2014-2015年贵州省贵阳市高二上学期期末数学试卷(理科)与解析

合集下载

贵阳市普通中学2014-2015学年度第一学期期末质量监测试卷高二数学(理科)期末试卷

贵阳市普通中学2014-2015学年度第一学期期末质量监测试卷高二数学(理科)期末试卷

贵阳市普通中学2014-2015学年度第一学期期末监测考试试卷 第1页,共2页………………○………………内………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________1 绝密★启用前贵阳市普通中学2014-2015学年度第一学期期末监测考试试卷高二(理科)数学试卷试卷满分:100分 考试时长:120分钟考生须知:1.本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。

2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3. 考生答题时,将答案写在专用答题卡上。

选择题答案请用2B 铅笔将答题卡上对应题目的答案涂黑;非选择题答案请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内规范作答,凡是答题不规范一律无效。

4. 测试范围:必修3,选修2-1。

5. 考试结束后,将答题卡交回,并保存好试卷。

一、选择题(本题10小题,每小题4分,共40分。

)1.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.“0=xy ”是“022=+y x ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.把二进制()21011化为十进制数,则此数为( ) A.8B.10C.11D.164.已知命题012<-∈∃x R x p ,:,命题02>∈∀x R x q ,:则( ) A.命题q p ∨是假命题 B.命题q p ∧是真命题 C.命题()q p ⌝∨是假命题D.命题()q p ⌝∧是真命题5.抛物线x y 42=的焦点到双曲线1322=-y x 的渐近线的距离是( ) A.21B.23 C.1 D.36.右图是21,两组各7名同学体重(单位:kg )数据的茎叶图, 设21,两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s 那么( ) (注:标准差()()()[]222211x x x x x x ns n -++-+-= ,其中x 为nxx x ,,, 21的平均数) A.2121s s x x >>, B.2121s s x x <>,C.2121s s x x ><,D.2121s s x x <<,7.已知点()()010121,,,F F -,21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹分程是( )A.191622=+y x B.1121622=+y x C.13422=+y x D.14322=+y x 8.已知回归直线通过样本点的中心,若x 与y 之间的一组数据:x0 1 2 3 y1357则y 与x 的线性回归方程为a x b yˆˆˆ+=必过点( )(注:∑∑==--=n i i ni ii xn x yx n yx b 1221ˆx b y aˆˆ-=) A.⎪⎭⎫ ⎝⎛423,B.()21,C.()22,D.⎪⎭⎫ ⎝⎛023,9.执行如右图所示的程序框图,输出的S 值为( ) A.162B.200C.242D.28810.已知曲线C 的方程是822=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-y y y x x x ,若点Q P ,在曲线C 上,则PQ 的最大值是( ) A.26B.28C.8D.6二、填空题(本题5小题,每小题4分,共20分。

贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:∃x∈R,x﹣2>lgx是真命题,命题q:∀x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:∃x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:∀x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥A B,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。

2015贵阳市数学(理科)二模答案

2015贵阳市数学(理科)二模答案
2015
n n 1 1 1 n n n -1 n n -1 n n -1 n -1 3n - 2 n 1 n 3n - 2 n 2 n 2 n n n +1 n n n 1 2 n 1 2 3 n n 1 2 n 2 3 n n +1 n n -1 2 3 n n +1 n +1 n n +1 n +1 n
非重度污染 供暖季 非供暖季 合计

重度污染
22 63 85

合计
8 7 15

30 70 100
100 ( 63 × 8 - 22 × 7 ) ( ad - bc ) 则 K = ( a + b ) ( nc + = 4 . 575 > 3 . 841 = d) ( a + c) ( b + d) 85 × 15 × 30 × 70 所以有 95% 的把握认为 A 市本年度空气重度污染与供暖有关. …………………………12 分 ( 证明: 因为 AB 是直径, 所以 BC⊥AC 19 . 解: Ⅰ) 因为 CD⊥平面 ABC, 所以 CD⊥BC, 所以 BC⊥平面 ACD 因为 CD∩AC = C, 因为 CD / / BE,CD = BE, 所以 BCDE 是平行四边形, 所以 DE⊥平面 ACD BC / / DE , 因为 DE平面 ADE, 所以平面 ADE⊥平面 ACD………………………………6 分 ( 因为 DC = EB = 1, AB = 4 , Ⅱ) 1 1 × DE = × × AC × CD × DE ×S 由( 知V =V = 1 Ⅰ) 3 3 2
2 2 t +2 t +2 2 t 0 1 2 n -1 n n
Δ PAB ∽Δ PCA
, 即 AB·PC = PA·AC……………………5 分 ∵ PA 为圆 O 的切线, BC 是割线, ∴ PA = PB ·PC , ( 解: Ⅱ) 又 PA = 2, PB = 1 , ∴ PC = 4 ,BC = 3 PA 1 = = , 又由( 知AB 且 BC 是过点 O 的直径, Ⅰ) AC PC 2 3 6 AB + AC = BC = 9 , AB = , AC = , 5 5 槡 槡 AD 则∠CAE = ∠EAB, 则AB 连接 EC, = , ∠AEC = ∠ABD, ΔACE ∽ΔADB , AE AC 6 18 3 ∴ AD·AE = AB ·AC = × = . ………………………………10 分 5 槡 5 5 槡 π ( 由 ρ =4 槡 得, 23 . 解: 2cos( Ⅰ) θ+ ) ρ = 4cosθ - 4sinθ, 4 所以 ρ = = 4cosθ - 4sinθ, ∴ x + y = 4 x - 4 y, 即圆 C 的直角坐标系方程为: ( x - 2) + ( y + 2 ) = 8 ……………………………5 分 2 x = 2 + 槡t 2 ( 设 A, 与圆的方程联立得 B 两点对应的参数为 t , t , Ⅱ) 2 槡 y = t 2 所以 t + t = - 2 槡 根据参数 t 的意义可知: t +2 槡 2t - 4 = 0, 2, t t = - 4 < 0, ( t + t ) - 4t t 槡 |t | + |t | |t -t | 槡 1 1 1 1 6 + = = = = + = t t |t t | |t t | |t t | 2 | PA | | PB | ………………………………10 分 ( 不等式 | x - 1 | ≤2 的解集为{ , 所以不等式 x - ax - b≤0 的解集为 24 . 解: x | - 1 ≤x≤3 } Ⅰ) { x | - 1 ≤x≤3 } ∴ a = - 1 + 3 = 2, b = - (- 1 × 3 )= 3 ……………………………5 分 , ( 由( 知函数 f( x)= 2 槡 x +3 槡 1 - x, Ⅱ) Ⅰ) [ ]=( ( ( f( x) 2槡 x +3 槡 1 - x )≤( 2 +3 ) x) + ( 槡 槡1 - x))= 13 x 4 = 槡 , x= , 当且仅当 2 取“= ” , 3 13 槡1 - x 4 所以当 x = 13 , f( x) = 槡 13 . ………………………………10 分

精品解析贵州省贵阳市普通高中2015届高三上学期期末监测考试理数试题解析(解析版)

精品解析贵州省贵阳市普通高中2015届高三上学期期末监测考试理数试题解析(解析版)

第I 卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合要求的.1.设i 是虚数单位,复数i-310在复平面内表示的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】A. 【解析】考点:1.复数的计算;2.复平面的概念.2.等比数列}{n a 中,1041=a a ,则数列}{lg n a 的前4项和等于( ) A.4 B.3 C.2 D.1 【答案】C. 【解析】考点:1.等比数列的性质;2.对数的运算.3.若框图所给的程序运行结果为20=S ,那么判断框中应填入的关于k 的条件是( ) A.?8>k B.?8≤k C.?8<k D.?9=k【答案】A. 【解析】试题分析:分析程序框图可知,程序应在8k =时跳出循环,故判断框内应加入的条件为8?k >. 考点:程序框图中的循环语句.4.已知534sin )3sin(=++ααπ,则)67sin(πα+的是( ) A.532-B.532C.54D.54- 【答案】D. 【解析】考点:三角恒等变形.5.一个棱锥的三视图如图(单位为cm ),则该棱锥的体积是( ) A.334cm B.332cm C.32cm D.34cm【答案】A. 【解析】考点:空间几何体的体积计算.6.已知实数x ,y 满足⎪⎩⎪⎨⎧≥-+<≥+-012012y x x y x ,则122--=y x z 的取值范围是( )A.]5,35[B.]5,0[C.)5,35[D.)5,35[- 【答案】D. 【解析】考点:线性规划.7.下列说法正确..的是( ) A.命题“R x ∈∀,0>x e ”的否定是“R x ∈∃,0>xe ”B.命题“已知x ,R y ∈,若3≠+y x ,则2≠x 或1≠y ”的逆否命题是真命题C.“ax x x ≥+22在]2,1[∈x 上恒成立”⇔“max min 2)()2(ax x x ≥+在]2,1[∈x 上恒成立” D.命题“若1-=a ,则函数12)(2-+=x ax x f 只有一个零点”的逆命题为真命题 【答案】B. 【解析】4401a a ∆=+=⇒=-,故逆命题是假命题,∴D 错误.考点:1.命题的否定,逆否命题;2.不等式恒成立问题;3.函数的零点.8.如图,点E ,F 分别是正方体1111D C B A ABCD -的棱AB ,1AA 中点,点M ,N 分别是线段E D 1,F C 1上的点,则与平面ABCD 垂直的直线MN 有( )条A.0B.1C.2D.无穷多【答案】B 【解析】∴(2,2,22)M m m m --,同理,若设11(01)C N nC F n =<<,可得(2,2,2)N n n n -,(22,22,2)MN m n n m m n =+---,又∵MN ⊥平面ABCD ,.考点:空间向量的运用.9.函数133-=x x y 的图象大致是( )A. B. C. D. 【答案】C. 【解析】考点:函数图象的判断.10.若任取x ,]1,0[∈y ,则点),(y x P 满足21x y ≤的概率为( ) A.22 B.31 C.21 D.32 【答案】D. 【解析】考点:1.定积分计算曲边图形的面积;2.几何概型计算概率.11.为得到函数)3sin(π+=x y 的图象,可将函数x y sin =的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正整数),则||n m -的最小值是( )A.3π B.32π C.34π D.35π 【答案】B. 【解析】考点:三角函数图象的平移.12.设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为1F ,2F ,离心率为e ,过2F 的直线与双曲线的右支交于A ,B 两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B.224-C.225-D.223+ 【答案】C. 【解析】∴222(2)4a x x c ++=,即22222284(322)4522c a a c e a+-=⇒==-..考点:双曲线的性质离心率的计算.第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)-第(21)题为必考题,每个试题考生都必须做答,第(22)-第(24)题为选考题,考试根据要求选择一题做答.二.填空题:本大题共4个小题,每小题5分,共20分,把答案填在答卷对应的横线上.13.已知正方形ABCD 的边长为1,AB a = ,BC b = ,AC c = ,则||a b c ++=_______.【答案】22. 【解析】.考点:平面向量数量积的坐标运算.14.二项式9)1(xx -的展开式中的3x 系数是_________(用数字作答) 【答案】84-. 【解析】考点:二项式定理.15.题文已知全集},,,{4321a a a a U =,集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若A a ∈1,则A a ∈2;②若A a ∉3,则A a ∉2;③若A a ∈3,则A a ∉4,则集合=A __________.(用列举法表示)【答案】23{,}a a . 【解析】考点:集合的表示.16.设数列}{n a 满足21=a ,)(11*1N n a a a nnn ∈-+=+,则该数列的前2015项的乘积=⋅⋅⋅⋅⋅2015321a a a a _________.【答案】3. 【解析】试题分析:由题意可得,121131a a a +==--,2321112a a a +==--,3431113a a a +==-,4514121a a a a +===-, ∴数列{}n a 是以4为周期的数列,而201545033=⨯+,学科网∴前2015项乘积为1233a a a =. 考点:数列的递推公式.三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)如图所示,在四边形ABCD 中,B D ∠=∠2,且1=AD ,3=CD ,33cos =B . (1)求ACD ∆的面积; (2)若32=BC ,求AB 的长.【答案】(1)2;(2)4AB =.【解析】∵),0(π∈D ,∴322cos 1sin 2=-=D D ,∵1=AD ,3=CD , ∴23223121sin 21=⨯⨯⨯=⋅⋅=∆D CD AD S ACD ;∴4=AB .考点: 1.三角恒等变换;2.正余弦定理解三角形. 18.(本小题满分12分)如图,已知四棱锥ABCD P -中,⊥PA 平面ABCD ,BC AD //,CD AD ⊥,且AC AB ⊥,2===PA AC AB ,E 是BC 的中点.(1)求异面直线AE 与PC 所成角;(2)求二面角A PC D --的平面角的余弦值.【答案】(1)60;(2)33. 【解析】试题解析:(1)如图所示,以A 点为原点建立空间直角坐标系xyz O -,则)0,0,2(B ,)0,2,0(C ,)2,0,0(P ,故)0,1,1(E ,(1,1,0)AE = ,(0,2,2)PC =-,1cos ,2||||AE PC AE PC AE PC ⋅<>==⋅,即,60AE PC <>= ,故异面直线AE 与PC 所成角为 60; (2)CD n ⊥ ,PC n ⊥ ,即0CD n ⋅= ,0PC n ⋅= ,∴⎩⎨⎧=-=--0220z y y x ,令1-=x ,得1=y ,1=z ,即(1,1,1)n =- ,||3n = ,又∵⊥AB 平面PAC ,∴(2,0,0)AB =是平面PAC 的一个法向量,3cos ,3||||AB n AB n AB n ⋅<>==-⋅,即二面角A PC D --的平面角的余弦值为33.考点: 1.空间向量计算异面直线所成的角;2.空间向量计算二面角的大小. 19.(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:态度 调查人群应该取消 应该保留 无所谓在校学生 2100人 120人y 人社会人士600人x 人z 人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为05.0(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望. 【答案】(1)72人;(2)ξ的分布列为:ξ123P5153 51 期望2513532511=⨯+⨯+⨯=ξE . 【解析】校学生人数1=ξ,2,3,分别求出)1(=ξP ,)2(=ξP ,)3(=ξP ,由此能求出ξ的分布列和数学期望.学生为46180120=⨯人,社会人士为2618060=⨯人,于是第一组在校学生人数1=ξ,2,3,51)1(362214===C C C P ξ, 51)1(362214===C C C P ξ,53)2(361224===C C C P ξ,51)3(360234===C C C P ξ,即ξ的分布列为:ξ123P51 53 51 ∴2513532511=⨯+⨯+⨯=ξE . 考点: 1.分层抽样;2.离散型随机变量的期望与方差. 20.(本小题12分)已知椭圆C 的两个焦点是)3,0(-和)3,0(,并且经过点)1,23(,抛物线E 的顶点在坐标原点,焦点恰好是椭圆C 的右顶点F .(1)求椭圆C 和抛物线F 的标准方程;(2)过点F 作两条斜率都存在且互相垂直的直线1l ,2l ,1l 交抛物线E 于点A ,B ,2l 交抛物线E 于点G ,G ,求AG HB ⋅的最小值.【答案】(1)椭圆C 的标准方程为1422=+x y ,抛物线E 的标准方程为x y 42=;(2)AG HB ⋅ 有最小值16. 【解析】()()AG HB AF FG HF FB AF HF AF FB FG HF⋅=+⋅+=⋅+⋅+⋅ ||||||||FG FB AF FB FG HF +⋅=⋅+⋅ ,这样先将||||||||AF FB FG HF ⋅+⋅用1x ,2x ,3x ,4x 表示出来,再利用韦达定理用k 表示,再求其最小值.试题解析:(1)设椭圆C 的标准方程为)0(12222>>=+b a bx a y ,焦距为c 2,则由题意得3=c ,4)31(43)31(43222=-++++=a ,∴2=a ,1222=-=c ab ,∴椭圆C 的标准方程为1422=+x y ,∴右顶点F 的坐标为)0,1(,设抛物线E 的标准方程为)0(22>=p px y ,∴12=p,42=p ,∴抛物线E 的标准方程为x y 42=;(2)设1l 的方程:)1(-=x k y ,2l 的方程:)1(1--=x ky ,),(11y x A ,1234||||||||(1)(1)(1)(1)FG FB AF FB FG HF x x x x +⋅=⋅+⋅=+++++16442844811222243432121=⋅+≥++=+++++++=k kk k x x x x x x x x , 当且仅当2244k k =,即1±=k 时,AG HB ⋅ 有最小值16.考点:1.椭圆的标准方程,抛物线的标准方程;2.平面向量的数量积;3.直线与抛物线的位置关系. 21.(本小题满分12分)已知函数1)1()(+-=xe x xf ,]1,0[∈x . (1)证明:0)(≥x f ;(2)若b xe a x <-<1在)1,0(∈x 恒成立,求a b -的最小值. 【答案】(1)详见解析;(2)2e -. 【解析】试题解析:(1)0)('≥=x xe x f ,即)(x f 在]1,0[上单调递增,∴0)0()(=≥f x f ,即结论成立;(2)令x e x g x 1)(-=,则01)1()('2≥+-=x e x x g x ,)1,0(∈x ,∴当)1,0(∈x 时,1)1()(-=<e g x g ,要使b x e x <-1,只需1-≥e b ,要使a x e x >-1成立,只需01>--ax e x 在)1,0(∈x 恒成立,令1)(--=ax e x h x ,)1,0(∈x ,则a e x h x -=)(',由)1,0(∈x ,),1(e e x ∈,①当1≤a 时,)('≥x h ,此∴a b -的最小值为2-e .考点: 1.利用导数求函数在闭区间上的最值;2.恒成立问题;3.分类讨论的数学思想.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-1:平面几何选讲如图,点C 在圆O 直径BE 的延长线上,CA 切圆O 于A 点,ACB ∠的平分线CD 交AE 于点F ,交AB 于D 点.(1)求ADF ∠的度数; (2)若AC AB =,求BC AC :.【答案】(1)45=∠ADF ;(2)33=BC AC . 【解析】求出B 的大小后,即可得到比值.试题解析:(1)∵AC 为圆O 的切线,∴EAC B ∠=∠,又∵DC 是ACB ∠的平分线,∴DCB ACD ∠=∠,∴A C D E A C D C B B ∠+∠=∠+∠,即A F D A D F ∠=∠,又∵BE 为圆O 的直径,∴90=∠DAE ,∴ 45)180(21=∠-=∠DAE ADF ;3330tan tan ==== B AB AE BC AC .考点: 1.弦切角定理;2.圆周角定理;3.与圆有关的比例线段. 23.(本小题满分10分)选修4-4:极坐标于参数方程已知曲线⎩⎨⎧+=+-=t y t x C sin 3cos 4:1(t 为参数),⎩⎨⎧==θθsin 2cos 6:2y x C (θ为参数).(1)化1C ,2C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数为2π=t ,Q 为2C 上的动点,求PQ 中点M 到直线⎩⎨⎧--=+-=t y tx C 3333:3(t 为参数)距离的最小值.【答案】(1)1C :1)3()4(22=-++y x ,2C :143622=+y x ,∴1C 为圆心是)3,4(-,半径是1的圆,2C 为中心是坐标原点,焦点在x 轴上,长半轴长是6,短半轴长是2的椭圆;(2)331-. 【解析】利用辅助角化简后,利用正弦函数的值域即可得到距离的最小值.试题解析:(1)1C :1)3()4(22=-++y x ,2C :143622=+y x ,∴1C 为圆心是)3,4(-,半径是1的圆,2C 为中心是坐标原点,焦点在x 轴上,长半轴长是6,短半轴长是2的椭圆; (2)当2π=t 时,)4,4(-P ,小值133-.考点: 1.圆的参数方程,直线的参数方程;2.点到直线的距离公式;3.三角恒等变形. 24.(本小题满分10分)选修4-5:不等式选讲 已知函数|32||12|)(-++=x x x f . (1)求不等式6)(≤x f 的解集;(2)若关于x 的不等式|1|)(-<a x f 的解集非空,求实数a 的取值范围. 【答案】(1)]2,1[-;(2)),5()3,(+∞--∞ . 【解析】质求出)(x f 的最小值等于4,故有4|1|>-a ,解此不等式求得实数a 的取值范围.试题解析:(1)不等式6)(≤x f ,即6|32||12|≤-++x x ,∴①⎪⎩⎪⎨⎧≤-+---<6)23(1221x x x 或②⎪⎩⎪⎨⎧≤-++≤≤-6)23(122321x x x 或③⎪⎩⎪⎨⎧≤-++>6)32(1223x x x ,解①得211-<≤-x ,解②得2321≤≤-x ,解③得223≤<x ,即不等式的解集为]2,1[-; (2)考点: 1.解绝对值不等式;2.恒成立问题.。

贵州省贵阳市高二数学上学期期末试卷理(含解析)

贵州省贵阳市高二数学上学期期末试卷理(含解析)

贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:?x∈R,x﹣2>lgx,命题q:?x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”?“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:?x∈R,x﹣2>lgx,命题q:?x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:?x∈R,x﹣2>lgx是真命题,命题q:?x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:?x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:?x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥AB,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。

2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)(附答案解析)

2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)(附答案解析)

2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1. 设集合M ={0, 1, 2},N ={x|x 2−3x +2≤0},则M ∩N =( ) A.{1} B.{2} C.{0, 1} D.{1, 2}2. 设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A.−5 B.5 C.−4+i D.−4−i3. 已知向量a →,b →满足|a →+b →|=√10,|a →−b →|=√6,则a →⋅b →= ( ) A.1 B.2 C.3 D.54. 钝角三角形ABC 的面积是12,AB =1,BC =√2,则AC =( ) A.5 B.√5C.2D.15. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75C.0.6D.0.456. 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.137. 执行如图所示的程序框图,若输入的x ,t 均为2,则输出的S =( )A.4B.5C.6D.78. 设曲线y =ax −ln (x +1)在点(0, 0)处的切线方程为y =2x ,则a =( ) A.0 B.1 C.2 D.39. 设x ,y 满足约束条件{x +y −7≤0x −3y +1≤03x −y −5≥0 ,则z =2x −y 的最大值为( )A.10B.8C.3D.210. 设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30∘的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.3√34B.9√38C.6332D.9411. 直三棱柱ABC −A 1B 1C 1中,∠BCA =90∘,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110 B.25C.√3010D.√2212. 设函数f(x)=√3sinπxm,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是() A.(−∞, −6)∪(6, +∞) B.(−∞, −4)∪(4, +∞)C.(−∞, −2)∪(2, +∞)D.(−∞, −1)∪(1, +∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)(x+a)10的展开式中,x7的系数为15,则a=________12.函数f(x)=sin(x+2φ)−2sinφcos(x+φ)的最大值为________.已知偶函数f(x)在[0, +∞)单调递减,f(2)=0,若f(x−1)>0,则x的取值范围是________.设点M(x0, 1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45∘,则x0的取值范围是________.三、解答题:解答应写出文字说明,证明过程或验算步骤.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+⋯+1a n<32.如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB // 平面AEC;(2)设二面角D−AE−C为60∘,AP=1,AD=√3,求三棱锥E−ACD的体积.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b̂=∑ni=1(t i−t¯)(y i−y¯)∑n i=1(t i−t¯)2,â=y¯−b̂t¯.设F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.已知函数f(x)=e x−e−x−2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)−4bf(x),当x>0时,g(x)>0,求b的最大值;(3)已知1.4142<√2<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD⋅DE=2PB2.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=]2cosθ,θ∈[0, π2(Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=√3x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)|+|x−a|(a>0).设函数f(x)=|x+1a(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.参考答案与试题解析2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.【答案】 D【考点】一元二次不等式的解法 交集及其运算【解析】求出集合N 的元素,利用集合的基本运算即可得到结论. 【解答】解:∵ N ={x|x 2−3x +2≤0} ={x|(x −1)(x −2)≤0} ={x|1≤x ≤2}, ∴ M ∩N ={1, 2}. 故选D . 2. 【答案】 A【考点】 复数的运算 【解析】根据复数的几何意义求出z 2,即可得到结论. 【解答】z 1=2+i 对应的点的坐标为(2, 1),∵ 复数z 1,z 2在复平面内的对应点关于虚轴对称, ∴ (2, 1)关于虚轴对称的点的坐标为(−2, 1), 则对应的复数,z 2=−2+i ,则z 1z 2=(2+i)(−2+i)=i 2−4=−1−4=−5, 3.【答案】 A【考点】平面向量数量积的性质及其运算律 【解析】将等式进行平方,相加即可得到结论. 【解答】解:∵ |a →+b →|=√10,|a →−b →|=√6, ∴ 分别平方得a →2+2a →⋅b →+b →2=10,a →2−2a →⋅b →+b →2=6.两式相减得4a →⋅b →=10−6=4, 即a →⋅b →=1. 故选A . 4. 【答案】 B【考点】 解三角形 余弦定理同角三角函数间的基本关系【解析】利用三角形面积公式列出关系式,将已知面积,AB ,BC 的值代入求出sin B 的值,分两种情况考虑:当B 为钝角时;当B 为锐角时,利用同角三角函数间的基本关系求出cos B 的值,利用余弦定理求出AC 的值即可. 【解答】解:∵ 钝角三角形ABC 的面积是12,AB =c =1,BC =a =√2, ∴ S =12ac sin B =12,即sin B =√22, 当B 为钝角时,cos B =−√1−sin 2B =−√22, 利用余弦定理得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos B =1+2+2=5, 即AC =√5,当B 为锐角时,cos B =√1−sin 2B =√22, 利用余弦定理得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos B =1+2−2=1,即AC =1,此时AB 2+AC 2=BC 2,即△ABC 为直角三角形,不合题意,舍去, 则AC =√5. 故选B . 5. 【答案】 A【考点】相互独立事件的概率乘法公式 【解析】设随后一天的空气质量为优良的概率为p ,则由题意可得0.75×p =0.6,由此解得p 的值. 【解答】解:设随后一天的空气质量为优良的概率为p , 则由题意可得0.75×p =0.6, 解得p =0.8.故选A.6.【答案】C【考点】由三视图求体积【解析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π⋅2+22π⋅4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:54π−34π54π=1027.7.【答案】D【考点】程序框图【解析】根据条件,依次运行程序,即可得到结论.【解答】若x=t=2,则第一次循环,1≤2成立,则M=11×2=2,S=2+3=5,k=2,第二次循环,2≤2成立,则M=22×2=2,S=2+5=7,k=3,此时3≤2不成立,输出S=7,8.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】y′=a−1x+1,∴y′(0)=a−1=2,∴a=3.9. 【答案】B【考点】简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x−y得y=2x−z,平移直线y=2x−z,由图象可知当直线y=2x−z经过点C时,直线y=2x−z的截距最小,此时z最大.由{x+y−7=0x−3y+1=0,解得{x=5y=2,即C(5, 2)代入目标函数z=2x−y,得z=2×5−2=(8)10.【答案】D【考点】直线与抛物线结合的最值问题抛物线的标准方程【解析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=32,则F(34, 0).∴过A,B的直线方程为y=√33(x−34),即x=√3y+34.联立{y2=3x,x=√3y+34,得4y2−12√3y−9=0.设A(x1, y1),B(x2, y2),则y1+y2=3√3,y1y2=−94.∴S△OAB=S△OAF+S△OFB=12×34|y1−y2|=38√(y 1+y 2)2−4y 1y 2 =38×√(3√3)2+9 =94. 故选D . 11. 【答案】 C【考点】异面直线及其所成的角 【解析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值. 【解答】 解:如图,直三棱柱ABC −A 1B 1C 1中,∠BCA =90∘, M ,N 分别是A 1B 1,A 1C 1的中点, 设BC 的中点为O ,连结ON , 则MN = // 12B 1C 1=OB ,则MNOB 是平行四边形, BM 与AN 所成角就是∠ANO , ∵ BC =CA =CC 1, 设BC =CA =CC 1=2,∴ CO =1,AO =√5,AN =√5, MB =√B 1M 2+BB 12=√(√2)2+22=√6, 在△ANO 中,由余弦定理可得: cos ∠ANO =AN 2+NO 2−AO 22AN⋅NO=62×√5×√6=√3010. 故选C . 12.【答案】 C【考点】正弦函数的定义域和值域 【解析】由题意可得,f(x 0)=±√3,且 πx0m =kπ+π2,k ∈z ,再由题意可得当m 2最小时,|x 0|最小,而|x 0|最小为12|m|,可得m 2>14m 2+3,由此求得m 的取值范围. 【解答】解:由题意可得,f(x 0)=±√3,且 πx0m =kπ+π2,k ∈Z , 即 x 0=2k+12m .再由x 02+[f(x 0)]2<m 2,可得当m 2最小时,|x 0|最小,而|x 0|最小为12|m|,∴ m 2>14m 2+3,∴ m 2>4.求得 m >2或m <−2, 故选C .二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答) 【答案】12【考点】二项式定理及相关概念 【解析】在二项展开式的通项公式中,令x 的幂指数等于3,求出r 的值,即可求得x 7的系数,再根据x 7的系数为15,求得a 的值. 【解答】(x +a)10的展开式的通项公式为 T r+1=C 10r⋅x 10−r ⋅a r ,令10−r =7,求得r =3,可得x 7的系数为a 3⋅C 103=120a 3=15, ∴ a =12,【答案】 1【考点】三角函数的最值三角函数中的恒等变换应用【解析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sin x ,从而求得函数的最大值. 【解答】解:函数f(x)=sin(x+2φ)−2sinφcos(x+φ)=sin[(x+φ)+φ]−2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ−2sinφcos(x+φ) =sin(x+φ)cosφ−cos(x+φ)sinφ=sin[(x+φ)−φ]=sin x,故函数f(x)的最大值为1,故答案为:1.【答案】(−1, 3)【考点】函数奇偶性的性质函数单调性的性质【解析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x−1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0, +∞)单调递减,f(2)=0,∴不等式f(x−1)>0等价为f(x−1)>f(2),即f(|x−1|)>f(2),∴|x−1|<2,解得−1<x<3.故答案为:(−1, 3).【答案】[−1, 1]【考点】直线与圆的位置关系【解析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】由题意画出图形如图:点M(x0, 1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45∘,则∠OMN的最大值大于或等于45∘时一定存在点N,使得∠OMN=45∘,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[−1, 1].三、解答题:解答应写出文字说明,证明过程或验算步骤. 【答案】证明:(1)a n+1+12a n+12=3a n+1+12a n+12=3(a n+12)a n+12=3,∵a1+12=32≠0,∴数列{a n+12}是以首项为32,公比为3的等比数列,∴a n+12=32×3n−1=3n2,即a n=3n−12;(2)由(1)知1a n=23n−1,当n≥2时,∵3n−1>3n−3n−1,∴1a n=23n−1<23n−3n−1=13n−1,∴当n=1时,1a1=1<32成立,当n≥2时,1a1+1a2+⋯+1a n<1+13+132+⋯+13n−1=1−(13)n1−13=32(1−13n)<32.∴对n∈N+时,1a1+1a2+⋯+1a n<32.【考点】数列与不等式的综合等比数列的前n项和等比关系的确定等比数列的通项公式【解析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即b n+1b n=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n }的通项公式;(Ⅱ)将1a n 进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】 证明:(1)a n+1+12a n +12=3a n +1+12a n +12=3(a n +12)a n +12=3,∵ a 1+12=32≠0,∴ 数列{a n +12}是以首项为32,公比为3的等比数列,∴ a n +12=32×3n−1=3n 2,即a n =3n −12;(2)由(1)知1a n=23n −1,当n ≥2时,∵ 3n −1>3n −3n−1, ∴1a n=23n −1<23n −3n−1=13n−1,∴ 当n =1时,1a 1=1<32成立,当n ≥2时, 1a 1+1a 2+⋯+1a n <1+13+132+⋯+13n−1 =1−(13)n1−13=32(1−13n )<32.∴ 对n ∈N +时,1a 1+1a 2+⋯+1a n<32.【答案】(1)证明:连接BD 交AC 于O 点,连接EO ,∵ O 为BD 中点,E 为PD 中点, ∴ EO // PB ,∵ EO ⊂平面AEC ,PB ⊄平面AEC , ∴ PB // 平面AEC .(2)解:延长AE 至M 连结DM ,使得AM ⊥DM ,∵ 四棱锥P −ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD , ∴ CD ⊥平面AMD ,∵ 二面角D −AE −C 为60∘, ∴ ∠CMD =60∘,∵ AP =1,AD =√3,∠ADP =30∘, ∴ PD =2,E 为PD 的中点.AE =1, ∴ DM =√32, CD =√32×tan 60∘=32.三棱锥E −ACD 的体积为:13×12AD ⋅CD ⋅12PA=13×12×√3×32×12×1=√38.【考点】与二面角有关的立体几何综合题 直线与平面平行的判定 柱体、锥体、台体的体积计算【解析】(1)连接BD 交AC 于O 点,连接EO ,只要证明EO // PB ,即可证明PB // 平面AEC ;(2)延长AE 至M 连结DM ,使得AM ⊥DM ,说明∠CMD =60∘,是二面角的平面角,求出CD ,即可三棱锥E −ACD 的体积.【解答】(1)证明:连接BD 交AC 于O 点,连接EO ,∵O为BD中点,E为PD中点,∴EO // PB,∵EO⊂平面AEC,PB⊄平面AEC,∴PB // 平面AEC.(2)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∵二面角D−AE−C为60∘,∴∠CMD=60∘,∵AP=1,AD=√3,∠ADP=30∘,∴PD=2,E为PD的中点.AE=1,∴DM=√32,CD=√32×tan60∘=32.三棱锥E−ACD的体积为:13×12AD⋅CD⋅12PA=13×12×√3×32×12×1=√38.【答案】解:(1)由题意,t¯=17×(1+2+3+4+5+6+7)=4,y¯=17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑(t i−t¯)27i=1=28,∑(t i−t¯)7i=1(y i−y¯)=14b̂=1428=0.5â=y¯−b̂t¯=4.3−0.5×4=2.3.∴y关于t的线性回归方程为ŷ=0.5t+2.3;(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入ŷ=0.5t+2.3,得:ŷ=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【考点】回归分析的初步应用求解线性回归方程【解析】(1)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(2)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(1)由题意,t¯=17×(1+2+3+4+5+6+7)=4,y¯=17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑(t i−t¯)27i=1=28,∑(t i−t¯)7i=1(y i−y¯)=14b̂=1428=0.5â=y¯−b̂t¯=4.3−0.5×4=2.3.∴y关于t的线性回归方程为ŷ=0.5t+2.3;(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入ŷ=0.5t+2.3,得:y ̂=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元. 【答案】解:(1)由题意,知M(c,b 2a ),则b 2a2c =34,化简得2b 2=3ac .将b 2=a 2−c 2代入2b 2=3ac , 解得ca =12或ca =−2(舍去). 故椭圆C 的离心率为12.(2)由题意,如图所示:知原点O 为F 1F 2的中点,MF 2//y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a , ①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0, 则{2(−c −x 1)=c ,−2y 1=2,解得{x 1=−32c ,y 1=−1.将(−32c,−1)代入椭圆C 的方程,得9c 24a 2+1b 2=1,②将①及c 2=a 2−b 2代入②,得9(a 2−4a)4a 2+14a =1,所以a =7,b 2=4a =28. 故a =7,b =2√7.【考点】 椭圆的离心率直线与椭圆结合的最值问题 椭圆的应用 【解析】 此题暂无解析 【解答】解:(1)由题意,知M(c,b 2a ), 则b 2a2c =34,化简得2b 2=3ac . 将b 2=a 2−c 2代入2b 2=3ac , 解得ca=12或ca=−2(舍去).故椭圆C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2//y 轴, 所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a , ①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0, 则{2(−c −x 1)=c ,−2y 1=2,解得{x 1=−32c ,y 1=−1.将(−32c,−1)代入椭圆C 的方程,得9c 24a 2+1b 2=1,②将①及c 2=a 2−b 2代入②,得9(a 2−4a)4a 2+14a=1,所以a =7,b 2=4a =28. 故a =7,b =2√7. 【答案】解:(1)由f(x)得f′(x)=e x +e −x −2≥2√e x ⋅e −x −2=0, 即f′(x)≥0,当且仅当e x =e −x 即x =0时,f′(x)=0, ∴ 函数f(x)在R 上为增函数. (2)g(x)=f(2x)−4bf(x)=e 2x −e −2x −4b(e x −e −x )+(8b −4)x ,则g′(x)=2[e 2x +e −2x −2b(e x +e −x )+(4b −2)] =2[(e x +e −x )2−2b(e x +e −x )+(4b −4)] =2(e x +e −x −2)(e x +e −x +2−2b). e x +e −x ≥2,e x +e −x +2≥4,①当2b ≤4,即b ≤2时,g′(x)≥0,当且仅当x =0时取等号, 从而g(x)在R 上为增函数,而g(0)=0, ∴ x >0时,g(x)>0,符合题意.②当b >2时,若x 满足2<e x +e −x <2b −2, 即{2<e x +e −xe x +e −x <2b −2, 得0<x <ln (b −1+√b 2−2b),此时,g′(x)<0, 又由g(0)=0知,当0<x ≤ln (b −1+√b 2−2b)时, g(x)<0,不符合题意.综合①、②知,b ≤2,得b 的最大值为2.(3)∵ 1.4142<√2<1.4143,根据(2)中g(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,为了凑配ln2,并利用√2的近似值,故将ln√2即12ln2代入g(x)的解析式中,得g(ln√2)=32−2√2b+2(2b−1)ln2.当b=2时,由g(x)>0,得g(ln√2)=32−4√2+6ln2>0,从而ln2>8√2−312>8×1.4142−312=0.6928;令ln(b−1+√b2−2b)=ln√2,得b=3√24+1>2,当0<x≤ln(b−1+√b2−2b)时,由g(x)<0,得g(ln√2)=−32−2√2+(3√2+2)ln2<0,得ln2<18+√228<18+1.414328<0.6934.所以ln2的近似值为0.693.【考点】利用导数研究函数的最值利用导数研究函数的单调性对数及其运算【解析】对第(1)问,直接求导后,利用基本不等式可达到目的;对第(2)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(3)问,根据第(2)问的结论,设法利用√2的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算g(ln√2),最后可估计ln2的近似值.【解答】解:(1)由f(x)得f′(x)=e x+e−x−2≥2√e x⋅e−x−2=0,即f′(x)≥0,当且仅当e x=e−x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(2)g(x)=f(2x)−4bf(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,则g′(x)=2[e2x+e−2x−2b(e x+e−x)+(4b−2)]=2[(e x+e−x)2−2b(e x+e−x)+(4b−4)]=2(e x+e−x−2)(e x+e−x+2−2b).e x+e−x≥2,e x+e−x+2≥4,①当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e−x<2b−2,即{2<e x+e−xe x+e−x<2b−2,得0<x<ln(b−1+√b2−2b),此时,g′(x)<0,又由g(0)=0知,当0<x≤ln(b−1+√b2−2b)时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(3)∵ 1.4142<√2<1.4143,根据(2)中g(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,为了凑配ln2,并利用√2的近似值,故将ln√2即12ln2代入g(x)的解析式中,得g(ln√2)=32−2√2b+2(2b−1)ln2.当b=2时,由g(x)>0,得g(ln√2)=32−4√2+6ln2>0,从而ln2>8√2−312>8×1.4142−312=0.6928;令ln(b−1+√b2−2b)=ln√2,得b=3√24+1>2,当0<x≤ln(b−1+√b2−2b)时,由g(x)<0,得g(ln√2)=−32−2√2+(3√2+2)ln2<0,得ln2<18+√228<18+1.414328<0.6934.所以ln2的近似值为0.693.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】【答案】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90∘,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90∘,∴OE⊥BC,∴E是BĈ的中点,∴BE=EC;(2)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB⋅PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD⋅DC=PB⋅2PB,∵AD⋅DE=BD⋅DC,∴AD⋅DE=2PB2.【考点】相似三角形的判定与圆有关的比例线段【解析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是BĈ的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD⋅DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90∘,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90∘,∴OE⊥BC,∴E是BĈ的中点,∴BE=EC;(2)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB⋅PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD⋅DC=PB⋅2PB,∵AD⋅DE=BD⋅DC,∴AD⋅DE=2PB2.【选修4-4:坐标系与参数方程】【答案】(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0, π2],即ρ2=2ρcosθ,可得C的普通方程为(x−1)2+y2=1(0≤y≤1).可得C的参数方程为{x=1+cos ty=sin t(t为参数,0≤t≤π).(2)设D(1+cos t, sin t),由(1)知C是以C(1, 0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tan t=√3,t=π3.故D的直角坐标为(1+cosπ3,sinπ3),即(32, √32).【考点】参数方程与普通方程的互化【解析】(1)利用{ρ2=x2+y2x=ρcosθ即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=√3x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0, π2],即ρ2=2ρcosθ,可得C的普通方程为(x−1)2+y2=1(0≤y≤1).可得C的参数方程为{x=1+cos ty=sin t(t为参数,0≤t≤π).(2)设D(1+cos t, sin t),由(1)知C是以C(1, 0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tan t=√3,t=π3.故D的直角坐标为(1+cosπ3,sinπ3),即(32, √32).六、解答题(共1小题,满分0分)【答案】(1)证明:∵a>0,∴f(x)=|x+1a|+|x−a|≥|(x+1a)−(x−a)|=|a+1a|=a+1a≥2√a⋅1a=2,故不等式f(x)≥2成立.(2)解:∵f(3)=|3+1a|+|3−a|<5,∴当a>3时,不等式即a+1a<5,即a2−5a+1<0,解得3<a<5+√212.当0<a≤3时,不等式即6−a+1a<5,即a2−a−1>0,求得1+√52<a≤3.综上可得,a的取值范围(1+√52, 5+√212).【考点】不等式的证明绝对值不等式的解法与证明【解析】(Ⅰ)由a>0,f(x)=|x+1a|+|x−a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+1a|+|3−a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】(1)证明:∵a>0,∴f(x)=|x+1a |+|x−a|≥|(x+1a)−(x−a)|=|a+1a |=a+1a≥2√a⋅1a=2,故不等式f(x)≥2成立.(2)解:∵f(3)=|3+1a|+|3−a|<5,∴当a>3时,不等式即a+1a<5,即a2−5a+1<0,解得3<a<5+√212.当0<a≤3时,不等式即6−a+1a<5,即a2−a−1>0,求得1+√52<a≤3.综上可得,a的取值范围(1+√52, 5+√212).。

贵州省贵阳市普通高中2015届高三上学期期末监测考试数

贵州省贵阳市普通高中2015届高三上学期期末监测考试数

第I 卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合要求的. 1.设i 是虚数单位,复数i-310在复平面内表示的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】A. 【解析】考点:1.复数的计算;2.复平面的概念.2.等比数列}{n a 中,1041=a a ,则数列}{lg n a 的前4项和等于( ) A.4 B.3 C.2 D.1 【答案】C. 【解析】考点:1.等比数列的性质;2.对数的运算.3.若框图所给的程序运行结果为20=S ,那么判断框中应填入的关于k 的条件是( ) A.?8>k B.?8≤k C.?8<k D.?9=k【答案】A. 【解析】试题分析:分析程序框图可知,程序应在8k =时跳出循环,故判断框内应加入的条件为8?k >.考点:程序框图中的循环语句.4.已知534sin )3sin(=++ααπ,则)67sin(πα+的是( ) A.532-B.532C.54D.54- 【答案】D. 【解析】考点:三角恒等变形.5.一个棱锥的三视图如图(单位为cm ),则该棱锥的体积是( ) A.334cm B.332cm C.32cm D.34cm【答案】A. 【解析】考点:空间几何体的体积计算.6.已知实数x ,y 满足⎪⎩⎪⎨⎧≥-+<≥+-012012y x x y x ,则122--=y x z 的取值范围是( )A.]5,35[B.]5,0[C.)5,35[D.)5,35[- 【答案】D.【解析】考点:线性规划.7.下列说法正确..的是( ) A.命题“R x ∈∀,0>x e ”的否定是“R x ∈∃,0>xe ”B.命题“已知x ,R y ∈,若3≠+y x ,则2≠x 或1≠y ”的逆否命题是真命题C.“ax x x ≥+22在]2,1[∈x 上恒成立”⇔“max min 2)()2(ax x x ≥+在]2,1[∈x 上恒成立” D.命题“若1-=a ,则函数12)(2-+=x ax x f 只有一个零点”的逆命题为真命题 【答案】B. 【解析】4401a a ∆=+=⇒=-,故逆命题是假命题,∴D 错误.考点:1.命题的否定,逆否命题;2.不等式恒成立问题;3.函数的零点.8.如图,点E ,F 分别是正方体1111D C B A ABCD -的棱AB ,1AA 中点,点M ,N 分别是线段E D 1,F C 1上的点,则与平面ABCD 垂直的直线MN 有( )条 A.0 B.1 C.2 D.无穷多【答案】B 【解析】∴(2,2,22)M m m m --,同理,若设11(01)C N nC F n =<<,可得(2,2,2)N n n n -,(22,22,2)MN m n n m m n =+---,又∵MN ⊥平面ABCD ,.考点:空间向量的运用.9.函数133-=x x y 的图象大致是( )A. B. C. D. 【答案】C. 【解析】考点:函数图象的判断.10.若任取x ,]1,0[∈y ,则点),(y x P 满足21x y ≤的概率为( ) A.22 B.31 C.21 D.32【答案】D. 【解析】考点:1.定积分计算曲边图形的面积;2.几何概型计算概率.11.为得到函数)3sin(π+=x y 的图象,可将函数x y sin =的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正整数),则||n m -的最小值是( ) A.3π B.32π C.34π D.35π【答案】B. 【解析】考点:三角函数图象的平移.12.设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为1F ,2F ,离心率为e ,过2F 的直线与双曲线的右支交于A ,B 两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B.224-C.225-D.223+ 【答案】C. 【解析】∴222(2)4a x x c ++=,即22222284(345c a a c e a+-=⇒==-.考点:双曲线的性质离心率的计算.第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)-第(21)题为必考题,每个试题考生都必须做答, 第(22)-第(24)题为选考题,考试根据要求选择一题做答.二.填空题:本大题共4个小题,每小题5分,共20分,把答案填在答卷对应的横线上. 13.已知正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则||a b c ++=_______. 【答案】22. 【解析】.考点:平面向量数量积的坐标运算.14.二项式9)1(xx -的展开式中的3x 系数是_________(用数字作答) 【答案】84-. 【解析】考点:二项式定理.15.题文已知全集},,,{4321a a a a U =,集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若A a ∈1,则A a ∈2;②若A a ∉3,则A a ∉2;③若A a ∈3,则A a ∉4,则集合=A __________.(用列举法表示) 【答案】23{,}a a . 【解析】考点:集合的表示.16.设数列}{n a 满足21=a ,)(11*1N n a a a nnn ∈-+=+,则该数列的前2015项的乘积=⋅⋅⋅⋅⋅2015321a a a a _________.【答案】3.【解析】试题分析:由题意可得,121131a a a +==--,2321112a a a +==--,3431113a a a +==-,4514121a a a a +===-, ∴数列{}n a 是以4为周期的数列,而201545033=⨯+,∴前2015项乘积为1233a a a =. 考点:数列的递推公式.三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)如图所示,在四边形ABCD 中,B D ∠=∠2,且1=AD ,3=CD ,33cos =B . (1)求ACD ∆的面积;(2)若32=BC ,求AB 的长.【答案】(1)2;(2)4AB =. 【解析】∵),0(π∈D ,∴322cos 1sin 2=-=D D ,∵1=AD ,3=CD , ∴23223121sin 21=⨯⨯⨯=⋅⋅=∆D CD AD S ACD ;∴4=AB .考点: 1.三角恒等变换;2.正余弦定理解三角形. 18.(本小题满分12分)如图,已知四棱锥ABCD P -中,⊥PA 平面ABCD ,BC AD //,CD AD ⊥,且AC AB ⊥,2===PA AC AB ,E 是BC 的中点.(1)求异面直线AE 与PC 所成角;(2)求二面角A PC D --的平面角的余弦值.【答案】(1)60;(2【解析】试题解析:(1)如图所示,以A 点为原点建立空间直角坐标系xyz O -,则)0,0,2(B ,)0,2,0(C ,)2,0,0(P ,故)0,1,1(E ,(1,1,0)AE =,(0,2,2)PC =-,1cos ,2||||AE PC AE PC AE PC ⋅<>==⋅,即,60AE PC <>=,故异面直线AE 与PC 所成角为60;(2)CD n ⊥,PC n ⊥,即0C D n ⋅=,0PC n ⋅=,∴⎩⎨⎧=-=--0220z y y x ,令1-=x ,得1=y ,1=z ,即(1,1,1)n =-,||3n =,又∵⊥AB平面PAC ,∴(2,0,0)AB =是平面PAC 的一个法向量,cos ,||||AB n AB n AB n ⋅<>==-⋅,即二面角A PC D --的平面角的余弦值为33.考点: 1.空间向量计算异面直线所成的角;2.空间向量计算二面角的大小. 19.(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为05.0(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望. 【答案】(1)72人;(2)ξ的分布列为:期望2535251=⨯+⨯+⨯=ξE . 【解析】校学生人数1=ξ,2,3,分别求出)1(=ξP ,)2(=ξP ,)3(=ξP ,由此能求出ξ的分布列和数学期望.学生为46180120=⨯人,社会人士为2618060=⨯人,于是第一组在校学生人数1=ξ,2,3,51)1(362214===C C C P ξ, 51)1(362214===C C C P ξ,53)2(361224===C C C P ξ,51)3(360234===C C C P ξ,即ξ的分布列为:∴2535251=⨯+⨯+⨯=ξE . 考点: 1.分层抽样;2.离散型随机变量的期望与方差.20.(本小题12分)已知椭圆C 的两个焦点是)3,0(-和)3,0(,并且经过点)1,23(,抛物线E 的顶点在坐标原点,焦点恰好是椭圆C 的右顶点F . (1)求椭圆C 和抛物线F 的标准方程;(2)过点F 作两条斜率都存在且互相垂直的直线1l ,2l ,1l 交抛物线E 于点A ,B ,2l 交抛物线E 于点G ,G ,求AG HB ⋅的最小值.【答案】(1)椭圆C 的标准方程为1422=+x y ,抛物线E 的标准方程为x y 42=;(2)AG HB ⋅有最小值16. 【解析】()()AG HB AF FG HF FB AF HF AF FB FG HF⋅=+⋅+=⋅+⋅+⋅||||||||FG FB AF FB FG HF +⋅=⋅+⋅,这样先将||||||||AF FB FG HF ⋅+⋅用1x ,2x ,3x ,4x 表示出来,再利用韦达定理用k 表示,再求其最小值.试题解析:(1)设椭圆C 的标准方程为)0(12222>>=+b a bx a y ,焦距为c 2,则由题意得3=c ,4)31(43)31(43222=-++++=a ,∴2=a ,1222=-=c ab ,∴椭圆C 的标准方程为1422=+x y ,∴右顶点F 的坐标为)0,1(,设抛物线E 的标准方程为)0(22>=p px y ,∴12=p,42=p ,∴抛物线E 的标准方程为x y 42=;(2)设1l 的方程:)1(-=x k y ,2l 的方程:)1(1--=x ky ,),(11y x A ,1234||||||||(1)(1)(1)(1)FG FB AF FB FG HF x x x x +⋅=⋅+⋅=+++++ 16442844811222243432121=⋅+≥++=+++++++=k kk k x x x x x x x x , 当且仅当2244k k=,即1±=k 时,AG HB ⋅有最小值16. 考点:1.椭圆的标准方程,抛物线的标准方程;2.平面向量的数量积;3.直线与抛物线的位置关系.21.(本小题满分12分)已知函数1)1()(+-=xe x xf ,]1,0[∈x . (1)证明:0)(≥x f ;(2)若b xe a x <-<1在)1,0(∈x 恒成立,求a b -的最小值. 【答案】(1)详见解析;(2)2e -. 【解析】试题解析:(1)0)('≥=x xe x f ,即)(x f 在]1,0[上单调递增,∴0)0()(=≥f x f ,即结论成立; (2)令x e x g x 1)(-=,则01)1()('2≥+-=x e x x g x ,)1,0(∈x ,∴当)1,0(∈x 时,1)1()(-=<e g x g ,要使b x e x <-1,只需1-≥e b ,要使a xe x >-1成立,只需01>--ax e x在)1,0(∈x 恒成立,令1)(--=ax e x h x ,)1,0(∈x ,则a e x h x -=)(',由)1,0(∈x ,),1(e e x ∈,①当1≤a 时,)('≥x h ,此∴a b -的最小值为2-e .考点: 1.利用导数求函数在闭区间上的最值;2.恒成立问题;3.分类讨论的数学思想. 请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用笔在答题卡上把所选题目对应的标号涂黑. 22.(本小题满分10分)选修4-1:平面几何选讲如图,点C 在圆O 直径BE 的延长线上,CA 切圆O 于A 点,ACB ∠的平分线CD 交AE 于点F ,交AB 于D 点. (1)求ADF ∠的度数; (2)若AC AB =,求BC AC :.【答案】(1)45=∠ADF ;(2)33=BC AC . 【解析】求出B 的大小后,即可得到比值.试题解析:(1)∵AC 为圆O 的切线,∴EAC B ∠=∠,又∵DC 是ACB ∠的平分线,∴DCB ACD ∠=∠,∴A C D E A C D C B B ∠+∠=∠+∠,即A F D A D F ∠=∠,又∵BE 为圆O 的直径,∴ 90=∠DAE ,∴ 45)180(21=∠-=∠DAE ADF ;3330tan tan ==== B AB AE BC AC .考点: 1.弦切角定理;2.圆周角定理;3.与圆有关的比例线段. 23.(本小题满分10分)选修4-4:极坐标于参数方程 已知曲线⎩⎨⎧+=+-=t y t x C sin 3cos 4:1(t 为参数),⎩⎨⎧==θθsin 2cos 6:2y x C (θ为参数).(1)化1C ,2C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数为2π=t ,Q 为2C 上的动点,求PQ 中点M 到直线⎩⎨⎧--=+-=ty tx C 3333:3(t 为参数)距离的最小值.【答案】(1)1C :1)3()4(22=-++y x ,2C :143622=+y x ,∴1C 为圆心是)3,4(-,半径是1的圆,2C 为中心是坐标原点,焦点在x 轴上,长半轴长是6,短半轴长是2的椭圆;(2)1.【解析】利用辅助角化简后,利用正弦函数的值域即可得到距离的最小值.试题解析:(1)1C :1)3()4(22=-++y x ,2C :143622=+y x ,∴1C 为圆心是)3,4(-,半径是1的圆,2C 为中心是坐标原点,焦点在x 轴上,长半轴长是6,短半轴长是2的椭圆; (2)当2π=t 时,)4,4(-P,小值133-.考点: 1.圆的参数方程,直线的参数方程;2.点到直线的距离公式;3.三角恒等变形. 24.(本小题满分10分)选修4-5:不等式选讲 已知函数|32||12|)(-++=x x x f . (1)求不等式6)(≤x f 的解集;(2)若关于x 的不等式|1|)(-<a x f 的解集非空,求实数a 的取值范围. 【答案】(1)]2,1[-;(2)),5()3,(+∞--∞ . 【解析】质求出)(x f 的最小值等于4,故有4|1|>-a ,解此不等式求得实数a 的取值范围.试题解析:(1)不等式6)(≤x f ,即6|32||12|≤-++x x ,∴①⎪⎩⎪⎨⎧≤-+---<6)23(1221x x x 或②⎪⎩⎪⎨⎧≤-++≤≤-6)23(122321x x x 或③⎪⎩⎪⎨⎧≤-++>6)32(1223x x x ,解①得211-<≤-x ,解②得2321≤≤-x ,解③得223≤<x ,即不等式的解集为]2,1[-; (2)考点: 1.解绝对值不等式;2.恒成立问题.。

2014-2015第一学期高二期末考试理科数学试题

2014-2015第一学期高二期末考试理科数学试题

2015学年度第一学期高二年级期末教学质量检测理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。

2、必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.非零实数b a ,,若b a >,则下列不等式正确的是 A 22b a > B ||||c b c a > Cb a a b > D ba ab 2211> 4.在ABC ∆中,角B A ,的对边分别为b a ,,若A b a sin 23=,则B 等于 A30 B60 C30或150 D60或120 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 6..数列1,211+,3211++,43211+++,…,n+++ 211的前2015项的和A20152014 B 20154028 C 20152016 D 201640307.已知椭圆2215x y m +=的离心率e =,则m 的值为 A .3 BCD .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为 A. BCD .9.若数列}{n a 是等比数列,21a =,其前n 项和为n S ,则3S 的取值范围是A ]1,(-∞B ),1()0,(+∞-∞C ),3[+∞D ),3[]1,(+∞--∞10.如图,21F F 、是椭圆)0(12222>>=+b a by a x 的两个焦点,O 为坐标原点,P 是椭圆上的一点,且满足||2||21OP F F =,若21125F PF F PF ∠=∠,则椭圆的离心率为A 32B 63C 22二、填空题:本大题共4小题,每小题5分,满分20分11.双曲线的一个焦点是)2 , 0(2F ,离心率2=e ,则双曲线的标准方程是 .12.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≥-≤-+≥+-01202022y y x y x ,则y x z +=2的最大值为 .13.已知数列}{n a 满足11-+=n n a a )1(>n ,其中5a ,8a ,10a 三项构成等比数列,则这个A 1C8题图等比数列的公比为 .14.若直线y =kx -2与抛物线y 2=8x 交于A 、B 两点,若线段AB 的中点的横坐标是2,则|AB |=______.15. 把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个 数):设,i j a (i 、j ∈*N )是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8.若,i j a =2008,则i 、j 的值分别为________ ,__________三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤。

2015贵州高考数学(理科)试题及参考答案

2015贵州高考数学(理科)试题及参考答案
.解得 , .因为 , , ,所以当 的斜率为 或 时,四边形 为平行四边形.
21.【解析】(Ⅰ) .
若 ,则当 时, , ;当 时, , .
若 ,则当 时, , ;当 时, , .
所以, 在 单调递减,在 单调递增.
(Ⅱ)由(Ⅰ)知,对任意的 , 在 单调递减,在 单调递增,故 在 处取得最小值.所以对于任意 , 的充要条件是: 即 ①,设函数 ,则 .当 时, ;当 时, .故 在 单调递减,在 单调递增.又 , ,故当 时, .当 时, , ,即①式成立.当 时,由 的单调性, ,即 ;当 时, ,即 .综上, 的取值范围是 .
20.【解析】(Ⅰ)设直线 , , , .
将 代入 得 ,故 ,
.于是直线 的斜率 ,即 .所以直线 的斜率与 的斜率的乘积为定值.
(Ⅱ)四边形 能为平行四边形.
因为直线 过点 ,所以 不过原点且与 有两个交点的充要条件是 , .
由(Ⅰ)得 的方程为 .设点 的横坐标为 .由 得 ,即 .将点 的坐标代入直线 的方程得 ,因此 .四边形 为平行四边形当且仅当线段 与线段 互相平分,即 .于是
2015年高考理科数学试卷全国卷Ⅱ
一、选择题:本大题共12道小题,每小题5分
1.已知集合 , ,则 ( )
A. B. C. D.
2.若 为实数且 ,则 ( )
A. B. C. D.
3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是( )
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
19.(本题满分12分)如图,长方体 中, , , ,点 , 分别在 , 上, .过点 , 的平面 与此长方体的面相交,交线围成一个正方形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年贵州省贵阳市高二(上)期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8B.10C.11D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题5.(4分)抛物线y2=4x的焦点到双曲线x2﹣=1的渐近线的距离是()A.B.C.1D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s 1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n 的平均数)A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s27.(4分)已知椭圆的焦点F1(﹣1,0),F2(1,0),P是椭圆上一点,且|F1F2|是|PF1|,|PF2|等差中项,则椭圆的方程是()A.+=1B.+=1C.+=1D.+=18.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162B.200C.242D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有三个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD 和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.2014-2015学年贵州省贵阳市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选:B.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8B.10C.11D.16【解答】解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选:C.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题【解答】解:由于x=10时,x﹣2=8,lgx=lg10=1,故命题p为真命题,令x=0,则x2=0,故命题q为假命题,依据复合命题真假性的判断法则,得到命题p∨q是真命题,命题p∧q是假命题,¬q是真命题,进而得到命题p∧(¬q)是真命题,命题p∨(¬q)是真命题.故选:C.5.(4分)抛物线y2=4x的焦点到双曲线x2﹣=1的渐近线的距离是()A.B.C.1D.【解答】解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s 1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s2【解答】解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s 1<s2.故选:D.7.(4分)已知椭圆的焦点F1(﹣1,0),F2(1,0),P是椭圆上一点,且|F1F2|是|PF1|,|PF2|等差中项,则椭圆的方程是()A.+=1B.+=1C.+=1D.+=1【解答】解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选:C.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)【解答】解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.9.(4分)执行如图所示的程序框图,输出的S值为()A.162B.200C.242D.288【解答】解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8D.6【解答】解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.【解答】解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.【解答】解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.【解答】解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.【解答】解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.15.(4分)地面上有三个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.【解答】解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.【解答】解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.【解答】解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.【解答】解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD 和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.【解答】解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.【解答】解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P (,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN ,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法yxo②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。

相关文档
最新文档