2020-2021浙江省文澜中学初二数学上期末模拟试题(带答案)

合集下载

2020-2021初二数学上期末模拟试卷(带答案)

2020-2021初二数学上期末模拟试卷(带答案)

2020-2021初二数学上期末模拟试卷(带答案)一、选择题1.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②①2.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm 3.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2- B .1- C .2 D .34.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( )A .B .C .D .5.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于E ,DE 平分∠ADB,则∠B=( )A .40°B .30°C .25°D .22.5〫6.若实数m 、n 满足 402n m -+-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .67.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 8.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65° 9.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°10.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .11.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .212.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .18二、填空题13.腰长为5,高为4的等腰三角形的底边长为_____.14.如图,△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件:_____,使△AEH ≌△CEB .15.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.16.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 17.若一个多边形的边数为 8,则这个多边形的外角和为__________. 18.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.19.计算:2422a a a a -=++____________. 20.若n 边形内角和为900°,则边数n= .三、解答题21.计算: 22142a a a ---. 22.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?23.如图,四边形ABCD 中,∠B=90°, AB//CD ,M 为BC 边上的一点,AM 平分∠BAD ,DM 平分∠ADC ,求证:(1) AM ⊥DM;(2) M 为BC 的中点.24.解方程:22161242x x x x +-=--+ 25.化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH ⊥AC 即可.【详解】用尺规作图作△ABC 边AC 上的高BH ,做法如下:④取一点K 使K 和B 在AC 的两侧;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;①分别以点D 、E 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;故选B .【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.2.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .3.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.4.C解析:C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.B解析:B【解析】【分析】利用全等直角三角形的判定定理HL 证得Rt △ACD ≌Rt △AED ,则对应角∠ADC=∠ADE ;然后根据已知条件“DE 平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,∴CD=ED,在Rt △ACD 和Rt △AED 中,{AD AD CD ED== , ∴Rt △ACD ≌Rt △AED (HL ),∴∠ADC=∠ADE (全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE 平分∠ADB ,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B .【点睛】本题考查了角平分线的性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.6.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m 、n 的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m 、n 恰好是等腰△ABC 的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m 、n 的值是解题的关键.7.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF ≌△ADE ,即可判断①②;利用SSS 即可证明△BDE ≅△ADF ,故可判断③;利用等量代换证得BE CF AB +=,从而可以判断④.【详解】∵△ABC 为等腰直角三角形,且点在D 为BC 的中点,∴CD=AD=DB ,AD ⊥BC ,∠DCF =∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF +∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.8.A解析:A【解析】【分析】利用等边三角形三边相等,结合已知BC=BD ,易证ABD n 、CBD n 都是等腰三角形,利用等边对等角及三角形内角和定理即可求得BCD ∠的度数.【详解】Q ABC n 是等边三角形,BC AC AB ∴==,又Q BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒00000018018020206080CBD BAD BDA ABC∴∠=-∠-∠-∠=---=,BC BD =,11(180)(18080)5022BCE CBD ∠=⨯︒-∠=⨯︒-︒=︒, 故选:A .【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 9.B解析:B【解析】试题解析:∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°,∵AB 的垂直平分线交AC 于D ,∴AD =BD ,∴∠A =∠ABD =30°,∴∠BDC =60°,∴∠CBD =180°﹣75°﹣60°=45°.故选B .10.B解析:B【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B .【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键. 11.C解析:C【解析】【分析】由等边三角形有三条对称轴可得答案.【详解】如图所示,n 的最小值为3.故选C .【点睛】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.12.B解析:B【解析】设多边形的边数为n ,则有(n-2)×180°=n×150°,解得:n=12, 故选B.二、填空题13.6或或【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案【详解】解:①如图1当则∴底边长为6;②如图2当时则∴∴∴此时底边长为;③如图3:当时则∴∴∴此时底边长为故答案为:6或或【点睛】 解析:6或25或45.【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2.当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3:当5AB AC ==,4CD =时,则223AD AC CD -=,BD=,∴8∴BC=∴此时底边长为故答案为:6或【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.14.AH=CB或EH=EB或AE=CE【解析】【分析】根据垂直关系可以判断△AEH 与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=解析:AH=CB或EH=EB或AE=CE.【解析】【分析】根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.16.且【解析】【分析】直接解分式方程进而利用分式方程的解是正数得出的取值范围进而结合分式方程有意义的条件分析得出答案【详解】去分母得:解得:解得:当时不合题意故且故答案为:且【点睛】此题主要考查了分式方 解析:5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.17.360°【解析】【分析】根据任意多边形的外角和为360°回答即可【详解】解:由任意多边形的外角和为360°可知这个多边形的外角和为360°故答案为:360°【点睛】本题主要考查的是多边形的外角和掌握解析:360°.【解析】根据任意多边形的外角和为360°回答即可.【详解】解:由任意多边形的外角和为360°可知,这个多边形的外角和为360°.故答案为:360°.【点睛】本题主要考查的是多边形的外角和,掌握多边形的外角和定理是解题的关键.18.12【解析】【分析】逆用同底数幂的除法法则和幂的乘方的运算法则进行解答即可【详解】∵∴故答案为12【点睛】熟记同底数幂的除法法则:幂的乘方的运算法则:并能逆用这两个法则是解答本题的关键解析:12【解析】【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可.【详解】∵63m n x x ==,,∴222()6312m n m n x x x -=÷=÷=.故答案为12.【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mn a a =,并能逆用这两个法则”是解答本题的关键. 19.【解析】【分析】根据分式的加减运算的法则先因式分解复杂的因式找到最简公分母通分然后按同分母的分式相加减的性质计算在约分化为最简二次根式【详解】解:=====故答案为:【点睛】本题考查分式的加减运算 解析:2a a- 【解析】【分析】根据分式的加减运算的法则,先因式分解复杂的因式,找到最简公分母,通分,然后按同分母的分式相加减的性质计算,在约分,化为最简二次根式.【详解】 解:2422a a a a-++ =42(2)a a a a -++ =24(2)(2)a a a a a -++=24(2)a a a -+ =(2)(2)(2)a a a a +-+ =2a a-. 故答案为:2a a -. 【点睛】本题考查分式的加减运算.20.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n ﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n ﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.三、解答题21.12a + 【解析】【分析】先寻找2个分式分母的最小公倍式(最小公倍是用因式分解的方法去寻找),将最小公倍式作为结果的分母;然后在进行减法计算最后进行化简【详解】解:原式=21(2)(2)2a a a a -+-- = ()()22(2)(2)22a a a a a a +-+-+- = 2-(2)(2)(-2)a a a a ++ = -2(2)(-2)a a a + = 1+2a . 【点睛】本题是对分式计算的考察,正确化简是关键22.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000,解得24663y ≤, ∵y 为整数, ∴y 的最大值为466∴至多还能购进466本科普书.23.(1)详见解析;(2)详见解析【解析】【分析】(1)根据平行线的性质得到∠BAD +∠ADC =180°,根据角平分线的定义得到∠MAD +∠ADM =90°,求出∠AMD =90°,根据垂直的定义得到答案;(2)作MN ⊥AD ,根据角平分线的性质得到BM =MN ,MN =CM ,等量代换可得结论.【详解】证明:(1)∵AB ∥CD ,∴∠BAD +∠ADC =180°,∵AM 平分∠BAD ,DM 平分∠ADC ,∴2∠MAD +2∠ADM =180°,∴∠MAD +∠ADM =90°,∴∠AMD =90°,即AM ⊥DM ;(2)作MN ⊥AD 交AD 于N ,∵∠B =90°,AB ∥CD ,∴BM ⊥AB ,CM ⊥CD ,∵AM 平分∠BAD ,DM 平分∠ADC ,∴BM =MN ,MN =CM ,∴BM =CM ,即M 为BC 的中点.【点睛】本题考查的是平行线的性质、三角形内角和定理以及角平分线的性质,掌握平行线的性质和角平分线上的点到角的两边的距离相等是解题的关键.24.5x =-【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】()22162x x +-=-23100x x +-=解得15x =-,22x =经检验:2x =不符合题意.原方程的解为: 5.x =-【点睛】考查分式方程的解法,掌握分式方程的解题的步骤是解题的关键.注意检验.25.13a -,1. 【解析】【分析】 原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值.【详解】 解:原式=a a+2a-2()()•a+2a a-3()+1a-2=1a-2a-3()()+1a-2=1+a-3a-2a-3()()=a-2a-2a-3()()=1a-3, ∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1.【点睛】此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键.。

2020-2021学年浙江版八年级上册数学 期末测评培优卷(含解析)(1)

2020-2021学年浙江版八年级上册数学 期末测评培优卷(含解析)(1)

2020-2021学年浙江版八年级上册数学期末测评培优卷(含解析)(一)(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•温岭市期中)下列线段能组成三角形是()A.1、2、3 B.4、5、6 C.6、8、14 D.5、6、13 2.(2020•拱墅区校级模拟)已知a<b,下列结论中成立的是()A.﹣a+1<﹣b+1 B.﹣3a<﹣3b C.b+2 D.如果c<0,那么3.(2020春•山西期末)直线y=﹣2x+b上有三个点(﹣2.4,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y2>y1>y34.(2020秋•拱墅区期中)将一副直角三角板如图放置,使两直角重合,则∠AFE=()度.A.145 B.155 C.165 D.1755.(2020春•新野县期末)已知n是正整数,若一个三角形的三边长分别是n+2、n+4、n+8,则n 的取值范围是()A.n>﹣1 B.n>0 C.n>2 D.n>36.(2020春•平江县期末)若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1 B.1 C.5 D.﹣57.(2020秋•余杭区期中)如图,以Rt△ABC的三边为边长向外作正方形,三个正方形的面积分别为S1、S2、S3,若S1=13,S2=12,则S3的值为()A.1 B.5 C.25 D.1448.(2020秋•西湖区校级期中)如图,在△ABC中,∠BAC=α,点D在BC上,且BD=BA,点E 在BC的延长线上,且CE=CA,则∠DAE的大小为()A.αB.C.D.α9.(2020•宁波模拟)如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()A.148°B.140°C.135°D.128°10.(2020•攀枝花)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10km D.王浩月比赵明阳提前1.5h到目的地二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020•全椒县期中)已知直线y=﹣2x+4,则将其向右平移1个单位后与两坐标轴围成的三角形的面积为.12.(2020春•崇川区校级期末)在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN ∥y轴,则a=.13.(2020春•朝阳区校级期末)如图,已知AC与BF相交于点E,AB∥CF,点E为BF中点,若CF=6,AD=4,则BD=.14.(2020秋•卫辉市期末)如图,△ABC中,∠A=90°,AB=3,AC=6,点D是AC边的中点,点P是BC边上一点,若△BDP为等腰三角形,则线段BP的长度等于.15.(2020春•仙居县期末)小亮从家骑车上学,先经过一段平路到达A地后,再上坡到达B地,最后下坡到达学校,所行驶路程s(千米)与时间t(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是分钟.16.(2020秋•思明区校级期中)在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020秋•柯桥区期中)(1)解不等式x,并把解表达在数轴上.(2)解不等式组.18.(2019秋•曹县期末)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE,BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠C=70°,求∠AEB的度数.19.(2019秋•郾城区期末)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在△ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).20.(2019春•北碚区校级月考)已知函数y=y1+y2,其中y1=(4﹣a)x a2﹣4a﹣1是反比例函数,y2与x﹣5成正比例,函数的自变量x的取值范围是x,且当x=2时,y=﹣1.(1)解析式探究,根据给定的条件,可以确定出该函数的解析式为:.(2)下表是y与x的几组对应值x 1 2 3 4 5 6 7 8y m0 ﹣1 0 n表中m=,n=(3)根据表中数据,在平面直角坐标系中,描点并画出该函数的图象;(4)结合画出的函数图象,解决问题:估计y1+y2=﹣x+5时,x的值约为(精确到0.1).21.如图,在△ABC中,AD⊥BC于D,∠ABC=2∠C,求证:AC2=AB2+AB•BC.22.(2020•宁津县期末)已知一次函数y=(m﹣2)x+3﹣m,求m为何值时,下列各结论分别成立:(1)y随x的增大而减小;(2)函数的图象经过原点;(3)函数的图象与y轴的交点在x轴上方.23.(2020秋•辛集市期末)综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.24.(2020秋•松滋市期末)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.2020-2021学年浙江版八年级上册数学期末测评培优卷(含解析)(一)(测试时间:120分钟,满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•温岭市期中)下列线段能组成三角形是()A.1、2、3 B.4、5、6 C.6、8、14 D.5、6、13【分析】利用三角形的三边关系进行分析即可.【解析】A、1+2=3,不能组成三角形,故此选项不符合题意;B、5+4>6,能组成三角形,故此选项符合题意;C、6+8=14,不能组成三角形,故此选项不符合题意;D、5+6<13,不能组成三角形,故此选项不符合题意;故选:B.2.(2020•拱墅区校级模拟)已知a<b,下列结论中成立的是()A.﹣a+1<﹣b+1 B.﹣3a<﹣3bC.b+2 D.如果c<0,那么【分析】根据不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解析】A、a<b则﹣a+1>﹣b+1,故原题说法错误;B、a<b则﹣3a>﹣3b,故原题说法错误;C、a<b则a+2b+2,故原题说法正确;D、如果c<0,那,故原题说法错误;故选:C.3.(2020春•山西期末)直线y=﹣2x+b上有三个点(﹣2.4,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y2>y1>y3【分析】由k=﹣2<0,利用一次函数的性质可得出y值随x值的增大而减小,结合﹣2.4<﹣1.5<1.3可得出y1>y2>y3,此题得解.【解析】∵k=﹣2<0,∴y值随x值的增大而减小.又∵﹣2.4<﹣1.5<1.3,∴y1>y2>y3.故选:A.4.(2020秋•拱墅区期中)将一副直角三角板如图放置,使两直角重合,则∠AFE=()度.A.145 B.155 C.165 D.175【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠AFE的度数.【解析】∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠AFE+∠AFD=180°,∴∠AFE=180°﹣∠AFD=180°﹣15°=165°.故选:C.5.(2020春•新野县期末)已知n是正整数,若一个三角形的三边长分别是n+2、n+4、n+8,则n 的取值范围是()A.n>﹣1 B.n>0 C.n>2 D.n>3【分析】根据三角形的三边关系列出不等式即可求出a的取值范围.【解析】∵三角形的三边长分别是n+2、n+4、n+8,∴n+2+n+4>n+8,解得n>2.故选:C.6.(2020春•平江县期末)若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1 B.1 C.5 D.﹣5【分析】根据点的坐标特征求解即可.【解析】由题意,得x=2,y=﹣3,x+y=2+(﹣3)=﹣1,故选:A.7.(2020秋•余杭区期中)如图,以Rt△ABC的三边为边长向外作正方形,三个正方形的面积分别为S1、S2、S3,若S1=13,S2=12,则S3的值为()A.1 B.5 C.25 D.144【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【解析】由勾股定理得:AC2+BC2=AB2,∵S1=S2+S3,∴S3=S1﹣S2=13﹣12=1.故选:A.8.(2020秋•西湖区校级期中)如图,在△ABC中,∠BAC=α,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,则∠DAE的大小为()A.αB.C.D.α【分析】由AB=BD,AC=CE,可得∠BAD=∠BDA,∠E=∠CAE,设∠BAD=∠BDA=x,∠E=∠CAE=y,∠DAC=z,则,解得y+z=35°,由此即可解决问题.【解析】∵AB=BD,AC=CE,∴∠BAD=∠BDA,∠E=∠CAE,设∠BAD=∠BDA=x,∠E=∠CAE=y,∠DAC=z,则,解得y+zα,∴∠DAE=∠DAC+∠CAE;故选:D.9.(2020•宁波模拟)如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()A.148°B.140°C.135°D.128°【分析】证明△ABC≌△EDB(SAS),求出∠A=∠E=43°,求出∠ADE,则答案可求出.【解析】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣62°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故选:A.10.(2020•攀枝花)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10km D.王浩月比赵明阳提前1.5h到目的地【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【解析】由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王皓月的速度为:24÷1﹣8=16(km/h),王皓月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2020•全椒县期中)已知直线y=﹣2x+4,则将其向右平移1个单位后与两坐标轴围成的三角形的面积为.【分析】根据“平移k不变,b值加减”可以求得新直线方程;根据新直线方程可以求得它与坐标轴的交点坐标,所以由三角形的面积公式可以求得该直线与两坐标轴围成的三角形的面积.【解析】平移后解析式为:y=﹣2(x﹣1)+4=﹣2x+6,即y=﹣2x+6.当x=0时,y=6,当y=0时,x=3,∴平移后得到的直线与两坐标轴围成的三角形的面积为:6×3=9.故答案是:9.12.(2020春•崇川区校级期末)在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN ∥y轴,则a=.【分析】由MN∥y轴可知点M点N的横坐标相同,从而得出关于a的方程,解得a的值即可.【解析】∵MN∥y轴,∴点M(a﹣3,a+4)与点N(5,9)的横坐标相同,∴a﹣3=5,∴a=8.故答案为:8.13.(2020春•朝阳区校级期末)如图,已知AC与BF相交于点E,AB∥CF,点E为BF中点,若CF=6,AD=4,则BD=.【分析】利用全等三角形的判定定理和性质定理可得结果.【解析】∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵点E为BF中点,∴BE=FE,在△ABE与△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=6,∵AD=4,∴BD=2,故答案为:2.14.(2020秋•卫辉市期末)如图,△ABC中,∠A=90°,AB=3,AC=6,点D是AC边的中点,点P是BC边上一点,若△BDP为等腰三角形,则线段BP的长度等于.【分析】分两种情形:①当PD=PB时.②当BD=BP′时分别求解;【解析】如图,当PD=PB时,连接P A交BD于点H,作PE⊥AC于E,PF⊥AB于F.∵AD=DC=3.AB=3,∴AB=AD,∵PB=PD,∴P A垂直平分线段BD,∴∠P AB=∠P AD,∴PE=PF,∵•AB•PF•AC•PE•AB•AC,∴PE=PF=2,在Rt△ABD中,∵AB=AD=3∴BD=3,BH=DH=AH,∵∠P AE=∠APE=45°,∴PE=AE=2,∴P A=2,PH=P A﹣AH,在Rt△PBH中,PB.(也可以根据PB计算)当BD=BP′时,BP′=3,综上所述,满足条件的BP的值为3或.故答案为3或.15.(2020春•仙居县期末)小亮从家骑车上学,先经过一段平路到达A地后,再上坡到达B地,最后下坡到达学校,所行驶路程s(千米)与时间t(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是分钟.【分析】根据图象可知:小明从家骑车上学,平路路程是1千米,用3分钟;上坡的路程是1千米,用6分钟,则上坡速度是千米/分钟;下坡路长是2千米,用3分钟,因而速度是千米/分钟,由此即可求出答案.【解析】根据图象可知:小明从家骑车上学,上坡的路程是1千米,用6分钟,则上坡速度是千米/分钟;下坡路长是2千米,用3分钟,则速度是千米/分钟,他从学校回到家需要的时间为:213=16.5(分钟).故答案为:16.5.16.(2020秋•思明区校级期中)在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.【分析】如图,连接PP',过点D作DE⊥BC,由旋转的性质可证△DP'P是等边三角形,由“AAS”可证△BDP≌△CPP',可得BD=CP=2,可求BP=3,由直角三角形的性质和勾股定理可求DP的长.【解析】如图,连接PP',过点D作DE⊥BC,∵DP绕点D逆时针旋转60°,∴DP=DP',∠PDP'=60°,∴△DP'P是等边三角形,∴DP=PP',∠DPP'=60°,∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵∠BPP'=∠C+∠PP'C=∠BPD+∠DPP',∴∠PP'C=∠BPD,且DP=PP',∠B=∠C,∴△BDP≌△CPP'(AAS)∴BD=CP=2,∴BP=3,∵∠B=60°,BD=2,DE⊥BC,∴BE=1,DE BE,∴PE=2,∴DP,故答案为.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2020秋•柯桥区期中)(1)解不等式x,并把解表达在数轴上.(2)解不等式组.【分析】(1)先去分母,再移项,合并同类项,把不等式的解集在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解析】(1)x,2x﹣1<3x+1,2x﹣3x<1+1,﹣x<2,x>﹣2,把解表达在数轴上为:(2),解①得x≥﹣1,解②得x<3.故不等式组的解集为﹣1≤x<3.18.(2019秋•曹县期末)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE,BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠C=70°,求∠AEB的度数.【分析】(1)由外角的性质可证∠C=∠BDE,由“AAS”可证△AEC≌△BED;(2)由全等三角形的性质可得EC=ED,∠BED=∠AEC,由等腰三角形的性质和三角形内角和定理可求解.【解析】证明:(1)∵∠ADE=∠C+∠2=∠1+∠BDE,且∠1=∠2,∴∠C=∠BDE,又∵∠A=∠B,AE=BE,∴△AEC≌△BED(AAS).(2)∵△AEC≌△BED,∴EC=ED,∠BED=∠AEC,∴∠EDC=∠C=70°,∠2=∠BEA,∴∠2=180°﹣2×70°=40°,∴∠AEB=40°.19.(2019秋•郾城区期末)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在△ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).【分析】(1)(2)利用网格特点和对称的性质画出A、B、C的对称点A1、B1、C1,从而得到△A1B1C1各顶点的坐标;(3)可先把得到P点关于y轴的对称点,然后把此对称点向右平移2个单位得到可得到点P1的坐标.【解析】(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.20.(2019春•北碚区校级月考)已知函数y=y1+y2,其中y1=(4﹣a)x a2﹣4a﹣1是反比例函数,y2与x﹣5成正比例,函数的自变量x的取值范围是x,且当x=2时,y=﹣1.(1)解析式探究,根据给定的条件,可以确定出该函数的解析式为:.(2)下表是y与x的几组对应值x 1 2 3 4 5 6 7 8y m0 ﹣1 0 n表中m=,n=(3)根据表中数据,在平面直角坐标系中,描点并画出该函数的图象;(4)结合画出的函数图象,解决问题:估计y1+y2=﹣x+5时,x的值约为(精确到0.1).【分析】(1)求得y1用待定系数法设y2=k2x﹣5),则y k(x﹣5),将已知条件代入得关于k 方程组,即可求得该函数解析式;(2)把x和x=6分别代入(1)求得的解析式,即可求得m、n的值;(3)在平面直角坐标系中描点,用平滑曲线从左到右顺次连接各点,画出图象;(3)函数y=y1+y2和直线y=﹣x+5的交点在4和5之间,通过分析得出结论.【解析】(1)∵y1=(4﹣a)x a2﹣4a﹣1是反比例函数,∴4﹣a≠0且a2﹣4a﹣1=﹣1,解得a=0,∴y1,设y2=k(x﹣5),则y k(x﹣5),∵当x=2时,y=﹣1.∴﹣1k(2﹣5),解得k=1,∴y x﹣5(x),故答案为:y x﹣5(x),(2)把x代入y x﹣5得,y,∴m,把x=6代入y x﹣5得,y,∴n,故答案为,;(3)根据表中数据,在平面直角坐标系中描点,画出图象.(4)观察图象,函数y=y1+y2和直线y=﹣x+5的交点在4和5之间,当x=4.5时,y x﹣5≈0.4,y=﹣x+5=0.5,当x=4.6时,y x﹣5≈0.47,y=﹣x+5=0.4,当x=4.7时,y x﹣5≈0.55,y=﹣x+5=0.3,∴估计y1+y2=﹣x+5时,x的值约为4,6,故答案为4.6.21.如图,在△ABC中,AD⊥BC于D,∠ABC=2∠C,求证:AC2=AB2+AB•BC.【分析】为了把∠ABC=2∠C转化成两个角相等的条件,可以构造辅助线:在DC上取DE=BD,连接AE.根据线段的垂直平分线的性质以及三角形的内角和定理的推论能够证明AB=CE.再根据勾股定理表示出AC2,AB2.再运用代数中的公式进行计算就可证明.【解析】在DC上取DE=BD,连接AE.则AE=AB,∴∠ABC=∠AEB.∵∠ABC=2∠C,又∵∠AEB=∠C+∠EAC,∴∠EAC=∠C,∴AE=EC,∴CE=AB.在Rt△ABD和Rt△ACD中,∵AC2=AD2+CD2,AB2=AD2+BD2,∴AC2﹣AB2=(AD2+CD2)﹣(AD2+BD2)=CD2﹣BD2=(CD+BD)(CD﹣BD)=BC•(CD﹣DE)=BC•CE=BC•AB.即AC2=AB2+BC•AB.22.(2020春•宁津县期末)已知一次函数y=(m﹣2)x+3﹣m,求m为何值时,下列各结论分别成立:(1)y随x的增大而减小;(2)函数的图象经过原点;(3)函数的图象与y轴的交点在x轴上方.【分析】(1)根据一次函数的性质:当k小于0时,y随x的增大而减小即可得结论;(2)当x=0,y=0时,图象经过原点即可得结论;(3)根据图象与y轴的交点在x轴上方说明常数项大于0即可得结论.【解析】(1)要使y随x的增大而减小成立,需m﹣2<0,解得m<2.答:m<2时,y随x的增大而减小;(2)要使函数图象经过原点成立,需3﹣m=0,解得m=3,答:当m=3时,函数图象经过原点;(3)当3﹣m>0,即m<3时,函数的图象与y轴的交点在x轴上方,答:当m<3且m≠2时,函数的图象与y轴的交点在x轴上方.23.(2020秋•辛集市期末)综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【解析】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:设AC交BF于点O,如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=EC=4,∵∠AOB=∠COE,∴∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF EC=2.24.(2020秋•松滋市期末)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.【分析】(1)根据非负数的性质,得出方程(n﹣4)2=0,|n﹣2m|=0,求得m=2,n=4,即可得到A、B两点的坐标;(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,构造全等三角形,再根据BG=BE列出关于x的方程,即可求得OE的长;(3)分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),构造全等三角形,再根据F点的横坐标与纵坐标相等,得出方程m+2x﹣4=m+x,解得:x=4,即可得到点P为(4,﹣4).【解析】(1)∵n2﹣8n+16+|n﹣2m|=0,∴(n﹣4)2+|n﹣2m|=0,∵(n﹣4)2≥0,|n﹣2m|≥0,∴(n﹣4)2=0,|n﹣2m|=0,∴m=2,n=4,∴点A为(2,0),点B为(0,4);(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,设OE=x,∵OC平分∠AOB,∴∠BOC=∠AOC=45°,∵DE∥OC,∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,∴OE=OF=x,在△ADF和△BDG中,,∴△ADF≌△BDG(SAS),∴BG=AF=2+x,∠G=∠AFE=45°,∴∠G=∠BEG=45°,∴BG=BE=4﹣x,∴4﹣x=2+x,解得:x=1,∴OE=1;(3)如图2,分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),∵点P的坐标为(x,﹣2x+4),∴PN=x,EN=m+2x﹣4,∵∠PEF=90°,∴∠PEN+∠FEM=90°,∵FM⊥y轴,∴∠MFE+∠FEM=90°,∴∠PEN=∠MFE,在△EFM和△PEN中,,∴△EFM≌△PEN(AAS),∴ME=NP=x,FM=EN=m+2x﹣4,∴点F为(m+2x﹣4,m+x),∵F点的横坐标与纵坐标相等,∴m+2x﹣4=m+x,解得:x=4,∴点P为(4,﹣4).。

浙江省文澜中学八年级上册期末数学模拟试卷含详细答案

浙江省文澜中学八年级上册期末数学模拟试卷含详细答案

浙江省文澜中学八年级上册期末数学模拟试卷含详细答案一、选择题1.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A .88203x x+= B .88133x x =+ C .88203x x =+ D .81833x x+= 2.如图,有A ,B 两个正方形,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为5和16,则正方形A ,B 的面积之和为( )A .11B .9C .21D .233.下列代数式变形正确的是( ) A .221x y x y x y-=-- B .22x y x y-++=- C .11111()xy x y y x÷+=+D .222()x y x y x y x y --=++4.下列各式从左到右的变形中,是因式分解的是( )A .3x +2x ﹣1=5x ﹣1B .(3a +2b )(3a ﹣2b )=9a 2﹣4b 2C .x 2+x=x 2(1+1x) D .2x 2﹣8y 2=2(x +2y )(x ﹣2y )5.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④∠BAE +∠DAC =180°. 其中结论正确的个数是( )A .1B .2C .3D .4 6.某种病菌的直径为0.00000471cm ,把数据0.00000471用科学记数法表示为( )A .147.110-⨯B .54.7110-⨯C .74.7110-⨯D .64.7110-⨯7.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形8.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个9.如图,在△ABC和△DEC中,已知AB=DE,补充下列一组条件,仍无法判定△ABC≌△DEC的是()A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.∠B=∠E,∠A=∠DD.BC=EC,∠A=∠D10.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则下列等式不正确的是()A.AB=AC B.BE=DC C.AD=DE D.∠BAE= ∠CAD 二、填空题11.如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为_____.12.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是__________.13.如图,ABC 的三边,,AB BC CA 的长分别为30,40,15,点P 是ABC 三个内角平分线的交点,则::PABPBCPCASSS=_____.14.如图,在△ABC 中,AD ⊥DE ,BE ⊥DE,AC 、BC 分别平分∠BAD 和∠ABE .点C 在线段DE 上.若AD=5,BE=2,则AB 的长是_____.15.计算:22016011(1)3π-⎛⎫---++= ⎪⎝⎭____;2007200831143⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭_____.16.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____.17.如图,Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=15°,BM=2,则△AMB 的面积为______.18.如图,OP 平分AOB ∠,PM OA ⊥于M ,点D 在OB 上,DH OP ⊥于H ,若4OD =,7OP =,3PM =,则DH 的长为__________.19.如图,AE ∥CF ,∠ACF 的平分线交AE 于点B ,G 是CF 上的一点,∠GBE 的平分线交CF 于点D ,且BD ⊥BC ,下列结论:①BC 平分∠ABG ;②AC ∥BG ;③与∠DBE 互余的角有2个;④若∠A =α,则∠BDF =1802α︒-.其中正确的有_____.(把你认为正确结论的序号都填上)20.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为_____.三、解答题21.如图所示,△ABC 中,AB=BC ,DE ⊥AB 于点E ,DF ⊥BC 于点D ,交AC 于F . ⑴若∠AFD=155°,求∠EDF 的度数; ⑵若点F 是AC 的中点,求证:∠CFD=12∠B .22.如图,ABC ∆和AED ∆是等腰直角三角形,AB AC =,AE AD =,90BAC EAD ∠=∠=︒,点E 在ABC ∆的内部,且130BEC ∠=︒.图1 备用图 备用图(1)猜想线段EB 和线段DC 的数量关系,并证明你的猜想; (2)求DCE ∠的度数;(3)设AEB α∠=,请直接写出α为多少度时,CED ∆是等腰三角形. 23.已知:如图,在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,(1)作B 的平分线BD ,交AC 于点D ;作AB 的中点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)连接DE ,求证:ADE BDE ∆≅∆.24.设2244322M x xy y x y =-+-+,则M 的最小值为______.25.已知:如图,AD 垂直平分BC ,D 为垂足,DM ⊥AB ,DN ⊥AC ,M 、N 分别为垂足.求证:DM=DN .26.先化简,再求值:2()()(2)()x y x y y x y x y +-++--,其中3x =,13y =-. 27.(探究)如图1,边长为a 的大正方形中有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式 .(用含a ,b 的等式表示) (应用)请应用这个公式完成下列各题:(1)已知4m 2=12+n 2,2m +n =4,则2m ﹣n 的值为 . (2)计算:20192﹣2020×2018.(拓展)计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.28.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC (1)若∠B=70°,∠C=30°,求; ①∠BAE 的度数. ②∠DAE 的度数.(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.29.观察下列等式: 第1个等式:1111(1)1323a ==⨯-⨯; 第2个等式:21111()35235a ==⨯-⨯; 第3个等式:31111()57257a ==⨯-⨯; 第4个等式:41111()79279a ==⨯-⨯;…… 请回答下列问题:(1)按以上规律,用含n 的式子表示第n 个等式:n a = = (n 为正整数) (2)求1234100•••a a a a a +++++ 的值. 30.观察下列各式 (x -1)(x +1)=x 2-1 (x -1)(x 2+x +1)=x 3-1 (x -1)(x 3+x 2+x +1)=x 4-1(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x +1) (2)你能否由此归纳出一般规律(x -1)(x n +x n-1+…+x +1) (3)根据以上规律求32018+32017+32016+32+3+1的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】关键描述语为:“乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟”;等量关系为:乘公交车所用时间=乘坐私家车所用时间+13. 【详解】解:设乘公交车平均每小时走x 千米,根据题意可列方程为:88133x x =+. 故选:B . 【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解题关键.2.C解析:C 【解析】 【分析】设A 正方形的边长为a ,B 正方形的边长为b ,根据图形得到a 2+b 2=5+2ab ,ab =8,得到答案. 【详解】解:设A 正方形的边长为a ,B 正方形的边长为b , 由图甲可知,a 2﹣b 2﹣b (a ﹣b )×2=5,即a 2﹣2ab +b 2=5, ∴a 2+b 2=5+2ab ,由图乙可知,(a +b )2﹣a 2﹣b 2=16,即ab =8, ∴a 2+b 2=5+2ab =21, 故选:C . 【点睛】本题考查的是完全平方公式的几何背景,掌握平方差公式和完全平方公式是解题的关键.3.D解析:D 【解析】 【分析】利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案. 【详解】解:A.2211()()x y x y x y x y x y x y x y--==≠-+-+-,故本选项变形错误;B.222x y x y x y-+-+=-≠-,故本选项变形错误; C.11111111()x y xy xy x y xy xy xy x y x y y x+÷+=÷=⋅=≠+++,故本选项变形错误; D.2222()()()()x y x y x y x y x y x y x y --+-==+++,故本选项变形正确, 故选D. 【点睛】本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.4.D解析:D 【解析】A. 没把一个多项式转化成几个整式积的形式,故A 错误;B. 是整式的乘法,故B 错误;C. 没把一个多项式转化成几个整式积的形式,故C 错误;D. 把一个多项式转化成几个整式积的形式,故D 正确; 故选D.5.D解析:D 【解析】 【分析】①由AB=AC ,AD=AE ,利用等式的性质得到夹角相等,利用SAS 得出△ABD ≌△ACE ,由全等三角形的对应边相等得到BD=CE ;②由△ABD ≌△ACE 得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD 垂直于CE ;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°; ④由题意,∠BAE +∠DAC=360°-∠BAC-∠DAE=180°. 【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE , 在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAE(SAS), ∴BD=CE ,本选项正确; ②∵△BAD ≌△CAE , ∴∠ABD=∠ACE , ∵∠ABD+∠DBC=45°, ∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°, 则BD ⊥CE ,本选项正确; ③∵△ABC 为等腰直角三角形, ∴∠ABC=∠ACB=45°, ∴∠ABD+∠DBC=45°, ∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④由题意,∠BAE +∠DAC=360°-∠BAC-∠DAE=360°-90°-90°=180°,本选项正确; 故选D . 【点睛】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.6.D解析:D 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.00000471=64.7110-⨯, 故选:D . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B解析:B 【解析】 【分析】根据三角形的内角和是180°,求得第三个内角的度数,然后根据角的度数判断三角形的形状. 【详解】第三个角的度数=180°-32°-74°=74°, 所以,该三角形是等腰三角形. 故选B. 【点睛】此题考查了三角形的内角和公式以及三角形的分类.8.B解析:B 【解析】 【分析】首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题. 【详解】6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件.故使分式6321xx+-的值为整数的x值有4个,是2,0和1±.故选B.【点睛】本题主要考查了分式的值是整数的条件,把原式化简为6321x+-的形式是解决本题的关键.9.D解析:D【解析】试题分析:根据全等三角形的判定方法分别进行判定即可.解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;D、已知AB=DE,再加上条件BC=EC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;故选D.考点:全等三角形的判定.10.C解析:C【解析】【分析】由全等三角形的性质可得到对应边、对应角相等,结合条件逐项判断即可.【详解】∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=DC,∠BAE=∠CAD,∴A、B、D正确,AD与DE没有条件能够说明相等,∴C不正确,故选:C.【点睛】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.二、填空题11.3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△A解析:3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴12×BC×AE=12,∴12×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=12BC=3,故答案为3.【点睛】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.12.2【解析】【分析】先作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,可解析:2【解析】【分析】先作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,可证∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=2,∠P′OP″=2∠AOB=2×30°=60°,继而可得△OP′P″是等边三角形,即PP′=OP′=2.【详解】作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=2,所以,∠P′OP″=2∠AOB=2×30°=60°,所以,△OP′P″是等边三角形,所以,PP′=OP′=2.故答案为:2.【点睛】本题主要考查轴对称和等边三角形的判定,解决本题的关键是要熟练掌握轴对称性质和等边三角形的判定.13.【解析】【分析】过P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,根据角平分线性质求出PD=PE=PF,根据三角形面积公式求出即可.【详解】解:如图,过P作PD⊥AB于D,PE⊥BC于解析:6:8:3【解析】【分析】过P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,根据角平分线性质求出PD=PE=PF,根据三角形面积公式求出即可.【详解】解:如图,过P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,∵P为△ABC三条角平分线的交点,∴PD=PE=PF,∵△ABC的三边AB,BC,CA的长分别为30,40,15,∴::PAB PBC PCA S S S 111::222AB PD BC PE AC PF ⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=AB :BC :AC=30:40:15=6:8:3.故答案为:6:8:3.【点睛】本题考查了三角形的面积,角平分线性质的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.7【解析】【分析】过点C 作CF⊥AB 于F ,由角平分线的性质得CD=CF ,CE=CF ,于是可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF ,BE=BF ,即可得结论.【详解】解:如图解析:7【解析】【分析】过点C 作CF ⊥AB 于F ,由角平分线的性质得CD=CF ,CE=CF ,于是可证△ADC ≌△AFC ,△CBE ≌△CBF ,可得AD=AF ,BE=BF ,即可得结论.【详解】解:如图,过点C 作CF ⊥AB 于F ,∵AC ,BC 分别平分∠BAD ,∠ABE ,∴CD=CF ,CE=CF ,∵AC=AC ,BC=BC ,∴△ADC ≌△AFC ,△CBE ≌△CBF ,∴AF=AD=5,BF=BE=2,∴AB=AF+BF=7.故答案是:7.【点睛】本题考查全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.15.【解析】【分析】根据负指数幂以及零指数幂即可得出第一个算式的值,利用积的乘方的逆运算即可得出第二个算式的值.【详解】解:,故答案为:;.【点睛】本题解析:9-43 【解析】【分析】根据负指数幂以及零指数幂即可得出第一个算式的值,利用积的乘方的逆运算即可得出第二个算式的值.【详解】 解:22016011(1)3π-⎛⎫---++ ⎪⎝⎭191=--+9=-,2007200831143⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭2007344=433⎡⎤⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2007200731111433⎛⎫⎛⎫⎛⎫=⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎝⨯⎭⎭()20074=13⎛⎫-⨯- ⎪⎝⎭413⎛⎫=-⨯- ⎪⎝⎭43= 故答案为:9-;43. 【点睛】 本题主要考查的是负指数幂、零指数幂以及积的乘方的逆运算,掌握的这三个知识点是解题的关键.16.32°【解析】【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C 互余,然后用∠C 表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°解析:32°【解析】【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B 、∠C 互余,然后用∠C 表示出∠B ,再列方程求解即可.【详解】∵∠A=∠B+∠C ,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C ,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键. 17.1【解析】【分析】【详解】解:∵Rt△ABC的斜边AB的中垂线MN与AC交于点M,∠A=15°,BM=2,∴AM=BM=2,∠ABM=∠A=15°,∴∠BMC=∠A+∠ABM=30°,解析:1【解析】【分析】【详解】解:∵Rt△ABC的斜边AB的中垂线MN与AC交于点M,∠A=15°,BM=2,∴AM=BM=2,∠ABM=∠A=15°,∴∠BMC=∠A+∠ABM=30°,∴BC=12BM=12×2=1,∴S△AMB=12AM•BC=12×2×1=1.故答案为:1.考点:1.线段垂直平分线的性质2.等腰三角形的判定与性质18.【解析】【分析】作PE⊥OB,根据角平分线的性质求出PE,根据三角形的面积公式计算,得到答案.【详解】解:作PE⊥OB于E,∵OP平分∠AOB,PM⊥OA,PE⊥OB,∴PE=PM=解析:12 7【解析】【分析】作PE⊥OB,根据角平分线的性质求出PE,根据三角形的面积公式计算,得到答案.【详解】解:作PE⊥OB于E,∵OP平分∠AOB,PM⊥OA,PE⊥OB,∴PE=PM=3,S△ODP=12×OP×DH=12×OD×PE,∴12×7×DH=12×4×3,解得,DH=127,故答案为:127.【点睛】本题考查的是角平分线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.19.①②④.【解析】【分析】求出∠EBD+∠ABC=90°,∠DBG+∠CBG=90°,求出∠ABC=∠GBC,根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC=∠BCG,求出∠ACB=解析:①②④.【解析】【分析】求出∠EBD+∠ABC=90°,∠DBG+∠CBG=90°,求出∠ABC=∠GBC,根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC=∠BCG,求出∠ACB=∠GBC,根据平行线的判定即可判断②;根据余角的定义即可判断③;根据平行线的性质得出∠EBG=∠A=α,求出∠EBD=12∠EBG=12α,根据平行线的性质得出∠EBD+∠BDF=180°,即可判断④.【详解】∵BD⊥BC,∴∠DBC=90°,∴∠EBD+∠ABC=180°﹣90°=90°,∠DBG+∠CBG=90°,∵BD平分∠EBG,∴∠EBD=∠DBG,∴∠ABC=∠GBC,即BC平分∠ABG,故①正确;∵AE∥CF,∴∠ABC=∠BCG,∵CB平分∠ACF,∴∠ACB=∠BCG,∵∠ABC=∠GBC,∴∠ACB=∠GBC,∴AC∥BG,故②正确;与∠DBE互余的角有∠ABC,∠CBG,∠ACB,∠BCG,共4个,故③错误;∵AC∥BG,∠A=α,∴∠EBG=∠A=α,∵∠EBD=∠DBG,∴∠EBD=12∠EBG=12α,∵AB∥CF,∴∠EBD+∠BDF=180°,∴∠BDF=180°﹣∠EBD=180°﹣12α,故④正确;故答案为:①②④.【点睛】本题考查了平行线的性质和判定,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.20.12【解析】【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,解析:12【解析】【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,且AB=10,AC=6,BC=8,∴BE=AB-AE=10-6=4,∴△BDE 的周长=DE+BD+BE =CD+BD+E =BC+BE =8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.三、解答题21.(1)50°;(2)见解析【解析】试题分析:⑴根据等腰三角形的性质、三角形的内角和定理与四边形的内角和为360°,可求得所求角的度数.⑵连接BF ,根据三角形内角和定理与等腰三角形三线合一,可知12CFD ABC ∠=∠. 试题解析:⑴ ∵∠AFD =155°,∴∠DFC =25°,∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°,在Rt △EDC 中,∴∠C =90°﹣25°=65°,∵AB =BC ,∴∠C =∠A =65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.⑵ 连接BF ,∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC ,12ABF CBF ABC ∠=∠=∠, ∴∠CFD +∠BFD =90°,∠CBF +∠BFD =90°,∴∠CFD =∠CBF , ∴12CFD ABC ∠=∠. 22.(1)EB DC =,证明见解析;(2)40︒;(3)为115︒或85︒或145︒【解析】【分析】(1)EB =DC ,证明△AEB ≌△ADC ,可得结论;(2)如图1,先根据三角形的内角和定理可得∠ECB +∠EBC =50°,根据直角三角形的两锐角互余得:∠ACB +∠ABC =90°,所以∠ACE +∠ABE =90°−50°=40°,由(1)中三角形全等可得结论;(3)△CED 是等腰三角形时,有三种情况:①当DE =CE 时,②当DE =CD 时,③当CE =CD 时,根据等腰三角形等边对等角可得α的值.【详解】解:(1)证明:EB DC =90BAC EAD ∠=∠=︒BAC CAE EAD CAE ∴∠-∠=∠-∠EAB DAC ∴∠=∠在AEB ∆与ADC ∆中AB AC EAB DAC AE AD =⎧⎪∠=∠⎨⎪=⎩AEB ADC ∴∆≅∆,EB DC ∴=;(2)130BEC ∠=︒,360130230BEA AEC ∴∠+∠=︒-︒=︒AEB ADC ∆≅∆,AEB ADC ∠=∠,230ADC AEC ∴∠+∠=︒,又AED ∆是等腰直角三角形,90DAE ∴∠=︒,∴四边形AECD 中,3609023040DCE ∠=︒-︒-︒=︒;(3)当△CED 是等腰三角形时,有三种情况:①当DE =CE 时,∠DCE =∠EDC =40°,∴α=∠ADC =40°+45°=85°,②当DE =CD 时,∠DCE =∠DEC =40°,∴∠CDE =100°,∴α=∠ADE +∠EDC =45°+100°=145°,③当CE =CD 时,∵∠DCE =40°,∴∠CDE =180402︒-︒=70°, ∴α=70°+45°=115°,综上,当α的度数为115︒或85︒或145︒时,AED ∆是等腰三角形.【点睛】本题是三角形的综合题,考查了等腰三角形的判定和性质、三角形全等的性质和判定、等腰直角三角形的性质等知识,第一问证明全等三角形是关键,第二问运用整体的思想是关键,第三问分情况讨论是关键.23.(1)见解析;(2)见解析【解析】【分析】(1)①以B 为圆心,任意长为半径画弧,交AB 、BC 于F 、N ,再以F 、N 为圆心,大于12FN 长为半径画弧,两弧交于点M ,过B 、M 画射线,交AC 于D ,线段BD 就是∠B 的平分线;②分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧交于X 、Y ,过X 、Y 画直线与AB 交于点E ,点E 就是AB 的中点; (2)首先根据角平分线的性质可得∠ABD 的度数,进而得到∠ABD =∠A ,根据等角对等边可得AD =BD ,再加上条件AE =BE ,ED =ED ,即可利用SSS 证明△ADE ≌△BDE .【详解】解:(1)作出B 的平分线BD ; 作出AB 的中点E .(2)证明:160302ABD ∠=⨯︒=︒,30A ∠=︒, ABD A ∴∠=∠,AD BD ∴=,在ADE ∆和BDE ∆中,AE BE ED ED AD BD =⎧⎪=⎨⎪=⎩()ADE BDE SSS ∴∆≅∆.【点睛】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.24.38- 【解析】【分析】把M 化成完全平方的形式,再示出其最小值即可.【详解】2244322M x xy y x y =-+-+22112224x y y y ⎛⎫=--++- ⎪⎝⎭22111132224488x y y ⎛⎫⎛⎫=--++--≥- ⎪ ⎪⎝⎭⎝⎭ 当且仅当14y =-,316x =表达式取得最小值. 故答案为:38-. 【点睛】考查了完全平方公式,解题关键是把整式化成完全平方的形式.25.见解析.【解析】【分析】根据垂直平分线的性质得到AC=AB ,再利用等腰三角形的性质得到AD 是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD 垂直平分BC ,∴AC=AB ,即ABC 是等腰三角形,∴AD 平分∠BAC ,∵DM ⊥AB ,DN ⊥AC ,∴DM=DN .【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.26.3xy ,3-.【解析】【分析】先计算平方差公式、完全平方公式、整式的乘法,再计算整式的加减法,然后将x 、y 的值代入即可得.【详解】原式222222(2)x y xy y x xy y =-++--+, 2222222x y xy y x xy y =-++-+-,3xy =,将3x =,13y =-代入得:原式133333xy ⎛⎫==⨯⨯-=- ⎪⎝⎭.【点睛】本题考查了平方差公式、完全平方公式、整式的加减法与乘法,熟记公式和整式的运算法则是解题关键.27.探究:(a +b )(a ﹣b )=a 2﹣b 2;应用:(1)3;(2)1;拓展:5050【解析】【分析】探究:将两个图中阴影部分面积分别表示出来,建立等式即可;应用:(1)利用平方差公式得出(2m+n)•(2m+n)=4m2﹣n2,代入求值即可;(2)可将2020×2018写成(2019+1)×(2019﹣1),再利用平法差公式求值;拓展:利用平方差公式将1002﹣992写成(100+99)×(100﹣99),以此类推,然后化简求值.【详解】解:探究:图1中阴影部分面积a2﹣b2,图2中阴影部分面积(a+b)(a﹣b),所以,得到乘法公式(a+b)(a﹣b)=a2﹣b2故答案为(a+b)(a﹣b)=a2﹣b2.应用:(1)由4m2=12+n2得,4m2﹣n2=12∵(2m+n)•(2m+n)=4m2﹣n2∴2m﹣n=3故答案为3.(2)20192﹣2020×2018=20192﹣(2019+1)×(2019﹣1)=20192﹣(20192﹣1)=20192﹣20192+1=1拓展:1002﹣992+982﹣972+…+42﹣32+22﹣12=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(4+3)×(4﹣3)+(2+1)×(2﹣1)=100+99+98+97+…+4+3+2+1=5050【点睛】本题考查平方差公式的应用.解题关键是熟练掌握平方差公式.28.(1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°.【解析】【分析】(1)①利用三角形的内角和定理求出∠BAC,再利用角平分线定义求∠BAE.②先求出∠BAD,就可知道∠DAE的度数.(2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度数.【详解】解:(1)①∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵AE平分∠BAC,∴∠BAE=40°;②∵AD⊥BC,∠B=70°,∴∠BAD=90°-∠B=90°-70°=20°,而∠BAE=40°,∴∠DAE=20°;(2)∵AE 为角平分线,∴∠BAE=12(180°-∠B-∠C ), ∵∠BAD=90°-∠B , ∴∠DAE=∠BAE-∠BAD=12(180°-∠B-∠C )-(90°-∠B )=12(∠B-∠C ), 又∵∠B=∠C+40°,∴∠B-∠C=40°,∴∠DAE=20°.【点睛】此题考查了三角形内角和定理,熟练运用角平分线定义和三角形的内角和定理是解题的关键.29.(1)1(21)(21)n n -+;111()22121n n --+;(2)100201 【解析】【分析】(1)观察等式数字变化规律即可得出第n 个等式;(2)利用积化和差计算出a 1+a 2+a 3+…+a 100的值.【详解】解:(1) 解: 1111(1)1323a ==⨯-⨯; 21111()35235a ==⨯-⨯; 31111()57257a ==⨯-⨯; 41111()79279a ==⨯-⨯;…… 1111()(21)(21)22121n a n n n n ==--+-+ 故答案为:1(21)(21)n n -+; 111()22121n n --+ (2)1234100a a a a a +++++ =11111111111(1)()()...()232352572199201-+-+-++- =11111111(1...)233557199201-+-+-++-=11 (1) 2201-=1200 2201⨯=100 201【点睛】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.30.(1)x7﹣1;(2)x n+1﹣1;(3)2019312-.【解析】【分析】(1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)总结题中规律得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312-.【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.。

2020-2021学年度浙教版八年级数学上期末检测题有答案

2020-2021学年度浙教版八年级数学上期末检测题有答案

初二数学上册期末检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.下列“数字”图形中,有且仅有一条对称轴的是( A )A. B. C. D.2.将一副直角三角尺按如图的方式叠放在一起,则图中∠α的度数是( C ) A.45° B.60° C.75° D.90°,第2题图) ,第4题图),第7题图)3.已知点P(a,2),Q(-1,b)关于x轴对称,则点(a,b)位于( C )A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( B ) A.20° B.30° C.35° D.40°5.把不等式组2x+1>-1,x+2≤3的解集表示在数轴上,下列选项正确的是( B )A. B. C. D.6.一次函数y=2x+m2+1的图象不可能经过( D )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,点B,C,E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是( D )A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③b>0;④当x<3时,y1<y2.其中正确的有( C )A.0个 B.1个 C.2个 D.3个,第8题图) ,第9题图),第10题图)9.如图,P为等腰△ABC内一点,过点P分别作三条边BC,CA,AB的垂线,垂足分别为D,E,F,已知AB=AC=10,BC=12,且PD∶PE∶PF=1∶3∶3,则AP的长为( B )A.43B.203C.7 D.810.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回家时走这段路所用的时间为( D )A.12分 B.10分 C.16分 D.14分二、填空题(每小题4分,共24分)11.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长为__22__.12.如图,△ABC和△DEF全等且BC=EF,则DF=__5__cm,∠E=__60__度.13.将点P(-2,y)先向下平移4个单位,再向左平移2个单位后得到点Q(x,-1),则x+y=__-1__.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=__55°__.,第14题图) ,第15题图),第16题图)15.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中正确的是__①②③__.(填序号)16.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E……按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是__(12)n-1×75°__.三、解答题(共66分)17.(6分)解不等式组5x-2>3(x+1),12x-1≤7-32x,并把不等式组的解在数轴上表示出.解:52<x≤4,在数轴上表示略18.(8分)如图,在平面直角坐标系内,试写出△ABC各顶点的坐标,并求出△ABC 的面积.解:A(6,6),B(0,3),C(3,0),S△ABC=27 219.(8分)如图,∠BAC=∠ABD,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.解:OE⊥AB.在△BAC和△ABD中,AC=BD,∠BAC=∠ABD,AB=BA,∴△BAC≌△ABD(SAS),∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB20.(8分)如图,直线l与两坐标轴的交点坐标分别是A(-3,0),B(0,4).(1)求直线l所对应的函数表达式;(2)以AB为腰的等腰三角形的另一顶点C在坐标轴上,直接写出点C的坐标.解:(1)y=43x+4(2)点C坐标为(3,0)或(-8,0)或(0,9)或(0,-1)或(0,-4)或(2,0)21.(8分)如图,折叠长方形,使点D落在BC边上的点F处,BC=10 cm,AB=8 cm.(1)求FC的长;(2)求EF的长.解:(1)由题意可得AF=AD=10 cm,在Rt△ABF中,BF=AF2-AB2=6 cm,∴FC=BC-BF=10-6=4(cm) (2)由题意可得EF=DE,可设DE的长为x cm,则EC=(8-x)cm,在Rt△EFC中,由勾股定理得(8-x)2+42=x2,解得x=5,即EF的长为5 cm22.(9分)如图,在△ABC中,∠BCA=90°,∠BAC=30°,分别以AB,AC为边作等边△ABE和等边△ACD,连结ED交AB于点F.求证:(1)BC=12AB;(2)EF=FD.解:(1)取AB的中点M,连结CM,∵∠BCA=90°,∴CM=BM=AM.又∵∠BAC=30°,∠BCA=90°,∴∠CBA=60°,∴△BCM是等边三角形,∴BC=BM=CM=12 AB(2)连结EM,则EM⊥AB.∵△ACD是等边三角形,∴∠CAD=60°,又∵∠BAC=30°,∴∠DAM=90°,∴∠EMF=∠DAF=90°,可证△BEM≌△BAC(AAS),∴EM=AC,又∵AC =DA,∴EM=DA,∴△EMF≌△DAF(AAS),∴EF=FD23.(9分)某电脑公司经销甲种型号电脑,随着科技的进步,电脑价格不断下降,今年3月份的甲种电脑售价比去年同期每台下降1000元.如果卖出相同数量的甲种电脑,去年的销售额为10万元,今年的销售额只有8万元.(1)今年3月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于 4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?解:(1)设今年3月份甲种电脑每台售价x元,则100000x+1000=80000x,解得x=4000.经检验,x=4000是原方程的根,∴今年3月份甲种电脑每台售价4000元(2)设购进甲种电脑x台,则48 000≤3 500x+3 000(15-x)≤50 000,解得6≤x≤10,∴x的正整数解为6,7,8,9,10,∴共有5种进货方案(3)设总获利为W元,则W=(4000-3500)x+(3800-3000-a)(15-x)=(a-300)x+12000-15a.当a=300时,(2)中所有方案获利相同,此时,购买甲种电脑6台,乙种电脑9台时对公司更有利24.(10分)如图,在平面直角坐标系中,四边形OABC是长方形,点A,C,D的坐标分别为A(9,0),C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P的运动时间为t(s).(1)当t=2时,求直线PD的表达式;(2)当点P在BC上,OP+PD有最小值时,求点P的坐标;(3)当t为何值时,△ODP是腰长为5的等腰三角形(直接写出t的值)?解:(1)当t=2时,点P的坐标为(0,2),可求直线PD的表达式为y=-25x+2(2)作点O关于直线BC的对称点O′,此时O′(0,8),连结O′D交BC于点P,此时OP+PD的值最小.可求直线O′D的表达式为y=-错误!x+8,令y=4,则x=2.5,∴P(2.5,4)(3)t=6或t=7或t=12或t=14。

2020-2021初二数学上期末模拟试卷带答案(1)

2020-2021初二数学上期末模拟试卷带答案(1)

2020-2021初二数学上期末模拟试卷带答案(1)一、选择题1.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 2.如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )A .30°B .40°C .45°D .60° 3.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3 B .1 C .﹣1 D .﹣34.下列各式中不能用平方差公式计算的是( )A .() 2x y)x 2y -+(B .()2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 5.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .66.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④7.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A.10B.6C.3D.28.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ9.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCAC.AC=DB D.AB=DC10.已知x+1x=6,则x2+21x=()A.38B.36C.34D.3211.下列条件中,不能作出唯一三角形的是( )A.已知三角形两边的长度和夹角的度数B.已知三角形两个角的度数以及两角夹边的长度C.已知三角形两边的长度和其中一边的对角的度数D.已知三角形的三边的长度12.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A.20°B.40°C.50°D.70°二、填空题13.分解因式:3327a a -=___________________.14.若一个多边形的内角和是900º,则这个多边形是 边形.15.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 16.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x>5),则x =________. 17.已知:如图△ABC 中,∠B =50°,∠C =90°,在射线BA 上找一点D ,使△ACD 为等腰三角形,则∠ACD 的度数为_____.18.如图,在△ABC 中,AB=AC=24厘米,BC=16厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为_______厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.19.如图,在△ABC 中,AB = AC,BC = 10,AD 是∠BAC 平分线,则BD = ________.20.如图,在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,若AB=20,则BD 的长是 .三、解答题21.如图,已知在△ABC 中,∠BAC 的平分线与线段BC 的垂直平分线PQ 相交于点P,过点P 分别作PN 垂直于AB 于点N,PM 垂直于AC 于点M,BN 和CM 有什么数量关系?请说明理由.22.已知:如图,在△ABC 中,AB=2AC ,过点C 作CD ⊥AC ,交∠BAC 的平分线于点D .求证:AD=BD .23.龙人文教用品商店欲购进A 、B 两种笔记本,用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同,每本B 种笔记本的进价比每本A 种笔记本的进价贵10元.(1)求A 、B 两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A 、B 两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A 种笔记本多少本?24.计算:(1)()()22x y x y -+--;(2)2111x x x ---. 25.先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢的数代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值2.B解析:B【解析】【分析】先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【详解】解:∵△ABD 中,AB=AD ,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD ,∴∠C=180********.22ADC -︒︒-=︒=︒∠ 故选B .考点:等腰三角形的性质. 3.D解析:D【解析】【分析】 由11m n -=1利用分式的加减运算法则得出m-n=-mn ,代入原式=222m mn n m mn n--+-计算可得.【详解】 ∵11m n -=1, ∴n m mn mn -=1, 则n m mn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.4.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.5.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.6.A解析:A【解析】【分析】由作法可知BD 是∠ABC 的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL 可得Rt △BDC≌Rt △BDE,故BC=BE ,③正确,【详解】解:由作法可知BD 是∠ABC 的角平分线,故②正确,∵∠C=90°, ∴DC ⊥BC ,又DE ⊥AB ,BD 是∠ABC 的角平分线,∴CD=ED ,故①正确,在Rt △BCD 和 Rt △BED 中,DE DC BD BD =⎧⎨=⎩, ∴△BCD≌△B ED ,∴BC=BE ,故③正确.故选:A.【点睛】本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键. 7.C解析:C【解析】【分析】由等边三角形有三条对称轴可得答案.【详解】如图所示,n 的最小值为3.故选C .【点睛】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.8.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.9.D解析:D【解析】【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .10.C解析:C【解析】【分析】把x+1x =6两边平方,利用完全平方公式化简,即可求出所求. 【详解】把x+1x =6两边平方得:(x+1x )2=x 2+21x +2=36, 则x 2+21x=34, 故选:C .【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.11.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A 、符合全等三角形的判定SAS ,能作出唯一三角形;B 、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA 判定全等,因而所作三角形是唯一的;C 、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D 、符合全等三角形的判定SSS ,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.12.C解析:C【解析】【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质求出CE=AE ,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC 中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE 是边AC 的垂直平分线,∠C=20°,∴CE=AE ,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.二、填空题13.【解析】【分析】先提取公因式然后根据平方差公式进行分解即可【详解】解:故答案为【点睛】本题考查了提取公因式平方差公式法分解因式属于基础题解析:()()333a a a +-【解析】【分析】先提取公因式,然后根据平方差公式进行分解即可.【详解】解:()()()3232739333a a a a a a a -=-=+- 故答案为()()333a a a +-.【点睛】本题考查了提取公因式、平方差公式法分解因式,属于基础题.14.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15.且【解析】【分析】直接解分式方程进而利用分式方程的解是正数得出的取值范围进而结合分式方程有意义的条件分析得出答案【详解】去分母得:解得:解得:当时不合题意故且故答案为:且【点睛】此题主要考查了分式方解析:5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.16.15【解析】∵x>5∴x 相当于已知调和数15代入得13-15=15-1x 解得x=15 解析:15【解析】∵x >5∴x 相当于已知调和数15,代入得,解得,x=15.17.70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时②当CD′=AD′时③当AC =AD″时分别根据等腰三角形的性质和三角形内角和定理求解即可【详解】解:∵∠B =50°∠C =90°∴∠B解析:70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时,②当CD′=AD′时,③当AC =AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B =50°,∠C =90°,∴∠BAC =90°-50°=40°,如图,有三种情况:①当AC =AD 时,∠ACD =()1180402??=70°; ②当CD′=AD′时,∠ACD′=∠BAC =40°; ③当AC =AD″时,∠ACD″=12∠BAC =20°, 故答案为:70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.4或6【解析】【分析】求出BD根据全等得出要使△BPD与△CQP全等必须BD=CP或BP=CP得出方程12=16-4x或4x=16-4x求出方程的解即可【详解】设经过x秒后使△BPD与△CQP全等∵解析:4或6【解析】【分析】求出BD,根据全等得出要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16-4x或4x=16-4x,求出方程的解即可.【详解】设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16-4x或4x=16-4x,x=1,x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.19.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.20.5【解析】【分析】【详解】试题分析:根据同角的余角相等知∠BCD=∠A=30°所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD解:∵在直角△ABC中∠ACB=90°解析:5【解析】【分析】【详解】试题分析:根据同角的余角相等知,∠BCD=∠A=30°,所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD.解:∵在直角△ABC中,∠ACB=90°,∠A=30°,且CD⊥AB∴∠BCD=∠A=30°,∵AB=20,∴BC=12AB=20×12=10,∴BD=12BC=10×12=5.故答案为5.考点:含30度角的直角三角形.三、解答题21.BN=CM,理由见解析.【解析】【分析】连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,即可得出答案.【详解】解:BN=CM,理由如下:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC 和Rt△PNB 中,PC PB PM PN =⎧⎨=⎩, ∴Rt△PMC≌Rt△PNB(HL ),∴BN=CM.【点睛】本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,能正确地添加辅助线是解题的关键.22.见解析.【解析】【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得出DE=DC ,根据AAS 证△DEA ≌△DCA ,推出AE=AC ,利用等腰三角形的性质证明即可.【详解】证明:过D 作DE ⊥AB 于E ,∵AD 平分∠BAC ,CD ⊥AC ,∴DE=DC ,在△DEA 和△DCA 中,DAE DAC AED ACD DE DC ∠∠∠∠⎧⎪⎨⎪⎩===,∴△DEA ≌△DCA ,∴AE=AC ,∵2AC=AB∴AE=AC=BE∵AE ⊥DE∴AD=BD【点睛】此题考查了等腰三角形的性质,全等三角形的性质和判定的应用,关键是求出△DEA ≌△DCA ,主要培养了学生分析问题和解决问题的能力,题目比较好,难度适中.23.(1)A 、B 两种笔记本每本的进价分别为 20 元、30 元;(2)至少购进 A 种笔记本 35 本【解析】【分析】(1)设A 种笔记本每本的进价为x 元,则每本B 种笔记本的进价为(x +10)元,根据用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同即可列出方程,解方程即可求出结果;(2)设购进A 种笔记本a 本,根据购进的A 种笔记本的价钱+购进的B 种笔记本的价钱≤2650即可列出关于a 的不等式,解不等式即可求出结果.【详解】(1)解:设A 种笔记本每本的进价为x 元,根据题意,得:16024010x x =+,解得:=20x . 经检验:=20x 是原分式方程的解,+10=20+10=30x .答:A 、B 两种笔记本每本的进价分别为20 元、30元.(2)解:设购进A 种笔记本a 本,根据题意,得:()20+301002650a a -≤,解得:35a ≥.∴至少购进A 种笔记本35本.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.24.(1)224x y -;(2)211x -. 【解析】【分析】(1)原式利用平方差公式化简即可;(2)根据分式的加减法运算法则计算即可.【详解】(1)()()22x y x y -+--()()22x y x y =-+-+()222244y x x y =-=--; (2)222111111x x x x x x x +-=----- 211=-x . 【点睛】 本题主要考查平方差公式和分式的加减运算,解题的关键是熟练掌握分式的运算法则和平方差公式.25.12m m --;当0m =时,原式12= 【解析】【分析】 根据分式的加法和除法可以化简题目中的式子,然后从22m -≤≤且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:()3212m m m 骣÷ç++?÷ç÷ç桫- ()()223121m m m m +-+=-+g 243211m m m -+=-+g ()()11112m m m m =-+-+g 21m m =--, ∵22m -≤≤且m 为整数, ∴当m=0时,原式011022--== 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.。

浙教版2020-2021年八年级上学期数学期末模拟试卷

浙教版2020-2021年八年级上学期数学期末模拟试卷

浙教版2020-2021年八年级上学期数学期末模拟试卷一、单选题(共10题;共30分)1.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.在平面直角坐标系中,位于第四象限的点是()A. (-2,3)B. (4,-5)C. (1,0)D. (-8,-1)3.等腰三角形的底边和腰长分别是10和12,则底边上的高是()A. 13B. 8C.D.4.“三角形具有稳定性”这个事实说明了()A. SASB. ASAC. AASD. SSS5.下列句子是命题的是()A. 画∠AOB=45°B. 小于直角的角是锐角吗?C. 连结CDD. 三角形的中位线平行且等于第三边的一半6.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.7.已知点在线段的中垂线上,点在线段的中垂线外,则().A. B. C. D. 不能确定8.等腰三角形的两边长分别为5和11,则它的周长为()A. 21B. 21或27C. 27D. 259.一幅三角板,如图所示叠放在一起,则图中的度数为()A. 75°B. 60°C. 65°D. 55°10.如图,中,,点在边上,连接,现将沿着对折,得到,与交于点,若,,则的长为()A. 3.8B.C. 4D.二、填空题(共6题;共24分)11.若+(b+2)2=0,则点M(a,b)关于x轴的对称点的坐标为________.12.如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为________.13.如图,平面直角坐标系中,已知和B点,点C是的中点,点P在x轴上,若以P、A、C为顶点的三角形与相似,那么点P的坐标是________.14.在⊙O中,若弧AB等于2倍的弧AC,则AB________ 2AC.15.如图,矩形ABCD中,BE平分∠ABC,EC平分∠BED,若AB=1,则ED的长度为________.16.如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B距离C点5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________cm.三、综合题(共8题;共66分)17.解不等式组:18.如图,AD=BC,AC=BD,求证:△EAB是等腰三角形.19.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.20.某景点的门票零售价为80元/张,“五一”黄金周期间,甲乙两家旅行社推出优惠活动,甲旅行社一律九折优惠;乙旅行社对10人以内(含10人)不优惠,超过10人超出部分八折优惠,某班部分同学去该景点旅游.设参加旅游人数为x人,购买门票需要y元.(1)分别直接写出两家旅行社y与x的函数关系式,并写出对应自变量x的取值范围;(2)请根据该班旅游人数设计最省钱的购票方案.21.如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个顶点的坐标分别为A(﹣4,0),B(﹣3,﹣3),C(﹣1,﹣3).(1)画出△ABC关于x轴对称的△ADE(其中点B,C的对称点分别为点D、E);(2)画出△ABC关于原点成中心对称的△FGH(其中A、B、C的对称点分别为点F,G,H).22.如图,正方形ABCD中,点E为边BC的上一动点,作AF⊥DE交DE、DC分别于P、F点,连PC(1)若点E为BC的中点,求证:F点为DC的中点;(2)若点E为BC的中点,PE=6,PC=4 ,求PF的长;(3)若正方形边长为4,直接写出PC的最小值________.23.如图1,将一条两边沿互相平行的纸带折叠(AM//BN,AD//BC),AB为折痕,AD交BN于点E.(1)试说明的理由;(2)设的度数为x,试用含x的代数式表示的度数;(3)如若按图2形式折叠.•试问(2)中的关系式是否仍然成立?请说明理由.‚若的度数是的两倍,求此时的度数.24.如图,直线与x轴、y轴分别交于点B,C,抛物线过B,C两点,且与x轴的另一个交点为点A,连接AC.(1)求抛物线的解析式;(2)在抛物线上是否存在点与点A不重合,使得,若存在,求出点D的坐标;若不存在,请说明理由;(3)有宽度为2,长度足够长的矩形阴影部分沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.答案一、单选题1.B2. B3. D4. D5. D6.B7. D8. C9. A 10. D二、填空题11.(3,2 )12.﹣4≤m≤4 13. 或14.<15. 16. 25三、综合题17. 解:对于x-3(x-2)≤4,解之得:x≥1对于,解之得:∴18. 证明:在△ADB和△BCA中,AD=BC,AC=BD,AB=BA,∴△ADB≌△BCA(SSS).∴∠DBA=∠CAB.∴AE=BE.∴△EAB是等腰三角形.19. 解:在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE= ∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°20. (1)解:甲旅行社y与x的函数关系式是y=72x(x为自然数);乙旅行社y与x的函数关系式为;(2)解:当72x<80x时,0≤x≤10,此时所以选择甲旅行社;当72x=64x+160时,x=20,此时选择两家旅行社价格一样;当72x<64x+160时,x<20时,选择甲旅行社;当72x>64x+160时,x>20时,选择乙旅行社;综上所述:当人数小于20时,选择甲旅行社;等于20时两家都可选择;大于20时选择乙旅行社21. (1)解:如图所示:△ADE即为所求作的图形;(2)解:△FGH即为所求作的图形22. (1)证明:如图1中,∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠C=90°,∵AF⊥DE,∴∠APD=∠DPF=90°,∴∠ADP+∠DAF=90°,∠ADP+∠EDC=90°,∴∠DAF=∠EDC,在△ADF和△DCE中,,∴△ADF≌DCE,∴DF=CE,∵EC= BC,BC=DC,∴DF= DC,∴F点为DC的中点;(2)解:如图1中,设PF=a,易知△DPF∽△APD∽△ADF,∴PF:DP=DP:AP=DF:AD=1:2,∴DP=2a,AP=4a,AF=DE=5a,∴PE=3a=6,∴a=2,∴PF=2.(3)2 ﹣223. (1)解:∵AM∥BN,∴∠MAD=∠NED,∵AD∥BC,∴∠NED=∠NBC,∴∠MAD=∠NBC,(2)解:如图1∵AM∥BN,∴∠ABE=∠BAF, ∠MAD=∠BEA=x,由折叠可得,∠FAB=∠BAE,∴∠ABE=∠BAE,即∆ABE是等腰三角形,又∵∠BEA=x,∴(3)解:第(2)问中的关系式成立,理由:如图2,∵AM∥BN,∴∠ABE=∠BAE, ∠MAD=∠BEA=x,由折叠可得,∠FAB=∠BAE,∴∠ABE=∠BAE,即∆ABE是等腰三角形,又∵∠BEA=x,∴∵∠ABE的度数是∠MAD的两倍,∴∠ABE=2x,又∵∠ABE= ,∴2x=解得x=36º,∴∠MAD=36º,∵AD∥BC,∴∠MEC=∠MAD=36º.24. (1)解:由题意C(0,-3),B(6,0),把C(0,-3),B(6,0)代入y= +bx+c得到,解得,∴抛物线的解析式为y= x2-x-3.(2)解:如图①中,作AD∥BC交抛物线于D,则S△ABC=S△BCD.∵直线BC的解析式为y= x-3,A(-2,0),∴直线AD的解析式为y= x+1,由,解得或,∴D(8,5).∵直线AD交y轴于E(0,1),点E关于点C的对称点E′(0,-7),∴过点E′平行BC的直线的解析式为y= x-7,由,方程组无解,∴在直线BC的下方不存在满足条件的点D.∴满足条件的点D(8,5).(3)解:设M(m,m-3),则N(m+2,m-2),∴P(m,m2-m-3),Q[m+2,(m+2)2-(m+2)-3],∴PM= m-3-(m2-m-3),NQ= m-2-[ (m+2)2-(m+2)-3],当PM=QN时,点P,Q,M,N为顶点的四边形是平行四边形,∴| m-3-(m2-m-3)|=| m-2-[ (m+2)2-(m+2)-3]|,解得:m=2或2±2 ,∴满足条件的点M的坐标为(2,-2)或(2+2 ,-2)或(2-2 ,- -2)。

浙江省文澜中学八年级上册压轴题数学模拟试卷含详细答案

浙江省文澜中学八年级上册压轴题数学模拟试卷含详细答案

浙江省文澜中学八年级上册压轴题数学模拟试卷含详细答案一、压轴题1.探索发现: 111111111;;12223233434=-=-=-⨯⨯⨯…… 根据你发现的规律,回答下列问题:(1)145⨯= ,1(1)n n ⨯+= ; (2)利用你发现的规律计算:1111122334(1)n n ⋅++++⨯⨯⨯⨯+ (3)利用规律解方程:1111121(1)(1)(2)(2)(3)(3)(4)(4)(5)(5)x x x x x x x x x x x x x -++++=++++++++++ 2.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接 BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.3.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H .(1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACF S S 的值.4.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).5.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.6.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.7.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)8.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角.(3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.9.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.10.如图,△ABC 是等边三角形,△ADC 与△ABC 关于直线AC 对称,AE 与CD 垂直交BC 的延长线于点E ,∠EAF =45°,且AF 与AB 在AE 的两侧,EF ⊥AF .(1)依题意补全图形.(2)①在AE 上找一点P ,使点P 到点B ,点C 的距离和最短;②求证:点D 到AF ,EF 的距离相等.11.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为轴和轴建立平面直角坐标系,点A (0,a ),C (b ,0a 6b 80--=.(1)a = ;b = ;直角三角形AOC 的面积为 .(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发以每秒2个单位长度的速度向点O 匀速移动,Q 点从O 点出发以每秒1个单位长度的速度向点A 匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC =∠D CO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOD ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180).12.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.13.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE .(1)如图,当点D 在BC 延长线上移动时,若∠BAC =40°,则∠ACE = ,∠DCE = ,BC 、DC 、CE 之间的数量关系为 ;(2)设∠BAC =α,∠DCE =β.①当点D 在BC 延长线上移动时,α与β之间有什么数量关系?请说明理由; ②当点D 在直线BC 上(不与B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE ∥AB 时,若△ABD 中最小角为15°,试探究∠ACB 的度数(直接写出结果,无需写出求解过程).14.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,试确定线段AE 与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E 为AB 的中点时,如图(2),确定线段AE 与DB 的大小关系,请你写出结论:AE _____DB (填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系是:AE _____DB (填“>”,“<”或“=”).理由如下:如图(3),过点E 作EF ∥BC ,交AC 于点F .(请你将剩余的解答过程完成) (3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).15.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。

2020-2021初二数学上期末模拟试题(及答案)(2)

2020-2021初二数学上期末模拟试题(及答案)(2)

2020-2021初二数学上期末模拟试题(及答案)(2)一、选择题1.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .132.在平面直角坐标系中,点A 坐标为(2,2),点P 在x 轴上运动,当以点A ,P 、O 为顶点的三角形为等腰三角形时,点P 的个数为( )A .2个B .3个C .4个D .5个3.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .14.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--= C .15015020 1.52.5x x --= D .15020150 1.52.5x x--= 5.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 6.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5B .-5C .3D .-3 7.如果2x +ax+1 是一个完全平方公式,那么a 的值是() A .2B .-2C .±2D .±1 8.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°9.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度10.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是( )A .3B .4C .5D .611.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。

初中数学浙教版2020-2021年八年级上学期数学期末模拟试卷

初中数学浙教版2020-2021年八年级上学期数学期末模拟试卷

初中数学浙教版2020-2021年八年级上学期数学期末模拟试卷一、单选题(共10题;共30分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.已知点M到x轴的距离为3,到y轴的距离为2,且在第四象限内,则点M的坐标为()A. (-2,3)B. (2,-3)C. (3,2)D. 不能确定3.在等腰三角形ABC中,它的两边长分别为8cm和4cm,则它的周长为()A. 10cmB. 12 cmC. 20 cm或16 cmD. 20 cm4.下列图形中具有稳定性的是()A. B. C. D.5.有下列语句:①两点之间,线段最短;②画两条平行的直线:③过直线外一点作已知直线的垂线:④如果两个角的和是90°,那么这两个角互余。

其中是命题的有()A. ①②B. ③④C. ②③D. ①④6.小明用20元零花钱购买水果慰问老人,已知水果单价是每千克4元,设购买水果x千克用去的钱为y元,用图象表示y与x的函数关系,其中正确的是()A. B. C. D.7.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为16,BC=7,则AB的长为().A. 8B. 9C. 10D. 118.已知等腰三角形的顶角为40°,则这个等腰三角形的底角为()A. 140°B. 80°C. 70°D. 50°9.如图,∠A+∠B +∠C +∠D +∠E等于()A. 180°B. 360°C. 540°D. 720°10.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°;②AC=BD;③OM平分∠AOD;④MO平分∠AMD.其中正确的有()A. 4个B. 3个C. 2个D. 1个二、填空题(共6题;共24分)11.点关于x轴对称的点的坐标为________.12.一次函数的图像不经过第________象限.13.中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-3,-2),“炮”位于点(-2,0),则“兵”位于的点的坐标为________14.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.15.如图,四边形OABC为正方形,边长为10,点A,C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(4,0),P是OB上的一个动点,则PD+PA的最小值是________.16.如图是学校艺术馆中的柱子,高4.5m.为迎接艺术节的到来,工作人员用一条花带从柱底向柱顶均匀地缠绕3圈,一直缠到起点的正上方为止.若柱子的底面周长是2m,则这条花带至少需要________m.三、综合题(共8题;共66分)17.解下列不等式:(1)(2)解不等式组18.如图,在中,AB=AC,AD是中线,CE∥AD交BA的延长线于点E.请判断的形状,并说明理由.结论:是________三角形.解:∵AB=AC,BD=CD(已知),∴∠BAD=∠CAD(▲).∵CE∥AD(已知),∴∠BAD=▲,∠CAD=▲.∴∠ACE =∠E.∴AC=AE(▲).即△AEC是▲三角形.19.如图,在中,,分别是的高和角平分线,若,,求的度数.20.某公司要印制新产品宣传材料.甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:300张以内(含300张)每份材料收2.5元印制费,超出部分每张减少0.1元,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式.(2)印制800份宣传材料时,选择哪家印刷厂比较合算?21.已知:△A1B1C1三个顶点的坐标分别为A1(﹣3,4),B1(﹣1,3),C1(1,6),把△A1B1C1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC,且点A1的对应点为A,点B1的对应点为B,点C1的对应点为C.(1)在坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求点P的坐标.22.如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=kx的图象交点为C(3,4).(1)求k值与一次函数y=k1x+b的解析式;(2)在x轴上有一动点P,求当PB+PC最小时P点坐标.(3)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标;23.如图,点O是等边△ABC内一点,,,△BOC≌△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当时,试判断△AOD的形状,并说明理由;(3)当△AOD是等腰三角形时,求的度数.24.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点,动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时≌,并求此时M点的坐标.答案解析部分一、单选题1.【答案】D2.【答案】B3.【答案】D4.【答案】B5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】A10.【答案】B二、填空题11.【答案】(-1,-2)12.【答案】二13.【答案】14.【答案】5 cm或7 cm15.【答案】16.【答案】56.25三、综合题17.【答案】(1)解:括号得,2x-2+2<5-3x-3,移项得,2x+3x<2,合并同类项得,5x<2,系数化为1得,x<(2)解:解不等式①得,x≤1,解不等式②得,x>-7,∴原不等式组的解集为:-7<x≤1.18.【答案】解:∵AB=AC,BD=CD (已知),∴∠BAD=∠CAD(三线合一).∵CE∥AD (已知),∴∠BAD= ,∠CAD= .∴∠ACE =∠E.∴AC=AE(等角对等边).即是等腰三角形.19.【答案】解:∵∠B+∠C+∠BAC=180°,∠ABC=30°,∠ACB=60°,∴∠BAC=180°-30°-60°=90°.∵AE是△ABC的角平分线,∴∠CAE= ∠BAC=45°.∵AD是△ABC的高,∴∠ADC=90°,∠DAC=90°-∠C=30°,∴∠DAE=∠BAE -∠DAC=45°-30°=15°.20.【答案】(1)解:甲厂:y=x+1500,乙厂:即为:(2)解:x=800时,甲厂:y=800+1500=2300,乙厂:y=2.4×800+30=1950,∵2300>1950,∴印制800份宣传材料时,选择乙厂比较合算.21.【答案】(1)解:如图,△ABC即为所求.(2)解:S△ABC=3×4﹣×2×4﹣×1×2﹣×2×3=4.(3)解:设P(0,m),由题意,•|m﹣1|•2=4,解得,m=5或﹣3,∴P(0,5)或(0,﹣3).22.【答案】(1)解:由题意,将点C(3,4)代入y=kx中,得:4=3k,解得:k= ,再将点C(3,4)、点A(﹣3,0)代入y=k1x+b中,得:,解得:,∴函数y=k1x+b的解析式为:y= x+2(2)解:如图,作点B关于x轴对称的点B',连接B'C,交x轴于点P,此时PB+PC最小,在y= x+2中,令x=0,则y=2,∴B(0,2),则B'(0,﹣2),设直线B'C的解析式为y=k2x﹣2,将C(3,4)代入得:4=3k2﹣2,解得:k2=2,∴直线B'C的解析式为y=2x﹣2,令y=0,由0=2x﹣2得:x=1,∴点P坐标为(1,0);(3)解:根据题意,OA=3,OB=2,分两种情况:①当∠DAB=90°时,DA=AB,过点D作DM⊥x轴于E,∵∠DAM+∠BAO=90°,∠BAO+∠ABO=90°,∴∠DAM=∠ABO,∵∠DMA=∠AOB=90°,DA=AB,∴△DAM≌△ABO(AAS),∴DM=OA=3,MA=OB=2,∴D(﹣5,3);②当∠D'BA=90°时,D'B=AB,过D'作D'N⊥y轴于N,同理可证△D'BN≌△BAO(AAS),∴BN=OA=3,D'N=OB=2,∴D'(﹣2,5),故点D的坐标为(﹣5,3)或(﹣2,5).23.【答案】(1)证明:∵△ABC是等边三角形,∴∠ACB=60°,∵△BOC≌△ADC,∴OC=CD,∠BCO=∠ACD,∴∠BCO+∠OCA=∠ACD+∠OCA,即∠OCD=∠ACB=60°,∴△COD为等边三角形;(2)解:△AOD是直角三角形,理由为:∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,∵△COD为等边三角形,∴∠CDO=60°,∴∠ADO=∠ADC﹣∠CD0=150°﹣60°=90°,∴△AOD是直角三角形;(3)解:∵△COD为等边三角形,∴∠COD=∠CDO=60°,∵∠ADC=∠BOC= ,∠AOB=110°,∴∠AOD=360°﹣110°﹣60°﹣=190°﹣,∠ADO= ﹣60°,∴∠OAD=180°﹣(﹣60°)﹣(190°﹣)=50°,①当∠AOD=∠ADO时,190°﹣= ﹣60°,解得:=125°;②当∠AOD=∠OAD时,190°﹣=50°,解得:=140°;③当∠ADO=∠OAD时,﹣60°=50°,解得:=110°,- 11 -综上,当 =125°或110°或140°时,△AOD 为等腰三角形. 24.【答案】 (1)解:∵y =﹣ x+2,当x =0时,y =2;当y =0时,x =4,则A 、B 两点的坐标分别为A (4,0)、B (0,2);(2)解:∵C (0,4),A (4,0)∴OC =OA =4,当0≤t≤4时,OM =OA ﹣AM =4﹣t,S △OCM = ×4×(4﹣t )=8﹣2t ; 当t >4时,OM =AM ﹣OA =t ﹣4,S △OCM = ×4×(t ﹣4)=2t ﹣8; ∴ 的面积S 与M 的移动时间t 之间的函数关系式为:(3)解:∵OC =OA ,∠AOB =∠COM =90°,∴只需OB =OM ,则△COM ≌△AOB ,即OM =2,此时,若M 在x 轴的正半轴时,t =2,M 在x 轴的负半轴,则t =6.故当t =2或6时,△COM ≌△AOB ,此时M (2,0)或(﹣2,0).。

浙教版2020-2021学年度第一学期八年级数学期末模拟测试卷A卷(附答案)

浙教版2020-2021学年度第一学期八年级数学期末模拟测试卷A卷(附答案)

浙教版2020-2021学年度第一学期八年级数学期末模拟测试卷A 卷(附答案)一、单选题1.下面给出五个命题:①若x=﹣1,则x 3=﹣1;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若x 2=4,则x=2;⑤面积相等的两个三角形全等,是真命题的个数有( )A .4个 B .3个 C .2个 D .1个2.函数 21x y x -=+中,自变量 x 的取值范围是( ) A .2x >B .2x ≠C .1x >-D .1x ≠-3.(3分)不等式的解集是( ) A . B . C . D . 4.如图,有一张直角三角形纸片ABC ,两条直角边5AC =,10BC =,将ABC ∆折叠,使点A 和点B 重合,折痕为DE ,则CD 的长为( )A .1.8B .2.5C .3D .3.755.如下书写的八个黑体字,其中为轴对称图形的有( )A .0个B .1个C .2个D .3个6.如图,已知直线1y x a =+与2y kx b =+相交于点(1,1)P -,则关于x 的不等式x a kx b +>+的解集是( )A .1x >B .1x >-C .1x <D .1x <-7.将平面直角坐标系中的点A (2,1)向左平移2个单位长度,再向下平移4个单位长度得到点A′,若将点A 到A′的平移看作一次平移,则平移的距离为( ) A .6个单位长度B .4个单位长度C .2个单位长度D .25个单位长度 8.如图,平分,点为上一点,交于点.若,则的度数为( )9.如图,是岑溪市几个地方的大致位置的示意图,如果用()0,0表示孔庙的位置,用()1,5表示东山公园的位置,那么体育场的位置可表示为( )A .(1,1)--B .()0,1C .()1,1D .(1,1)-10.ABC 三个顶点的坐标分别为(2,1)A ,(4,3)B ,(0,2)C ,将ABC 平移到了A B C ''',其中(1,3)A '-,则C '点的坐标为( )A .(3,6)-B .(2,1)-C .()3,4-D .(2,5)二、填空题 11.函数y =kx 的图象经过点P (2,﹣3),则k =_____.12.(2017四川省广元市)在平面直角坐标系中,将P (﹣3,2)向右平移2个单位,再向下平移2个单位得点P ′,则P ′的坐标为______.13.如图所示,三角形纸片ABC ,AB =10厘米,BC =7厘米,AC =6厘米.沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为_____厘米.14.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=_____°. 15.如图,△ABC 中,BC=10cm ,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,则△ADE 的周长为__________。

2020-2021初二数学上期末模拟试卷(附答案)(1)

2020-2021初二数学上期末模拟试卷(附答案)(1)

2020-2021初二数学上期末模拟试卷(附答案)(1)一、选择题1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣63.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2- B .1- C .2 D .34.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .15.如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )A .30°B .40°C .45°D .60°6.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150°7.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .108.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④9.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20 10.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0B .x =4C .x ≠0D .x ≠4 11.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°12.如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A .20°B .40°C .50°D .70°二、填空题13.计算:24a 3b 2÷3ab =____.14.若一个多边形的边数为 8,则这个多边形的外角和为__________.15.若x 2+kx+25是一个完全平方式,则k 的值是____________.16.若分式11x x --的值为零,则x 的值为______. 17.分解因式:2288a a -+=_______ 18.因式分解:328x x -=______.19.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.20.计算:(x -1)(x +3)=____.三、解答题21.已知,关于x 的分式方程1235a b x x x --=+-. (1)当1a =,0b =时,求分式方程的解; (2)当1a =时,求b 为何值时分式方程1235a b x x x --=+-无解: (3)若3a b =,且a 、b 为正整数,当分式方程1235a b x x x --=+-的解为整数时,求b 的值.22.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.23.已知:如图,AB∥CD,E 是AB 的中点,CE=DE .求证:(1)∠AEC=∠BED;(2)AC=BD .24.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?25.解方程:24111xxx-=--【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a-+,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故11+423a a-+=0,解得:a=1 3 .故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.3.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.4.C解析:C【解析】【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=Q ,1DC AD 3=, 1CD 8213∴=⨯=+, C 90∠︒=Q ,BD 平分ABC ∠,DE CD 2∴==,即点D 到AB 的距离为2,故选C .【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键. 5.B解析:B【解析】【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C=18018010040.22ADC-︒︒-=︒=︒∠故选B.考点:等腰三角形的性质.6.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.7.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选:C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.8.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.9.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.10.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.11.C解析:C【解析】【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.12.C解析:C【解析】【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.二、填空题13.8a2b【解析】【分析】根据单项式的除法法则计算把系数和同底数幂分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式计算后选取答案【详解】24a3b2÷3ab=(24÷3)a解析:8a2b【解析】【分析】根据单项式的除法法则计算,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算后选取答案.【详解】24a3b2÷3ab,=(24÷3)a2b,=8a2b.故答案为8a2b.【点睛】本题考查的知识点是同底数幂的除法,解题的关键是熟练的掌握同底数幂的除法. 14.360°【解析】【分析】根据任意多边形的外角和为360°回答即可【详解】解:由任意多边形的外角和为360°可知这个多边形的外角和为360°故答案为:360°【点睛】本题主要考查的是多边形的外角和掌握解析:360°.【解析】【分析】根据任意多边形的外角和为360°回答即可.【详解】解:由任意多边形的外角和为360°可知,这个多边形的外角和为360°.故答案为:360°.【点睛】本题主要考查的是多边形的外角和,掌握多边形的外角和定理是解题的关键.15.±10【解析】【分析】先根据两平方项确定出这两个数再根据完全平方公式的乘积二倍项即可确定k的值【详解】解:∵x2+kx+25=x2+kx+52∴kx=±2•x•5解得k=±10故答案为:±10【点睛解析:±10.【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵x2+kx+25=x2+kx+52,∴kx=±2•x•5,解得k=±10.故答案为:±10.【点睛】本题考查完全平方式,根据平方项确定出一次项系数是解题关键,也是难点,熟记完全平方公式对解题非常重要.16.-1【解析】【分析】【详解】试题分析:因为当时分式的值为零解得且所以x=-1考点:分式的值为零的条件解析:-1【解析】【分析】【详解】 试题分析:因为当10{-10-=≠x x 时分式11x x --的值为零,解得1x =±且1x ≠,所以x=-1. 考点:分式的值为零的条件.17.【解析】=2()=故答案为解析:22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-. 18.【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可【详解】故答案为:【点睛】本题考查了因式分解熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键解析:()()222x x x +-【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可.【详解】()()()322824?222x x x x x x x -=-=+-.故答案为:()()222x x x +-.【点睛】本题考查了因式分解,熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键. 19.130°或90°【解析】分析:根据题意可以求得∠B 和∠C 的度数然后根据分类讨论的数学思想即可求得∠ADC 的度数详解:∵在△ABC 中AB=AC ∠BAC=100°∴∠B=∠C=40°∵点D 在BC 边上△A解析:130°或90°.【解析】分析:根据题意可以求得∠B 和∠C 的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.x2+2x-3【解析】【分析】多项式与多项式相乘的法则:多项式与多项式相乘先用一个多项式的每一项乘另外一个多项式的每一项再把所得的积相加依此计算即可求解【详解】(x-1)(x+3)=x2+3x-x-解析:x 2+2x -3【解析】【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.【详解】(x-1)(x+3)=x 2+3x-x-3 =x 2+2x-3.故答案为x 2+2x-3.【点睛】本题考查了多项式乘多项式,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.三、解答题21.(1)1011x =-;(2)5b =或112;(3)3,29,55,185b = 【解析】【分析】 (1)将a ,b 的值代入方程得11235x x x +=+-,解出这个方程,最后进行检验即可; (2)把1a =代入方程得11235b x x x --=+-,分式方程去分母转化为整式方程为(112)310b x b -=-,由分式方程有增根,得11-2b=0,或230x +=(不存在),或50x -=求出b 的值即可;(3)把3a b =代入原方程得31235b b x x x --=+-,将分式方程化为整式方程求出x 的表达式,再根据x 是正整数求出b ,然后进行检验即可.【详解】(1)当1a =,0b =时,分式方程为:11235x x x +=+- 解得:1011x =-经检验:1011x =-时是原方程的解 (2)解:当1a =时,分式方程为:11235b x x x --=+- (112)310b x b -=-①若1120b -=,即112b =时,有:1302x •=,此方程无解 ②若1120b -≠,即112b ≠时,则 若230x +=,即310230112b b-⨯+=-,663320b b -=-,不成立 若50x -=,即31050112b b--=-,解得5b = ∴综上所述,5b =或112时,原方程无解 (3)解:当3a b =时,分式方程为:31235b b x x x --=+- 即(10)1815b x b +=- ∵,a b 是正整数∴100b +≠ ∴181510b x b-=+ 即1951810x b=-+ 又∵,a b 是正整数,x 是整数. ∴3,5,29,55,185b =经检验,当5b =时,5x =(不符合题意,舍去)∴3,29,55,185b =【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(1)画图见解析;点1B 坐标为:(﹣2,﹣1);(2)画图见解析;点2C 的坐标为:(1,1)【解析】【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△111A B C ,即为所求;点1B 坐标为:(﹣2,﹣1);(2)如图所示:△222A B C ,即为所求,点2C 的坐标为:(1,1).考点:作图-轴对称变换;作图-平移变换23.见解析【解析】(1)根据CE=DE 得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS 证明△AEC 与△BED 全等,再利用全等三角形的性质证明即可. 证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E 是AB 的中点,∴AE=BE,在△AEC 和△BED 中,AE=BE ,∠AEC=∠BED,EC=ED ,∴△AEC≌△BED(SAS ),∴AC=BD.24.(1)该种干果的第一次进价是每千克5元.(2)超市销售这种干果共盈利5820元.【解析】【分析】【详解】试题分析:(1)、设第一次进价x 元,第二次进价为1.2x ,根据题意列出分式方程进行求解;(2)、根据利润=销售额-进价.试题解析:(1)、设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元, 由题意,得9000(120%)x +=2×3000x+300, 解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)、[30009000-55(120%)⨯+﹣600]×9+600×9×80%﹣(3000+9000) =(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.考点:分式方程的应用.25.x=-5【解析】【分析】先去分母化为整式方程,再求解,再验根.【详解】 解:24111x x x -=-- 24+111x x x =-- ()()()()()()4+11111111x x x x x x x x ⎛⎫⨯-+=⨯-+ ⎪ ⎪-+-⎝⎭()2411x x x ++=-224+1x x x +=-22+14x x x -=--5x =-经检验:5x =-是原分式方程的根,原分式方程的解为5x =-.【点睛】考核知识点:解分式方程.。

2020-2021初二数学上期末模拟试题带答案(2)

2020-2021初二数学上期末模拟试题带答案(2)

2020-2021初二数学上期末模拟试题带答案(2)一、选择题1.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形2.已知三角形的两边长分别为4cm和9cm,则下列长度的线段能作为第三边的是()A.13cm B.6cm C.5cm D.4m3.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2B.2C.4D.-44.如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个5.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.66.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12 AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 7.等腰三角形一腰上的高与另一腰的夹角为60o,则顶角的度数为()A.30o B.30o或150o C.60o或150o D.60o或120o8.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙9.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .7210.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEF S mn ∆= 11.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°12.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度二、填空题13.-12019+22020×(12)2021=_____________ 14.求值:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-----= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L ______. 15.如图,在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,若AB=20,则BD 的长是 .16.如果代数式m 2+2m =1,那么22442m m m m m +++÷的值为_____. 17.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 .18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .20.计算:(x -1)(x +3)=____.三、解答题21.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE=AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD=3,CF=4,求AD 的长.22.已知2340m m +-=,求代数式253(2)22m m m m m-+-÷--的值. 23.先化简,再求值:222221422x x x x xx x x ⎛⎫-+-+÷ ⎪-+⎝⎭,且x 为满足22x -≤<的整数. 24.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg,甲型机器人分类800kg垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等。

浙江省文澜中学八年级上册期末数学模拟试卷及答案

浙江省文澜中学八年级上册期末数学模拟试卷及答案

浙江省文澜中学八年级上册期末数学模拟试卷及答案一、选择题1.若m+1m =5,则m 2+21m的结果是( ) A .23 B .8 C .3 D .72.化简分式277()a b a b ++的结果是( ) A .7a b + B .7a b + C .7a b - D .7a b- 3.如图是5×5的正方形方格图,点A ,B 在小方格的顶点上,要在小方格的项点确定一点C ,连接AC 和BC ,使△ABC 是等腰三角形,则方格图中满足条件的点C 的个数是( )A .4B .5C .6D .74.已知:如图,下列三角形中,AB AC =,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的有( )A .1个B .2个C .3个D .4个5.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm 6.下列各式中不能用平方差公式进行计算的是( ) A .()()m n m n -+B .()()x y x y --+C .(2)(2)x y y x +-D .()()a b c a b c +--+7.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .128.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交BC 于点D ,则下列说法中:①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的垂直平分线上;④:1:3DAC ABC SS =.其中正确的个数是( )A .1B .2C .3D .49.如图,在△ABC 中,AB =AC ,BO 、CO 分别平分∠ABC 、∠ACB ,DE 经过点 O , 且 DE ∥BC ,DE 分别交 AB 、AC 于 D 、E ,则图中等腰三角形的个数为( )A .2B .3C .4D .510.如图所示,在Rt △ABC 中,∠A =90°,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A .15°B .20°C .25°D .30° 二、填空题11.若2320a a --=,则2625a a --=______.12.若|21(3)0x x y ++-=,则22x y +=_______.13.分解因式 -2a 2+8ab-8b 2=______________.14.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .15.因式分解:24m n n -=________.16.已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF 和DCE 全等.17.若2a x =,3b x =,4c x =,则2a b c x +-=__________.18.如图,直线AB ∥CD ,直线EF 分别与直线AB 和直线CD 交于点E 和F ,点P 是射线EA 上的一个动点(P 不与E 重合)把△EPF 沿PF 折叠,顶点E 落在点Q 处,若∠PEF=60°,且∠CFQ :∠QFP=2:5,则∠PFE 的度数是_______.19.如图,将一张长方形纸条折叠,若25ABC ∠=︒,则ACD ∠的度数为__________.20.如图,一个直角三角形纸片ABC ,90BAC ∠=,D 是边BC 上一点,沿线段AD 折叠,使点B 落在点E 处(E B 、在直线AC 的两侧),当50EAC ∠=时,则CAD ∠=__________°.三、解答题21.已知如图,点A 、点B 在直线l 异侧,以点A 为圆心,AB 长为半径作弧交直线l 于C 、D 两点.分别以C 、D 为圆心,AB 长为半径作弧,两弧在l 下方交于点E,连结AE. (1)根据题意,利用直尺和圆规补全图形;(2)证明:l 垂直平分AE.22.如图,在ABC ∆和DEF ∆中,B 、E 、C 、F 在同一直线上,下面有四个条件:①AB DE =;②AC DF =;③//AB DE ;④BE CF =.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:____________________________________________;求证:___________.(注:不能只填序号)证明如下:23.已知:230m mn +=,210mn n -=-,求下列代数式的值:(1)222m mn n +-;(2)227m n +-.24.如图,等边△ABC 的边AC ,BC 上各有一点E ,D ,AE=CD ,AD ,BE 相交于点O .(1)求证:△ABE ≌△CAD ;(2)若∠OBD =45°,求∠ADC 的度数.25.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BF 平分∠ABC 交AD 于点E ,交AC 于点F .(1)求证:AE =AF ;(2)过点E 作EG ∥DC ,交AC 于点G ,试比较AF 与GC 的大小关系,并说明理由.26.如图1,四边形MNBD 为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(BAE AEC ECD ∠∠∠、、),则BAE AEC ECD ∠+∠+∠=__________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(BAE AEF EFC FCD ∠∠∠∠、、、),则BAE AEF EFC FCD ∠+∠+∠+∠=__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(BAE AEF EFG FGC GCD ∠∠∠∠∠、、、、),则BAE AEF EFG FGC GCD ∠+∠+∠+∠+∠=___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪n 刀,剪出()1n +个角,那么这()1n +个角的和是____________°.27.如图,AB =AD =BC =DC ,∠C =∠D =∠ABE =∠BAD =90°,点E 、F 分别在边BC 、CD 上,∠EAF =45°,过点A 作∠GAB =∠FAD ,且点G 在CB 的延长线上.(1)△GAB 与△FAD 全等吗?为什么?(2)若DF =2,BE =3,求EF 的长.28.已知x =3+1,y =3﹣1,求:(1)代数式xy 的值;(2)代数式x 3+x 2y +xy 2+y 3的值.29.(1)如图,ABC 中,点D 、E 在边BC 上,AD 平分BAC ∠,AE BC ⊥,35B ∠=︒,65C =︒∠,求DAE ∠的度数;(2)如图,若把(1)中的条件“AE BC ⊥”变成“F 为DA 延长线上一点,FE BC ⊥”,其它条件不变,求DFE ∠的度数;(3)若把(1)中的条件“AE BC ⊥”变成“F 为AD 延长线上一点,FE BC ⊥”,其它条件不变,请画出相应的图形,并求出DFE ∠的度数;(4)结合上述三个问题的解决过程,你能得到什么结论?30.观察下列各式(x -1)(x +1)=x 2-1(x -1)(x 2+x +1)=x 3-1(x -1)(x 3+x 2+x +1)=x 4-1(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)(2)你能否由此归纳出一般规律(x -1)(x n +x n-1+…+x +1)(3)根据以上规律求32018+32017+32016+32+3+1的值【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】因为m +1m =5,所以m 2+21m =(m +1m)2﹣2=25﹣2=23,故选A . 2.B解析:B【解析】【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】解:原式 =27()a b a b ++ =7a b+.所以答案选B. 【点睛】此题考查了约分,找出分子分母的公因式是解本题的关键.3.C解析:C【解析】【分析】根据等腰三角形的判定找出符合的所有点即可.【详解】解:如图所示:C在C1,C2,C3,C4位置上时,AC=BC;C在C5,C6位置上时,AB=BC;即满足点C的个数是6,故选:C.【点睛】本题考查了等腰三角形的判定,能找出符合的所有点是解此题的关键,注意:有两边相等的三角形是等腰三角形.4.C解析:C【解析】【分析】顶角为:36°,90°,108°的等腰三角形都可以用一条直线把等腰三角形分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【详解】由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:C.【点睛】本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.5.B解析:B【解析】【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt △ABC 中,∵AC =6,BC =8,∴AB =10,△ADE 是由△ACD 翻折,∴AC =AE =6,EB =AB−AE =10−6=4,设CD =DE =x ,在Rt △DEB 中,∵222DE EB DB +=,∴()22248x x +=-, ∴x =3,∴CD =3.故答案为:B .【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.6.B解析:B【解析】【分析】根据平方差公式逐项判断即可得.【详解】A 、22()()m n m n m n -+=-,能用平方差公式,此项不符题意;B 、222()()()2x y x y x y x xy y --+=-+=---,能用完全平方公式,此项符合题意;C 、2222(2)(2)(2)4x y y x y x y x +-=-=-,能用平方差公式,此项不符题意;D 、[][]()()()()a b c a b c a b c a b c +--+=+-⋅--,能用平方差公式,此项不符题意; 故选:B .【点睛】本题考查了平方差公式,熟记并灵活运用公式是解题关键.7.A解析:A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数. 解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A .考点:多边形内角与外角.8.D解析:D【解析】【分析】①连接NP ,MP ,根据SSS 定理可得ANP AMP ≌,故可得出结论;②根据三角形的外角的性质即可得出结论;③先根据三角形内角和定理求出CAB ∠的度数,再由AD 是BAC ∠的平分线得出30BAD CAD ∠=∠=︒,根据BAD B =∠∠可知AD BD =,故可得出结论;④先根据直角三角形的性质得出30CAD ∠=︒,12CD AD =,再由三角形的面积公式即可得出结论.【详解】解:①证明:连接NP ,MP ,在ANP 与AMP 中,AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩, ()ANP AMP SSS ∴△≌△,则CAD BAD ∠=∠,故AD 是BAC ∠的平分线,故此结论正确;②在ABC 中,90C ∠=︒,30B ∠=︒,60CAB ∴∠=︒.AD 是BAC ∠的平分线,1302BAD CAD CAB ∴∠=∠=∠=︒, ∴60ADC BAD B ∠=∠+∠=︒,故此结论正确;③1302BAD CAD CAB ∠=∠=∠=︒, 30BAD B ∴∠=∠=︒,AD BD ∴=,∴点D 在AB 的垂直平分线上,故此结论正确; ④在Rt ACD △中,30CAD ∠=︒,12CD AD ∴=, 1322BC BD CD AD AD AD ∴=+=+=,1124DAC S AC CD AC AD =⋅=⋅△, 11332224ABC S AC BC AC AD AC AD ∴=⋅=⋅=⋅△, :1:3DAC ABC S S ∴=△△,故此结论正确;综上,正确的是①②③④.故选:D .【点睛】本题考查的是角平分线的性质,线段垂直平分线的性质,作图-基本作图等,熟知角平分线的作法是解答此题的关键.9.D解析:D【解析】【分析】根据等腰三角形的判定定理,即可得到答案.【详解】∵在△ABC 中,AB =AC ,∴△ABC 是等腰三角形,∠ABC=∠ACB ,∵DE ∥BC ,∴∠ADE=∠ABC ,∠AED=∠ACB ,∴∠ADE=∠AED ,∴△ADE 是等腰三角形,∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∴∠OBC=∠OCB ,∴△OBC 是等腰三角形,∵DE ∥BC ,BO 、CO 分别平分∠ABC 、∠ACB ,∴∠DBO=∠OBC=∠DOB ,∠ECO=∠OCB=∠EOC ,∴△DBO ,△ECO 是等腰三角形,∴图中由5个等腰三角形,故选D.【点睛】本题主要考查等腰三角形的判定定理,熟悉等腰三角形的判断定理和“双平等腰”模型,是解题的关键.10.D解析:D【解析】【分析】根据全等三角形的性质可得∠ABD=∠BDE=∠C ,根据三角形内角和定理可得3∠C=90°,即可得答案.【详解】∵△ADB ≌△EDB ≌△EDC ,∴∠ABD=∠BDE=∠C ,∵∠A=90°,∴∠ABD+∠BDE+∠C=180°-90°=90°,即3∠C=90°,∴∠C=30°.故选D.【点睛】本题考查全等三角形的性质及三角形内角和定理,全等三角形的对应边、对应角分别对应相等;熟练掌握全等三角形的性质是解题关键.二、填空题11.-1【解析】【分析】由可得,然后整体代入求解即可.【详解】解:由可得,所以;故答案为.【点睛】本题主要考查代数式求值,关键是根据题意得到,然后整体代入求解即可. 解析:-1【解析】【分析】由2320a a --=可得23=2a a -,然后整体代入求解即可.【详解】解:由2320a a --=可得23=2a a -,所以()226252352251a a a a --=--=⨯-=-;故答案为1-.【点睛】本题主要考查代数式求值,关键是根据题意得到23=2a a -,然后整体代入求解即可.12.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 13.-2(a-2b)2【解析】【分析】【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)2解析:-2(a-2b)2【解析】【分析】【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)214.5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念.解析:5【解析】试题分析:中心角的度数=360n︒36072n︒︒=,5n=考点:正多边形中心角的概念.15.n(m+2)(m﹣2)【解析】【分析】先提取公因式 n,再利用平方差公式分解即可.【详解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案为n(m+2)(m﹣2).【点睛解析:n(m+2)(m﹣2)【解析】【分析】先提取公因式 n,再利用平方差公式分解即可.【详解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案为n(m+2)(m﹣2).【点睛】本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键16.2或11【解析】【分析】分两种情况讨论,根据题意得出BF=2t=4和AF=26-2t=4即可求得答案.【详解】解:∵为直角三角形,且AB=DC ,∴当≌时,有BF=2t=CE=4,解解析:2或11【解析】【分析】分两种情况讨论,根据题意得出BF=2t=4和AF=26-2t=4即可求得答案.【详解】解:∵DCE 为直角三角形,且AB=DC ,∴当ABF ≌DCE 时,有BF=2t=CE=4,解得:t=2;当BAF △≌DCE 时,有AF=CE=4,此时2=10610-2t=26-2t AF BC CD DA t =++-++=4,解得:11t =,故答案为:2或11.【点睛】本题考查全等三角形的判定,注意到DCE 为直角三角形,且AB=DC ,故只有BF=2t=4和AF=26-2t=4两种情况.17.【解析】【分析】利用同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算即可求解.【详解】解:故答案为:3.【点睛】此题主要考查求代数式的值,熟练掌握同底数幂的乘法逆运算解析:3【解析】【分析】利用同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算即可求解.【详解】解:22a b c a b c x x x x +-=•÷a 2xbc x x =÷()2234=⨯÷3=故答案为:3.【点睛】此题主要考查求代数式的值,熟练掌握同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算是解题关键.18.50°【解析】【分析】依据平行线的性质,即可得到∠EFC 的度数,再求出∠CFQ,即可求出∠PFE 的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EF解析:50°【解析】【分析】依据平行线的性质,即可得到∠EFC 的度数,再求出∠CFQ ,即可求出∠PFE 的度数.【详解】∵AB ∥CD ,∠PEF =60°,∴∠PEF +∠EFC =180°,∴∠EFC =180°﹣60°=120°,∵将△EFP 沿PF 折叠,便顶点E 落在点Q 处,∴∠PFE =∠PFQ ,∵∠CFQ:∠QFP=2:5∴∠CFQ =212∠EFC =212×120°=20°,∴∠PFE=12∠EFQ=12(∠EFC﹣∠CFQ)=12(120°﹣20°)=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.19.130°【解析】【分析】延长DC到点E,如图,根据平行线的性质可得∠BCE=∠ABC=25°,根据折叠的性质可得∠ACB=∠BCE=25°,进一步即可求出答案.【详解】解:延长DC到点E,解析:130°【解析】【分析】延长DC到点E,如图,根据平行线的性质可得∠BCE=∠ABC=25°,根据折叠的性质可得∠ACB=∠BCE=25°,进一步即可求出答案.【详解】解:延长DC到点E,如图:∵AB∥CD,∴∠BCE=∠ABC=25°,由折叠可得:∠ACB=∠BCE=25°,∵∠BCE+∠ACB+∠ACD=180°,∴∠ACD=180°﹣∠BCE﹣∠ACB=180°﹣25°﹣25°=130°,故答案为:130°.【点睛】此题主要考查了平行线的性质和折叠的性质,正确添加辅助线、熟练掌握平行线的性质是解决问题的关键.20.20【解析】【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD,再根据∠CAB=90°即可求出答案.解:由翻折可得,∠EAD=∠BAD,又∠CAB=90°,∠EAC=50°解析:20【解析】【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD,再根据∠CAB=90°即可求出答案.【详解】解:由翻折可得,∠EAD=∠BAD,又∠CAB=90°,∠EAC=50°,∴∠EAC+∠CAD=90°-∠CAD,∴50°+∠CAD=90°-∠CAD,∴∠CAD=20°.故答案为:20.【点睛】本题考查的是图形翻折变换的性质及四边形内角和定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.三、解答题21.(1)见解析;(2)证明见解析.【解析】【分析】(1)根据题意进行作图即可;(2)根据题意可证明△ACD≌△ECD,再利用全等的性质及等腰三角形“三线合一”的性质即可证明结论.【详解】解:(1)如图所示;(2)证明:由题意可知,AC=AD=AB,CE=ED=AB,∴AC=CE,AD=DE,∴△ACD≌△ECD,∴∠ACD=∠ECD,又∵AC=CE,∴CO垂直平分AE,∴l垂直平分AE.【点睛】本题考查了作图及线段的垂直平分线,需熟练掌握全等三角形的判定及性质,等腰三角形的性质,学会应用“三线合一”证明线段的垂直平分线.22.已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:AB∥DE.证明见解析.或已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AB∥DE,BE=CF.求证:AC=DF.证明见解析.【解析】【分析】由BE=CF⇒BC=EF,所以,由①②④,可用SSS⇒△ABC≌△DEF⇒∠ABC=∠DEF⇒ AB∥DE;由①③④,可用SAS⇒△ABC≌△DEF⇒AC=DF;由于不存在ASS的证明全等三角形的方法,故由其它三个条件不能得到1或4.【详解】解:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:AB∥DE.证明:在△ABC和△DEF中,∵BE=CF,∴BC=EF.又∵AB=DE,AC=DF,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF.∴ AB∥DE.将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AB∥DE,BE=CF.求证:AC=DF.证明:∵AB∥DE,∴∠ABC=∠DEF.在△ABC和△DEF中∵BE=CF,∴BC=EF.又∵AB=DE,∠ABC=∠DEF,∴△ABC≌△DEF(SAS),∴AC=DF.【点睛】本题考查命题与定理、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.(1)20;(2)33.【解析】【分析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵230m mn +=,210mn n -=-,∴222m mn n +-=(2m mn +)+(2mn n -)=30-10=20;(2)∵230m mn +=,210mn n -=-,∴227m n +-=(2m mn +)-(2mn n -)-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.24.(1)见解析;(2)∠ADC =105°【解析】【分析】(1)根据等边三角形的性质可得AB=AC ,∠BAE =∠C=60 °,再根据SAS 即可证得结论; (2)根据全等三角形的性质可得∠ABE =∠CAD ,然后根据三角形的外角性质和角的和差即可求出∠BOD 的度数,再根据三角形的外角性质即可求出答案.【详解】(1)证明:∵△ABC 为等边三角形,∴AB=AC ,∠BAE =∠C=60 °,在△ABE 与△CAD 中,∵AB=AC ,∠BAE =∠C ,AE=CD ,∴△ABE ≌△CAD (SAS );(2)解:∵△ABE ≌△CAD ,∴∠ABE =∠CAD ,∴∠BOD =∠ABO+∠BAO =∠CAD +∠BAO =∠BAC=60°,∴∠ADC =∠OBD+∠BOD =45°+60°=105°.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及三角形的外角性质等知识,属于常考题目,熟练掌握上述知识是解答的关键.25.(1)见解析;(2)AF =GC ,理由见解析.【解析】【分析】(1)根据直角三角形的性质和角平分线的定义可得∠BED =∠AFB ,然后根据对顶角的性质和等量代换可得∠AEF =∠AFB ,进一步即可推出结论;(2)如图,过F 作FH ⊥BC 于点H ,根据角平分线的性质可得AF =FH ,进而可得AE =FH ,易得FH ∥AE ,然后根据平行线的性质可得∠EAG=∠HFC ,∠AGE=∠C ,进而可根据AAS 证明△AEG≌△FHC,再根据全等三角形的性质和线段的和差即可得出结论.【详解】(1)证明:∵∠BAC=90°,∴∠ABF+∠AFB=90°,∵AD⊥BC,∴∠EBD+∠BED=90°,∵BF平分∠ABC,∴∠ABF=∠EBD,∴∠BED=∠AFB,∵∠BED=∠AEF,∴∠AEF=∠AFB,∴AE=AF;(2)AF=GC;理由如下:如图,过F作FH⊥BC于点H,∵BF平分∠ABC,且FH⊥BC,AF⊥BA,∴AF=FH,∵AE=AF,∴AE=FH,∵FH⊥BC,AD⊥BC,∴FH∥AE,∴∠EAG=∠HFC,∵EG∥BC,∴∠AGE=∠C,∴△AEG≌△FHC(AAS),∴AG=FC,∴AF=GC.【点睛】本题考查了直角三角形的性质、角平分线的性质、全等三角形的判定和性质、平行线的性质以及等腰三角形的判定等知识,涉及的知识点多,但难度不大,熟练掌握上述知识、灵活应用全等三角形的判定和性质是解题的关键.26.(1)360;(2)540;(3)720;(4)180n.【解析】【分析】(1)过点E作EH∥AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.【详解】(1)过E作EH∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EH∥AB,∴CD∥EH(平行于同一条直线的两条直线互相平行).∵EH∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EH,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n 刀,剪出n+1个角,那么这n+1个角的和是180n 度. 故答案为:(1)360;(2)540;(3)720;(4)180n .【点睛】本题主要考查了多边形的内角和,作平行线并利用两直线平行,同旁内角互补是解本题的关键,总结规律求解是本题的难点.27.(1)全等,理由详见解析;(2)5【解析】【分析】(1)由题意易得∠ABG =90°=∠D ,然后问题可求证;(2)由(1)及题意易得△GAE ≌△FAE ,GB =DF ,进而问题可求解.【详解】解:(1)全等.理由如下∵∠D =∠ABE =90°,∴∠ABG =90°=∠D ,在△ABG 和△ADF 中,GAB FAD AB AD ABG D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△GAB ≌△FAD (ASA );(2)∵∠BAD =90°,∠EAF =45°,∴∠DAF +∠BAE =45°,∵△GAB ≌△FAD ,∴∠GAB =∠FAD ,AG =AF ,∴∠GAB +∠BAE =45°,∴∠GAE =45°,∴∠GAE =∠EAF ,在△GAE 和△FAE 中,AG AF GAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴△GAE ≌△FAE (SAS )∴EF =GE∵△GAB ≌△FAD ,∴GB =DF ,∴EF =GE =GB +BE =FD +BE =2+3=5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(1)2;(2)163. 【解析】 【分析】 (1)直接代入平方差公式计算即可;(2)先计算出x+y 和x 2+y 2,原式整理成(x 2+y 2)(x+y )代入计算即可;【详解】(1)xy=(3+1)(3-1)=(3)2-1=2;(2)∵x =3+1,y =3﹣1,xy=2,∴x+y=3+1+3-1=23,∴x 2+y 2=(x+y )2-2xy=8,则x 3+x 2y +xy 2+y 3= x 2(x+y )+y 2(x+y )=(x 2+y 2)(x+y )=8×23=163.【点睛】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.29.(1)15DAE ∠=︒;(2)15DFE ∠=︒(3)15DFE ∠=︒;(4)见解析【解析】【分析】(1)关键角平分线的性质和三角形内角和的性质求角度;(2)作AH BC ⊥于H ,由(1)的结论和平行的性质得到DFE DAH ∠=∠; (3)作AH BC ⊥于H ,由(1)的结论和平行的性质得到DFE DAH ∠=∠.【详解】解:(1)180180356580BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴40BAD BAC ∠=∠=︒,∵AE BC ⊥,∴90AEB =︒∠, ∴9055BAE B ∠=︒-∠=︒,∴554015DAE BAE BAD ∠=∠∠=︒-︒=︒-;(2)作AH BC ⊥于H ,如图,有(1)得15DAH ∠=︒,∵FE BC ⊥.∴//AH EF ,∴15DFE DAH ∠=∠=︒;(3)作AH BC ⊥于H ,如图,有(1)得15DAH ∠=︒,∵FE BC ⊥,∴//AH EF ,∴15DFE DAH ∠=∠=︒;(4)结合上述三个问题的解决过程,得到BAC ∠的角平分线与角平分线上的点作BC 的垂线的夹角中的锐角为15°.【点睛】本题考查角平分线的性质、三角形内角和、平行线的性质,解题的关键是能够举一反三,通过第一小问的结论能够想到构造辅助线来解决后面的问题.30.(1)x 7﹣1;(2)x n+1﹣1;(3)2019312-. 【解析】【分析】 (1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7﹣1;(2)总结题中规律得:(x ﹣1)(x n +x n ﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312-. 【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.。

2020-2021初二数学上期末模拟试卷(含答案)(1)

2020-2021初二数学上期末模拟试卷(含答案)(1)

2020-2021初二数学上期末模拟试卷(含答案)(1)一、选择题1.下列边长相等的正多边形能完成镶嵌的是( )A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形 2.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b = C .11a c b d ++= D .22a b c d b d ++= 3.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)4.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42oB .40oC .36oD .32o5.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 6.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是( )A .3B .4C .5D .6 7.如果分式||11x x -+的值为0,那么x 的值为( )A .-1B .1C .-1或1D .1或08.若2310a a -+=,则12a a +-的值为( ) A .51+ B .1 C .-1 D .-59.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .610.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 211.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④12.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEF S mn ∆= 二、填空题13.如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是__________.14.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____. 15.如图ABC V ,24AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为_____厘米/秒.16.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n ),且x+1=2128,则n=______.17.若a ,b 互为相反数,则a 2﹣b 2=_____.18.计算:()201820190.1258-⨯=________.19.已知a +b =5,ab =3,b a a b+=_____. 20.计算33的结果是______.三、解答题21.(1)分解下列因式,将结果直接写在横线上:x2+4x+4=,16x2+24x+9=,9x2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系.①请你用数学式子表示a、b、c之间的关系;②解决问题:若多项式x2﹣2(m﹣3)x+(10﹣6m)是一个完全平方式,求m的值.22.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.23.解分式方程:33122xx x -+=--.24.A、B 两种机器人都被用来搬运化工原料,A 型机器人比 B 型机器人每小时多搬运60kg.A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?25.如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.小华的想法对吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

2020-2021初二数学上期末模拟试题(含答案)(1)

2020-2021初二数学上期末模拟试题(含答案)(1)

2020-2021初二数学上期末模拟试题(含答案)(1)一、选择题1.下列边长相等的正多边形能完成镶嵌的是( )A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形 2.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是( )A .13cmB .6cmC .5cmD .4m 3.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为( )A .45 dmB .22 dmC .25 dmD .42 dm4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 5.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个6.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x=+ 7.下列运算正确的是( )A .a 2+2a =3a 3B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 2 8.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 9.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 210.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEF S mn ∆= 11.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1 12.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 二、填空题13.如图ABC V ,24AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为_____厘米/秒.14.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.15.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x>5),则x =________.16.若2x+5y ﹣3=0,则4x •32y 的值为________. 17.若分式242x x -+的值为0,则x =_____. 18.分解因式:x 2-16y 2=_______.19.分式293x x --当x __________时,分式的值为零. 20.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.三、解答题21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?22.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg ,甲型机器人分类800kg 垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等。

2020-2021学年最新浙教版八年级上数学学习水平期末模拟模拟测试(二)及答案

2020-2021学年最新浙教版八年级上数学学习水平期末模拟模拟测试(二)及答案

第一学期八年级(上)学习水平期末模拟测试数学卷(二)亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。

答题时请注意以下几点: 1.本卷共6页,有三大题,24小题,满分100分,考试时间为90分钟;2.本卷分卷卷一(选择题部分)和卷二(非选择题)两部分,答题时不得使用计算器;最后,祝你取的好成绩哦!!!卷一(满分30分)一、精心选择(本大题共10小题,每小题3分,共30分,每小题仅有一个正确选项,多选、错选、不选均不得分)1.剪纸是我国传统的民间艺术,它历史悠久,风格独特,深受国内外人士喜爱.下列剪纸作品中,为轴对称图形的是( )A .B .C .D .2.下列给出四个式子,①x >2;②a ≠0;③5<3;④a ≥b ,其中是不等式的是( )A .①④B .①②④C .①③④D .①②③④3.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是( ) A .1 B .2 C .3 D .4 4.若等腰三角形的一个内角为80°,则底角的度数为( ) A .20° B .20°或50° C . 80° D .50°或80° 5.如图,笑脸盖住的点的坐标可能为( )A .(-2,3)B .(3,-4)C .(-4,-6)D .(5,2)6.如图,在平面直角坐标系中,一次函数y=ax+b 经过A (0,2),B (3,0)两点,则不等式ax+b >0的解是( ) A .x >0B .x >3C .x <0D .x <37.如图,△ABC 中,∠ACB =90°,点D 在CB 上,E 为AB 的中点,AD ,CE 相交于点F ,且AD =DB .若∠B=20°,则∠DFE =( ) A .40°B .50°C .60°D .70°第3题图 第5题图 第6题图 第7题图………8.关于x 的不等式组⎩⎨⎧>--<a x x x 42832有四个整数解,则a 的取值范围是( )A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 9.如图,在△ABC 中,∠ABC=90°,∠A=30°,BC=1. M 、N 分别是AB 、AC 上的任意一点,求MN+NB 的最小值为( ) A .1.5B .2C .4323+ D .310.如图所示,已知直线133+=x y 与x 、y 轴交于B 、C 两点,A (0,0),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第n 个等边三角形的边长等于( ) A .n23 B .123-n C .n 21 D .123+n第9题图 第10题图卷二(满分70分)二、细心填空(本大题共8小题,每小题3分,共24分) 11.若函数y=kx+4的图象平行于直线y=3x ,则此函数的表达式是.12.在平面直角坐标系中,点),1-3(P 到原点的距离是.13.用不等式表示“x 的4倍与7的和是不大于10”是. 14.如图,在△ABC 中,AB=AC ,外角∠ACD=110°,则∠A=.15.如图在△ABC 中,∠B ,∠C 的平分线交于点O ,若∠BOC=130°,则∠A=度.16.某公司共有(50a -40)位员工参加元宵节游园活动,待游园活动进行到一半时,有(90-20a )位员工有事中途退场,若a 为正整数,则该公司有员工人.第14题图 第15题图17.如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面米.18.如图,已知以点A(0,1)、C(1,0)为顶点的△ABC 中,∠BAC=60°,∠ACB=90°,在坐标系内有一动点P (不与A 重合),以P 、B 、C 为顶点的三角形和△ABC 全等,则P 点坐标为.第17题图 第18题图三、耐心解答(本大题共6小题,共46分)19.(本题6分)解不等式组:()⎪⎩⎪⎨⎧+>+≥+-223323x x x x 把不等式组的解集在数轴上表示出来,并写出不等式组的整数解.20.(本题6分)在平面直角坐标系xoy 中,A (﹣1,5)、B (﹣1,0)、C (﹣4,3).(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法);(2)直接写出A ′,B ′,C ′三点的坐标.21.(本题8分)如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =CD . (1)求证:△BCE ≌△DCF .(2)若AB=21,AD=9,BC=CD=10求AC 的长.22.(本题8分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.23.(本题8分)如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D在同一直线上.(1)求证:△ABC≌△ADE;(2)若∠B=30°,∠BAC=100°,点F是CE的中点,连结AF,求∠FAE的度数.24.(本题10分)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C →B →A运动,点P的运动时间为t秒.(1)当t=5时,P点坐标为____________;(2)当t>4时,OP+PD有最小值吗?如果有,请算出该最小值,如果没有,请说明理由;(3)当t为何值时,△ODP是腰长为5的等腰三角形?备用图:参考答案1.C2.D3.B4.D5.A6.D7.C8.B9.A10.A11.y=3x+412.213.4x+7≤10.14.40°15.8016.60或110或16017.2.18.(2,-1)、()21+、)119.整数解为:﹣1,0,1,2,3.20.(1)略;(2)A′(1,5),B′(1,0),C′(4,3). 21.(1)证明见解析;(2)AC=17.22.(1)b={3a(0≤a<4)5a-8(4≤a);(2)详见解析.23.(1)证明见解析;(2)40°24.(1)点P的坐标为(1,4);(2)有最小值,最小值为√89;(3)t=7或12或14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021浙江省文澜中学初二数学上期末模拟试题(带答案)一、选择题1.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 2.下列边长相等的正多边形能完成镶嵌的是( ) A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形 3.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=-C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+ 4.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或05.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150°6.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 7.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11 8.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75°9.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20 10.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( ) A .3B .4C .6D .12 11.计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 2 12.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .10二、填空题 13.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.14.若分式221x x -+的值为零,则x 的值等于_____. 15.若m 为实数,分式()22x x x m ++不是最简分式,则m =______.16.若a m =5,a n =6,则a m+n =________.17.因式分解:3a 2﹣27b 2=_____. 18.计算:2422a a a a -=++____________. 19.已知a +b =5,ab =3,b a a b+=_____. 20.已知9y 2+my+1是完全平方式,则常数m 的值是_______.三、解答题21.如图,已知在△ABC 中,∠BAC 的平分线与线段BC 的垂直平分线PQ 相交于点P,过点P 分别作PN 垂直于AB 于点N,PM 垂直于AC 于点M,BN 和CM 有什么数量关系?请说明理由.22.如图,已知点B ,F ,E ,C 在同一条直线上,//AB CD ,且AB CD =,A D ∠=∠.求证:BE CF =.23.共有1500kg 化工原料,由A ,B 两种机器人同时搬运,其中,A 型机器人比B 型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?24.先化简,再求值:22211111x x x x x ⎛⎫-++÷ ⎪-+⎝⎭,其中x =-2. 25.解下列分式方程 (1)2233111x x x x +-=-+- (2)32122x x x =---【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.2.D解析:D【解析】【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

【详解】A. 2个正八边形和1个正三角形:135°+135°+60°=330°,故不符合;B. 3个正方形和2个正三角形:90°+90°+90°+60°+60°=390°,故不符合;C. 1个正五边形和1个正十边形:108°+144°=252°,故不符合;D. 2个正六边形和2个正三角形:120°+120°+60°+60°=360°,符合;故选D.【点睛】本题考查多边形的内角,熟练掌握多边形的内角的度数是解题关键.3.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.4.B解析:B【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.6.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.7.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.8.B解析:B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.9.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.10.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.11.C解析:C【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选C.【点睛】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.12.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选:C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.二、填空题13.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.2【解析】根据题意得:x﹣2=0解得:x=2此时2x+1=5符合题意故答案为2解析:2【解析】根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案为2.15.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因解析:0或-4【解析】【分析】由分式()22x xx m++不是最简分式可得x或x+2是x2+m的一个因式,分含x和x+2两种情况,根据多项式乘以多项式的运算法则求出m的值即可.【详解】∵分式()22x xx m++不是最简分式,∴x或x+2是x2+m的一个因式,当x是x2+m的一个因式x时,设另一个因式为x+a,则有x(x+a)=x2+ax=x2+m,∴m=0,当x或x+2是x2+m的一个因式时,设另一个因式为x+a,则有(x+2)(x+a)=x2+(a+2)x+2a=x2+m,∴202am a+=⎧⎨=⎩,解得:24 am=-⎧⎨=-⎩,故答案为:0或-4.【点睛】本题考查最简分式的定义及多项式乘以多项式,根据题意得出x或x+2是x2+m的一个因式是解题关键.16.【解析】【分析】根据同底数幂乘法性质am·an=am+n即可解题【详解】解:am+n=am·an=5×6=30【点睛】本题考查了同底数幂乘法计算属于简单题熟悉法则是解题关键解析:【解析】【分析】根据同底数幂乘法性质a m·a n=a m+n,即可解题.【详解】解:a m+n= a m·a n=5×6=30.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.17.3(a+3b)(a﹣3b)【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b)【点睛】本题考查了提公因式法和公式法解析:3(a+3b)(a﹣3b).【解析】【分析】先提取公因式3,然后再利用平方差公式进一步分解因式.【详解】3a2-27b2,=3(a2-9b2),=3(a+3b)(a-3b).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.【解析】【分析】根据分式的加减运算的法则先因式分解复杂的因式找到最简公分母通分然后按同分母的分式相加减的性质计算在约分化为最简二次根式【详解】解:=====故答案为:【点睛】本题考查分式的加减运算 解析:2a a- 【解析】【分析】根据分式的加减运算的法则,先因式分解复杂的因式,找到最简公分母,通分,然后按同分母的分式相加减的性质计算,在约分,化为最简二次根式.【详解】 解:2422a a a a -++ =42(2)a a a a -++ =24(2)(2)a a a a a -++ =24(2)a a a -+ =(2)(2)(2)a a a a +-+ =2a a-. 故答案为:2a a -. 【点睛】本题考查分式的加减运算.19.【解析】【分析】将a+b=5ab=3代入原式=计算可得【详解】当a+b=5ab=3时原式====故答案为【点睛】本题主要考查分式的加减法解题的关键是熟练掌握分式的加减运算法则和完全平方公式 解析:193. 【解析】【分析】 将a+b=5、ab=3代入原式=()2222a b ab b a ab ab +-+=,计算可得.【详解】当a+b=5、ab=3时, 原式=22b a ab +=()22 a b abab+-=25233-⨯=19 3.故答案为193.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.20.±6【解析】【分析】利用完全平方公式的结构特征确定出m的值即可【详解】∵9y2+my+1是完全平方式∴m=±2×3=±6故答案为:±6【点睛】此题考查完全平方式熟练掌握完全平方公式是解本题的关键解析:±6【解析】【分析】利用完全平方公式的结构特征确定出m的值即可.【详解】∵9y2+my+1是完全平方式,∴m=±2×3=±6,故答案为:±6.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.三、解答题21.BN=CM,理由见解析.【解析】【分析】连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,即可得出答案.【详解】解:BN=CM,理由如下:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC 和Rt△PNB 中,PC PB PM PN =⎧⎨=⎩, ∴Rt△PMC≌Rt△PNB(HL ),∴BN=CM.【点睛】本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,能正确地添加辅助线是解题的关键.22.证明见解析【解析】【分析】根据ASA 可判定ABF DCE ∆≅∆,可得BF CE =,即可得BE CF =.【详解】证明://AB CD Q ,B C ∴∠=∠,在ABF ∆和DCE ∆中,B C AB CD A D ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABF DCE ASA ∴∆≅∆BF CE ∴=,BF EF CE EF ∴+=+,即BE CF =.【点睛】本题考查了三角形的全等的判定和性质,掌握三角形的全等的判定是解题的关键.23.两种机器人需要10小时搬运完成【解析】【分析】先设两种机器人需要x 小时搬运完成,然后根据工作效率=工作总量÷工作时间,结合A 型机器人比B 型机器每小时多搬运30kg ,得出方程并且进行解方程即可.【详解】解:设两种机器人需要x 小时搬运完成,∵900kg +600kg =1500kg ,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:900600-x x=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.【点睛】本题主要考察分式方程的实际应用,根据题意找出等量关系,正确列出分式方程是解题的关键.24.21xx+;﹣52【解析】【分析】先分解括号内的第一部分,再算括号内的加法,同时把除法变成乘法,约分后代入求出即可.【详解】解:原式=[2(1)(1)(1)xx x-+-+1x]÷11x+=(11xx-++1x)•(x+1)=21(1)xx x++•(x+1)=21 xx+,当x=﹣2时,原式=2 (2)12-+-=﹣52.【点睛】本题考查了分式的混合运算和求值,主要考查学生的化简能力和计算能力,题目比较好.25.(1)无解.(2)x=7 6【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)2233111x x x x +-=-+- 去分母得,2(x+1)-3(x-1)=x+3,解方程,得,x=1,经检验,x=1是原方程的增根,原方程无解. (2)32122x x x =--- 去分母得,2x=3-2(2x-2)解方程得,x=76, 经检验,x=76是原方程的解. 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。

相关文档
最新文档