振动和波 (5)
高三物理 振动图象和波的图象 知识精讲
高三物理 振动图象和波的图象 知识精讲一. 波的图(一)波的图象:以各质点的平衡位置建立x 轴,垂直于x 轴建立y 轴。
表示某时刻各质点偏离平衡位置的位移。
连接各位移矢量的末端得出的一条曲线。
反映:介质中多个质点在同一时刻的位移空间分布情况。
(二)从图象中得出:(1)λ、每个质点的位移,加速度的方向。
A x (2)已知振动周期,求v v T=λ(3)已知图象中,某质点的振动方向判定波的传播方向,波的传播方向判定振动方向。
同侧法:质点的振动方向机械波传播方向,波形图线同一侧。
(4)根据波的传播方向与介质中某质点的振动方向。
可以画出任意时刻的波形图。
二. 振动图像:(一)简谐运动的图像是表示简谐运动物体的位移随时间变化规律的图像。
简谐运动的图像是正弦或余弦曲线,这也是简谐运动的另一特征。
(二)从简谐运动的图像,我们可以得到如下信息: (1)直接读出振幅(注意单位); (2)直接读出周期;(3)确定某一时刻物体相对平衡位置的位移;(4)判断任一时刻运动物体的速度方向和加速度方向;(5)判断某一段时间内运动物体的速度、加速度、动能及势能大小的变化情况。
三. 波的图象和振动图象区别:例1. 如图1所示,一个弹簧振子在A 、B 间做简谐运动,O 是平衡位置,以某时刻作为计时零点(t =0),经过14周期,振子具有正方向的最大加速度,那么图1所示四个运动图像中正确反映运动情况的图像是( )图1分析:从t =014开始经过周期,振子具有正方向的最大加速度;因为加速度方向总是指向平衡位置,且加速度大小与位移大小成比,所以此刻振子应处在负的最大位移处。
答:C 。
例2. 一质点作简谐振动,其位移x 与时间t 的关系曲线如图2所示,由图可知( ) A. 质点振动频率是4HzB. t s =2时,质点的加速度最大C. 质点的振幅为2cmD . t s =3时,质点所受的合外力最大分析:质点完成一次全振动所需的时间叫做振动的周期,振动质点在一秒钟内完成全振动的次数叫做振动的频率,频率等于周期的倒数,由图可见,振动周期为T s =4,因而振动频率f Hz.。
大学物理——第4章-振动和波
合成初相 与计时起始时刻有关.
v A 2
ω
v A
2
O
x2
1
v A 1
x1
xx
分振动初相差2 1与计时起始时刻无关,但它对合成振幅 是相长还是相消合成起决定作用.
20
讨 论
2 A = A2 + A2 + 2A A2 cos(2 1) 1 1
F = kx
3
l0
k
m
A
F = kx = ma
k 令ω = m
2
A x = Acos(ωt +)
o
x
积分常数,根据初始条件确定
a = ω2 x
dx = ω2 x dt 2
2
dx υ = = Aω sin( ωt +) dt
dx 2 a = 2 = Aω cos(ωt +) dt
4
2
x = Acos(ωt +)
15
π
例 4-3 有两个完全相同的弹簧振子 A 和 B,并排的放在光滑 的水平面上,测得它们的周期都是 2s ,现将两个物体从平衡 位置向右拉开 5cm,然后先释放 A 振子,经过 0.5s 后,再释 放 B 振子,如图所示,如以 B 释放的瞬时作为时间的起点, (1)分别写出两个物体的振动方程; (2)它们的相位差是多少?分别画出它们的 x—t 图.
5cm
O
x
16
解: (1)振动方程←初始条件
x0 = 0.05m, υ0 = 0 , T = 2s
2π ω= = π rad/s T
2 υ0 2 A = x0 + 2 = 0.05m ω υ0 对B振子: tan B = = 0 B = 0 x0ω
振动与波复习课件
-1
1
-2
(D)x 2cos(4 t 2 )
33
(C)
5、一弹簧振子作简谐振动,总能量为 E1 ,如果简谐振 动振幅增加为原来的两倍,重物的质量增为原来的四倍, 则它的总能量E2 变为 (D) (A)E1 / 4 (B)E1 / 2 (C) 2E1 (D) 4 E1 6、一弹簧振子作简谐振动,当其偏离平衡位置的位移的 大小为振幅的1/4时,其动能为振动总能量的
对两同频率的谐振动 = 2- 1
当 = 2k , ( k =0,1,2,…),两振动步调相同,称同相
当 = (2k+1) , ( k =0,1,2,…),两振动步调相反 , 称反相。
x
x
A1 A2
x2 x1
同相
T
A1 A2
o
t
o
- A2
- A2
x1
反相
T
t x2
-A1
-A1
若 = 2- 1>0, 则 x2比x1较早达到正最大,
故波动表达式为: y 0.04cos[2( t x ) ] 5 0.4 2
P 0.20 0.40
x (m) 0.60
(2)P处质点的振动方程为:
yP
0.04cos[2( t 5
0.2) 0.4
] 2
0.04cos(0.4t 3) 2
2.如图所示为一平面简谐波在 t 时0 刻的波形图,设此简谐波的频
满足频率相同、振动方向相同、具有恒定的相位差条 件的波为相干波。
考虑两相干波源,振动表达式为:
y1 A1 cos( t 1 )
y2 A2 cos( t 2 )
传播到 P 点引起的振动为:
y1
A1
波和振动的知识点
2.由t时刻的波形确定t+Δ t时刻的波形
(1)波向右传播 t 1 T 的时间和向左传播 t 3 T 的时间的
4 4
波形相同.
(2)由于沿波的传播方向平移一个波长的整数倍时,波形不
变,若Δ t>T,可以采取“舍整取零”的办法.
(2012·衡水模拟)如图所示,为一波源开 始振动后经过一个周期的波形图,设介质中 质点振动周期为T,下列说法中正确的是( )
D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两
倍 A 、D
考点3
横波的图象
平衡位置 纵坐标表示 1.坐标轴:横坐标表示介质中各质点的__________. 位移 某一时刻,各质点偏离平衡位置的______ 正弦 (或_____ 余弦 )曲线 2.形状:简谐波的图象是______ 某时刻 波的传播方向上介 3.图象意义:波动图象反映的是在________ 各质点 相对于各自平衡位置的位移 质中________
3.机械波的分类 垂直 的波,有 (1)横波:质点的振动方向与波的传播方向_____
波谷 (凹下的最低处). 波峰 (凸起的最高处)和______ ______ 同一直线上 的 (2)纵波:质点的振动方向与波的传播方向在___________ 疏部 密部 和______. 波,有______
1.波的传播方向和质点振动方向的判断方法
A.周期为4.0 s
B.振幅为20 cm C.传播方向沿x轴正向 D.传播速度为10 m/s
C 、D
1.(2012·东城模拟)一简谐机械波沿x轴
正方向传播,周期为T,波长为λ .若在x=0
处质点的振动图象如图所示,则该波在t=T/2 时刻的波形曲线为( )
A
3.(2011·四川高考)如图为一列沿x轴负方向传播的简谐横
第三章 振动和波
x= Acos(ωf t +α)
A= H
2 2 2 m (ω0 −ωf )2 +4β 2ωf
α =arctan 2 2 ω0 −ωf
12
−2βωf
三、共振
振动系统作受迫振动时, 振动系统作受迫振动时,改变强迫力的角频率ωf使其 振幅达到极大值的现象,称为共振。 振幅达到极大值的现象,称为共振。
dA 可得: 令 =0,可得: dωf
令
+ω2x=0 2
k = ω2 m
解方程得: 解方程得:
x= Acos(ωt +ϕ)
简谐运动方程
振动物体的速度和加速度
dx υ= =−Aωsin(ωt +ϕ) dt d2x a= 2 =−Aω2 cos(ωt +ϕ) dt
4
特征量
称为振幅。 1、振幅:振动物体离开平衡位置的最大位移A称为振幅。 振幅:振动物体离开平衡位置的最大位移 称为振幅 2、周期和频率:振动物体完成一次振动所需要的时间T,称为 周期和频率:振动物体完成一次振动所需要的时间 , 振动周期。 称为频率。 振动周期。 在单位时间内所完成的振动次数ν,称为频率。 振 动物体在2π 称为系统的角频率。 动物体在 π秒内所完成的振动次数ω,称为系统的角频率。
17
x=x1 + x2 = A cos(ωt +ϕ1) + A2 cos(ωt +ϕ2 ) 1
2 = A2 + A2 +2A A2 cos(ϕ2 −ϕ1) 1 1
A = A + A + 2A A cos(ϕ 2−ϕ 1) 1 2
2 1 2 2
A sin ϕ 1+ A2 sin ϕ 2 tgϕ = 1 A cosϕ 1+ A2 cosϕ 2 1
高中物理振动和波公式总结
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相页 1 第近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振页2 第动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效页3 第重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.页 4 第②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.页 5 第⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
第五章 振动与波 基本知识点
o受迫振动振动系统在周期性驱动力的持续作用下产生的振动。
受迫振动的频率等于驱动力的频率cos()d A t ψωϕ=+tF F d ωcos 0=当驱动力的频率与系统的固有频率相等时,受迫振动振幅最大。
这种现象称为共振。
共振2)若两分振动反相(位相 相反或相差的奇数倍)x即 φ2φ1=(2k+1) (k=0,1,2,…)ox2x1T 2T合成振动3T 22T则A=|A1-A2|, 两分振动相 互减弱, 合振幅最小; 如果 A1=A2,则 A=0t11同方向不同频率简谐振动的合成1、分振动为简单起见,令A1 A2 Ay1 A cos(1t ),y2 A0 cos(2t )2、 合振动y y1 y2 1 2 1 2 y 2 A cos t t cos 2 2 合振动不是简谐振动12当1 、2很大且接近时, 2 1 2 1 令:y A(t )cos t2 1 )t 式中 A(t ) 2 A0 cos( 2 2 1 cos t cos( )t 2随t 缓慢变化 随t 快速变化合振动可看作振幅缓慢变化的简谐振动 当频率 1 和 2 相近时,两个简谐振动的叠加,使得 合振幅时而加强、时而减弱,形成所谓拍现象。
13ψ1 t ψ2 t ψ t拍 拍: 合振动忽强忽弱的现象。
拍频 :单位时间内强弱变化的次数。
1 拍 2 2 2 1 2 2 1 2 1 2 2 14波的产生与传播1、波的产生 波:振动在媒质中的传播,形成波。
产生条件:1) 波源—振动物体; 2) 媒质—传播振动的弹性物质.2、机械波的传播机理(1) 波的传播不是媒质中质点的运输, 而是“上游” 的质点依次带动“下游”的质点振动 (2) 某时刻某质点的振动状态将在较晚时刻于“下游” 某处出现——波是振动状态的传播153、机械波的传播特征 波传播的只是振动状态,媒质中各质点并未 “随波逐流”。
第二章振动和波(教学用)
作业
P33 3,5,
第二节波动
基本概念与平面简谐波
机械波的几个概念 平面简谐波的波函数
第二节
波动
•振动在空间的传播过程称为波动 •机械振动在弹性介质中的传播称为机械波 如声波、水波、地震波等 •交变电磁场在空间的传播称为电磁波 如无线电波、光波等
波动的特征
•具有一定的传播速度; •伴随着能量的传播; •能产生反射、折射、干涉和衍射等现象; •有相似的波动方程。
x x1 x2
1、应用解析法
x x1 x2
2 A A12 A2 2 A1 A2 cos( 2 1 )
=A1 cos t 1 +A2 cos t 2 A1 cos 1 A2 cos 2 cos t A1 sin 1 A2 sin 2 sin t
3 2 5 t 2 3 6 5 5
t 6
6
0.83s
四、简谐振动的能量
以水平的弹簧振子为例
x
x(t ) A cos(t ), k / m
简谐振动的动能:
o
A
简谐振动的势能:
1 1 2 Ek mv m[ A sin(t )]2 2 2 1 2 1 2 2 2 mA sin (t ) kA sin 2 ( 0t 0 ) 2 2
某质点同时参与两个同频率且在同一条直线上的简谐运动
x1 A1 cos t 1 x2 A2 cos t 2
合振动
令
A sin A1 sin1 A2 sin 2 A cos A1 cos1 A2 cos 2
x=A cos cos t A sin sin t =A cos t
振动、波动部分答案(新)
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
振动和波详述
第二节 波动学基础
惠更斯原理:在波的传播过程中,波阵面上的每一 点都可以看作发射次级子波的波源,在其后的任一 时刻,这些子波的包迹就成为新的波阵面.
ut
平 面 波
球 面 波
R1
O
R2
第二节 波动学基础
二、 波动方程(平面简谐波的波函数)
介质中任一质点(坐标为 x)相对其平衡位置的
位移(坐标为 y)随时间的变化关系,即 y(x,t) 称
G 切变模量
E 弹性模量
K体积模量
横波 纵波
343 m s 空气,常温
如声音的传播速度
4000 m s 左右,混凝土
第二节 波动学基础
例1 在室温下,已知空气中的声速 u1为340 m/s, 水中的声速 u2 为1450 m/s ,求频率为200 Hz和2000 Hz
的声波在空气中和水中的波长各为多少?
x/m
-1.0
t 1.0 s 时刻波形图
第二节 波动学基础
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t - x ) - π] 2.0s 2.0m 2
x 0.5m 处质点的振动方程
y (1.0m) cos[(πs-1)t - π]
y
y/m
3
1.0
3*
Tλ
y(x,t) Acos(t - kx )
➢ 质点的振动速度,加速度
角波数 k 2π
v y -Asin[(t - x) ]
t
u
a
2 y t 2
-
2
A cos[ (t
-
x) u
]
第二节 波动学基础
例1 已知波动方程如下,求波长、周期和波速.
第六章 振动和波
x2 A12
y2 A22
2 xy A1 A2
cos
sin2
上式是个椭圆方程,具体形状由 相位差决定。
(20 10 )
质点的运动方向与 有关。当 0 时,
质点沿顺时针方向运动;当 2 时,
质点沿逆时针方向运动。
当 A1 A2 时,正椭圆退化为圆。
21
4.4 垂直方向、不同频率简谐振动的合成
Acos[ (t
x u
)
0
]
y( x, t)
A cos [(t
0 )
2
x ]
2 /T u /T
也即p点的相位落后于O点相位:2x
O
y
u
x
p
这就是右行波的波方程。
x
定义 k 为角波数
k 2 T
u T
2
2 2 ; T u u 因此下述几式等价
T
27
左行波的波函数:
0 20超前10
20 10 0 20落后10
=(2n1) 反相 =2n 同相
4
1-3 简谐振动的动力学方程
• 简谐振动的动力学方程 弹性力
mx kx
U ( x) 1 kx2 2
令k
m
2 0
x
2 0
x
0
其解:x(t)
结论
A
cos( 0 t
0
)
质点所受的外力与对平衡位置的位移成正比
且反向,或质点的势能与位移(角位移)的
以横波为例说明平面简谐波的波函数。
已知O点振动表达式: y Acos(t 0 )
y表示各质点在y方向上的
位移,A是振幅,是角频
率或叫圆频率, 0为O点在
振动与波知识要点
振动与波知识要点一、机械振动1、一种振动:简谐振动掌握:简谐振动的特征;一维简谐振动方程;描述简谐振动的基本物理量(振幅、周期、频率、圆频率、相位);简谐振动的能量要点:①一维简谐振动方程)cos(ϕω+=t A x →速度方程)sin(ϕωω+-==t A dtdx v (平衡位置处A v m ω=) →加速度方程x t A dt dv a 22)cos(ωϕωω-=+-== (正负最大位移处 A a m 2ω=) ②基本物理量:﹡振幅)0(>A 常量→由振动初始条件决定﹡圆频率)0(>ω常量→由振动系统本身性质决定 (弹簧振子mk =ω ;单摆l g =ω;摆杆l g 23=ω) ﹡周期、频率、圆频率关系:ωπν21==T ; ﹡相位ϕω+=Φt (反映振动状态): 初相ϕ(0=t )→常量,由振动初始条件决定;相位差=Φ-Φ=∆Φ12)(12t t -ω(用于单个物体不同时刻间状态变化分析)或相位差=Φ-Φ=∆Φ1212ϕϕ-(用于两个同频率振动相关问题分析) ③振动能量:振动总能量2222121kA A m E E E p k −−−→−=+=弹簧振子ω 动能Φ=2sin E E k ;势能Φ=2cos E E p (相位ϕω+=Φt )振动过程中,动能和势能随时间变化,变化周期是振动周期的一半,它们相互转化,总能量保持不变2、一种分析方法:旋转矢量法 (※利用旋转矢量法判断时一定要画出旋转矢量图) 掌握:应用旋转矢量法分析初相问题、相位差问题、振动合成问题 要点:①任一时刻旋转矢量相对于x 轴正向的夹角θ表征简谐运动物体此时的振动相位ϕω+=Φt ;在t =0时刻,与x 轴正向夹角0θ即表征振动初相ϕ;②任一时刻,旋转矢量端点在x 轴上投影点的位置、运动方向表征简谐运动物体此时的振动位置x 及振动方向;③旋转矢量逆时针方向匀速旋转一周,转过角度πθ2=∆,所用时间ωπ/2=∆t ,表征简谐振动物体作一次完全振动,相位变化π2=∆Φ,振动周期为ωπ/2=T ;某段时间t ∆内旋转矢量旋转过的角度θ∆即表征简谐振动物体在这段时间内的相位变化t ∆=∆=∆Φωθ.3、一种合成:两个同方向同频率简谐振动合成掌握:合振动的分析;振动相长、相消条件要点:同相{),2,1,0(2 =±=∆Φk k π}振动相长,合振幅最大21max A A A +=反相{),2,1,0()12( =+±=∆Φk k π}振动相消,合振幅最小21min A A A -=二、机械波1、平面简谐波的波动方程掌握:①波动方程的几种基本形式; ②波动方程中的物理量分析及相互联系;③波形图的分析; ④由质点振动方程推出波动方程或由波动方程推出某处质点方程的方法;⑤波线上任意两点相位差的分析要点: ①波动方程的基本形式:⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=ϕλνπϕωx t A u x t A y 2cos cos 沿x 轴正向传播 ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=ϕλνπϕωx t A u x t A y 2cos cos 沿x 轴负向传播 ②基本物理量:﹡波的振幅A 、圆频率ω、周期T (频率ν)与参与波动的各质点振动的振幅A 、圆频率ω、周期T (频率ν)相同,都仅与波源的振动及性质有关﹡波速u →由传播介质的性质决定﹡波长λ=两相邻波峰(或波谷)间距【横波】或两相邻密部(或疏部)间距【纵波】与波速u 、周期T (频率ν)间关系为 νλ/u uT == ,而ωπν21==T ﹡同一波线上坐标为x 1和x 2的两质点的振动相位差)(2)(212112x x x x u -=-=Φ-Φ=∆Φλπω→沿x 轴正向传播)(2)(121212x x x x u -=-=Φ-Φ=∆Φλπω →沿x 轴负向传播 ﹡初相ϕ根据x =0处质点在t =0时刻的振动状态确定③波动方程的物理意义:),(t x y﹡代入坐标x →)(t y 坐标为x 处质点的振动方程(注:初相不可化简)﹡代入时刻t →)(x y t 时刻波形(x y -曲线为波形图,判断质点振动速度方向时要注意在振动曲线图和波形图上判断方法的区别)2、波的干涉掌握:①波的干涉现象分析:a. 波的相干条件 ;b. 从相位差角度,从波程差角度分析空间任意点干涉相长和相消问题 ②驻波分析:a. 形成驻波条件; b. 驻波方程的推导;c. 波腹和波节或任意振幅位置的分析d. 半波损失现象分析,由入射波(或反射波)方程推出反射波(或入射波)方程的方法 要点:①波的相干条件:频率相同,振动方向相同,相位差恒定②波的干涉 ﹡两列相干波在叠加点所引起两分振动相位差﹡相长干涉、相消干涉问题(从相位差角度分析;从波程差角度分析)注:从波程差角度分析相长干涉、相消干涉的规律只适用于两相干波源初相相等即21ϕϕ=的情况 λϕϕϕ1212π2r r ---=∆③驻波问题﹡形成条件:相干条件,振幅相同,传播速度相同,沿同一直线相反方向传播﹡驻波方程 21y y y += (要用到2cos 2cos 2cos cos βαβαβα-+=+)各质点振动频率相同,振幅不同(波腹振幅最大为2A ,波节振幅最小为0,其余质点振幅介于0~2A 之间),相位分布遵循段内同相、邻段反相规律。
大学物理知识总结习题答案(第八章)振动与波动
第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。
· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,??为角频率,(?t+?)称为谐振动的相位,t =0时的相位??称为初相位。
· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。
2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。
· 阻尼振动的动力学方程为222d d 20d d x xx t tβω++= 其中,γ是阻尼系数,2mγβ=。
(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。
(2) 当22ωβ=时,不再出现振荡,称临界阻尼。
(3) 当22ωβ<时,不出现振荡,称过阻尼。
4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。
医用物理学 课后习题解答
后是否仍为简谐振动?②合振动的周期是多少?
解: ①由于分振动的频率不同,所以它们合成后将不是简谐振动。②合振动的频率为 100Hz,
周期
T=
1 100
s=0.01s。
8-7 弹簧振子作简谐振动时,若其振幅增为原来的两倍,而频率降为原来的一半,它们的能 量怎样改变?
答:
弹簧振子作简谐振动时,其能量为 E
x A cos( t )
(a)
①第一种情况:位于平衡点右侧 6cm 处,这时位移 x=6cm,将 t=0,A=6cm,x=6cm 代 入(a)式得
6 6 cos 6
解之得, =0。已知 T=2 秒,则
2 2
,将 A、ω、值代入(a)式可得第一种情况
的位移表达式为
x 6 cos t (cm)
x=-A, v=0, a=Aω2
8-3 一个作简谐振动的质点,在 t=0 时,离开平衡位置 6cm 处,速度为零,振动周期为 2s, 求该简谐振动的位移、速度、加速度的表达式。 解:根据题意,t=0 时,质点速度为零,离开平衡位置 6cm,这说明该振动的振幅为 A=6cm, 这时质点可能位于平衡点右侧 6cm 处,或位于平衡点左侧 6cm 处。下面分这两种情况进行 讨论,设该振动方程为:
解:
①已知波源 O 的振动方程为
y
0.06
cos
9
t ,则其振幅为 A=0.06m,角频率
9
,
又知 u=2m·s -1 ,则该波的波动方程为
s
0.06
cos
9
(t
x 2
)
由它可得 x=10m 处的质点振动方程为
y
0.06
cos
9
b 2
高中物理机械振动、机械波知识要点
高中物理机械振动、机械波知识要点1、简谐运动、振幅、周期和频率的概念(1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:,。
(2)简谐运动的规律:①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。
②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。
③振动中的位移x都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。
加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。
(3)振幅A:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
它是标量。
(4)周期T和频率f:振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz)。
周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f。
2、单摆的概念(1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。
(2)单摆的特点:①单摆是实际摆的理想化,是一个理想模型;②单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关;③单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角时,单摆的振动是简谐运动,其振动周期T=。
(3)单摆的应用:①计时器;②测定重力加速度g,g=。
3、受迫振动和共振(1)受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
(2)共振:①共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
②产生共振的条件:驱动力频率等于物体固有频率。
振动和波的基础知识
1.机械振动:(1):机械振动即物体或物体的一部分在某一中心位置两侧所做的往返的运动(2):回复力F 回:指向“平衡”位置的合力叫回复力(3):振动位移x :都以“平衡”位置为位移的起点(4):振幅A :振动物体离开“平衡”位置的最大距离,振幅越大,振动的能量就越大(5):振动的周期T :指完成一次全振动的时间;周期表示振动的快慢,周期小表示振动的快(6):振动的频率f :指单位时间内完成振动的次数;频率大,表示振动的快;单位为:赫兹Hz(7):T=f 1;振动的周期T 的大小与振幅的大小无关:对于同一个振动系统,当振动的振幅变大时,其周期将保持不变,所以物体振动的周期又叫固有周期(8):平衡位置:振动的中心位置,是假冒的“平衡”,F 合不一定为0,如:单摆的“平衡”位置的加速度为:022≠==⇒==m F R v R v a m F F 指向圆心的合力向心向心指向圆心的合力2:简谐振动: 1:回复力F 回和位移x 成正比,但它们的方向相反;F 回=-kxx 为物体离开“平衡”位置的位移负号表示回复力F 回和位移x 的方向相反回复力就是一个指向“平衡”位置的合力(2):对于同一个振动系统,当振动的振幅变大时,其周期仍保持不变(3):简谐振动的x-t 图像:是一条正弦或余弦曲线(4):振动的周期T 的大小与振幅的大小无关所以把它叫国有周期;弹簧振子的T 与小球的质量、弹簧的劲度序数有关;单摆的T 与摆长、重力加速度g 有关3.单摆(1):当单摆的摆角小于80时,单摆的振动可以看做简谐振动(2):单摆振动时,也可以把它看做圆周运动R m R m m F F T R v 2222)(向心指向圆心的合力πω====多多从不同的角度分析问题(3):单摆的回复力由重力在切线方向的分力提供;当摆角小于80时,L x≈θsin ,mg F L x -=回复力如右图(3):当单摆的摆角小于80时,g LT π2=L 为物体摆动时的圆心悬点到物体重心的距离g 为当地的重力加速度g =2R GM;g ´=222)()(H R gR H R GM ++= g ´为离天体表面H 高处的重力加速度;g为天体表面的重力加速度;R 为天体的半经;M 为中心天体的质量;H 为离天体表面的高公式说明T 与振幅A 无关(4):单摆振动时,由于拉力始终与速度垂直,所以拉力不做功,如无阻力,则物体的机械能守恒(5):单摆振动时,如有阻力,则在短时间内,仍可把它看做简谐振动4、任何一个介质质点在一个周期内经过的路程都是4A,在半个周期内经过的路程都是2A,但在四分之一个周期内经过的路程就不一定是A 了多多用位移时间图像帮助分析问题5、受迫振动:(1):物体在周期性外力的作用下的振动叫受迫振动(2):物体做受迫振动时,它的频率等于驱动力的频率,而跟物体的固有频率无关,如图:假如L=g,则单摆的固有周期g L T π2==2π秒,如果每隔八秒推一下小球,则单摆的周期就为8秒,而不是2π秒(3):波在传播时,各质点都在做受迫振动各质点都在模仿波源的振动,所以波由一种介质传到另一介质时,波的频率不变等于波源的振动频率(4):物体在做受迫振动时,驱动力的频率跟物体的固有频率相等的时侯,物体的振幅最大,这种现象叫共振;驱动力的频率跟物体的固有频率越接近,物体的振幅也越大,如图为共振曲线(5):当f 驱动力=f 固时物体会发生共振,共振时的振幅比不共振时的振幅大(6):利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……6:简谐振动的图像如右图为水平振动的弹簧振子的振动图像:由图像可知:(1):振动图像表示的是某一质点在各个时刻的位移(2):振幅A 为15cm(3): 周期T 为8s(4):a 点对应的时刻,速度在增大,速度的方向向负方向;加速度在减小,加速度的方向负方向和位移的方向相反,此时位移为正10cm回复力在减小,回复力的方向向负方向和位移的方向相反动能在增大,弹性势能在减小机械能守恒b 点对应的时刻,速度在减小,速度的方向向负方向;加速度在增大,加速度的方向向正方向和位移的方向相反,此时位移为-5cm回复力在增大,回复力的方向向正方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒d 点对应的时刻,速度在减小,速度的方向向正方向;加速度在增大,加速度的方向向负方向和位移的方向相反,此时位移为正5cm回复力在增大,回复力的方向向负方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒(5):V a < V b = V d7:解振动问题的方法:(1):振动问题都是变力问题,一般选用动能定理、能量守恒定律解题;注意应用弹簧的弹性势能不变、了解:弹性势能221kx E P ,k 弹簧的劲度系数,x 为弹簧的形变量、弹力做的功= - 弹性势能的变化量等条件 (2):充分利用振动的对称性,如在两个对称点的加速度a 、速度v 、位移、动能E k 、弹性势能相等等条件(3):充分利用振动的图像解题画出振动的图像帮助解决问题(4):注意应用临界点的条件:如弹力为0、加速度a 、速度v 、位移相等等等(5):两物体的加速度a 1、a 2相等时,两物体可能将要分开物体分开的瞬间,物体间的弹力为零(6):弹簧的形变量或两次的形变量之差可能等于物体的位移:S=X 2-X 18:机械波:机械振动在介质中的传播过程所形成的波叫做机械波(1):有振源和传播介质时就会产生机械波(2):波是传播能量的一种方式,即传递某种信息(3):波信息向前传播时,各介质只在自己的平衡位置附近振动,并不会随波信息向前传播(4):波信息向前传播时,波形波形代表信息的内容不会发生变化;如下图,波信息向右传播过后,A 、B 、C 、D 各质点仍然回到各自原来的位置;当波信息传递到E 点时,它就开始振动,并按后面的波形振动即开始模仿振源的所有动作,所以质点起到了传递信息的作用;要判断E 如何振动,就看和它相邻的前一质点的运动情况即可解波动问题,就是逻辑推理的过程,由A 质点的情况推及到D 质点的情况,由9秒的情况推及到8秒的情况……(5):每经过一个周期,波就向前传播一个波长的距离;每经过41个周期,波就向前传播41个波长的距离 (6):波的频率就等于波源的振动频率,介质的振动频率也等于波源的振动频率受迫振动9:波速V :(1):T V λ=;t SV f V ==;λ(2):波速V 只与介质有关,与波长、频率无关;当介质相同时,波速就相同(3):当波由一种介质传播到另一介质时,频率不变各质点都在做受迫振动,波速、波长会发生改变 10:波长:(1):两个相邻的,在振动过程中对平衡位置的位移总是相等的质点间的距离,叫波长9秒末(2):在一个周期里,波向前传播的距离,叫波长(3):两个相邻的波峰之间的距离,叫波长;两个相邻的波谷之间的距离,叫波长11:波的周期、频率:波的频率就等于波源的振动频率,它们与速度、介质无关12:波的图像:由图像可知(1):波的图像表示的是某一时刻各个质点的位移的图像(2):振幅A 为15cm(3):波长为8cn(4):在9秒末,a 质点向下运动它模仿的前一质点在它的右下方(5):在9秒末,a 质点的速度在变大,加速度在变小,加速度的方向向下各质点的运动规律仍然遵循振动的规律13:波的衍射:(1): 波在传播中遇到障碍物时能绕过障碍物的现象,叫波的衍射(2):一切波均能发生衍射,即任何条件下波均能发生衍射,只是有的衍射我们觉擦不到,但是仍然存在(3):发生明显的衍射的条件是:障碍物或孔的直径比波长小或相差不多(4):楼上房间的人能听到楼底下人的声音,单缝衍射、眯眼看灯、隔并齐笔缝看灯、隔羽毛纱布缝看灯等呈彩色看到彩色的光,这些都是衍射14:波的干涉:(1):频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫波的干涉(2):两个波源的振动方向相同,频率相同的同类波干涉时,就能得到稳定的干涉图样(3):围绕正在发声的音叉走一圈,听到声音忽强忽弱,双缝干涉、肥皂泡膜、蝉翼、雨天公路上汽油等呈彩色,这些都是干涉(4):波的干涉加强区是波峰和波峰相遇处或波谷和波谷相遇处,加强区仍在振动,其位移有可能小于减弱区的,但它的振幅一定大于减弱区的;波的干涉减弱区则是波峰和波谷相遇处(5):当两个波源的振动方向相同,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的加强点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的减弱点;当两个波源的振动方向相反,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的减弱点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的加强点; 15:多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同波源与观测者相互接近时,接收频率变大;反之,变小16:波的分类:波分为横波和纵波;声波为纵波17:波的反射:遵循反射定律如:反射角等于入射角等等18:解波动问题的方法:(1):一定要画出波动图像(2):注意应用波形不变把整个波形拿来平移,一般不要把波形延长,各质点都在模仿波源的振动,通过逻辑推理导出答案由“现在”推导出“将来”,由“现在”推导出“过去”(3):还应考虑到波的周期性、重复性,质点振动的周期性、重复性。
振动与波
§4- 简谐波
三、波长、波的周期和频率、波速 波长、波的周期和频率、 1.波长 沿波的传播方向,两个相邻的、 1.波长 λ :沿波的传播方向,两个相邻的、相位差 的振动质点之间的距离。 为 2 π 的振动质点之间的距离。 反映波在空间的周期性 2.周期 波传过一个波长的距离所需要的时间。 2.周期 T:波传过一个波长的距离所需要的时间。 等于质点振动周期。 等于质点振动周期。
角波数 k =
2π
质点的振动速度,加速度 质点的振动速度,
∂y x v= = −ωA sin[ω (t − ) + ϕ ] ∂2t u ∂ y x 2 a = 2 = −ω A cos[ω (t − ) + ϕ ] ∂t u
λ
§4-4 简谐波
4.波函数的物理意义 4.波函数的物理意义 x t x y = A cos[ω (t − ) + ϕ ] = A cos[2 π( − ) + ϕ ] u T λ 固定时, 波动表式表示该点的简谐运动方程, 当 x 固定时, 波动表式表示该点的简谐运动方程, 并给出该点与原点O 振动的相位差. 并给出该点与原点O 振动的相位差.
y /cm
M1
0.5 0.4 0.2 0 − 0.2
M1'
M2
M2 '
a
10 20
b
30 40 50 60 70
− 0.4 − 0.5
x /cm t=3T/4 =3T
§4-4 简谐波
振动动能 + 形变势能= 波的能量 形变势能= 六.波的能量 设波沿x 方向传播, 设波沿 方向传播,取线元 以绳索上传播的横波为例: 以绳索上传播的横波为例: 线元的动能 y 1 1 ∂y 2 2 Wk = ∆mv = ∆m( ) 2 2 ∂t T2 线元的势能(原长为势能零点) 线元的势能(原长为势能零点) ( 1 ∂y 2) O Wp = F ∆x 2 ∂x
高考真题分类汇总专题05振动和波全国卷和地方卷精选附答案
专题5 振动和波❖全国卷1、【2010新课标】波源S1和S2振动方向相同,频率均为4Hz,分别置于均匀介质中轴上的O、A两点处,OA=2cm,如图所示。
两sm/4波源产生的简谐横波沿轴相向传播,波速为。
己知两波源振动的初始相位相同。
求:(i)简谐横波的波长;(ii)间合振动振幅最小的点的位置。
2、【2011新课标】振动周期为T,振幅为A,位于x=0点的波源从平衡位置沿y轴正向开始做简谐振动,该波源产生的一维简谐横波沿xυ轴正向传播,波速为,传播过程中无能量损失,一段时间后,该振动传播至某质点p,关于质点p振动的说法正确的是______。
A.振幅一定为AB.周期一定为TC.速度的最大值一定为vD.开始振动的方向沿y轴向上活向下取决于它离波源的距离E.若p点与波源距离s=vT,则质点p的位移与波源相同3、【2012新课标】一简谐横波沿x轴正向传播,t=0时刻的波形如图(a)所示,x=0.30m处的质点的振动图线如图(b)所示,该质点在t=0时刻的运动方向沿y轴_______(填“正向”或“负向”)。
已知该波的波长大于0.30m,则该波的波长为_______m。
4、【2013新课标1】如图,a. b, c. d是均匀媒质中x轴上的四个质点.相邻两点的间距依次为2m、4m和6m一列简谐横波以2m/s的波速沿x轴正向传播,在t=O时刻到达质点a处,质点a由平衡位践开始竖直向下运动,r=3s时a第一次到达最高点。
下列说法正确的是(填正确答案标号。
)A.在t=6s时刻波恰好传到质点d处B.在t=5s时刻质点c恰好到达最高点C.质点b开始振动后,其振动周期为4sD.在4s<t<6s的时间间隔内质点c向上运动E.当质点d向下运动时,质点b一定向上运动5、【2013新课标2】如图,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a、b两个小物块粘在一起组成的。
物块在光滑水平面上左右振动,振幅为A0,周期为T0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
头头(尾尾)相对法:
在波形图的波峰(或波谷)上画出一个箭头表示波的传播方向,波峰(或波谷)两边波形上分别画出两个箭头表示质点的振动方向,那么这三个箭头总是头头相对,尾尾相对,如图(丙)所示:
平移法:
将原波形(实线)沿波的传播方向平移λ/4后(虚线),则从原波形中平衡位置沿y轴指向虚线最大位移处的方向,表示原波形中质点的振动方向.图 ( 丁)所示
(4)已知振幅A和周期T,求振动质点在Δt时间内的路程和位移:
求振动质点在Δt时间内的路程和位移,由于牵扯质点的初始状态,用正弦函数较复杂,但Δt
若为半周期T/2的整数倍则很容易.在半周期内质点的路程为2A.若,n=1,2,3......
则路程s=2A·n,其中。
当质点的初始位移(相对平衡位置)为x1=x0时,经T/2的奇数倍时x2=x0,经T/2的偶数倍时x1=x0。
(5)应用Δx= v·Δt时注意:
①因为Δx=nλ+x,Δt= nT+t,应用时注意波动的重复性;v有正有负,应用时注意波传播的双向性.
②由Δx,Δt求v时注意多解性.
☆波的干涉和衍射:
1. 波的叠加:
几列波相遇时,每列波都能够保持各自的状态继续传播而不互相干扰.只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和.
2. 衍射:
波绕过障碍物继续传播的现象.产生明显衍射现象的条件是:障碍物或孔的尺寸比波长小或与波长相差不多.
3. 干涉:
频率相同的两列波叠加,使某些区域的振动加强,使某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象.产生稳定的千涉现象的必要条件:两列波的频率相同.
4.干涉和衍射是波所特有的现象.波同时还可以发生反射,如回声.
5.干涉图样:两列波在空间相遇发生干涉,其稳定的干涉图样如下图所示.
其中a点是两列波的波峰,相遇点为加强的;点,b点为波峰和波谷的相遇点,是减弱的点.加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小.
若两波源的振动步调一致,某点到两波源的距离之差为波长的整数倍,则该点为加强点;某点到两波源的距离为半波长的奇数倍,则该点为减弱点.。