和3πsin 8β⎛⎫+⎪⎝⎭,再根据两角和的余弦公式求解即可.【详解】由ππ2α<<,sin α=,可得cos α==,因为π3π3π7π02888ββ<<⇒<+<,3π3cos 85β⎛⎫+=- ⎪⎝⎭,所以3π4sin 85β⎛⎫+== ⎪⎝⎭, 所以3π3π3πcos cos cos sin sin 888αβαβαβ⎛⎫⎛⎫⎛⎫++=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3455⎛⎛⎫=⨯-= ⎪ ⎝⎭⎝⎭.【点睛】本题主要考和角公式的应用,解题时会判断所求角所在的象限,属于基础题.14.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以3sin cos αα-====-,故答案为: 3-. 15.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-+=-= ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈; 函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.16.【分析】利用来求解【详解】因为函数的最小正周期为所以都有成立故则故答案为: 解析:0【分析】利用()()f x f x π=+来求解. 【详解】因为函数()f x 的最小正周期为π,所以x R ∀∈,都有()()f x f x π=+成立, 故()2cos 2cos 2cos a x a x a x π+=++=-,则0a =. 故答案为:0.17.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.18.【分析】根据角的范围和同角三角函数的关系求得从而求得答案【详解】因为所以所以故答案为:【分析】根据角的范围和同角三角函数的关系求得cos θ,从而求得答案. 【详解】 因为2sin 3θ=-,3,2πθπ⎛⎫∈ ⎪⎝⎭,所以cos 0θ<,cos 3θ===-,所以sin tan cos θθθ==,. 19.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 45πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.20.【分析】联立方程组求得的值结合余弦的倍角公式即可求解【详解】由题意知:联立方程组求得所以故答案为: 解析:725【分析】联立方程组,求得sin ,cos αα的值,结合余弦的倍角公式,即可求解. 【详解】由题意知:7sin cos 5αα+=-,22sin cos 5αα-=-,联立方程组,求得34sin ,cos 55αα=-=-,所以2247cos 22cos 12()1525αα=-=⨯--=. 故答案为:725. 三、解答题21.(1)2π;(2)函数()f x 的最大值为2,此时+,162k x k Z ππ=∈;函数()f x的最小值为2-,此时3+,162k x k Z ππ=-∈;(3)3148πα=或4748π. 【分析】(1)化简函数解析式为最简形式,利用公式求出周期 (2)根据正弦的性质可求得函数最值和相应的x 的取值; (3)根据限定范围和正弦函数的取值可求得答案. 【详解】(1),因为()()212cos 1sin 2cos 42f x x x x =-+1cos 2sin 2cos 42x x x =+()sin 124cos4x x +=)24x π=+,所以()f x )24x π=+, 所以()f x 的最小正周期为242ππ=,(2)由(1)得()f x )24x π=+,所以当sin(4)14x π+=时,函数()f x 的最大值为2,此时4+2,42x k k Z πππ+=∈,即+,162k x k Z ππ=∈;当sin(4)14x π+=-时,函数()f x 的最小值为2-,此时4+2,42x k k Z πππ+=-∈,即3+,162k x k Z ππ=-∈;所以函数()f x 的最大值为2,此时+,162k x k Z ππ=∈;函数()f x 的最小值为2-,此时3+,162k x k Z ππ=-∈;(3)因为(,)2παπ∈,所以9174(,)444πππα+∈.因为()4f α=,所以())4f παα=+=1sin(4)42πα+=. 所以17446ππα+=或256π,故3148πα=或4748π. 22.(1)①③,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)3π-. 【分析】(1)由题意分析出①②矛盾,可知③满足题意,由③可得出函数()f x 的最小正周期为π,可求得2ω=,可说明②不符合条件,进而可知符号题意的条件序号为①③,可得出2A =,由此可得出函数()f x 的解析式; (2)由()10f x -=可得1sin 262x π⎛⎫+= ⎪⎝⎭,解得()x k k Z π=∈或()3x k k Z ππ=+∈,再由[],x ππ∈-可求得结果.【详解】(1)函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件为①③; 理由如下:由题意可知条件①②互相矛盾, 故③为函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件之一, 由③可知,函数()f x 的最小正周期为T π=,所以2ω=,故②不合题意, 所以函数()sin 6f x A x πω⎛⎫=+⎪⎝⎭满足的条件为①③; 由①可知2A =,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)因为()10f x -=,所以1sin 262x π⎛⎫+= ⎪⎝⎭, 所以()2266x k k Z πππ+=+∈或()52266x k k Z πππ+=+∈, 所以()x k k Z π=∈或()3x k k Z ππ=+∈又因为[],x ππ∈-,所以x 的取值为π-、23π-、0、3π、π, 所以方程()10f x -=在区间[],ππ-上所有的解的和为3π-. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的基本性质求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值. 23.(1),63ππ⎡⎤⎢⎥⎣⎦;(2)06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【分析】先选条件①或条件②,结合函数的性质及图像变换,求得函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭, (1)由[]0,x α∈,得到2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,根据由正弦函数图像,即可求解; (2)根据函数正弦函数的形式,求得36k x k ππππ-+≤≤+,k Z ∈,进而得出函数的单调递增区间. 【详解】 方案一:选条件①由函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,解得1ω=, 所以()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤, 所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦. 方案二:选条件②: 由()12cos sin 62f x x x πωω⎛⎫=+- ⎪⎝⎭12cos sin cos cos sin 662x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 2cos 2222x x x x x ωωωωω=+-=+sin 26x πω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,所以1ω=, 可得()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤, 所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦. 【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为()sin()f x A wx ϕ=+或()cos()f x A wx ϕ=+的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质. 24.(1)()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;(2)单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.【分析】(1)利用函数()y f x =的最大值可求得A ,由图象计算出函数()y f x =的最小正周期,可求得ω的值,再代入点,26π⎛⎫⎪⎝⎭,结合22ππϕ-<<可求得ϕ的值,由此可解得函数()y f x =的解析式;(2)利用三角恒等变换思想化简函数()y g x =的解析式为()sin 23g x x π⎛⎫=+ ⎪⎝⎭,然后解不等式()222232k x k k Z πππππ-+≤+≤+∈,即可得出函数()y g x =的单调递增区间. 【详解】(1)由函数()y f x =的图象可知,()max 2A f x ==,函数()y f x =的最小正周期为24236T πππ⎛⎫=⨯-=⎪⎝⎭,则21T πω==, 又2sin 266f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,可得πsin φ16,22ππϕ-<<,2363πππϕ∴-<+<,62ππϕ∴+=,解得3πϕ=,因此,()2sin 3f x x π⎛⎫=+ ⎪⎝⎭; (2)()()1cos 2sin cos 2sin cos cos 322g x f x x x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭21sin cos sin 22sin 223x x x x x x π⎛⎫==+=+ ⎪⎝⎭ 令()222232k x k k Z πππππ-+≤+≤+∈,得()51212k x k k Z ππππ-+≤≤+∈. 因此,函数()y g x =的单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.【点睛】已知图象求三角函数解析式()sin y A x b ωϕ=++(或()cos y A x b ωϕ=++)的步骤如下:(1)先求振幅A 与平衡位置b :()()max min2f x f x A -=,()()max min2f x f x b +=;(2)求频率ω:2Tπω=; (3)求初相ϕ:将对称中心坐标或顶点坐标代入解析式,利用特殊值以及角的范围确定初相的值.25.(1)π;(2)2π. 【分析】(1)首先利用二倍角公式和辅助角公式化简函数()2sin 26f x x π⎛⎫=- ⎪⎝⎭,再求最小正周期;(2)由题意可知当6x π=时,函数取得最小值,首先求26x π-的范围,再根据根据函数的取值范围确定右端点的范围,求m 的最大值. 【详解】(1)因为2()22cos 1f x x x =-+2cos 2x x =-12cos 2)2x x =- 2sin(2)6x π=-所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()2sin(2).6f x x π=- 令2,6t x π=-当[,]6x m π∈时,[,2]66t m ππ∈-. 若对任意[,]6x m π∈,都有()()6f x f π≥, 即对任意[,2]66t m ππ∈-,都有1sin ,2t ≥ 所以266m π5π-≤. 即2m π≤, 所以m 的最大值为2π. 【点睛】 思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入求解函数性质,根据x 的范围,求x ωϕ+的范围,再代入sin y x =的性质,求解.26.(1)512A π=或1112A π=;(2),,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【分析】(1)化简得())6f x x π=-6A π⎛⎫-= ⎪⎝⎭ (2)先求出函数()g x 的解析式,再求函数的单调递增区间.【详解】(1)())6f x x π=-)所以26A f A π⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即sin 62A π⎛⎫-= ⎪⎝⎭, 又0A π<<,所以5666A πππ-<-<, 所以64A ππ-=或34π, 所以512A π=或1112A π=(2)()2,6f x x π⎛⎫- ⎪⎝⎭将函数()y f x =的图像上所有点向左平移3π个单位得到)])362y x x πππ=+-=+,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()442g x x x π⎛⎫=+= ⎪⎝⎭的图像, 令242k x k πππ-+≤≤,k Z ∈, 所以422k k x πππ-+≤≤, 所以递增区间为,,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【点睛】方法点睛:求函数sin()y A wx h φ=++的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.。
成都列五中学必修第一册第五单元《三角函数》测试(含答案解析)
一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =- D .()cos f x x =2.sin 3π=( )A .12B .12-C .2D . 3.若角α的终边过点(3,4)P -,则cos2=α( ) A .2425-B .725C .2425D .725-4.函数()(1)cos f x x x =的最小正周期为( ) A .πB .32π C .2πD .2π 5.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 6.已知3sin 7a π=,4cos 7b π=,3tan()7c π=-,则a ,b ,c 的大小关系为( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<7.sin34sin64cos34sin 206︒︒-︒︒的值为( )A .12B .2 C D .18.下面函数中最小正周期为π的是( ).A .cos y x =B .π3y x ⎛⎫=- ⎪⎝⎭C .tan2xy = D .22cos sin 2y x x =+9.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=- 10.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-11.已知函数()()()sin 0,0f x A x =+>-π<<ωϕωϕ的部分图象如图所示.则()f x 的解析式为( ).A .()2sin 12f x x π⎛⎫=- ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=-⎪⎝⎭D .()32sin 34f x x π=-⎛⎫ ⎪⎝⎭12.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________ 14.化简cos()sin()2sin()cos()πααπααπ+-=--___________.15.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________.16.已知函数()log (21)3a f x x =-+的图象过定点P ,且角α的终边过点P ,始边与x 轴的正半轴重合,则tan3α的值为__________. 17.先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y 轴对称,则ϕ=________. 18.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,且在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数,则ω的取值范围为______. 19.已知:3sin 25πα⎛⎫+= ⎪⎝⎭,且α为第四象限角,则cos 4πα⎛⎫+= ⎪⎝⎭___________. 20.已知tan 2α=,则cos 22πα⎛⎫-= ⎪⎝⎭___________. 三、解答题21.已知函数2()2sin cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 22.若函数()sin cos f x x x =+在[]0,a 上单调递增,求a 的取值范围. 23.若函数2cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合.24.已知函数()21()2cos 1sin 2cos 42=-+f x x x x . (1)求()f x 的最小正周期;(2)求()f x 的最大和最小值以及相应的x 的取值;(3)若,2παπ⎛⎫∈⎪⎝⎭,且()f α=,求α的值. 25.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围.26.已知sin cos 510αβ==,α、(0)2πβ∈,. (1)求cos(2)3πα-的值;(2)求αβ+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.C解析:C 【分析】根据特殊角对应的三角函数值,可直接得出结果. 【详解】sin3π=. 故选:C.3.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.4.C解析:C 【分析】由切化弦,及两角和的正弦公式化简函数,然后由正弦函数的周期性得结论. 【详解】 由已知,()(1)cos f x x x =+cos x x =+12cos 2x x ⎛⎫=+⎪⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭, ∴最小正周期为221T ππ==, 故选:C .5.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确; 对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 6.C解析:C 【分析】3sin07a π=>,4cos 07b π=<,a b >且均属于()1,1-,而1c <-,大小关系即可确定. 【详解】 解:3sin07a π=>;427πππ<<, 4cos coscos 72πππ∴<<,即10b -<<. 又正切函数在(0,)2π上单调递增,347ππ<; 3tantan 174ππ∴>=;33tan()tan 177c ππ∴=-=-<-, 01a b c ∴>>>->,故选:C. 7.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒32=. 故选:C .8.D解析:D 【分析】根据三角函数的周期公式结合图象对选项进行逐一判断,可得答案. 【详解】()cos cos x x -=,cos cos y x x ∴==,周期为2π,故A 不符合题意; π2sin 3y x ⎛⎫=- ⎪⎝⎭的周期为2π,故B 不符合题意;画出函数tan2x y =的图象,易得函数tan 2xy =的周期为2π,故C 不符合题意;2π2cos sin 2cos 21sin 22sin 214x x x x x ⎛⎫+=++=++ ⎪⎝⎭,周期为π,故D 符合题意. 故选:D9.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出. 【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误; 对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C 错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.10.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.11.B解析:B 【分析】根据函数图象得到3532,41234T A πππ⎛⎫==--= ⎪⎝⎭ ,进而求得2,2T Tππω===,然后由函数图象过点5,212π⎛⎫⎪⎝⎭求解. 【详解】由函数图象知:3532,41234T A πππ⎛⎫==--= ⎪⎝⎭, 所以2,2T Tππω===, 又函数图象过点5,212π⎛⎫⎪⎝⎭, 所以 522,122k k Z ππϕπ⨯+=+∈, 解得 2,3k k Z πϕπ=-∈,又因为 0πϕ-<<,所以3πϕ=-,所以()f x 的解析式为:()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想方法,属于中档题.12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12-【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.【分析】利用诱导公式直接化简即可【详解】故答案为: 解析:tan α-【分析】利用诱导公式直接化简即可. 【详解】cos()sin()(sin )(sin )2tan sin()cos()sin (cos )παααααπααπαα+--⋅-==----,故答案为:tan α-.15.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=.【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-+=-= ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈; 函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.16.【分析】先求出定点为再利用正切函数的两角和公式求解即可【详解】函数的图象过定点可得定点为又由角的终边过点且始边与轴的正半轴重合故答案为: 解析:913【分析】先求出定点P 为(1,3),再利用正切函数的两角和公式求解即可 【详解】函数()log (21)3a f x x =-+的图象过定点P ,可得定点P 为(1,3),又由角α的终边过点P ,且始边与x 轴的正半轴重合,3tan 31α,22tan 3tan 21tan 4ααα∴==--, tan 2tan 9tan 31tan 2tan 13ααααα+==-故答案为:91317.【分析】由题意利用函数的图象变换规律三角函数的图象的对称性求得的值【详解】先将函数的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变)可得的图象;再向左平移个单位长度可得函数的图象根据所得函数图象关 解析:56π 【分析】由题意利用函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性,求得ϕ的值. 【详解】先将函数()()()cos 0,y x ϕϕπ=+∈的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得1cos 2y x ϕ⎛⎫=+ ⎪⎝⎭的图象; 再向左平移3π个单位长度,可得函数1cos 26y x πϕ⎛⎫=++ ⎪⎝⎭的图象,根据所得函数图象关于y 轴对称,可得6k πϕπ+=,k Z ∈,因为()0,ϕπ∈,所以1k =,56πϕ=. 故答案为:56π. 【点睛】关键点点睛:熟练掌握函数()cos y A x ωϕ=+的图象变换规律,三角函数的图象的对称性是解题关键..18.【分析】由函数图象关于原点对称可得再由在区间上是增函数可得解不等式即可【详解】由函数的图象关于原点对称得即因为在区间上是减函数所以在区间上是增函数又是函数的单调递增区间所以又解得故答案为:解析:30,4⎛⎤⎥⎝⎦【分析】由函数图象关于原点对称可得2ϕπ=,再由2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,可得22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解不等式即可.【详解】由函数()()()2cos 0,0f x x ωϕωϕπ=+><<的图象关于原点对称,得2ϕπ=, 即()2cos 2sin 2f x x x πωω⎛⎫=+=- ⎪⎝⎭,因为()f x 在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是减函数, 所以2sin y x ω=在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数, 又,22ππωω⎡⎤-⎢⎥⎣⎦是函数2sin y x ω=的单调递增区间, 所以22232ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,又0>ω,解得304ω<≤.故答案为:30,4⎛⎤ ⎥⎝⎦19.【分析】由诱导公式求得然后由平方关系求得再由两角和的余弦公式可得结论【详解】由已知又为第四象限角∴∴故答案为:解析:10【分析】由诱导公式求得cos α,然后由平方关系求得sin α,再由两角和的余弦公式可得结论. 【详解】由已知3sin cos 25παα⎛⎫+== ⎪⎝⎭,又α为第四象限角,∴4sin 5α=-,∴34cos cos cos sin sin ()444525210πππααα⎛⎫+=-=⨯--⨯= ⎪⎝⎭故答案为:10. 20.【分析】本题首先可通过三角恒等变换将转化为然后代入即可得出结果【详解】因为所以故答案为:【点睛】关键点点睛:本题考查给值求值问题能否合理利用同角三角函数关系诱导公式二倍角公式是解决本题的关键考查计算解析:45【分析】本题首先可通过三角恒等变换将cos 22πα⎛⎫- ⎪⎝⎭转化为22tan tan 1αα+,然后代入tan 2α=即可得出结果. 【详解】因为tan 2α=, 所以2222sin cos 2tan 4cos 2sin 22sin cos tan 15παααααααα⎛⎫-==== ⎪++⎝⎭, 故答案为:45. 【点睛】关键点点睛:本题考查给值求值问题,能否合理利用同角三角函数关系、诱导公式、二倍角公式是解决本题的关键,考查计算能力,是中档题.三、解答题21.(1)π;(2)最小值为1,最大值为4. 【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解.22.04a π<≤【分析】先利用辅助角公式化简得()4f x x π⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质求出()f x 的单调递增区间,即可求解. 【详解】()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,令()22242k x k k Z πππππ-+≤+≤-+∈,解得:()32244k x k k Z ππππ-+≤≤+∈, 令0k =,得3,44ππ⎡⎤-⎢⎥⎣⎦ 可得()sin cos f x x x =+在3,44ππ⎡⎤-⎢⎥⎣⎦单调递增, 若[]0,a 上单调递增, 则04a π<≤,所以a 的取值范围是04a π<≤故答案为:04a π<≤【点睛】关键点点睛:本题的关键点是解得()32244k x k k Z ππππ-+≤≤+∈,求出()f x 的单调递增区间,可得()sin cos f x x x =+在3,44ππ⎡⎤-⎢⎥⎣⎦单调递增,进而可得04a π<≤.23.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可.【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题.24.(1)2π;(2)函数()f x 的最大值为2,此时+,162k x k Z ππ=∈;函数()f x的最小值为2-,此时3+,162k x k Z ππ=-∈;(3)3148πα=或4748π. 【分析】(1)化简函数解析式为最简形式,利用公式求出周期 (2)根据正弦的性质可求得函数最值和相应的x 的取值; (3)根据限定范围和正弦函数的取值可求得答案. 【详解】(1),因为()()212cos 1sin 2cos 42f x x x x =-+1cos 2sin 2cos 42x x x =+()sin 124cos4x x +=)24x π=+,所以()f x )24x π=+, 所以()f x 的最小正周期为242ππ=,(2)由(1)得()f x )24x π=+,所以当sin(4)14x π+=时,函数()f x ,此时4+2,42x k k Z πππ+=∈,即+,162k x k Z ππ=∈;当sin(4)14x π+=-时,函数()f x 的最小值为2-,此时4+2,42x k k Z πππ+=-∈,即3+,162k x k Z ππ=-∈;所以函数()f x 的最大值为2,此时+,162k x k Z ππ=∈;函数()f x 的最小值为2-,此时3+,162k x k Z ππ=-∈;(3)因为(,)2παπ∈,所以9174(,)444πππα+∈.因为()4f α=,所以())4f παα=+=1sin(4)42πα+=. 所以17446ππα+=或256π,故3148πα=或4748π. 25.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞. 【分析】(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 21226x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z 再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan baϕ=)26.(1;(2)34αβπ+=. 【分析】(1)先求出cos2α的值,再计算sin 2α的值,将cos(2)3πα-展开即可求解;(2)求出cos α和sin β的值,再计算()cos αβ+的值,结合α、(0)2πβ∈,,即可求出αβ+的值.【详解】(1)因为02πα<<,sin 5α=,所以cos α===,所以223cos 212sin 125αα=-=-⨯=-⎝⎭,4sin 22sin cos 2555ααα==⨯⨯=,314cos 2cos 2cos sin 2sin 333525πππααα⎛⎫-=+=-⨯+=⎪⎝⎭(2)因为02πβ⎛⎫∈ ⎪⎝⎭,,cos β=sin 10β==,()cos cos sin sin cos αβαβαβ+=-===, 因为02πα<<,02πβ<<,所以0αβ<+<π,所以34παβ+=. 【点睛】方法点睛:解给值求角问题的一般步骤 (1)求角的某一个三角函数值; (2)确定角的范围;(3)根据角的范围写出角的大小.。
高一数学(必修一)《第五章 三角函数》练习题及答案解析-人教版
高一数学(必修一)《第五章 三角函数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.为了得到函数()()5sin 212f x x π=-的图象,可以将函数()sin 2g x x =图象上所有的点( ) A .向右平移512π个单位长度 B .向左平移512π个单位长度 C .向右平移524π个单位长度 D .向左平移524π个单位长度 2.下列图像中,符合函数sin 2()1cos xf x x=-的是( )A .B .C .D .3.已知函数()()πcos 2sin 06f x x x ωωω⎛⎫=++> ⎪⎝⎭的最小正周期为π,将函数()y f x =的图像向左平移π6个单位长度后得到函数()y g x =的图像,则( )A .()g x xB .()g x x =C .()π26g x x ⎛⎫=- ⎪⎝⎭D .()2g x x4.函数sin y x =-在[0,2]π上的图像是( )A .B .C .D .5.要想得到正弦曲线,只需将余弦曲线( ) A .向右平移2π个单位 B .向左平移2π个单位 C .向右平移π个单位 D .向左平移π个单位6.将函数sin y x =的图象上所有点的横坐标变为原来的(0)m m >倍,纵坐标不变,再将所得函数图象向左平移(0)ϕϕπ<<个单位长度,最后将所得函数图象上所有点的纵坐标变为原来的(0)n n >倍,横坐标不变,得到如图所示的函数()f x 的部分图象,则,,m n ϕ的值分别为( )A .22,2,3m n πϕ===B .12,2,23m n πϕ===C .2,2,3m n πϕ===D .1,2,23m n πϕ===7.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M 3π,04⎛⎫⎪⎝⎭对称,且在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,则ω和φ的值分别为( )A .23和π4 B .2和π3 C .2和π2 D .103和π28.已知函数()π()cos 002f x A x A ωϕωϕ=+>><(,,)的部分图象如图所示,若先将函数()f x 图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数()g x 的图象;再把()g x 图象上所有点向左平行移动2π3个单位长度,得到函数()h x 的图象,则当2π[π,]3x ∈-时,则函数()h x 的值域为( )A .[-2,0]B .[-1,0]C .[0,1]D .[0,2]9.已知函数()π4f x x ⎛⎫=- ⎪⎝⎭,则下列结论中正确的是( )A .()f x 的最小正周期为πB .()f x 的最大值为2C .()f x 在区间3π0,4⎛⎫ ⎪⎝⎭上单调递增 D .()f x 的图像关于直线π4x =对称10.将函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,]64ππ-上为增函数,则ω最大值为( )A .32B .2C .3D . 11.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3C A π=-,则ba的取值范围是( )A .2)B .C .D .4)12.已知函数()4sin sin ,(0)33f x x x ππωωω⎛⎫⎛⎫=+-> ⎪ ⎪⎝⎭⎝⎭的最小正周期为π,将其图象沿x 轴向左平移(0)m m >个单位,所得图象关于直线3x π=对称,则实数m 的最小值为( )A .6πB .3π C .34π D .4π 13.已知函数3()2sin 242f x x ππϕϕ⎛⎫⎛⎫=+-< ⎪⎪⎝⎭⎝⎭是奇函数,为了得到函数()y f x =的图象,可把函数52cos 26y x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度14.某种商品一年内每件出厂价在7千元的基础上,按月呈()()cos f x A x B ωϕ=++的模型波动(()f x 的单位:千元,x 为月份,112x ≤≤且*x ∈N ).已知3月出厂价最高,为9千元,7月出厂价最低,为5千元,则()f x 的解析式为( ) A .()ππ2sin 744f x x ⎛⎫=++ ⎪⎝⎭B .()9si 44πn πf x x ⎛⎫=- ⎪⎝⎭C .()πn 74f x x =+D .()π2sin 744πf x x ⎛⎫=-+ ⎪⎝⎭15.函数()sin cos f x x x =+的图象可以由函数()sin cos g x x x =-的图象( )A .向右平移π4单位得到B .向左平移π4单位得到C .向右平移π2单位得到D .向左平移π2单位得到16.将函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭的图象向右平移6π个单位长度,得到函数()g x 的图象,则下列关于()g x 的说法正确的是( ) A .图象关于直线3x π=-对称 B .图象关于6x π=对称 C .图象关于点5,012π⎛⎫- ⎪⎝⎭中心对称D .图象关于点,03π⎛⎫⎪⎝⎭中心对称17.将偶函数()()()2cos 2(0π)f x x x ϕϕϕ=+-+<<的图象向右平移π6个单位,得到()y g x =的图象,则()g x 的一个单调递减区间为( ) A .ππ,36⎛⎫- ⎪⎝⎭B .π7π,1212⎛⎫ ⎪⎝⎭C .π2π,63⎛⎫ ⎪⎝⎭D .π5π,36⎛⎫ ⎪⎝⎭二、解答题18.已知函数()()3sin 2f x x πϕϕ=+∈-,(,2π)函数关于4x π=对称.(1)求()f x ϕ的值及的解析式;(2)用五点法在下列直角坐标系中画出()f x 在744ππ⎡⎤-⎢⎥⎣⎦,上的图象;(3)写出()f x 的单调增区间及最小值,并写出取最小值时自变量x 的取值集合. 19.不画图,说明下列函数的图象可由正弦曲线经过怎样的变化得出: (1)1π8sin 48y x ⎛⎫=- ⎪⎝⎭;(2)1πsin 337y x ⎛⎫=+ ⎪⎝⎭.20.已知函数()cos()(0f x x ωϕω=+>,0)ϕπ<<为奇函数,且其图象上相邻的一个最高点与一个最低点之(1)求()f x 的解析式;(2)若已知三点坐标1,0A ,1,12B f πα⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭和()1,2C f πα⎛⎫- ⎪⎝⎭.若//AB AC ,且0,2πα⎛⎫∈ ⎪⎝⎭,求sin cos αα+的值.21.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为4,且满足1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的解析式; (2)求方程()102f x +=在区间[]22-,上所有解的和.22.已知函数1cos 2y x x =+,说明此函数是由sin y x =如何变换而来的. 23.已知函数()2sin f x x ω=,其中常数0>ω. (1)若函数()y f x =的最小正周期为2π,求ω的值;(2)若()y f x =是2,43ππ⎡⎤-⎢⎥⎣⎦上的严格增函数,求ω的取值范围;(3)当2ω=时,则将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[],(,?R,)a b a b a b ∈<且满足:()y g x =在[],a b 上至少含有30个零点,在所有满足上述条件的[],a b中,求b a -的最小值.三、填空题24.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π0,2f x g x x ⎫⎛⎫+=∈ ⎪⎪⎝⎭⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭ k ∈Z③函数()y f x =与函数()y g x =图象关于7π24x =对称. 25.将函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象向右平移π6个单位长度后,所得图象与函数()f x 的图象重合,则ω的最小值为______.26.将函数()cos 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于原点对称,则ϕ的一个取值为_________.27.已知数列{}n a 满足()1111n n a n N a *+=-∈+,11a =.若从四个条件:①A =;②2ωπ=;③3πϕ=;④12B =中,选择一个作为条件补充到题目中,将数列{}n a 的通项n a 表示为sin()0,||2A n B πωϕωϕ⎛⎫++>< ⎪⎝⎭的形式,则n a =___________.四、多选题28.已知函数()()cos 21f x A x ϕ=+-(0A >,0ϕπ<<),若函数()y f x =的部分图象如图所示,函数()()sin g x A Ax ϕ=-,则下列结论不正确的是( )A .函数()g x 的图象关于直线12x π=-对称B .函数()g x 的图象关于点,02π⎛⎫⎪⎝⎭对称C .将函数()1y f x =+的图象向左平移12π个单位长度可得到函数()g x 的图象 D .函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦29.将函数()2sin(2)6f x x π=-的图像向左平移6π个单位后,得到函数()g x 的图像,则下列结论中正确的是( )A .()2sin 2g x x =B .()g x 的图象关于点(,0)12π-中心对称C .()g x 的图象关于3x π=-对称D .()g x 在区间[,]66ππ-上单调递增参考答案与解析1.C【分析】由条件根据函数 y =A sin(ωx +φ)的图象变换规律,可得结论. 【详解】因为()()()55sin 2sin 21224f x x x ππ⎡⎤=-=-⎢⎥⎣⎦所以应将函数()sin 2g x x =的图象上所有的点向右平移524π个单位长度. 故选:C. 2.A【分析】根据函数的奇偶性及函数值验证选项即可得出答案. 【详解】由()sin 21cos x f x x =-知 ()()sin 21cos xf x f x x--==-- ()f x ∴是奇函数,选项B 错误;()sin 2101cos1f =>-, ()()()sin 2ππ01cos πf --==--所以选项C 和选项D 错误,选项A 正确. 故选:A. 3.A【分析】先将()f x )6x πω+,根据最小正周期求出ω,再根据正弦函数的图像平移得到答案.【详解】因为()ππcos 2sin 66f x x x x ωωω⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭的最小正周期为π,所以2ω=.将()π26f x x ⎛⎫+ ⎪⎝⎭的图像向左平移π6个单位长度后得到函数()ππ2266y g x x x⎡⎤⎛⎫==++= ⎪⎢⎥⎝⎭⎣⎦的图像. 故选:A. 4.D【解析】利用五点法找到特殊点3(0,0),,1,(,0),1,(2,0)22ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,由此判断选项即可【详解】根据五点法找出五个特殊点,分别为3(0,0),,1,(,0),1,(2,0)22ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,然后描点并用光滑的曲线连接 故选:D【点睛】本题考查正弦型函数的图像,考查五点法作图的应用 5.A【分析】由诱导公式及函数图象平移规则即得.【详解】因为cos sin()2y x x π==+所以将余弦曲线向右移2π个单位可得sin()sin 22y x x ππ=-+=.故选:A . 6.D【分析】由图象求得()f x 的表达式,然后由图象变换得结论.【详解】设()()sin (0,0,)f x A x A ωαωαπ=+>><,由函数图象,知52,212122T A πππ⎛⎫==--= ⎪⎝⎭,所以2,2T Tππω===.所以()()2sin 2f x x α=+. 又函数图象过点5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πα⎛⎫⨯+=- ⎪⎝⎭.所以532,62k k ππαπ+=+∈Z ,解得22,3k k παπ=+∈Z . 因为απ<,所以23πα=.所以()22sin 22sin233f x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以1,2,23m n πϕ===.故选:D. 7.C【分析】由f (x )是偶函数及0≤φ≤π可得φπ2=.由图象关于点M 3π,04⎛⎫ ⎪⎝⎭对称,且在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,结合ω>1及余弦函数的图象与性质可求ω. 【详解】解:由f (x )是偶函数 φ=k ππ2+ k ∈Z ∵0≤φ≤π,∴当k =0时,则φπ2=. ∴f (x )=sin (ωx π2+)=cos ωx ∵f (x )图象上的点关于3π,04M ⎛⎫⎪⎝⎭对称∴3π4f ⎛⎫= ⎪⎝⎭3πcos 04ω=,故3π4ω=k ππ2+ k ∈Z即()2213k ω=+ k ∈Z . ∵f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上是单调函数,可得π12ππ22ωω≤⋅=,即ω≤2. 又∵()2213k ω=+ k ∈Z ω>1∴当k =1时可得ω=2. 故选:C . 8.D【分析】由图可求出函数的周期πT =,从而可求出2ω=,由图可得2A =,然后将点13,212π⎛⎫⎪⎝⎭代入函数中可求出ϕ的值,进而可求得函数解析式,根据三角函数图象变换规律求出()h x ,再由2ππ,3x ⎡⎤∈-⎢⎥⎣⎦求出3262πππx -≤+≤,再由余弦函数的性质可求得()h x 的值域. 【详解】由题意得313341234T πππ=-=,∴πT = 2π2T ω== 当13π12x =时,则ππ132212x k ωϕϕ+=⨯+= ()Z k ∈ ∴()132ππZ 6k k ϕ=-∈π2ϕ<,,令1k =可得π6ϕ=-又易知2A =,故()π2cos 26f x x ⎛⎫=- ⎪⎝⎭由三角函数图象的变换可得1π1π()2cos(2)2cos()4626g x x x =⨯-=-所以()1212cos 2cos 23626πππh x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∵2ππ3x -≤≤,∴3262πππx -≤+≤ ∴1π10cos 26x ⎛⎫≤+≤ ⎪⎝⎭,故函数()g x 的值域为[]0,2.故选:D 9.C【分析】根据三角函数图象性质结合选项一一判断即可.【详解】由()π4f x x ⎛⎫=- ⎪⎝⎭对A 项()f x 的最小正周期为2π,故A 错;对B 项()f x ,故B 错;对C.项当3π0,4x ⎛⎫∈ ⎪⎝⎭时,则有πππ442x -<-<,因为sin y x =在ππ,42⎛⎫- ⎪⎝⎭上单调递增所以()f x 在区间3π0,4⎛⎫⎪⎝⎭上单调递增,故C 正确;对D.项,当π4x =时,则有πππ0444f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以π4x =不是()f x 的对称轴,故D 错.故选:C 10.B【分析】先求出()g x ,又因为()y g x =在ππ[,]64-上为增函数,则ππ62ω⎛⎫⋅-≥- ⎪⎝⎭,且ππ42ω⋅≤,即可求出ω最大值.【详解】函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象则()ππ2sin 2sin 33g x x x ωωω⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦又因为()y g x =在ππ[,]64-上为增函数 所以ππ62ω⎛⎫⋅-≥- ⎪⎝⎭,且ππ42ω⋅≤解得2ω≤,故ω的最大值为2.11.C【分析】根据题意可得2B A =,由锐角三角形可求出A 的范围,再由正弦定理及余弦函数的值域即可求解. 【详解】3C A =-π sin sin 22cos ,sin sin b B A A a A A∴=== 2(0,),2B A =∈π3(0,)2C A =-∈ππ(,)64A ∴∈ππcos A ∴∈ba∴∈. 故选:C 12.A【分析】由已知,先对函数()f x 进行化简,根据最小正周期为π,求解出ω,然后根据题意进行平移变换,得到平移后的解析式,再利用图象关于直线π3x =对称,建立等量关系即可求解出实数m 最小值.【详解】解:()ππ114sin sin 4sin sin 3322f x x x x x x x ωωωωωω⎛⎫⎛⎫⎛⎫⎛⎫=+-=+ ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭22111cos 231cos 24sin 42cos 2124242x x x x x ωωωωω⎡⎤⎫-+⎛⎫⎛⎫⎢⎥=-=⋅-⋅=--⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦即()2cos21f x x ω=--,由其最小正周期为π,即22ππω=,解得1ω= 所以()2cos21f x x =--将其图象沿x 轴向左平移m (0m >)个单位,所得图象对应函数为()()2cos212cos 221y x m x m =-+-=-+- 其图象关于3x π=对称,所以2π2π,Z 3m k k +=∈,所以 ππ,Z 32k m k =-+∈ 由0m >,实数m 的最小值为π6.故选:A. 13.D【分析】根据()f x 是奇函数可求得4πϕ=-,利用诱导公式得52cos 22sin 263y x x ππ⎛⎫⎛⎫=+=-+ ⎪ ⎪⎝⎭⎝⎭,即可得【详解】因为()f x 是奇函数,所以3,Z 4k k πϕπ-=∈,即3,Z 4k k πϕπ=+∈ 因为2πϕ<,所以4πϕ=-,所以()()2sin 22sin 2f x x x π=-=-因为52cos 22sin 263y x x ππ⎛⎫⎛⎫=+=-+ ⎪ ⎪⎝⎭⎝⎭所以可把函数52cos 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度.故选:D. 14.D【分析】先根据最值,求出,A B ,求出最小正周期,进而求出2ππ4T ω==,代入特殊点坐标求出π4ϕ=-,求出正确答案.【详解】解:由题意得95A B A B +=⎧⎨-+=⎩,解得27A B =⎧⎨=⎩,又最小正周期为()2738⨯-=所以2ππ4T ω==,所以()π2sin 74f x x ϕ⎛⎫=++ ⎪⎝⎭将()3,9代入,解得3π2sin 794ϕ⎛⎫++= ⎪⎝⎭,则3ππ242πk ϕ+=+ Z k ∈π2π,Z 4k k ϕ=-+∈因为π2ϕ<,所以当0k =时,则π4ϕ=-符合题意 综上:()π2sin 744πf x x ⎛⎫=-+ ⎪⎝⎭故选:D 15.D【分析】根据辅助角公式,结合正弦型函数图像变换的性质进行求解即可.【详解】因为()sin cos )4g x x x x π=--,()sin cos ))442f x x x x x πππ=+=+=-+所以函数()sin cos g x x x=-向左平移2π单位得到函数()sin cos f x x x =+的图像 故选:D 16.C【分析】根据三角函数图象的平移变换可得()sin 26g x x π⎛⎫=- ⎪⎝⎭,结合三角函数对称轴、对称中心的定义与验证法依次判断选项即可.【详解】由题意得,()sin 2sin 2366g x x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴132g π⎛⎫-=- ⎪⎝⎭,162g π⎛⎫= ⎪⎝⎭和13g π⎛⎫= ⎪⎝⎭故A ,B ,D 错误,又5012g π⎛⎫-= ⎪⎝⎭∴()g x 图象关于点5,012π⎛⎫- ⎪⎝⎭中心对称.故选:C . 17.C【分析】根据辅助角公式,结合偶函数的性质求出ϕ值,再根据余弦函数图象的变换规律求出函数()g x 的解析式,最后根据余弦型函数的单调性进行求解即可.【详解】()()()π2cos 22sin 26f x x x x ϕϕϕ⎛⎫+-+=+- ⎪⎝⎭.因为函数()f x 是偶函数,所以()()ππ2ππ623k k k k ϕπϕ-=+∈⇒=+∈Z Z 因为0πϕ<<,所以2π3ϕ=,所以()2ππ2sin 22cos 236f x x x ⎛⎫=+-= ⎪⎝⎭ 因为函数()f x 的图象向右平移π6个单位,得到()y g x =的图象所以()ππ2cos 22cos 263y g x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭当()π2π22ππ3k x k k ≤-≤+∈Z 时,则函数()g x 单调递减 即当()π2πππ63k x k k +≤≤+∈Z 时,则函数()g x 单调递减 当0k =时,则函数()g x 在π2π63x ≤≤时单调递减. 故选:C 18.(1)4πϕ=()3sin 4f x x π⎛⎫=+ ⎪⎝⎭(2)详见解析(3)单调递增区间是,23244k k ππππ⎡⎤-+⎢⎥⎣⎦ k Z ∈最小值为3-,取得最小值的x 的集合52,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭.【分析】(1)根据函数的对称轴,列式,42k k Z ππϕπ+=+∈,求ϕ;(2)利用“五点法”列表,画图;(3)根据三角函数的性质,即可求解. (1)因为函数关于直线4x π=对称,所以,42k k Z ππϕπ+=+∈,4k k Z πϕπ=+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以4πϕ=所以()3sin 4f x x π⎛⎫=+ ⎪⎝⎭(2)首先根据“五点法”,列表如下:(3) 令22242k x k πππππ-≤+≤+解得32244k x k ππππ-≤≤+ k Z ∈ 所以函数的单调递增区间是,23244k k ππππ⎡⎤-+⎢⎥⎣⎦ k Z ∈ 最小值为3-令3242x k πππ+=+,得524x k ππ=+ k Z ∈ 函数取得最小值的x 的集合52,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 19.(1)答案见解析;(2)答案见解析【分析】(1)根据先平移,再进行横坐标伸缩变换,最后进行纵坐标伸缩变换求解即可; (2)根据先平移,再进行横坐标伸缩变换,最后进行纵坐标伸缩变换求解即可; 【详解】解:(1)将正弦曲线sin y x =上的所有点向右平移8π个单位长度得到函数sin 8y x π⎛⎫=- ⎪⎝⎭的图象,再将它图象上所有点的横坐标伸长到原来的4倍,纵坐标不变,得到函数1πsin 48y x ⎛⎫=- ⎪⎝⎭的图象,再将它的图象上所有点的纵坐标伸长为原来的8倍,横坐标不变得到函数1π8sin 48y x ⎛⎫=- ⎪⎝⎭的图象.(2)将正弦曲线sin y x =上的所有点向左平移7π个单位长度得到函数sin 7y x π⎛⎫=+ ⎪⎝⎭的图象,再将它图象上所有点的横坐标缩短为原来的13倍,纵坐标不变,得到函数πsin 37y x ⎛⎫=+ ⎪⎝⎭的图象,再将它的图象上所有点的纵坐标缩小为原来的13倍,横坐标不变得到函数1πsin 337y x ⎛⎫=+ ⎪⎝⎭的图象.20.(1)()sin f x x =-【分析】(1)由题意设最高点为()1,1x ,相邻最低点为()2,1x -,则12||2Tx x -=,由三角函数的图象及已知可得222()22T+=,解得T ,利用周期公式可求ω,由(0)cos 0f ϕ==,结合范围0ϕπ<<,可求ϕ的值,即可得解()f x 的解析式.(2)由(1)利用诱导公式化简三点坐标,利用向量平行的坐标表示可得1cos sin 2αα=,进而利用三角函数恒等变换即可求解sin cos αα+的值. (1)解:设最高点为()1,1x ,相邻最低点为()2,1x -,则122T x x -=由三角函数的图象及已知,可得2242T ⎛⎫+= ⎪⎝⎭,即22444T π+=+,解得2T π=,由2T πω=,可得1ω=所以()cos()f x x ϕ=+因为函数()cos()(0f x x ωϕω=+>,0)ϕπ<<为奇函数 所以(0)cos 0f ϕ==,得2k πϕπ=+Z k ∈又0ϕπ<<,所以2ϕπ=于是()cos()sin 2f x x x π=+=-(2)21.(1)()cos 24f x x ππ⎛⎫=+ ⎪⎝⎭(2)1-【分析】(1)由()f x 的最小正周期为4求得ω,由1122f x fx ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭得()f x 的图象的对称中心,并结合02πϕ<<,求出ϕ的值及()f x 的解析式(2)由()102f x +=,得1cos 242x ππ⎛⎫+=- ⎪⎝⎭,解得546x k =+或1146x k =-和k ∈Z ,再由[]2,2x ∈-,可求出x 的值,从而可求得它们的和. (1)因为()f x 的最小正周期为4,所以242ππω==.因为()f x 满足1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称所以1cos 022πϕ⎛⎫⨯+= ⎪⎝⎭,所以()42k k ππϕπ+=+∈Z ,即()4k k πϕπ=+∈Z又02πϕ<<,所以4πϕ=.()f x 的解析式为()cos 24f x x ππ⎛⎫=+ ⎪⎝⎭.(2) 由()11cos 02242f x x ππ⎛⎫+=++= ⎪⎝⎭ 得1cos 242x ππ⎛⎫+=- ⎪⎝⎭,所以22243x k ππππ+=+或22243x k ππππ+=-k ∈Z 解得546x k =+或1146x k =- k ∈Z因为[]2,2x ∈-,所以方程的解集为115,66⎧⎫-⎨⎬⎩⎭所以所有解的和为511166-=-.22.sin y x =向左平移6π个单位【分析】利用辅助角公式化简函数解析式,然后根据左右平移变换即可求出结果.【详解】因为1cos sin 26y x x x π⎛⎫=+=+ ⎪⎝⎭ 根据三角函数的图象变换,将函数sin y x =向左平移6π个单位,即可得到sin()6y x π=+的图象.23.(1)1 (2)304ω<≤ (3)433π【分析】(1)y =A sin(ωx +φ)+B 的最小正周期为2πω;(2)依题意可得42232ππωππω⎧--⎪⎪⎨⎪⎪⎩,解之即可;(3)由条件根据函数sin()y A x ωϕ=+的图象变换规律,可得()g x 的解析式,令()0g x =,即可解出零点的坐标,可得相邻两个零点之间的距离.若b a -最小,则a 和b 都是零点,此时在区间[a ,*]()m a m N π+∈恰有21m +个零点,所以在区间[a ,14]a π+是恰有29个零点,从而在区间(14a π+,]b 至少有一个零点,即可得到a ,b 满足的条件.进一步即可得出b a -的最小值.(1) 解:22ππω=,∴1ω=(2)解:由0ω>,根据题意有42232ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,,解得304ω≤<(3)另一方面,在区间5[12π,514]312πππ++恰有30个零点因此b a -的最小值为431433πππ+=. 24.③【分析】根据图象分别确定,A T ,结合五点作图法可最终求得()f x 解析式,再根据三角函数平移变换求得()g x ;对于①,直接代入()f x ,()g x解析式,结合三角恒等变换化简方程为sin 212x π⎛⎫-= ⎪⎝⎭,再结合x 范围求得方程的根即可;对于②,()()ππ2sin 2sin 2π33tan 2ππ32sin 2cos 263x x g x x f x x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎝⎭⎝⎭===-≥ ⎪⎛⎫⎛⎫⎝⎭+- ⎪ ⎪⎝⎭⎝⎭ππππ2π332k x k +≤-<+和k ∈Z ,解得ππ5ππ,32122k k x ⎡⎫∈++⎪⎢⎣⎭,k ∈Z 故②错误; 对于③,因为()7π7ππ4ππ2sin 22sin 22sin 2126633f x x x x g x ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 所以()y f x =与()y g x =图象关于7π24x =对称,故③正确. 故答案为:③ 25.12【分析】由题意,利用图像平移变换法则得到π6为函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的一个周期,从而得到12kω=()*N k ∈,可得ω的最小值.【详解】将函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度后所得图象与()f x 的图象重合,故π6为函数()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭的一个周期即2ππ6k ω=()*N k ∈,则12k ω=()*N k ∈,故当1k =时,则ω取得最小值12. 故答案为:12 26.4π 【分析】根据平移后的可得函数()cos(22)g x x ϕ=+,根据题意可得(0)0g =可得22k πϕπ=+,取一值即可得解.【详解】将函数()cos 2f x x =的图象向左平移(0)ϕϕ>个单位长度 可得()cos(22)g x x ϕ=+,由函数()g x 的图象关于原点对称 可得(0)cos(2)0g ϕ== 所以22k πϕπ=+ 42k ππϕ=+当0k =时,则4πϕ=.故答案为:4π 27134n ππ⎛⎫-+ ⎪⎝⎭或134n ππ⎛⎫++ ⎪⎝⎭ 【分析】由递推关系推出n a 的通项公式,发现n a 周期为2,求出w π=,则排除②,再根据,1a ,2a 的取值,求出14B =,排除④,分别讨论①和③作为条件时是否成立,得到最终的表达式. 所以数列{}n a 周期为2,即22T wπ==,解得w π=,则②不能作为条件,此时sin()n a A n B πϕ=++ 有sin()11sin(2)2A B A B πϕπϕ++=⎧⎪⎨++=-⎪⎩ 解得14B =,则④不能作为条件,此时1sin()4n a A n πϕ=++当①作为条件时,则1)4n a n πϕ=++,11)14a πϕ++=此时sin ϕ=3πϕ=-代入n a 成立,故①可作为条件,此时1)34n a n ππ=-+ 当③作为条件时,则1sin()34n a A n ππ=++,则11sin()134a A n ππ=++=,此时A =n a 成立,故③可作为条件,此时1)34n a n ππ=++. 故答案为:1)34n a n ππ=-+或1)34n a n ππ=++.【点睛】思路点睛:(1)本题在求出数列{}n a 的通项公式后,先根据周期性和特殊值确定ω和B 的值,排除部分选项,然后逐一讨论其他选项是否成立; (2)三角函数中解析式的确定,一般由周期确定ω,由特殊值确定ϕ,由最值确定A ,由对称中心确定B .28.ABD【分析】根据三角函数的图象求得,A ϕ的值,得出函数()f x ,进而求得()g x 的解析式,结合正弦函数的图象与性质,逐项判定,即可求解.【详解】根据函数()y f x =的图象,可知2A =当0x =时,则满足()02f =-,则2cos 12ϕ-=-,即1cos 2ϕ=- 因为0ϕπ<<,所以23ϕπ=,可得()22sin 23g x x π⎛⎫=- ⎪⎝⎭. 对于A 中,当12x π=-时,则112g π⎛⎫-=- ⎪⎝⎭,可得函数()g x 的图象不关于直线12x π=-对称,所以A 项错误;对于B 中,当12x π=时,则12g π⎛⎫= ⎪⎝⎭()g x 的图象不关于点,02π⎛⎫ ⎪⎝⎭对称,所以B 项错误; 对于C 中,因为()212cos 23y f x x π⎛⎫=+=+ ⎪⎝⎭232sin 232x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦52sin 26x π⎛⎫=- ⎪⎝⎭,将其图象向左平移12π个单位,可得函数522sin 22sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,所以C 项正确; 对于D 中,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以223323,x πππ⎡⎤-∈⎢⎥⎣⎦-,所以当222,332x πππ⎡⎤-∈--⎢⎥⎣⎦,即[0,]12x π∈时,则()g x 单调递减,所以D 项错误.故选:ABD29.BCD 【分析】进行平移可得()2sin(2)6g x x π=+,根据三角函数的性质,逐项分析判断即可得解. 【详解】2sin 2()2sin(2)666()x g x x πππ⎡⎤=+-=+⎢⎥⎣⎦,故A 错误; 令12x π=-可得()2sin 0012g π-==,故B 正确; 令3x π=-可得()2sin()232g ππ-=-=-,故C 正确; [,]66x ππ∈-,所以2,662x πππ⎡⎤+∈-⎢⎥⎣⎦易知sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦单增,所以()g x 在,62ππ⎡⎤-⎢⎥⎣⎦单增,故D 正确.故选:BCD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =-D .()cos f x x =2.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π3.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性D .函数()f x 的值域为R4.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( ) A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定5.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 6.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦7.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭8.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫=⎪⎝⎭,则()f x 图象的一条对称轴是( ) A .6x π=B .56x π=C .512x π=D .712x π=9.已知将向量13,22a ⎛⎫= ⎪ ⎪⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( ) A .6262,44⎛⎫-+ ⎪ ⎪⎝⎭B .6262,44⎛⎫+- ⎪ ⎪⎝⎭C .2662,44⎛⎫-+ ⎪⎪⎝⎭ D .2626,44⎛⎫+- ⎪⎪⎝⎭10.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=- 11.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-12.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度C .向右平移π2个单位长度 D .向左平移π2个单位长度 二、填空题13.角θ的终边经过点(1,P ,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 14.若()5sin 4513α︒+=,则()sin 225α︒+=________. 15.下列函数中,以π2为周期且在区间ππ,42⎛⎫⎪⎝⎭单调递增的是______.①()cos2f x x =;②()sin 2f x x =;③()cos f x x =;④()sin f x x = 16.若3sin 45πα⎛⎫-=- ⎪⎝⎭,则sin2α=_____;17.方程21sin cos 2x x x +=在[0,]4π上的解为___________18.设α、β都是锐角,且()3cos ,sin 55ααβ=+=,则cos β=____________. 19.已知tan 2α=,则cos2=α__.20.某学生对函数()2cos f x x x =进行研究后,得出如下四个结论: (1)函数()f x 在[]π,0-上单调递增,在[]0,π上单调递减; (2)存在常数0M >,使()f x M x ≤对一切实数x 均成立;(3)点π,02⎛⎫⎪⎝⎭是函数()y f x =图像的一个对称中心;(4)函数()y f x =图像关于直线πx =对称; 其中正确的是______(把你认为正确命题的序号都填上)参考答案三、解答题21.已知函数()π22sin cos 6f x x x x ⎛⎫=-- ⎪⎝⎭. (1)求()f x 的单调增区间.(2)当ππ,44x ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域.22.已知函数()sin 1f x x x =++.(Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.23.已知函数()()sin f x A x =+ωϕπ0,0,02A ωϕ⎛⎫>><< ⎪⎝⎭的部分图象如下图所示,最高点的坐标为()1,1.(1)求函数()f x 的解析式;(2)将()f x 的图象向左平移4个单位长度,横坐标扩大为原来的π2倍,得到()g x 的图象,求函数()g x 在[]π,2π-上的单调递增区间;(3)若存在5,33x ⎡⎤∈-⎢⎥⎣⎦,对任意[]1,1a ∈-,不等式()27202f x m am -++≤恒成立,求m 的取值范围.24.(1)在面积为16的扇形中,半径多少时扇形的周长最小; (2(10)x x -. 25.已知02πα<<,4sin 5α. (1)求tan α的值; (2)求cos 2sin 2παα⎛⎫++⎪⎝⎭的值. 26.如图,设矩形()ABCD AB BC >的周长为m ,把ABC 沿AC 翻折到AB C ',AB '交DC 于点P ,设AB x =.(1)若CP =2PD ,求x 的值; (2)求ADP △面积的最大值.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.B解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B3.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B4.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形. 故选:A .5.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确; 对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 6.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增,又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.7.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .8.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π=故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题 9.C解析:C 【分析】先求出a 与x 轴正方向的夹角为3πθ=,即可得b 与x 轴正方向的夹角为73412πππα=+=, 再利用向量坐标的定义即可求解. 【详解】设a 的起点是坐标原点,a 与x 轴正方向的夹角为θ,1a =由13,2a ⎛=⎝⎭可得2tan 12θ==3πθ=, 设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b=因为7sinsin sin cos cos sin 124343434y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭,7coscos cos cos sin sin 124343434x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭,故2b ⎛-= ⎝⎭, 故选:C.10.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出. 【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误;对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x x x xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.B解析:B 【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈.又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A二、填空题13.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】由题意sin θ=1cos 2θ=,所以,1sin cos 622πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-14.【分析】直接利用诱导公式计算可得;【详解】解:因为故答案为: 解析:513-【分析】直接利用诱导公式计算可得; 【详解】解:因为()5sin 4513α︒+=,()()()5sin 225sin 45180sin 4513ααα︒+=︒++︒=-︒+=-⎡⎤⎣⎦ 故答案为:513-15.①【分析】利用与的关系确定①②的周期在给定区间上去掉绝对值符号后确定单调性化简和后可得其性质从而判断③④【详解】周期是时是增函数①满足题意;周期是时是减函数②不满足题意;周期是③不满足题意;不是周期解析:①【分析】利用()f x 与()f x 的关系确定①②的周期,在给定区间上去掉绝对值符号后确定单调性,化简cos x 和sin x 后可得其性质,从而判断③④【详解】()cos2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()cos2cos2f x x x ==-是增函数,①满足题意;()sin 2f x x =周期是2π,,42x ππ⎛⎫∈ ⎪⎝⎭时,()sin 2sin 2f x x x ==是减函数,②不满足题意;()cos cos f x x x ==,周期是2π,③不满足题意; sin ,0()sin sin ,0x x f x x x x ≥⎧==⎨-<⎩不是周期函数,④不满足题意.故答案为:①. 【点睛】结论点睛:本题考查三角函数的周期性与单调性,解题时可利用如下结论:①()sin()f x A x ωϕ=+(或cos()A x ωϕ+,函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.16.【分析】逆用诱导公式结合二倍角公式得出答案【详解】故答案为: 解析:725【分析】逆用诱导公式结合二倍角公式得出答案. 【详解】27sin 2cos 2cos 212sin 24425πππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-=-=--= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故答案为:72517.【分析】由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论【详解】由得得∴又∴故答案为:【点睛】方法点睛:本题考查求解三角方程解题方法:(1)利用三角函数的恒等变换公式化方程为的形式然后解析:12π 【分析】 由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论. 【详解】由21sin cos 2x x x =得1cos 212222x x -+=,得sin 206x π⎛⎫-= ⎪⎝⎭, ∴26x k ππ-=,,212k x k Z ππ=+∈, 又0,4x π⎡⎤∈⎢⎥⎣⎦,∴12x π=. 故答案为:12π.【点睛】方法点睛:本题考查求解三角方程,解题方法:(1)利用三角函数的恒等变换公式化方程为sin()x k ωϕ+=的形式,然后由正弦函数的定义得出结论.(2)用换元法,如设sin x t =,先求得方程()0f t =的解0t ,然后再解方程0sin x t =.18.【分析】由α是锐角求出的值再由β是锐角得出的值将角转化成利用两角和差的余弦公式化简计算并验证即可【详解】因为α是锐角所以因为β是锐角所以又所以所以当时此时即与矛盾舍去当时符合要求故答案为:【点睛】本【分析】由α是锐角,cos α=求出sin α的值,再由β是锐角,()3sin 5αβ+=得出()cos αβ+的值,将β角转化成()αβα+-,利用两角和差的余弦公式化简计算,并验证即可. 【详解】因为α是锐角,cos 5α=,所以sin α==, 因为β是锐角,所以0αβ<+<π,又()3sin 5αβ+=,所以()4cos 5αβ+==±, 所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++当()4cos 5αβ+=时, 43cos +55555β=⨯⨯=,此时cos sin βα=,即2παβ+=,与()3sin 5αβ+=矛盾,舍去,当()4cos 5αβ+=-时, 43cos +555525β=-⨯⨯=,符合要求.故答案为:25【点睛】本题主要考查了两角和与差的正余弦公式以及同角三角函数基本关系,属于中档题,熟练掌无公式并应用是解题的关键.19.【分析】利用余弦的倍角公式和三角函数的基本关系式即可求解【详解】由又由故答案为: 解析:35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解. 【详解】由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35. 20.(2)【分析】根据奇偶性奇函数在关于原点对称区间单调性相同确定(1)错误;取M=2可判定(2)正确;可判断(3)不正确;取特殊值判定(3)错误【详解】定义域为R 所以是奇函数在关于原点对称的区间上单调解析:(2) 【分析】根据奇偶性,奇函数在关于原点对称区间单调性相同,确定(1)错误;取M=2,可判定(2)正确;202f x f x ππ++-⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭可判断(3)不正确;取2233f ππ⎛⎫⎪=- ⎝⎭,4433f ππ⎛⎫⎪=-⎝⎭特殊值判定(3)错误. 【详解】()2cos f x x x =定义域为R ,()()2cos f x x x f x -=-=-,所以()2cos f x x x =是奇函数,在关于原点对称的区间上单调性相同,所以(1)错误;cos 1x ≤,令2M =,()f x M x ≤成立,所以(2)正确;()()2sin 2sin 4sin 022x x x x x x f x f x ππππ⎛⎫⎛⎫=-+++-+-=-≠ ⎪ ⎪⎝⎭⎝⎭, 所以点π,02⎛⎫⎪⎝⎭不是函数()y f x =图像的一个对称中心,所以(3)不正确; 2422cos 3333f ππππ⎛⎫= =-⎪⎝⎭,4844cos 3333f ππππ⎛⎫= =-⎪⎝⎭,函数()y f x =图像不关于直线πx =对称,所以(4)不正确. 故答案为:(2) 【点睛】此题考查与三角函数性质相关命题的判定,需要熟练掌握奇偶性、单调性、对称性在解题中的处理方法.三、解答题21.(1)π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(2)11,2⎡⎤-⎢⎥⎣⎦.【分析】(1)由恒等变换得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,进而根据πππ2π22π232k x k -+≤-≤+解得()f x 的增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(2)由ππ,44x ⎡⎤∈-⎢⎥⎣⎦得5πππ2636x -≤-≤,进而得π11sin 232x ⎛⎫-≤-≤ ⎪⎝⎭,即()f x 的值域为11,2⎡⎤-⎢⎥⎣⎦.【详解】 解:(1)()11π2cos 2sin 2sin 2cos 2sin 222223f x x x x x x x ⎫⎛⎫=--=-=-⎪ ⎪⎪⎝⎭⎭, ∵πππ2π22π232k x k -+≤-≤+,()k ∈Z , ∴π5πππ1212k x k -+≤≤+,()k ∈Z , ∴()f x 的增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z .(2)∵ππ44x -≤≤, ∴5πππ2636x -≤-≤, ∴π11sin 232x ⎛⎫-≤-≤ ⎪⎝⎭, ∴()f x 的值域为11,2⎡⎤-⎢⎥⎣⎦.【点睛】本题解题的关键是根据三角恒等变换得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,进而根据整体换元的思想求函数的单调区间与值域,考查运算求解能力,是中档题. 22.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤, ∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解.23.(1)()ππsin 44f x x ⎛⎫=+ ⎪⎝⎭;(2)π2π2⎡⎤⎢⎥⎣⎦,;(3)(][),33,-∞-+∞【分析】(1)根据图像可得1A =,8T =,进而求出ω,再将()1,1代入,即可求出()f x 的解析式;(2)先根据题意得到()g x 的图像,再利用换元法即可求得()g x 在[]π,2π-上的单调递增区间;(3)不等式()27202f x m am -++≤恒成立等价于()2min 722f x m am ≤--,求出()f x 的最小值代入得到2230ma m -+≤,把它看成以a 为自变量的不等式()0M a ≤,解不等式即可. 【详解】解:(1)由题图可知:1A =,()4318T =⨯-=,2π8ω∴=, 即π4ω=, 将()1,1代入()πsin 4f x x ϕ⎛⎫=+⎪⎝⎭, 即πsin 14ϕ⎛⎫+= ⎪⎝⎭, π2π,4k k Z ϕ∴=+∈, 又π02ϕ<<, π4ϕ∴=, ()ππsin 44f x x ⎛⎫∴=+ ⎪⎝⎭;(2)根据题意可得:()1πsin 24g x x ⎛⎫=-+ ⎪⎝⎭, 令1π24t x =+, 则π5π,44t ⎡⎤∈-⎢⎥⎣⎦, 令π5π24t ≤≤,即π1π5π2244x ≤+≤, 解得:π2π2x ≤≤, ∴()g x 在[]π,2π-上的单调递增区间为π2π2⎡⎤⎢⎥⎣⎦,; (3)()27202f x m am -++≤, ()2722f x m am ∴≤--,5,33x ⎡⎤∈-⎢⎥⎣⎦, ,446x ππππ⎡⎤∴+∈-⎢⎥⎣⎦, ()1,12f x ⎡⎤∴∈-⎢⎥⎣⎦,由题意可知:217222m am -≤--, 即2230ma m -+≤,即以a 为自变量的不等式()0M a ≤,()()1010M M ⎧≤⎪∴⎨-≤⎪⎩, 解得:3m ≥或3m ≤-,m ∴的取值范围为(][),33,-∞-+∞.【点睛】方法点睛:已知()(0)()0f x Asin x A ωϕω=+>>,的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和ϕ,常用如下两种方法: (1)由2Tπω=即可求出ω;确定ϕ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+= (或0x ωϕπ+=),即可求出ϕ;(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和ϕ,若对,A ω的符号或对ϕ的范围有要求,则可用诱导公式变换使其符合要求. 24.(1)4,16;(2)5. 【分析】(1)设扇形的半径为r ,弧长为l ,根据面积为16,可得32l r=,列出周长表达式,利用基本不等式即可求得答案;(2)利用基本不等式,即可求得所求乘积的最大值. 【详解】(1)设扇形的半径为r ,弧长为l , 所以面积1162S l r =⋅=,即32l r=,且08r <<,则周长322216c l r r r =+=+≥=,当且仅当322r r =即4r =时等号成立,所以当半径4r =时,周长有最小值16. (2)由题意得(10)0x x -≥,解得010x ≤≤,1052x x+-≤=,当且仅当(10)x x =-,即5x =时等号成立,5. 25.(1)43;(2)825. 【分析】(1)由同角三角函数的基本关系先得cos α的值,再得tan α的值; (2)根据诱导公式以及二倍角的余弦可得结果. 【详解】 (1)因为02πα<<,4sin 5α,故3cos 5α=,所以4tan 3α=.(2)23238cos 2sin 12sin cos 1225525παααα⎛⎫++=-+=-+= ⎪⎝⎭. 【点睛】本题主要考查了通过同角三角函数的基本关系以及诱导公式求三角函数的值,属于基础题.26.(1)(34m ;(2)(2316m ⋅-. 【分析】(1)设CAB CAP θ∠=∠=,求得222PAD APD πθθ∠=-∠=,,得到且tan 23tan θθ=,结合正切的二倍角公式,即可求解.(2)设CAB CAP θ∠=∠=,则2APD θ∠=,且()tan 01θ∈,,由()tan 2x x m θ+⨯=,求得x 得值,求得()tan 21tan m AD BC θθ==+,1tan 4PD m θ-=,设1tan t θ+=,得到()12t ∈,,利用三角形的面积公式和二次函数的性质,即可求解. 【详解】(1)由题意,在ABC 中,可设CAB CAP θ∠=∠=,则由角度关系可得222PAD APD πθθ∠=-∠=,,设BC y = ,且tan tan 23tan 3y yx xθθθ===,, 则有22tan tan 23tan 1tan θθθθ==-,解得tan 3θ=,则有y x =,所以2x x m ⎛⎫= ⎪ ⎪⎝⎭,解得(34x m =. (2)设CAB CAP θ∠=∠=,则222PAD APD πθθ∠=-∠=,,且()tan 01θ∈,, 则有()tan 2x x m θ+⨯=,解得()21tan m x θ=+,即()tan 21tan m AD BC θθ==+,所以()2tan 1tan 1tan tan 221tan 2tan 4AD PD m m θθθθθθ--==⋅=+, 则S △ADP =()2221tan 1tan tan tan 221tan 4161tan m m θθθθθθ--⋅⋅=⋅++,令()1tan 12t t θ+=∈,, 所以S △ADP =()22222113223161616t t m m t t m t t t t ---⎡⎤-+-⎛⎫⋅=⋅=⋅-++ ⎪⎢⎥⎝⎭⎣⎦(2316m ≤⋅-,当且仅当2t t t==,时取等号. 则ADP △面积的最大值为(2316m ⋅-.【点睛】对于三角函数模型的应用问题,解答的关键是建立符合条件的函数模型,结合示意图,然后再由三角形中的相关知识进行求解,解题时要注意综合利用所学的三角恒等变换的公式及三角函数的性质求解.。