2015届高考数学人教A版(文)一轮复习精品讲义:第八章 第八节 第一课时 直线与圆锥曲线的位置关系
高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考考点预览
■ ·考点梳理· ■ 1. 函数的零点 (1)函数零点的定义 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点. (2)几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交 点⇔函数y=f(x)有零点.
思考:上述等价关系在研究函数零点、方程的根及 图象交点问题时有什么作用?
思考:若函数y=f(x)在区间(a,b)内有零点,则y= f(x)在区间[a,b]上的图象是否一定是连续不断的一条曲 线,且有f(a)·f(b)<0呢?
提示:不一定.由图(1)、(2)可知.
3.二分法 (1)二分法的定义 对于在区间[a,b]上连续不断且ff((aa))··ff((bb)<0 的函数y= f(x),通过不断地把函数f(x)的零点所在的区间一分为二 , 使区间的两端点逐步逼近零点,进而得到零点的近似值 的方法叫做二分法. (2)用二分法求函数零点近似解的步骤 第一步:确定区间[a,b],验证f(a)·f(b)<0 ,给定精 确度ε;
观察图象可以发现它们有4个交点,即函数y=f(x)- log3|x|有4个零点.
3. [2012·徐州模拟]根据下面表格中的数据,可以判
定方程ex-x-2=0的一个根所在的区间为________.
x
-1 0 1 2
3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3 4
5
答案:(1,2)
3. 二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在的范 围,当达到一定的精确度要求时,所得区间的任一点就是 这个函数零点的近似值.
4. 要熟练掌握二分法的解题步骤,尤其是初始区间的 选取和最后精确度的判断.
2015高考数学一轮配套课件:专题八(第八篇)

依题意得,抛物线 y2=4x 的焦点坐标是(1,0), 则圆 C 的圆心坐标是(0,1), 圆心到直线 4x-3y-2=0 的距离 d =|4×402-+3×-13-2 2|=1,则 r2=d2+|A2B|2=10,
因此圆 C 的方程是 x2+(y-1)2=10. 答案 (2)x2+(y-1)2=10
解(1) 若直线的斜率不存在, 则该直线的方程为 x=-3, 代入圆的方程解得 y=±4, 故该直线被圆截得的弦长为 8,满足条件; 若直线的斜率存在, 不 即妨kx设-直y+线3的k-方32程=为0,y+32=k(x+3), 因为该直线被圆截得的弦长为 8,
第四页,编辑于星期五:十四点 十一分。
故半弦长为 4.又圆的半径为 5,
· A
·M
2 折痕 B X
(1)求直线方程时,要考虑对斜率是否存在、截距相等 时是否为零以及相关位置关系进行分类讨论.
(2)本题需对斜率 k 为 0 和不为 0 进行分类讨论,易错
点是忽略斜率不存在的情况.
第三页,编辑于星期五:十四点 十一分。
1、(1)若直线过点 P-3,-32且被圆 x2+y2=25 截得的弦长是 8, 则该直线的方程为( ). A.3x+4y+15=0 B.x=-3 或 y=-32 C.x=-3 D.x=-3 或 3x+4y+15=0 倒计时
折痕
G(-k,1),
B
X
从而折痕所在的直线与 AG 的交点坐标
第二页,编辑于星期五:十四点 十一分。
(线段 AG 的中点)为 M-k2,12.
Y D
1
G(a,1)C
∴折 即k痕y==所0k在 时x+, 的ky2直2=+线1212;.方k程≠0为时y,-y=12=kxk+x+k22+k2,12y.=12
2015年高考数学总复习(人教A版,理科)配套教案:第八章 立体几何 8.3

§8.3直线、平面平行的判定与性质1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b 2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行. (×)(2)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面. (√)(3)若直线a与平面α内无数条直线平行,则a∥α. (×)(4)空间四边形ABCD中,E、F分别是AB,AD的中点,则EF∥平面BCD. (√)(5)若α∥β,直线a∥α,则a∥β. (×)2.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案 B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.下列命题中,错误的是()A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一个平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面答案 C解析由面面平行的判定定理和性质知A、B、D正确.对于C,位于两个平行平面内的直线也可能异面.4.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.答案 2解析因为直线EF∥平面AB1C,EF⊂平面ABCD,且平面AB1C∩平面ABCD=AC,所以EF∥AC,又E是DA的中点,所以F是DC的中点,由中位线定理可得EF=12AC,又在正方体ABCD-A1B1C1D1中,AB=2,所以AC=22,所以EF= 2.5.已知平面α∥平面β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.答案②解析因为α∥β,a⊂α,所以a∥β,在平面β内存在无数条直线与直线a平行,但不是所有直线都与直线a平行,故命题②为真命题,命题①为假命题.在平面β内存在无数条直线与直线a垂直,故命题③为假命题.题型一直线与平面平行的判定与性质例1(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪(1)利用等腰△EDB底边中线和高重合的性质证明;(2)根据线面平行的判定或两个平面平行的性质证明线面平行.证明(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.(2)方法一如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,所以平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.方法二如图,延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因为∠AFB=30°,所以AB=12AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.思维升华判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.证明因为EH∥A1D1,A1D1∥B1C1,EH⊄平面BCC1B1,B1C1⊂平面BCC1B1,所以EH∥平面BCC1B1.又平面FGHE∩平面BCC1B1=FG,所以EH∥FG,即FG∥A1D1.又FG⊄平面ADD1A1,A1D1⊂平面ADD1A1,所以FG∥平面ADD1A1.题型二平面与平面平行的判定与性质例2如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.思维启迪要证四点共面,只需证GH∥BC;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.证明(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E、F分别为AB、AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD. 又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.题型三 平行关系的综合应用例3 如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和 CD ,试问截面在什么位置时其截面面积最大?思维启迪 利用线面平行的性质可以得到线线平行,可以先确定截面 形状,再建立目标函数求最值. 解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角).又设FG =x ,GH =y ,则由平面几何知识可得x a =CG BC ,y b =BG BC ,两式相加得x a +yb =1,即y=ba(a -x ), ∴S ▱EFGH =FG ·GH ·sin α=x ·b a ·(a -x )·sin α=b sin αa x (a -x ).∵x >0,a -x >0且x +(a -x )=a 为定值,∴当且仅当x =a -x 时,b sin αa x (a -x )=ab sin α4,此时x =a 2,y =b 2.即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时截面面积最大. 思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD . 解 在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG ,∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD , ∴EF ∥平面P AD . ∴F 即为所求的点.又P A ⊥面ABCD ,∴P A ⊥BC , 又BC ⊥AB ,∴BC ⊥面P AB . ∴PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+P A 2. 设P A =x 则PC =2a 2+x 2,由PB ·BC =BE ·PC 得: a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即P A =a ,∴PC =3a . 又CE =a 2-(63a )2=33a , ∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .立体几何中的探索性问题典例:(12分)如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP , AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由. 思维启迪 (1)利用DE ∥PC 证明线面平行;(2)利用平行关系和已知PC⊥AB证明DE⊥DG;(3)Q应为EG中点.规范解答(1)证明因为D,E分别是AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP. [3分] (2)证明因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形. [7分] (3)解存在点Q满足条件,理由如下:[8分]连接DF,EG,设Q为EG的中点,由(2)知,DF∩EG=Q,且QD=QE=QF=QG=12EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=12EG,所以Q为满足条件的点.[12分]解决立体几何中的探索性问题的步骤:第一步:写出探求的最后结论.第二步:证明探求结论的正确性.第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.方法与技巧1.平行问题的转化关系线∥线判定性质线∥面判定性质面∥性质判定面2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:40分钟)一、选择题1.若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角答案 A解析若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.2.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D3.已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确的是()A.a∥b,b⊂α,则a∥αB.a,b⊂α,a∥β,b∥β,则α∥βC.a⊥α,b∥α,则a⊥bD.当a⊂α,且b⊄α时,若b∥α,则a∥b答案 C解析A选项是易错项,由a∥b,b⊂α,也可能推出a⊂α;B中的直线a,b不一定相交,平面α,β也可能相交;C正确;D中的直线a,b也可能异面.4.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形答案 B解析 如图,由题意得,EF ∥BD , 且EF =15BD .HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG . ∴四边形EFGH 是梯形.又EF ∥平面BCD ,而EH 与平面ADC 不平行. 故选B.5.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A.①③B.①④C.②③D.②④答案 B解析 ①中易知NP ∥AA ′,MN ∥A ′B ,∴平面MNP ∥平面AA ′B 可得出AB ∥平面MNP (如图). ④中,NP ∥AB ,能得出AB ∥平面MNP .二、填空题6.过三棱柱ABC —A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线有________条. 答案 6解析 如图,E 、F 、G 、H 分别是A 1C 1、B 1C 1、BC 、AC 的中点,则 与平面ABB 1A 1平行的直线有EF ,GH ,FG ,EH ,EG ,FH 共6条.7.如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________. 答案223a 解析 ∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点,AP =a3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a .8.在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的 为________. ①AC ⊥BD ; ②AC ∥截面PQMN ; ③AC =BD ;④异面直线PM 与BD 所成的角为45°. 答案 ③解析 ∵PQMN 是正方形, ∴MN ∥QP ,则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,则AC ∥截面PQMN , 同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故①②正确.又∵BD ∥MQ ,∴异面直线PM 与BD 所成的角即为∠PMQ =45°,故④正确. 三、解答题9.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积.(1)证明 取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD , 所以四边形EGAD 是平行四边形.所以ED ∥AG . 又DE ⊄平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解 因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E -BCD =V D -BEC =V A -BCE =V E -ABC , 由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG=16×3×6×4=12. 10.如图E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、 C 1D 1、AA 1的中点.求证: (1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥GE , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形, 故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B , 所以平面BDF ∥平面B 1D 1H .B 组 专项能力提升 (时间:30分钟)1.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m ∥β且l 1∥αB.m ∥l 1且n ∥l 2C.m ∥β且n ∥βD.m ∥β且n ∥l 2答案 B解析 对于选项A ,不合题意;对于选项B ,由于l 1与l 2是相交直线,而且由l 1∥m 可得l 1∥α,同理可得l 2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l 1∥m ,它们也可以异面,故必要性不成立,故选B ;对于选项C ,由于m ,n 不一定相交,故是必要非充分条件;对于选项D ,由于n ∥l 2可转化为n ∥β,同选项C ,故不符合题意.综上选B. 2.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________. 答案 24或245解析 根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24.3.空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行 于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是 ________. 答案 (8,10)解析 设DH DA =GHAC =k ,∴AH DA =EHBD=1-k ,∴GH=5k,EH=4(1-k),∴周长=8+2k.又∵0<k<1,∴周长的范围为(8,10).4.平面α内有△ABC ,AB =5,BC =8,AC =7,梯形BCDE 的底DE =2, 过EB 的中点B 1的平面β∥α,若β分别交EA 、DC 于A 1、C 1,求△A 1B 1C 1 的面积. 解 ∵α∥β,∴A 1B 1∥AB ,B 1C 1∥BC , 又因∠A 1B 1C 1与∠ABC 同向. ∴∠A 1B 1C 1=∠ABC .又∵cos ∠ABC =52+82-722×5×8=12,∴∠ABC =60°=∠A 1B 1C 1.又∵B 1为EB 的中点,∴B 1A 1是△EAB 的中位线, ∴B 1A 1=12AB =52,同理知B 1C 1为梯形BCDE 的中位线, ∴B 1C 1=12(BC +DE )=5.则S △A 1B 1C 1=12A 1B 1·B 1C 1·sin 60°=12·52·5·32=258 3. 故△A 1B 1C 1的面积为2583.5.如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形, PD =DC =4,AD =2,E 为PC 的中点. (1)求三棱锥A —PDE 的体积;(2)AC 边上是否存在一点M ,使得P A ∥平面EDM ?若存在,求出 AM 的长;若不存在,请说明理由.解 (1)因为PD ⊥平面ABCD ,所以PD ⊥AD . 又因ABCD 是矩形,所以AD ⊥CD . 因PD ∩CD =D ,所以AD ⊥平面PCD , 所以AD 是三棱锥A —PDE 的高. 因为E 为PC 的中点,且PD =DC =4,所以S△PDE=12S△PDC=12×⎝⎛⎭⎫12×4×4=4.又AD=2,所以V A—PDE=13AD·S△PDE=13×2×4=83.(2)取AC中点M,连接EM,DM,因为E为PC的中点,M是AC的中点,所以EM∥P A.又因为EM⊂平面EDM,P A⊄平面EDM,所以P A∥平面EDM.所以AM=12AC= 5.即在AC边上存在一点M,使得P A∥平面EDM,AM的长为 5.。
第8章 第1节 直线的倾斜角与斜率、直线的方程-2023届高三一轮复习数学精新高考人教A版2019)

3.过点 P(2,3)且在两坐标轴上截距相等的直线方程为 _3_x_-__2_y_=_.0 或 x+y-5=0
解析 当纵、横截距均为 0 时,直线方程为 3x-2y=0; 当纵、横截距均不为 0 时,设直线方程为ax+ay=1, 则2a+3a=1,解得 a=5. 所以直线方程为 x+y-5=0.
◇考题再现
向旋转 15°,则旋转后得到的直线 l2 的方程为( B )
A.x- 3y+1=0
B. 3x-y=0
C. 3x+y+1=0
D.3x- 3y-1=0
(2)若 A(1,-2),B(5,6),直线 l 经过 AB 的中点 M 且在两坐
标轴上的截距相等,则直线 l 的方程为_2_x_-__3_y_=__0_或 ___x_+__y.-5=0
(2)求直线方程.弄清确定直线的两个条件,由直线方 程的几种特殊形式直接写出方程.
(3)求参数值或范围.注意点在直线上,则点的坐标适 合直线的方程,再结合函数的单调性或基本不等式求解.
[巩固演练] 3.已知直线 l:(2a+b)x+(a+b)y+a-b=0 及点 P(3, 4). (1)证明:直线 l 过某定点,并求该定点的坐标; (2)当点 P 到直线 l 的距离最大时,求直线 l 的方程. 解析 (1)在直线 l 的方程可化为: a(2x+y+1)+b(x+y-1)=0, 由2x+x+y-y+11==00,解得xy==-3 2,, ∴直线恒过定点(-2,3).
=5+-k+-4k≥5+4=9. 所以当且仅当-k=-4k且 k<0, 即 k=-2 时,|OA|+|OB|取最小值. 这时 l 的方程为 2x+y-6=0.
►规律方法 与直线方程有关问题的常见类型及解题策略
(1)求解与直线方程有关的最值问题.先设出直线方程, 建立目标函数,再利用基本不等式求解最值.
高考数学一轮复习 第八节 数学归纳法课件 理 新人教A版

当 n=4 时,a1+a2+a3+a4=S4=2×4-a4, ∴a4=185. 由此猜想 an=22nn--11(n∈N*). (2)证明:①当 n=1 时,左边=a1=1, 右边=212-0 1=1, 左边=右边,结论成立. ②假设 n=k(k≥1 且 k∈N*)时,结论成立,
第十三页,共25页。
[类题通法] 用数学归纳法证明不等式的注意问题
(1)当遇到与正整数 n 有关的不等式证明时,应用其他办 法不容易证,则可考虑应用数学归纳法.
(2)用数学归纳法证明不等式的关键是由 n=k 成立,推 证 n=k+1 时也成立,证明时用上归纳假设后,可采用分 析法、综合法、作差(作商)比较法、放缩法等证明.
第八页,共25页。
2.设 f(n)=1+12+13+…+n1(n∈N*). 求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*). 证明:(1)当 n=2 时,左边=f(1)=1, 右边=21+12-1=1, 左边=右边,等式成立. (2)假设 n=k(k≥2,k∈N*)时,结论成立,即 f(1)+f(2)+…+f(k-1)=k[f(k)-1], 那么,当 n=k+1 时,
第十四页,共25页。
[针对训练]
用数学归纳法证明:1+212+312+…+n12<2-n1(n∈N*,n≥2). 证明:(1)当 n=2 时,1+212=54<2-12=32,命题成立. (2)假设 n=k 时命题成立,即 1+212+312+…+k12<2-1k. 当 n=k+1 时,1+212+312+…+k12+k+1 12<2-1k+k+1 12<2-1k+ kk1+1=2-1k+1k-k+1 1 =2-k+1 1命题成立. 由(1),(2)知原不等式在 n∈N*,n≥2 时均成立.
人教A版高考总复习一轮数学精品课件 第八章 第一节 基本立体图形及空间几何体的表面积和体积

定相等.
(2)①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定
全等;②正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是
直角三角形;③正确,由棱台的概念可知.
规律方法 辨别空间几何体的两种方法
微思考 柱体、锥体、台体体积之间有什么关系?
提示
常用结论
1.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系:
S
2
S
直观图=
4
原图形
,S 原图形=2 2S 直观图.
2.球的截面的性质
(1)球的截面是圆面,且球心和截面(不过球心)圆心的连线垂直于截面;
(2)球心到截面的距离d与球的半径R及截面圆的半径r的关系为 r= 2 -2 .
考向2直观图
题组(1)如图所示是水平放置的△ABC的直观图,其中B'O'=C'O'=1,A'O'=
那么△ABC是一个(
)
A.等边三角形
B.直角三角形
C.非等边的等腰三角形
D.钝角三角形
(2)已知△ABC是边长为a的正三角形,那么水平放置的△ABC的直观图
△A'B'C'的面积为(
6 2
A. a
16
)
A,A'在同一直线上时,四边形AEFG的周长取最小值,最小值为AA'.所以在三
角形APA'中,由余弦定理得AA'2=PA2+PA'2-2×PA×PA'×cos 120°=
1
16+16-2×4×4×(- )=48,所以
2015高三人教版数学一轮复习课件:第8章 第8节 曲线与方程

第八节 曲线与方程(理)
第一页,编辑于星期五:十二点 五分。
第八章 平面解析几何
[主干知识梳理] 一、曲线与方程
在直角坐标系中,如果某曲线C(看作点的集合或适合某种 条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数 解建立了如下的关系: 1.曲线上点的坐标都是 这个方程的解 ; 2.以这个方程的解为坐标的点都是 曲线上的点 . 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲 线.
第二页,编辑于星期五:十二点 五分。
第八章 平面解析几何
二、求动点的轨迹方程的一般步骤 1.建系——建立适当的坐标系; 2.设点——设轨迹上的任一点P(x,y); 3.列式——列出动点P所满足的关系式; 4.代换——依条件式的特点,选用距离公式、斜率公式等将
其转化为关于x,y的方程式,并化简; 5.证明——证明所求方程即为符合条件的动点轨迹方程.
第三十页,编辑于星期五:十二点 五分。
பைடு நூலகம்
第八章 平面解析几何
[跟踪训练]
3.(2014·河南模拟)已知定点 A(2,0),它与抛物线 y2=x 上的动点
P 连线的中点 M 的轨迹方程为
A.y2=2(x-1)
B.y2=4(x-1)
()
C.y2=x-1
D.y2=12(x-1)
第三十一页,编辑于星期五:十二点 五分。
M的轨迹是以F1、A为焦点的双曲
线的右支,故C可能.
图3
第二十一页,编辑于星期五:十二点 五分。
第八章 平面解析几何
如图4,定点A在定圆F上,
则满足题意的点M的轨迹是以F
为端点的一条射线,故D不可能.
答案 D
图4
第二十二页,编辑于星期五:十二点 五分。
2015届高三数学第一轮复习课件:第八单元总结

轴上的椭圆,
则 k 的取值范围是________.
由题意知,4-k>6+k>0,所以-6<k<-1.
(-6,-1)
第二十三页,编辑于星期五:八点 五十二分。
12.过点 A(1,0)作倾斜角为π4 的直线,与抛物线 y2= 2x 交于 M、N 两点,则|MN|=________.
直线方程为 y=x-1,代入 y2=2x 得 x2-4x+1=0, 设 M(x1,y1),N(x2,y2),则 x1+x2=4,x1x2=1,
单元总结
第一页,编辑于星期五:八点 五十二分。
x2 y2 (2013 年安徽卷)设椭圆 E:a2+1-a2=1 的焦点在 x
轴上.
(1)若椭圆 E 的焦距为 1,求椭圆 E 的方程; (2)设 F1,F2 分别是椭圆 E 的左、右焦点,P 为椭圆 E 上第一象限内的点,直线 F2P 交 y 轴于点 Q,并且 F1P⊥F1Q. 证明:当 a 变化时,点 P 在某定直线上.
将 l 的方程代入椭圆 C 的方程,得 x2+4k2(x-2)2=16, 即(1+4k2)x2-16k2x+16k2-16=0,从而 x1+x2=
第九页,编辑于星期五:八点 五十二分。
16k2
16k2-16
1+4k2,x1x2= 1+4k2 ,
因为A→G=(12,yG),A→N=(x2+4,y2),A,N,G 共线, 所以 12y2=(x2+4)yG,yG=x122+y24,
又B→G=(4,yG),B→M=(x1-4,y1),
要证明 B,M,G 共线,即要证明 4y1=(x1-4)x122+y24, 即证明 k(x1-2)(x2+4)=3k(x2-2)(x1-4), 即 x1x2-2x2+4x1-8=3x1x2-6x1-12x2+24, 即 x1x2-5(x1+x2)+16=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节圆锥曲线的综合问题1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 = 1+1k 2·|y 1-y 2| =1+1k2·(y 1+y 2)2-4y 1y 2.1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[试一试]1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).2.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.1.用“点差法”求解弦中点问题的解题步骤 设点 设出弦的两端点坐标代入 代入圆锥曲线方程作差 两式相减,再用平方差公式把上式展开整理 转化为斜率与中点坐标的关系式,然后求解 2.函数与方程思想和数形结合思想在直线与圆锥曲线中的应用直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.[练一练]1.椭圆x 22+y 2=1的弦被点⎝⎛⎭⎫12,12平分,则这条弦所在的直线方程是________. 解析:设弦的两个端点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1,y 1+y 2=1. ∵A ,B 在椭圆上,∴x 212+y 21=1,x 222+y 22=1.(x 1+x 2)(x 1-x 2)2+(y 1+y 2)(y 1-y 2)=0,即y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2)=-12,即直线AB 的斜率为-12.∴直线AB 的方程为 y -12=-12⎝⎛⎭⎫x -12, 即2x +4y -3=0. 答案:2x +4y -3=02.(2013·成都模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与曲线y =2x -1相切,则该双曲线的离心率为________.解析:双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax ,由⎩⎪⎨⎪⎧y =±b a x ,y =2x -1,得⎝⎛⎭⎫b a 2x 2-2x +1=0,由渐近线与曲线y =2x -1相切可知Δ=4-4⎝⎛⎭⎫b a 2=0,得ba=1,所以该双曲线为等轴双曲线,离心率为 2.答案: 2第一课时 直线与圆锥曲线的位置关系有且只有一个公共点,这样的l 的条数是( )A .0或1B .1或2C .0或1或2D .1或2或3解析:选D ①当A 在抛物线的外部时,共有三条直线与抛物线只有一个公共点(有两条是切线,一条与抛物线的对称轴平行,如图);②可以想象,当A 在抛物线上时,有两条直线与抛物线只有一个公共点;③当A 在抛物线的内部时,只有一条直线与抛物线只有一个公共点.故选D.2.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,直线l 过焦点F ,且斜率为k ,则直线l 与双曲线C 的左,右两支都相交的充要条件是( )A .k >-baB .k <baC .k >b a 或k <-baD .-b a <k <b a解析:选D 由双曲线渐近线的几何意义知-b a <k <ba .[类题通法]研究直线与圆锥曲线位置关系的方法研究直线和圆锥曲线的位置关系,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数.对于选择题、填空题,常充分利用几何条件,利用数形结合的方法求解.弦长问题[典例] 如图,设抛物线方程为x 2=2py (p >0),M 为直线l :y =-2p 上任意一点,过M 引抛物线的两条切线,切点分别为A ,B (B 点在A 点右侧).设抛物线上一点P 到直线l 的距离为d ,F 为焦点,当d -|PF |=32,M 的坐标为(2,-2)时,求抛物线方程和线段AB 的长.[解] 依题意,由d -|PF |=32,得3p 2=32,解得p =1,故抛物线方程为x 2=2y .设过M 点的直线为y =k (x -2)-2,A (x A ,y A ),B (x B ,y B ),联立方程得⎩⎪⎨⎪⎧y =k (x -2)-2,x 2=2y ,消去y ,得x 2-2kx +4(k +1)=0.(*)若直线与抛物线相切,则Δ=4k 2-16(k +1)=0,k =2±22, 此时,方程(*)有等根x =k , ∴x B =2+22,x A =2-22, x B -x A =42,x B +x A =4. ∵A ,B 在抛物线上,∴y B -y A =x 2B -x 2A2=(x B +x A )(x B -x A )2=8 2.∴|AB |=(x B -x A )2+(y B -y A )2=32+128=410. [类题通法]有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.[针对训练]设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值. 解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)设直线l 的方程为y =x +c ,其中c =1-b 2.A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1.化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|, 即43=2|x 2-x 1|. 则89=(x 1+x 2)2-4x 1x 2=4(1-b 2)(1+b 2)2-4(1-2b 2)1+b 2=8b 4(1+b 2)2, 因为0<b <1. 所以b =22.中点弦问题角度一 求中点弦所在的直线方程1.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________.解析:设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2).则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.答案:x +2y -8=0角度二 抛物线中中点弦问题2.(2013·郑州模拟)过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则p 的值是________.解析:设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=xp,切线MA 的方程是y -y 1=x 1p (x -x 1),即y =x 1p x -x 212p .又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p ,即x 21-4x 1-4p 2=0;同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2.由线段AB 的中点的纵坐标是6得,y 1+y 2=12,即x 21+x 222p =(x 1+x 2)2-2x 1x 22p =12,16+8p 22p=12,解得p =1或p =2.答案:1或2角度三 利用中点弦解决对称问题3.(2013·郑州模拟)已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析:设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1,①x 22-y 223=1, ②x 1+x 2=2x 0, ③y 1+y 2=2y 0, ④由②-①得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称, ∴k MN =-1,∴y 0=-3x 0,又∵y 0=x 0+m , ∴P ⎝⎛⎭⎫-m 4,3m4,代入抛物线方程得 916m 2=18·⎝⎛⎭⎫-m 4, 解得m =0或-8,经检验都符合. 答案:0或-8 [类题通法]处理中点弦问题常用的求解方法1.点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.2.根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解.注意:中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.[课堂练通考点]1. 直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.2.(2014·郑州模拟) 已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )A.53B.83C.103D .10解析:选B 设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,设过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由⎩⎪⎨⎪⎧x 1+1=3(x 2+1),x 1x 2=y 214·y 224=(y 1y 2)216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83,选B.3.(2013·嘉兴一模) 经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点.设O 为坐标原点,则OA ·OB 等于( )A .-3B .-13C .-13或-3D .±13解析:选B 依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝⎛⎭⎫43,13,∴OA ·OB =-13,同理,直线 l 经过椭圆的左焦点时,也可得OA ·OB =-13. 4. (2014·东北三省联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析:则由题意得⎩⎪⎨⎪⎧c =2,b2a =1,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.答案:x 24+y 22=15.已知双曲线方程2x 2-y 2=2.(1)求以A (2,1)为中点的双曲线的弦所在的直线方程;(2)过点B (1,1)能否作直线l ,使l 与所给双曲线交于Q 1,Q 2两点,且点B 是弦Q 1Q 2的中点?如果l 存在,求出它的方程;如果不存在,说明理由.解:(1)设A (2,1)的中点弦两端点为P 1(x 1,y 1),P 2(x 2,y 2),则有x 1+x 2=4,y 1+y 2=2.又据对称性知x 1≠x 2,由P 1,P 2在双曲线上,则有关系2x 21-y 21=2,2x 22-y 22=2.两式相减得2(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)=0, ∴2×4(x 1-x 2)-2(y 1-y 2)=0. ∴y 1-y 2x 1-x 2=4,即以A (2,1)为中点的弦所在直线的斜率k =4. 故所求中点弦所在直线方程为 y -1=4(x -2),即4x -y -7=0.(2)可假定直线l 存在,采用(1)的方法求出l 的方程为y -1=2(x -1),即2x -y -1=0.联立方程组⎩⎪⎨⎪⎧2x 2-y 2=2,2x -y -1=0,消去y ,得2x 2-4x +3=0.Δ=(-4)2-4×2×3=-8<0,无实根,因此直线l 与双曲线无交点,故满足条件的直线l 不存在.[课下提升考能]第Ⅰ卷:夯基保分卷1.已知椭圆x 24+y 22=1上有一点P ,F 1,F 2是椭圆的左、右焦点,若△F 1PF 2 为直角三角形,则这样的点P 有 ( )A .3个B .4个C .6个D .8个解析:选C 当∠PF 1F 2为直角时,根据椭圆的对称性知,这样的点P 有2个,同理当 ∠PF 2F 1为直角时,这样的点P 有2个;当P 点为椭圆的短轴端点时,∠F 1PF 2最大,且为直角,此时这样的点P 有2个.故符合要求的点P 有6个.2. 椭圆x 24+y 23=1的离心率为e ,点(1,e )是圆x 2+y 2-4x -4y +4=0的一条弦的中点,则此弦所在直线的方程是( )A .3x +2y -4=0B .4x +6y -7=0C .3x -2y -2=0D .4x -6y -1=0解析:选B 依题意得e =12,圆心坐标为(2,2),圆心(2,2)与点(1,12)的连线的斜率为2-122-1=32,所求直线的斜率为-23,所以所求直线方程是y -12=-23(x -1).即4x +6y -7=0. 3.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF =λFB (λ>1),则λ的值为( )A .5B .4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2),由AF =λFB 得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2,联立直线与抛物线方程,消元得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1·y 2=-p 2,(y 1+y 2)2y 1·y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,故λ=4.4.已知椭圆x 24+y 2b 2=1(0<b <2),左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32D. 3解析:选D 由椭圆的方程,可知长半轴长为a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a=3,可求得b 2=3,即b = 3.5.(2013·兰州名校检测) 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A ,B ,M 是直线l 与椭圆C 的一个公共点,设|AM |=e |AB |,则该椭圆的离心率e =________.解析:因为点A ,B 分别是直线l :y =ex +a 与x 轴、y 轴的交点,所以点A ,B 的坐标分别是⎝⎛⎭⎫-a e ,0,(0,a ).设点M 的坐标是(x 0,y 0),由|AM |=e |AB |, 得⎩⎪⎨⎪⎧x 0=a e (e -1),y 0=ea .(*)因为点M 在椭圆上,所以x 20a 2+y 20b 2=1,将(*)式代入,得(e -1)2e 2+e 2a 2b2=1,整理得,e 2+e-1=0, 解得e =5-12. 答案:5-12 6.(2014·沈阳模拟)已知点A (-2,0),点B (2,0),且动点P 满足|P A |-|PB |=2,则动点P 的轨迹与直线y =k (x -2)有两个交点的充要条件为k ∈________.解析:由已知得动点P 的轨迹为一双曲线的右支且2a =2,c =2,则b =c 2-a 2=1,∴P 点的轨迹方程为x 2-y 2=1(x >0),其一条渐近线方程为y =x .若P 点的轨迹与直线y =k (x -2)有两个交点,则需k ∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪(1,+∞)7. 如图,椭圆长轴的端点为A ,B ,O 为椭圆的中心,F 为椭圆的右焦点,且AF ·FB =1,|OF |=1.(1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为△PQM 的垂心,若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c =1, 又∵AF ·FB =(a +c )·(a -c )=a 2-c 2=1.∴a 2=2,b 2=1,故椭圆的方程为x 22+y 2=1. (2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,设P (x 1,y 1),Q (x 2,y 2),∵M (0,1),F (1,0),∴直线l 的斜率k =1.于是设直线l 为y =x +m ,由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1.得 3x 2+4mx +2m 2-2=0,x 1+x 2=-43m ,① x 1x 2=2m 2-23.② ∵MP ·FQ =x 1(x 2-1)+y 2(y 1-1)=0.又y i =x i +m (i =1,2),∴x 1(x 2-1)+(x 2+m )(x 1+m -1)=0,即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0.将①②代入得2·2m 2-23-4m 3(m -1)+m 2-m =0, 解得m =-43或m =1,经检验m =-43符合条件. 故存在直线l ,使点F 恰为△PQM 的垂心,直线l 的方程为y =x -43. 8.(2013·郑州模拟)已知圆C :(x +3)2+y 2=16,点A (3,0),Q 是圆上一动点,AQ 的垂直平分线交CQ 于点M ,设点M 的轨迹为E .(1)求轨迹E 的方程;(2)过点P (1,0)的直线l 交轨迹E 于两个不同的点A ,B ,△AOB (O 是坐标原点)的面积S =45,求直线AB 的方程. 解:(1)由题意|MC |+|MA |=|MC |+|MQ |=|CQ |=4>23,所以轨迹E 是以A ,C 为焦点,长轴长为4的椭圆,即轨迹E 的方程为x 24+y 2=1. (2)记A (x 1,y 1),B (x 2,y 2),由题意,直线AB 的斜率不可能为0,而直线x =1也不满足条件,故可设AB 的方程为x =my +1.由⎩⎪⎨⎪⎧x 2+4y 2=4,x =my +1,消去x 得(4+m 2)y 2+2my -3=0, 所以⎩⎪⎨⎪⎧ y 1+y 2=-2m 4+m 2,y 1·y 2=-34+m 2.S =12|OP ||y 1-y 2|=12(y 1+y 2)2-4y 1y 2=2m 2+3m 2+4. 由S =45,解得m 2=1,即m =±1. 故直线AB 的方程为x =±y +1,即x +y -1=0或x -y -1=0为所求.第Ⅱ卷:提能增分卷1. 已知中心在坐标原点的椭圆E 的长轴的一个端点是抛物线y 2=45x 的焦点,且椭圆E 的离心率是63. (1)求椭圆E 的方程;(2)过点C (-1,0)的动直线与椭圆E 相交于A ,B 两点.若线段AB 的中点的横坐标是-12,求直线AB 的方程. 解:(1)由题知椭圆E 的焦点在x 轴上,且a =5,又c =ea =63×5=303, 故b =a 2-c 2= 5-103= 53,故椭圆E 的方程为x 25+y 253=1,即x 2+3y 2=5. (2)依题意,直线AB 的斜率存在,设直线AB 的方程为y =k (x +1),将其代入x 2+3y 2=5,消去y ,整理得(3k 2+1)x 2+6k 2x +3k 2-5=0.设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).则⎩⎪⎨⎪⎧ Δ=36k 4-4(3k 2+1)(3k 2-5)>0,(*),x 1+x 2=-6k 23k 2+1. 由线段AB 中点的横坐标是-12,得x 1+x 22=-3k 23k 2+1=-12,解得k =±33,符合(*)式. 所以直线AB 的方程为x -3y +1=0或x +3y +1=0.2.已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为32,椭圆C 的短轴的一个端点P 到焦点的距离为2.(1)求椭圆C 的方程;(2)已知直线l :y =kx +3与椭圆C 交于A ,B 两点,是否存在k 使得以线段AB 为直径的圆恰好经过坐标原点O ?若存在,求出k 的值;若不存在,请说明理由.解:(1)设椭圆的焦半距为c ,则由题设得⎩⎪⎨⎪⎧a =2,c a =32, 解得⎩⎨⎧a =2,c =3,故所求C 的方程为y 24+x 2=1. (2)存在k 使得以线段AB 为直径的圆恰好经过坐标原点O .理由如下:设点A (x 1,y 1),B (x 2,y 2),将直线l 的方程y =kx +3代入y 24+x 2=1并整理得(k 2+4)x 2+23kx -1=0. (*) 则x 1+x 2=-23k k 2+4,x 1x 2=-1k 2+4. 因为以线段AB 为直径的圆恰好经过坐标原点O ,所以OA ·OB =0,即x 1x 2+y 1y 2=0.又y 1y 2=k 2x 1x 2+3k (x 1+x 2)+3,即y 1y 2=-k 2k 2+4-6k 2k 2+4+3=-4k 2+12k 2+4, 于是有-1k 2+4+-4k 2+12k 2+4=0, 解得k =±112. 经检验知:此时(*)的判别式Δ>0,适合题意.即(*)的判别式Δ>0恒成立.所以当k =±112时,以线段AB 为直径的圆恰好经过坐标原点O . 3. (2013·广州二模)已知对称中心为坐标原点的椭圆C 1与抛物线C 2:x 2=4y 有一个相同的焦点F 1,直线l :y =2x +m 与抛物线C 2只有一个公共点.(1)求直线l 的方程;(2)若椭圆C 1经过直线l 上的点P ,当椭圆C 1的离心率取得最大值时,求椭圆C 1的方程及点P 的坐标.解:(1)由⎩⎪⎨⎪⎧y =2x +m ,x 2=4y .消去y ,得x 2-8x -4m =0, ∵ 直线l 与抛物线C 2只有一个公共点,∴Δ=82+4×4m =0,解得m =-4.∴直线l 的方程为y =2x -4.(2)∵抛物线C 2的焦点为F 1(0,1),依题意知椭圆C 1的两个焦点的坐标为F 1(0,1),F 2(0,-1)设椭圆C 1的方程为y 2a 2+x 2a 2-1=1(a >1), 由⎩⎪⎨⎪⎧y =2x -4,y 2a 2+x 2a 2-1=1.消去y, 得(5a 2-4)x 2-16(a 2-1)x +(a 2-1)(16-a 2)=0.(*) 由Δ=162(a 2-1)2-4(5a 2-4)(a 2-1)(16-a 2)≥0,得a 4-4a 2≥0(a 2>0且a 2-1>0),解得a 2≥4.∵a >1,∴a ≥2,∴e =1a ≤12,当a =2时,e max =12,此时椭圆C 1的方程为y 24+x 23=1. 把a =2代入方程(*),解得x =32. 又y =2x -4,∴y =-1,∴点P 的坐标为⎝⎛⎭⎫32,-1.。