课堂小练习
名校课堂小练习数学2.2知识梳理
名校课堂小练习数学2.2知识梳理名校课堂小练习第一单元2.1方程:1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。
等式方程4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积另一个因数除数=被除数商被除数=商除数注意:解完方程,要养成检验的好习惯。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和个数2(高斯求和公式)8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验G、作答。
名校课堂小练习第二单元2.2确定位置:1、确定位置时,竖排叫做列,横排叫做行。
确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。
3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示经度和纬度,经度和纬度都用度()、分()、秒()表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。
举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。
数学人教版七年级上册课堂小练习
科学记数法—课堂小练习
1.人类的遗传物质就是DNA,DNA是很长的链状结构,22号染色体长达30000000个核苷酸,30000000用科学记数法表示为() A.3×108 B.3×107 C.3×106D.0.3×106
2.将0.38×55×107用科学记数法表示,其中正确的是() A.20.9×107B.2.09×109
C.2.09×108D.209×104
3.被称为“神威1”的计算机运算速度为每秒384000000000次,这个速度用科学记数法表示为每秒________次.
4.地球离太阳约有一亿五千万千米,用科学记数法表示为________千米.
5.用科学记数法表示的数5.16×104的原数是________.
6.据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,按一年365天计算,我国一年因土地沙漠化造成的经济损失是多少元?(用科学记数法表示)。
小学五年级数学课堂练习题
小学五年级数学课堂练习题1. 问题解决能力的训练在小学五年级数学课堂上,老师经常给学生出一些问题解决能力的练习题,以培养学生的思维能力和解决实际问题的能力。
这些练习题旨在让学生运用所学知识解决实际生活中的数学问题,增强学生对数学的理解和应用能力。
2. 四则运算的练习小学五年级的数学课程中,四则运算是一个重要的内容。
老师常常给学生出一些有趣的四则运算练习题,以培养学生的计算能力和逻辑思维。
这些练习题可以是简单的加法、减法,也可以是稍微复杂的乘法、除法。
通过这些练习题的训练,学生可以提高他们的计算速度和准确性。
3. 应用题的训练小学五年级的数学课上,老师也会给学生出一些应用题,以培养学生运用数学知识解决实际问题的能力。
这些应用题涉及到各个方面的生活,比如购物、旅行、运动等。
通过解决这些实际问题,学生可以将数学知识与实际生活相结合,提高他们的综合应用能力。
4. 图表与图形的训练在数学课堂上,学生也需要进行一些图表与图形的训练。
这些题目旨在让学生熟悉各种图表与图形的表示和分析方法,提高他们的图形理解能力。
比如,学生可以通过给定的柱状图或折线图回答一些相关问题,或者画出给定条件下的图形。
5. 推理与解决问题的训练小学五年级数学课程中,老师还会给学生出一些推理与解决问题的练习题。
这些题目旨在培养学生的逻辑思维和问题解决能力。
学生需要仔细阅读题目,分析问题,运用所学的数学知识进行推理和解决。
这种练习能够激发学生的思维,提高他们的问题解决能力。
6. 多种题型的综合训练除了上述的各类练习题之外,小学五年级的数学课堂上还有一种特殊的训练方式,那就是多种题型的综合训练。
这种练习题旨在让学生将所学的知识运用到一个综合性的问题中,进行综合思考和解决。
这样的练习能够提高学生的综合应用能力和解决问题的能力。
小学五年级数学课堂上的练习题是培养学生数学能力的重要方法之一。
这些练习题要求学生独立思考、灵活运用所学知识,培养学生的问题解决能力和创新思维。
课堂练习
第一章一、判断题:1.股东财富最大化是用公司股票的市场价格来计量的。
2.因为企业的价值与预期的报酬成正比,与预期的风险成反比,因此企业的价值只有在报酬最大时才能达到最大。
3.进行企业财务管理,就是要正确权衡报酬增加与风险增加的得与失,努力实现二者之间的最佳平衡,使企业价值达到最大。
4.在市场经济条件下,报酬和风险是成反比的,即报酬越大,风险越小。
二、单项选择题1.我国财务管理的最优目标是( )。
A.总产值最大化B.利润最大化C.股东财富最大化D.企业价值最大化2.企业同其所有者之间的财务关系反映的是( )。
A.经营权与所有权关系B.债权债务关系C.投资与受资关系D.债务债权关系3.企业同其债权人之间的财务关系反映的是( )。
A.经营权与所有权关系B.债权债务关系C.投资与受资关系D.债务债权关系4.企业同其被投资单位的财务关系反映的是( )。
A.经营权与所有权关系B.债权债务关系C.投资与受资关系 D.债务债权关系5.企业同其债务人间的财务关系反映的是( )。
A.经营权与所有权关系B.债权债务关系C.投资与受资关系D.债务债权关系6.影响企业价值的两个最基本因素是( )。
A.时间和利润B,利润和成本C.风险和报酬D.风险和贴现率第二章一、判断题:1.时间价值原理,正确地揭示了不同时点上资金之间的换算关系,是财务决策的基本依据。
2.货币的时间价值是由时间创造的,因此,所有的货币都有时间价值。
3.只有把货币作为资金投入生产经营才能产生时间价值,即时间价值是在生产经营中产生的。
4,时间价值的真正来源是工人创造的剩余价值。
5.投资报酬率或资金利润率只包含时间价值。
6.银行存款利率、贷款利率、各种债券利率、股票的股利率都可以看做时间价值率。
7.在没有风险和通货膨胀的情况下,投资报酬率就是时间价值率。
8.如果把通货膨胀因素抽象掉,投资报酬率就是时间价值率和风险报酬率之和。
9.标准离差是反映随机变量离散程度的一个指标。
小学一年级《明天要远足》小练习含答案
小学一年级《明天要远足》课堂小练习姓名:________ 班级:________ 学号:________ 成绩:________一、拼音选择。
1. “翻过来”的拼音是()?A. fān guò leB. fān guò néiC. fān guò lái2. “柔软”的拼音是()?A. róu ruàiB. róu ruǎnC. róu ruǎng3. “洁白”的拼音是()?A. jié báiB. jié hēiC. jié huái二、根据课文内容填空。
1. “翻过来……唉--睡不着。
”这句话中,小朋友在思考的问题是那地方的______真的像______说的那么______吗?2. “翻过去……唉--睡不着。
”小朋友这次又在思考的问题是那地方的______真的像______说的那么______吗?三、反义词填空。
1. 洁白()2. 柔软()3. 天亮()四、加偏旁组成新字,再组词。
1. 白+()=()组词:()2. 云+()=()组词:()五、句子仿写。
例句:翻过来……唉--睡不着。
仿写:跑过去……唉--______。
六、根据课文内容,判断正误。
1. 小朋友在思考问题时,翻来覆去地睡不着。
()2. 小朋友对老师和同学说的话都深信不疑。
()3. 小朋友希望快点天亮,结束这漫长的夜晚。
()七、补充句子。
1. 小朋友希望那地方的海,真的像老师说的那么多种颜色,那样______。
2. 小朋友想象那地方的云,像棉花糖一样______,让人忍不住想咬一口。
八、给下面的句子加上合适的标点符号。
1. 小朋友翻来覆去地睡不着()他心里在想什么呢()2. 那地方的云()到底像不像同学说的那么洁白柔软呢()3. 天啊()到底什么时候()才能天亮呢()参考答案:一、1. C. fān guò lái2. A. jié bái3. B. róu ruǎn二、1. 海;老师;多种颜色2. 云;同学;洁白柔软三、1. 乌黑2. 坚硬3. 天黑四、1. 扌;拍;拍手2. 雨;雪;雪花五、跑过去……唉--还是追不上。
举一反三课堂练习
3、两个仓库原有大米共15吨,甲仓库里新
运进4吨,乙仓库里运出2吨,这时乙仓库比 甲仓库的大米还多1吨。求甲、乙两个仓库 原来各有大米多少吨?
4、小方今年13岁,小凡今年17岁,再过几 年,小方与小凡的年龄和为50岁?
6、年龄问题
1、妈妈今年的年龄是儿子的5倍,4年前,
妈妈和儿子的年龄和是28岁。问妈妈、儿子 今年各是多少岁? 2、父、母、子三人今年的年龄和为70岁, 而10年前三人的年龄和为46岁,父亲比母亲 大4岁。求三人今年各多少岁。
4、巧妙求和二 基础题 1、刘大妈做一批工艺鞋,她第一天做了8 双,第二天起手艺越来越熟练,每天都比前 一天多做2双。最后一天做了24双,刘大妈 这几天共做工艺鞋多少双? 2、四年级举行羽毛球赛,每个参赛选手都 要和其他选手各赛一场。现在有20人参赛, 一共要进行多少场比赛?
5、和差问题 1、爷爷沿长和宽相差20米的长方形花坛跑 3圈,共跑420米,问花坛的长和宽各是多少 米? 2、参加学校各类兴趣小组的学生中,有70 人不是书法组的,有85人不是美术组的,书 法组和美术组共135人。参加书法组有多少 人?
2、应用题(一)----基础题 1、有8盒糖果,如果从每盒中取出200克, 那么8盒剩下的糖果质量正好等于原来4盒的 质量。原来每盒糖果多少克? 2、菜市场运来1520千克蔬菜,分别装在24 个大筐和40个小筐中,已知两个大筐装的蔬 菜和3个小筐装的蔬菜一样多。每个大筐和 每个小筐分别能装多少千克?
厘米) 2 3 4 2 6356-592-1356-408
2、5864-753-864
7281-(550+281) 9408-767-523-408-477+267
3、用2、0、7、6这四个数字,可以组成多
小学语文课堂小练笔的方法
小学语文课堂小练笔的方法语文是小学生学习的重要课程之一,而练习写作是语文课程中的一项重要内容。
为了提高学生的写作能力,教师需要在课堂上帮助学生进行小练笔。
小练笔是在短时间内进行的写作练习,目的是让学生在动笔的过程中提高写作技巧和表达能力。
下面将介绍一些小学语文课堂小练笔的方法。
一、选择适合的题材小学生的写作练习应该选择简单易懂的题材,让学生能够在短时间内理解,并进行表达。
比如可以选择学校、家庭、动物、植物等与学生生活有关的话题,这样学生更容易找到写作的灵感和素材。
二、确定写作形式小练笔可以采用不同的写作形式,比如叙述、描写、记叙等。
根据学生的年龄和学习情况,可以选择不同的写作形式进行练习。
也可以根据教学要求,选择固定的写作形式进行练习,比如写作日记、感想、作文等。
三、明确写作目的在进行小练笔之前,教师需要明确写作的目的,指导学生在写作过程中注重什么,比如叙述时要注重事件的发展过程,描写时要注重细节的描绘,记叙时要注重事件的真实性等。
明确写作目的可以帮助学生更好地把握写作的要点和重点。
四、提供范文参考在进行小练笔之前,教师可以提供一篇范文给学生参考。
范文可以帮助学生了解写作的基本结构和要点,同时也可以给学生提供一些写作的灵感和启示。
在教师提供范文的还可以让学生讨论范文的优缺点,这样可以引导学生更加深入地理解写作的技巧和方法。
五、限定写作时间小练笔是为了在短时间内进行的写作练习,所以在进行小练笔时,需要限定写作时间。
时间的限定可以让学生在有限的时间内进行思考和动笔,培养学生的写作速度和思维敏捷性。
时间的限定也不要太过严格,要根据学生的实际情况来确定合理的写作时间。
六、鼓励交流分享在进行小练笔之后,教师可以鼓励学生交流分享自己的写作,让学生互相学习和交流。
通过交流分享,学生可以了解别人的写作风格和表达方式,同时也可以从他人的经验中学习到一些写作技巧和方法。
教师还可以对学生的写作进行评价和指导,帮助学生找出自己的不足之处,同时也可以肯定学生的优点和进步之处。
北师大版数学七年级上全册10分钟课堂小测(同步练习)含答案
北师大版数学七年级上全册10分钟课堂小测第一章丰富的图形世界1生活中的立体图形第1课时认识几何体1.从下列物体抽象出来的几何体可以看成圆柱的是()2.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个4.如图,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是()A.圆柱和圆柱B.六棱柱和六棱柱C.长方体和六棱柱D.圆柱和六棱柱5.一个四棱柱一共有条棱,有个面;如果四棱柱的底面边长都是2cm,侧棱长都是4cm,那么它所有棱长的和是.6.将下列几何体分类:其中柱体是,锥体是,球体是(填序号).第2课时立体图形的构成1.下列几何体没有曲面的是()A.圆柱B.圆锥C.球D.长方体2.围成圆柱的面有()A.1个B.2个C.3个D.4个3.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是()A.点动成线B.线动成面C.面动成体D.以上答案都不对4.下列选项中的图形,绕其虚线旋转一周能得到左边的几何体的是()5.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.6.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?2展开与折叠第1课时正方体的展开图1.下面图形中是正方体的展开图的是()2.如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字6相对面上的数字是()A.1B.4C.5D.23.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第2课时柱体、锥体的展开与折叠1.下列立体图形中,侧面展开图是扇形的是()2.下面图形中,是三棱柱的侧面展开图的是()3.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()4.如图,沿虚线折叠能形成一个立体图形,它的名称是.5.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).3截一个几何体1.如图,用一个平面去截一个圆柱,截得的形状应为()2.用平面去截一个几何体,若截面为长方形,则该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥3.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,得到的截面可能是圆的几何体是()A.①②④B.①②③C.②③④D.①③④4.如果用一个平面截一个几何体,截面形状是三角形,那么这个几何体可能是(写出两个几何体名称).5.如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是(填序号).6.说出下列几何体被阴影部分所截得的截面的形状.4从三个方向看物体的形状1.如图是由5个相同的小正方体搭成的几何体,从正面看到的图形是()2.如图是某几何体从三个方向看到的图形,则这个几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱3.如图是由三个相同小正方体组成的几何体从上面看到的图形,那么这个几何体可以是()4.一个积木由若干个大小相同且棱长为1的正方体搭成,如图分别是从三个方向看到的形状图,则该积木中棱长为1的正方体的个数是()A.6个B.7个C.8个D.9个5.下面是用几个相同的小正方体搭成的两种几何体,分别画出从三个方向看到的几何体的形状图.第二章 有理数及其运算1 有理数1.下列各数中是负数的是( ) A.-3 B.0 C.1.7 D.122.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( )A.非负数包括0和整数B.正整数包括自然数和0C.0是最小的整数D.整数和分数统称为有理数4.在“1,-0.3,+13,0,-3.3”这五个数中,非负有理数是 (写出所有符合题意的数).5.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .6.把下列各数填入表示它所在的数集的圈里.-18,227,3.1416,0,2001,-35,-0.142857,95%.数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数是( )A.1.5B.-1.5C.2.5D.-2.53.在0,-2,1,12这四个数中,最小的数是( )A.0B.-2C.1D.124.比较下列各组数的大小: (1)-3 1; (2)0 -2.3; (3)-23 -35.5.在数轴上,与表示数-1的点的距离为1的点表示的数是 .6.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .7.在数轴上表示下列各数,并用“〉”连接起来.1.8,-1,52,3.1,-2.6,0,1.3 绝对值第1课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12 D.0和03.若一个数的相反数是1,则这个数是 .4.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第2课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.比较大小:-5 -2,-12 -23(填“〉”或“〈”).4.计算:(1)|7|= ; (2)⎪⎪⎪⎪-58= ; (3)|5.4|= ; (4)|-3.5|= ; (5)|0|= .4 有理数的加法第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2016)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝⎛⎭⎫-718+⎝⎛⎭⎫-16.第2课时 有理数加法的运算律1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( ) A.加法交换律 B.加法结合律 C.分配律 D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝⎛⎭⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:m):1000,-1200,1100,-800,1400,该运动员跑完后位于出发点的什么位置?有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝⎛⎭⎫-23-112-⎝⎛⎭⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?有理数的加减混合运算第1课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A .7+3-5-2 B .7-3-5-2 C .7+3+5-2 D .7+3-5+22.计算8+(-3)-1所得的结果是( ) A .4 B .-4 C .2 D .-23.算式“-3+5-7+2-9”的读法正确的是( ) A .3、5、7、2、9的和 B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和4.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( )A .-1B .0C .1D .2 5.计算下列各题:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713.6.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.第2课时 有理数加减混合运算中的简便运算1.下列各题运用加法结合律变形错误的是( ) A .1+(-0.25)+(-0.75)=1+[(-0.25)+(-0.75)] B .1-2+3-4+5-6=(1-2)+(3-4)+(5-6) C .34-16-12+23=⎝⎛⎭⎫34+12+⎝⎛⎭⎫-16+23 D .7-8-3+6+2=(7-3)+(-8)+(6+2) 2.计算-256+15-116的结果是( )A .-345B .345C .-415D .4153.计算:(1)27+18-(-3)-18; (2)23-18-⎝⎛⎭⎫-13+⎝⎛⎭⎫-38;(3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718;(5)7.54+(-5.72)-(-12.46)-4.28; (6)0.125+⎝⎛⎭⎫-418+⎝⎛⎭⎫-234+0.75.第3课时有理数加减混合运算的应用1.下表是某种股票某一周每天的收盘价情况(收盘价:股票每天交易结束时的价格):(1)填表,并回答哪天的收盘价最高,哪天的收盘价最低;(2)最高价与最低价相差多少?2.某次数学单元检测,708班A1小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,低于80分的分数记为负,成绩记录如下:+10,-2,+15,+8,-13,-7.(1)本次检测成绩最好的为多少分?(2)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?(3)本次检测该小组成员中得分最高与最低相差多少分?7 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A .-1 B .-5 C .-6 D .12.-74的倒数是( )A .-74B .74C .-47D .473.下列运算中错误的是( ) A .(+3)×(+4)=12 B .-13×(-6)=-2C .(-5)×0=0D .(-2)×(-4)=8 4.下列计算结果是负数的是( ) A .(-3)×4×(-5) B .(-3)×4×0C .(-3)×4×(-5)×(-1)D .3×(-4)×(-5) 5.填表(想法则,写结果):6.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝⎛⎭⎫-1625; (4)(-2.5)×⎝⎛⎭⎫-213.第2课时 有理数乘法的运算律1.用简便方法计算(-27)×(-3.5)+27×(-3.5)时,要用到( ) A .乘法交换律 B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律 2.计算(-4)×37×0.25的结果是( )A .-37B .37C .73D .-733.下列计算正确的是( ) A .-5×(-4)×(-2)×(-2)=80 B .-9×(-5)×(-4)×0=-180C .(-12)×⎝⎛⎭⎫13-14-1=(-4)+3+1=0 D .-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝⎛⎭⎫3-12,用分配律计算正确的是( ) A .(-2)×3+(-2)×⎝⎛⎭⎫-12 B .(-2)×3-(-2)×⎝⎛⎭⎫-12 C .2×3-(-2)×⎝⎛⎭⎫-12 D .(-2)×3+2×⎝⎛⎭⎫-12 5.填空:(1)21×⎝⎛⎭⎫-45×⎝⎛⎭⎫-621×(-10) =21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎡⎦⎤⎝⎛⎭⎫-45×( )(利用乘法结合律) =( )×( )= ; (2)⎝⎛⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1计算(-18)÷6的结果是( ) A .-3 B .3 C .-13 D .132.计算(-8)÷⎝⎛⎭⎫-18的结果是( ) A .-64 B .64 C .1 D .-1 3.下列运算错误的是( )A .13÷(-3)=3×(-3) B .-5÷⎝⎛⎭⎫-12=-5×(-2) C .8÷(-2)=-8×12 D .0÷3=04.下列说法不正确的是( ) A .0可以作被除数 B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等 5.(1)6的倒数是 ;(2)-12的倒数是 .6.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝⎛⎭⎫-123÷⎝⎛⎭⎫-212; (4)⎝⎛⎭⎫-34÷⎝⎛⎭⎫-37÷⎝⎛⎭⎫-116.1.计算(-3)2的结果是( ) A .-6 B .6 C .-9 D .92.下列运算正确的是( ) A .-(-2)2=4 B .-⎝⎛⎭⎫-232=49 C .(-3)4=34 D .(-0.1)2=0.13.把34×34×34×34写成乘方的形式为 ,读作 .4.计算:(1)(-2)3; (2)-452; (3)-⎝⎛⎭⎫-372; (4)⎝⎛⎭⎫-233.10 科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A .1.3×104B .1.3×105C .1.3×106D .1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A .182000千瓦B .182000000千瓦C .18200000千瓦D .1820000千瓦 3.用科学记数法表示下列各数: (1)地球的半径约为6400000m ; (2)赤道的总长度约为40000000m .11 有理数的混合运算1.计算-5-3×4的结果是( ) A .-17 B .-7 C .-8 D .-322.下列各式中,计算结果是负数的是( ) A .(-1)×(-2)×(-3)×0 B .5×(-0.5)÷(-0.21) C .(-5)×|-3.25|×(-0.2) D .-(-3)2+(-2)2 3.计算(-8)×3÷(-2)2的结果是( ) A .-6 B .6 C .-12 D .124.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x 平方乘以2减去5输出5.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝⎛⎭⎫12-23×12+32.6.室温是32℃,小明开空调后,温度下降了6℃,关掉空调后,空气温度每小时回升2℃,求关掉空调2小时后室内的温度.12用计算器进行运算1.用完计算器后,应该按()A.DEL键B.=键C.ON键D.OFF键2.用计算器求(-3)5的按键顺序正确的是()A.(-)()3x■5=B.3x■5()(-)=C.()(-)3x■5=D.()(-)35x■=3.按键顺序1-3x■2÷2×3=对应下面算式()A.(1-3)2÷2×3B.1-32÷2×3C.1-32÷2×3D.(1-3)2÷2×34.用计算器计算7.783+(-0.32)2≈(精确到0.01).第三章整式及其加减1字母表示数1.一辆汽车的速度是v千米/时,行驶t小时所走的路程为千米.2.每台电脑售价x元,降价10%后每台售价为元.3.若买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn元4.用字母表示图中阴影部分的面积.2 代数式第1课时 代数式1.下列书写格式正确的是( ) A .x5 B .4m÷n C .x(x +1)34 D .-12ab2.某种品牌的计算机,进价为m 元,加价n 元后作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A .(m +0.8n)元B .0.8n 元C .(m +n +0.8)元D .0.8(m +n)元3.在式子:①m +5;②ab ;③a =1;④0;⑤π;⑥3(m +n);⑦3x >5中,代数式有 个.4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .第2课时 代数式的求值1.当x =1时,代数式4-3x 的值是( ) A .1 B .2 C .3 D .42.当x =3,y =2时,代数式2x -y3的值是( ) A .43B .2C .0D .3 3.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.已知犯人的身高比其脚印长度a cm 的7倍少3cm .(1)用含a 的代数式表示出犯人的身高为 cm ; (2)若a =24,求犯人的身高.整 式1.下列各式中不是单项式的是( ) A .a 3 B .-15 C .0 D .3a2.单项式-2x 2y 3的系数和次数分别是( )A .-2,3B .-2,2C .-23,3D .-23,23.多项式3x 2-2x -1的各项分别是( ) A .3x 2,2x,1 B .3x 2,-2x,1C .-3x 2,2x ,-1D .3x 2,-2x ,-14.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.5.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .6.下列代数式中哪些是单项式?哪些是多项式? xy 3,-34xy 2z ,a ,x -y ,1x ,3.14,-m ,-m 2+2m -1.7.若关于a ,b 的单项式-58a 2b m 与-117x 3y 4是次数相同的单项式,求m 的值.整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是()A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是()A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和m 23.下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3a2b-3ba2=0 C.5a2-4a2=14.计算2m2n-3nm2的结果为()A.-1B.-5m2nC.-m2nD.不能合并5.合并同类项:(1)3a-5a+6a;(2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时 去括号1.化简-2(m -n)的结果为( )A .-2m -nB .-2m +nC .2m -2nD .-2m +2n 2.下列去括号错误的是( )A .a -(b +c)=a -b -cB .a +(b -c)=a +b -cC .2(a -b)=2a -bD .-(a -2b)=-a +2b 3.-(2x -y)+(-y +3)去括号后的结果为( ) A .-2x -y -y +3 B .-2x +3 C .2x +3 D .-2x -2y +34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x 2+3xy)-(2x 2+4xy)=-x 2【】,其中空格的地方被钢笔水弄污了,那么空格中一项是( )A .-7xyB .7xyC .-xyD .xy 5.去掉下列各式中的括号:(1)(a +b)-(c +d)= ; (2)(a -b)-(c -d)= ; (3)(a +b)-(-c +d)= ; (4)-[a -(b -c)]= . 6.化简下列各式:(1)3a -(5a -6); (2)(3x 4+2x -3)+(-5x 4+7x +2);(3)(2x -7y)-3(3x -10y); (4)6a 2-4ab -4⎝⎛⎭⎫2a 2+12ab .第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A .2x +2y B .2y C .2x D .02.已知A =5a -3b ,B =-6a +4b ,则A -B 等于( ) A .-a +b B .11a +b C .11a -7b D .-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是( )A .-4B .4C .12D .-124.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A .3a +b B .2a +2b C .a +b D .a +3b5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).6.先化简,再求值:3a 2-ab +7-(5ab -4a 2+7),其中a =2,b =13.探索与表达规律第1课时 探索数字规律1.观察下列数据:0,3,8,15,24…它们是按一定规律排列的,依照此规律,第201个数据是( )A .40400B .40040C .4040D .4042.一组数23,45,67,89…按一定的规律排列,请你根据排列规律,推测这组数的第10个数应为( )A .1819B .2021C .2223D .24253.已知2+23=22×23,3+38=32×38,4+415=42×415…,若9+n m =92×nm (m ,n 为正整数),则m +n 的值为( )A .86B .88C .89D .904.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a ,b 的值分别为( )A .9,10B .9,91C .10,91D .10,110 5.观察下列各式,完成问题.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…… (1)仿照上例,计算:1+3+5+7+…+99= ; (2)根据上述规律,请你用自然数n(n ≥1)表示一般规律.第2课时探索图形规律1.如图,第①个图形中一共有1个正方形,第②个图形中一共有3个正方形,第③个图形中一共有5个正方形……则第⑩个图形中正方形的个数是()A.18个B.19个C.20个D.21个2.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒……则第n个图案中有根小棒.第2题图第3题图3.如图,按这种规律堆放圆木,第n堆应有圆木根.4.如图是用棋子摆成的“T”字图案.从图案中可以看出,第1个“T”字图案需要5枚棋子,第2个“T”字图案需要8枚棋子,第3个“T”字图案需要11枚棋子……(1)照此规律,摆成第4个图案需要几枚棋子?(2)摆成第n个图案需要几枚棋子?(3)摆成第2018个图案需要几枚棋子?第四章基本平面图形线段、射线、直线1.给出下列图形,其表示方法不正确的是()2.下列语句正确的是()A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A,B两点,并使直线AB经过C点3.小红家分了一套住房,她想在自己房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定()A.1根B.2根C.3根D.4根4.根据图形填空:点B在直线上,图中有条线段,以点B为端点的射线有条.第4题图第5题图5.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,用数学知识解释其中的道理是.6.已知平面上四点A、B、C、D如图所示.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.比较线段的长短1.下列说法正确的是()A.两点之间的连线中,直线最短B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点D.两点之间的线段叫作这两点之间的距离2.如图,已知线段AB=6cm,点C是AB的中点,则AC的长为()A.6cmB.5cmC.4cmD.3cm3.现实生活中为何有人宁愿乱穿马路,也不愿从天桥或斑马线通过?用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫作这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短4.如图,D是AB的中点,E是BC的中点.若AC=8,EC=3,则AD=.5.如图,已知线段AB.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB;②延长线段BA到D,使AD=AC(不写画法,但要保留画图痕迹);(2)观察(1)中所作的图,直接写出线段BD与线段AC之间的长短关系;(3)若AB=2cm,求线段BD和CD的长度.角1.下列关于角的说法中,正确的是()A.角是由两条射线组成的图形B.角的边越长,角越大C.在角一边的延长线上取一点D.角可以看作由一条射线绕着它的端点旋转而形成的图形2.如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是()3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″4.如图,能用一个字母表示的角是,用三个大写字母表示∠1为,∠2为.第4题图第5题图第6题图5.如图,点Q位于点O的方向上.6.某钟面上午8时整时针和分针的位置如图所示,则时针和分针所成角的度数是.7.计算:(1)33°52′+21°50′;(2)108°8′-36°56′.角的比较1.如图,将∠1、∠2的顶点和其中一边重合,且∠1的另一边落在∠2的外部,则∠1与∠2的关系是( )A .∠1〉∠2B .∠1〈∠2C .∠1=∠2D .无法确定2.如图,已知∠AOB 、∠COD 都是直角,则∠1与∠2的关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定第1题图 第2题图 第4题图 第5题图3.射线OC 在∠AOB 的内部,下列四个选项中不能判定OC 是∠AOB 的平分线的是( )A .∠AOB =2∠AOC B .∠AOC =12∠AOB C .∠AOC +∠BOC =∠AOB D .∠AOC =∠BOC4.如图,点O 在直线AB 上,射线OC 平分∠DOB.若∠DOC =35°,则∠AOD 等于( )A .35°B .70°C .110°D .145°5.把一副三角板按照如图所示的位置摆放形成两个角,分别设为∠α、∠β.若∠α=65°,则∠β的度数为 .6.如图,∠AOC =15°,∠BOC =45°,OD 平分∠AOB ,求∠COD 的度数.多边形和圆的初步认识1.下列图形中,多边形有()A.1个B.2个C.3个D.4个2.过某个多边形一个顶点的所有对角线将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3.边长为1cm的正六边形的周长是cm.4.已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为cm2.5.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况,求扇形甲、乙、丙圆心角的度数.6.如图,将多边形分割成三角形.(1)图①中可分割出个三角形;(2)图②中可分割出个三角形;(3)图③中可分割出个三角形;由此你能猜测出,n边形可以分割出个三角形.第五章 一元一次方程认识一元一次方程第1课时 一元一次方程1.下列是一元一次方程的是( )A .x 2-x =4B .2x -y =0C .2x =1D .1x=2 2.方程x +3=-1的解是( )A .x =2B .x =-4C .x =4D .x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是 .4.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .第2课时 等式的基本性质1.下列变形符合等式的基本性质的是( )A .若2x -3=7,则2x =7-3B .若3x -2=x +1,则3x -x =1-2C .若-2x =5,则x =5+2D .若-13x =1,则x =-3 2.解方程-34x =12时,应在方程两边( ) A .同时乘-34 B .同时乘4 C .同时除以34 D .同时除以-343.利用等式的基本性质解方程:(1)x +1=6; (2)3-x =7; (3)-3x =21.求解一元一次方程第1课时 利用移项解一元一次方程1.下列变形属于移项且正确的是( )A .由3x =5+2得到3x +2=5B .由-x =2x -1得到-1=2x +xC .由5x =15得到x =155D .由1-7x =-6x 得到1=7x -6x 2.解方程-3x +4=x -8时,移项正确的是( )A .-3x -x =-8-4B .-3x -x =-8+4C .-3x +x =-8-4D .-3x +x =-8+43.一元一次方程3x -1=5的解为( )A .x =1B .x =2C .x =3D .x =44.解下列方程:(1)13x +1=12; (2)3x +2=5x -7.5.下面是某位同学的作业,他的解答正确吗?如果不正确,请把正确的步骤写出来. 解方程:2x -1=-x +5.解:移项,得2x -x =1+5,合并同类项,得x =6.1.方程3-(x+2)=1去括号正确的是()A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是()A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10;(2)8y-6(y-2)=0;(3)4x-3(20-x)=-4;(4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)4x +95-3+2x 3=1;(3)15(x +15)=12-13(x -7); (4)2y -13=y +24-1.5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?应用一元一次方程——水箱变高了1.内径为120mm 的圆柱形玻璃杯,和内径为300mm 、内高为32mm 的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为( )A .150mmB .200mmC .250mmD .300mm2.用一根长12cm 的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是( )A .4cm 2B .6cm 2C .8cm 2D .12cm 23.将一个底面半径是5cm ,高为10cm 的圆柱体冰淇淋盒改造成一个直径为20cm 的圆柱体.若体积不变,则改造后圆柱体的高为多少?4.把一个三边长分别为3dm,4dm,5dm 的三角形挂衣架,改装成一个正方形挂衣架.求这个正方形挂衣架的面积.应用一元一次方程——打折销售1.如图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是()A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打()A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最低可打几折销售?应用一元一次方程——“希望工程”义演1.已知甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得甲仓库的储粮是乙仓库的两倍?2.希望中学团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块.每人搬了4次,共搬了1800块,问这些新团员中有多少名男同学?3.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?应用一元一次方程——追赶小明1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x秒后甲可追上乙,则下列所列方程中正确的是()A.6.5+x=7.5B.7x=6.5x+5C.7x+5=6.5xD.6.5+5x=7.52.小明和爸爸在一条长400米的环形跑道上,小明每秒跑9米,爸爸骑车每秒骑16米,两人同时同地反向而行,经过秒两人首次相遇.3.一轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,求轮船在静水中的速度.4.甲、乙两站相距300千米,一列慢车从甲站开往乙站,每小时行40千米,一列快车从乙站开往甲站,每小时行80千米.已知慢车先行1.5小时,快车再开出,则快车开出多少小时后与慢车相遇?第六章数据的收集与整理数据的收集1.下面获取数据的方法不正确的是()A.了解我们班同学的身高用测量方法B.快捷了解历史资料情况用观察方法C.抛硬币看正反面的次数用试验方法D.了解全班同学最喜爱的体育活动用访问方法2.在设计调查问卷时,下面的提问比较恰当的是()A.我认为猫是一种很可爱的动物B.难道你不认为科幻片比武打片更有意思吗C.你给我回答到底喜不喜欢猫D.请问你家有哪些使用电池的电器2普查和抽样调查1.下列调查方式不合适的是()A.了解我市人们保护海洋的意识采取抽样调查的方式B.为了调查一个省的环境污染情况,调查该省的省会城市C.了解观众对《红海行动》这部电影的评价情况,调查座位号为奇数的观众D.了解飞行员视力的达标率采取普查方式2.下列调查的样本具有代表性的是()A.了解全校同学喜欢课程情况,对某班男生进行调查B.了解某小区居民的防火意识,从每幢居民随机抽若干人进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某城区空气质量,在某个固定位置进行调查3.为了调查一批灯泡的使用寿命,适合采用的调查方式是(填“普查”或“抽样调查”).4.某中学为了解本校2000名学生所需运动服的尺码,在全校范围内随机抽取100名学生进行调查,这次调查的个体是.数据的表示第1课时扇形统计图1.某学生某月有零花钱100元,其支出情况如图所示,则下列说法不正确的是()A.捐赠款所对应的圆心角的度数为240°B.该学生捐赠款为60元C.捐赠款是购书款的2倍D.其他消费占10%2.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并调查了所有学生对该方案的意见.根据赞成、反对、无所谓三种意见的人数之比画出如图所示的扇形统计图,图中α的度数为.3.某地中小学大力提倡“2+2”素质教育,开展几年后取得了重大成果.小明对本学期全班50名同学所选择的活动项目进行了统计,根据收集的数据制作了下表:(1)请完善表格中的数据;(2)根据上述表格中的人数百分比,制作扇形统计图.第2课时频数直方图1.已知一组数据的最大值为46,最小值为27,在绘制频数直方图时,取组距为3,则这组数据应分成()A.5组B.6组C.7组D.8组2.某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图所示的频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人3.阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数如下:3239455560546028564151364446405337474546(1)若对这20个数按组距为8进行分组,请补全频数分布表及频数直方图;(2)通过频数直方图分析此大棚中西红柿的长势.。
七下数学课堂小练习题答案
七下数学课堂小练习题答案一、选择题1. 如果一个数的平方等于它本身,那么这个数是()A. 0B. 1C. -1D. 0或1答案:D2. 下列哪个不是有理数?()A. πB. √2C. -3D. 0.5答案:A3. 一个直角三角形的两直角边分别为3和4,斜边的长度是()A. 5B. 6C. 7D. 8答案:A4. 如果a和b互为相反数,那么a+b等于()A. 0B. 1C. -1D. 2答案:A5. 一个数的绝对值是它本身,这个数是()A. 正数B. 负数C. 非负数D. 非正数答案:C二、填空题6. 一个数的立方等于-8,这个数是______。
答案:-27. 如果一个数的倒数是它本身,那么这个数是______。
答案:1或-18. 一个数的相反数是-5,这个数是______。
答案:59. 一个数的平方根是4,这个数是______。
答案:1610. 如果一个数的平方是25,那么这个数是______。
答案:±5三、解答题11. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:周长= 2 × (10 + 5) = 30厘米;面积= 10 × 5 = 50平方厘米。
12. 如果一个数的平方根是4,求这个数的平方根和立方根。
答案:这个数是16,平方根是4,立方根是2√2。
13. 一个数的绝对值是5,求这个数。
答案:这个数可以是5或-5。
14. 一个直角三角形的两直角边之和是15,其中一个直角边是9,求另一个直角边和斜边的长度。
答案:另一个直角边 = 15 - 9 = 6,斜边= √(9² + 6²) = √(81 + 36) = √117。
15. 一个数的立方是-27,求这个数。
答案:这个数是-3。
四、应用题16. 一个班级有40名学生,其中20名学生参加了数学竞赛,求这个班级参加数学竞赛的学生比例。
答案:参加数学竞赛的学生比例 = 20 / 40 = 1/2 = 50%。
小学语文课堂小练笔练习题
小学语文课堂小练笔设计六下小练笔1 文言文两则1、展开想象,将“专心致志”写具体。
2、认真阅读《学弈》一文,为它配一幅插图,请把人物动作、神情写具体。
3、仔细阅读《两小儿辩日》,然后进行改写,注意把两小儿辩斗的神情态度写具体。
4、两小儿笑话孔子,孔子又会说些什么呢?2 匆匆1、仿写句子:八千多日子已经从我手中溜去,像针尖上一滴水滴在大海里。
八千多日子已经从我手中溜去,像八千多日子已经从我手中溜去,像八千多日子已经从我手中溜去,像2、仿写段落:于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。
根据课文语段的写法,联系生活,将时间流逝的感受描述具体。
3、本文有许多叠词,请你摘录下来,再照样子写几个,然后选择几个写一段话,读一读,体会叠词的作用。
4、联系《和时间赛跑》等课文,将其中写时间流逝的语段进行比较阅读,体会写法,然后进行仿写。
3 桃花心木1、回忆《猫》这课,用“说他……可是……”这样的句式写一段话,表现种树人行为的古怪。
2、本文依然采用由事及理的结构进行写作,仔细阅读课文,想一想,课文记叙的事件是:;想要表达的哲理是:。
3、本文借“种树”说“育人”,请你联系课文内容和自己的生活经历,说说自己的感受,可以用上“如果……就……”、“只有……才能……”等关联词。
4 顶碗少年1、作者在描写少年顶碗时,不仅写了少年的动作,还写了少年头上的碗以及观众的表现,把顶碗这个节目写得非常生动。
请你也用这种写法写一个你印象深刻的节目。
2、本文写了三次少年顶碗表演,这三次在写法上有什么不同?为什么这么处理?想清楚了请写下来与同学交流。
3、阅读课文最后自然段,再联系课文内容展开想象,把作者的心理活动写具体。
在以后的岁月里,不知怎的,我常常会想起这位顶碗少年,想起他那一次的演出,每每想起,总会有一阵微微的激动:5 手指1、仿句:⑴摘录表示手指动作的词语,如“拉胡琴”等,然后进行仿写。
部编版一年级上语文课堂练习题解答附在后
部编版一年级上语文课堂练习题解答附在后学校_______ 班级_______ 姓名_______ 填空题(每题5分,共20分)1. 照样子,写一写。
木木头这里有一根木头(1)水开水(2)上2. 写出下面词语的反义词。
上来东左3. 加一加,减一减。
例:口——中木——米——了——例:天——大去——电——本——4. 照样子,做一做。
例:亻+ 门→(们)日 + 十→口 + 十→丁 + 口→看拼音写词语(每题10分,共10分)5. 看拼音,写汉字①大海yòu宽yòu远。
②我hé他是好朋友。
③草地上de 花儿真好看!书写(每题10分,共10分)6. 按顺序把声母写下来连线题(每题10分,共10分)7. 照样子,写句子。
例:门门口我家门口有一条小河。
(1)们(2)雨语言表达(每题10分,共10分)8. 照样子,把词语排成—句话。
例:①绿了②小草③春天③②①(1)①月亮②我③看见了(2)①拉着②老公公③叶子④萝卜诗歌鉴赏(每题10分,共10分)9. 选一选,下列分类正确的一组是()(填序号)A.杏黄桃枣B.牛猫鸭鸟C.红绿鸡梨现代文阅读(每题20分,共20分)10. 读一读,并找出其中的数字。
咏雪诗郑板桥一片两片三四片,五六七八九十片。
千片万片无数片,飞入芦花都不见。
答案解析填空题1. (1)我们要多喝开水。
(2)上面;桌子上面有很多书。
2. 下;去;西;右3. 禾;来;子;云;日;木4. 早;叶;叮看拼音写词语5. 又;又;和;的书写6. b p m f d t n l g k h j q x zh ch sh r z c s y w连线题7. (1)我们;我们在操场上做游戏。
(2)下雨;下雨了,天气好冷啊!语言表达8. (1)③①②(2)②①④③诗歌鉴赏9. B现代文阅读10. 一、二、三、四、五、六、七、八、九、十、千、万。
苏教版二年级上册数学课堂小练习
二年级数学课堂小练习班级:姓名:学号:一、我是计算小能手(计20分)7×2= 8×8= 42÷7= 9×4+14=53+30= 56÷8= 9×8= 3×3×9=20÷4= 28÷7= 25÷5= 32÷4×5=4×4= 45÷9= 63÷9= 5+9×6=18÷3÷2= 24÷6×7= 6×6÷9= 38-23=二、是非审判庭。
(对的在()里画“√”,错的画“×”,计5分)1.两个乘数都是8,积是16。
………………………………………………()2.小明的身高大约是136米。
………………………………………………()3.1米和100厘米一样长。
……………………………………………………()4.“”这是一条线段。
…………………………………………()5.平行四边形是四边形,所以四边形就是平行四边形。
…………………()三、认真看,细心填(计38分)1.4×9=(),读作:,口诀:。
根据这句口诀还可以写出另一道乘法算式:。
2. 乘数 5 4乘数 4 7积35 12 被除数14 24 除数 2 6商 3 43.在括号里填上合适的数。
36÷( )=( ) ( )×( )=18 5×( )=( ) ( )×6 =3×4 ( )÷7=2×4 2×3=3×( ) 4.小刀长( )厘米 蜡笔长( )厘米5.12个梨,每( )个一盘,分成了( )盘。
12个梨,平均分成( )盘,每盘( )个。
6.(1)上面一共有( )个 。
(2)根据图写成加法算式是( ),写成乘法算式是( )。
7.在 里填上“>”、“<”或“=”6×5 65 35÷7+4 81÷9 7×3+7 30 7×9 63÷9 3×1 3+1 36÷4×3 3 8.找规律,填一填。
课堂练习题3及参考答案
一、下列语句中标有横线的词项是集合概念还是非集合概念?1.人民,只有人民,才是创造历史的动力。
集合概念2.人民依法享有民主和自由的权利。
非集合概念3.北京人环保意识很强。
集合概念4.北京人是首都的公民,应当维护首都的形象。
非集合概念5.老年人经验丰富,老成持重。
集合概念6.我们的干部来自五湖四海。
集合概念二、下列定义正确吗?为什么?1.生产关系就是人与人之间的社会关系。
不正确,犯有“定义过宽”的错误。
定义项“人与人之间的社会关系”的外延比被定义项“生产关系”的外延大。
2.隐私案件是涉及有隐私内容的案件。
不正确,犯有“同语反复”的错误。
3.天文学就是研究太阳系的科学。
不正确,犯有“定义过窄”的错误。
定义项“研究太阳系的科学”比被定义项“天文学”外延小。
4.“什么是原因?”“原因就是产生结果的现象。
”“那么,什么又是结果?”“结果不就是原因产生的现象吗?”不正确,犯有“循环定义”的错误。
原因与结果这两种现象相互定义。
三、分析下列例子运用了何种探求因果联系的方法?写出其推理形式。
1.因船舶遇难落水,人在水中最多能坚持多久?有人研究发现:会水的人在水温0℃时可坚持15分钟;在水温2.5℃时,是30分钟;在水温5℃时,是1小时;在水温10℃时,是3小时;在水温25℃时,是一昼夜。
可见,人在水中坚持的时间长短与水温高低有因果关系。
( 共变法 )2.加拿大洛文教授为了弄清候鸟迁徙之谜,曾在秋天捕捉了几只候鸟,在入冬之后,将其中的几只置于白昼一天短于一天的自然环境里,将另外的几只置于日光灯照射之下的类似于白昼一天天延长的人工环境里,到了12月间,将两种环境里的候鸟全部放飞,结果发现,日光灯照射的候鸟像春天的候鸟一样向北飞去,而未受日光灯照射的候鸟却留在原地。
据此,洛文教授认为:候鸟迁徙的原因不是气温的升降,而是昼夜的长短。
(求同求异并用法)3.1975年,美国密西根州立大学的里斯本博士做了一个实验,有意外的发现。
课堂练习题及答案
课堂练习题
1.下列有关细胞内化合物的叙述错误的是()
A.C、H、O、N、P是核苷酸、ATP、染色质、核糖体共有的化学元素
B.小球藻在有氧条件下产生的丙酮酸可进入线粒体氧化分解为CO2和水
C.乳酸菌、酵母菌和HIV病毒都有核糖体、DNA、RNA
D.糖蛋白、抗体、限制酶、载体都是具有特异性作用的物质
2.下列关于核酸的说法正确的是( )
A.DNA的两条脱氧核苷酸链之间通过磷酸二酯键连接
B.DNA 和 RNA 分子中都含有磷酸二酯键
C.DNA能形成一定的空间立体结构,RNA则不能
D.RNA是单链结构,碱基之间不能形成氢键
3.细胞核的模式图如图所示,①~④表示其中的结构。
下列叙述正确的是( ) A.①由DNA和蛋白质构成
B.②是形成mRNA和核糖体的场所
C.③是由四层磷脂双分子层构成的膜
D.④实现了核质之间频繁的物质交换和信息交流,DNA和RNA均可出入
4.下列关于细胞膜的说法正确的是( )
A.细胞都具有细胞膜但不一定具有磷脂双分子层
B.构成膜的脂质主要是磷脂、脂肪和胆固醇,且胆固醇最丰富
C.细胞膜上的糖类既可与蛋白质结合,又可与脂质分子结合
D.膜蛋白在细胞膜上的分布不对称,不同的膜上的蛋白质的种类和数量相同
答案 CBAC。
七年级数学上册 课堂同步小练习 全册合集(含答案)
七年级数学上册 课堂同步小练习 全册合集(含答案)第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23); (3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( ) A.加法交换律 B.加法结合律 C.分配律 D.加法交换律与加法结合律2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14. 5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( )A.-1B.-5C.-6D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2 C.(-5)×0=0 D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 . 4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0; (3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( )A.(-3)×4×(-5)B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5)2.计算-3×2×27的结果是( ) A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134; (3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律C.乘法交换律和结合律D.乘法分配律2.计算(-4)×37×0.25的结果是( ) A.-37 B.37 C.73 D.-733.下列计算正确的是( )A.-5×(-4)×(-2)×(-2)=80B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0 D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10) =21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16) =14× +18× +12× (分配律) = = .1.4.2 有理数的除法第1课时 有理数的除法法则1计算(-18)÷6的结果是( )A.-3B.3C.-13D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-13.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2) C.8÷(-2)=-8×12D.0÷3=0 4.下列说法不正确的是( )A.0可以作被除数B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14); (3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ; (3)-56-6= . 2.计算(-2)×3÷(-2)的结果是( )A.12B.3C.-3D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是() A.12 B.43C.-43D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( )A.0B.12C.-33D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524; (3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132. 4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数2.计算(-3)2的结果是( )A.-6B.6C.-9D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( )A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 . 6.计算:(1)(-1)5= ; (2)-34= ; (3)07= ; (4)⎝ ⎛⎭⎪⎫523= . 7.计算:(1)(-2)3; (2)-452; (3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( )解:原式=2÷3×(5-9)…①=2÷3×(-4)…②=2÷(-12)…③=-6.…④A.①B.②C.③D.④2.计算(-8)×3÷(-2)2的结果是( )A.-6B.6C.-12D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算: (1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32; (3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价 3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…};正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃).答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2.(2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂6.(1)-1 (2)-81 (3)0 (4)12587.解:(1)原式=-8.(2)原式=-425.(3)原式=-949.(4)原式=-827.第2课时 有理数的混合运算1.C2.A3.134.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4.(3)原式=8-2×9-(-6)2=8-18-36=-10-36=-46. (4)原式=-1÷14+6-0=-1×4+6=-4+6=2.1.5.2 科学记数法1.C2.C3.C4.(1)1.02×106 (2)7 (3)299000000。
卖火柴的小女孩课堂练习
卖火柴的小女孩
一、看拼音写词语。
二、比一比,再组词。
焰()烘()梗()橱()
馅()拱()硬()厨()
魂()蜷()填()烁()
槐()倦()镇()栎()
三、找出没有错别字的一组。
1.拖鞋慈爱蜷着
2.暖和成径喷香
3.维一简直擦然
4.火焰腊烛冻疆
四、照样子,写词语。
明晃晃:
又冷又黑:
五、把下列反问句改写成陈述句。
1.她敢从成把的火柴里抽出一根,在墙上擦燃了,来暖和暖和自己的小手吗?
2.她从家里出来的时候还穿着一双拖鞋,可是有什么用呢?
六、写出下列词的反义词。
快乐——()光明——()精致——()
美丽——()冷淡——()柔弱——()
答案:
一、衣兜、蜷着、火焰、暖烘烘、填满、橱窗、闪烁、灵魂
二、火焰、馅饼;暖烘烘、拱桥;火柴梗、坚硬;橱窗、厨房;灵魂、槐树;蜷缩、诲人不倦;填空、镇静;闪烁、栎树
三、1
四、红通通、绿油油、黄澄澄、黑乎乎;又饿又渴;又哭又闹;又大又圆;又肥又大
五、1.她不敢从成把的火柴里抽出一根,在墙上擦燃了,来暖和暖和自己的小手。
2.她从家里出来的时候还穿着一双拖鞋,可是没有用。
六、痛苦、黑暗、粗糙、丑陋、热情、坚强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂小练习
一、基础练习
1、a×7×b可以简写成()7×a×a可以简写成()
2、小红今年m岁,陈老师的岁数比她的3倍少8岁,陈老师的岁数是(),如果m=12,陈老师今年的岁数是()岁。
3、修一条长a千米的路,如果每天修2千米,修了b天后,还剩()千米。
长方形的宽是m米,长是宽的2倍,长方形的周长是()米,面积是()平方米。
4、一种贺卡的单价是a元,小英买5张这样的贺卡。
用去();小明买n张这样的贺卡。
付出10元,应找回( )元。
5、每千瓦时电费0.6元,每立方米水费2元,小明家本月用了a千瓦时和b 立方米谁,一共要付水电费()元。
如果3x+2=14,那么2x+3=()
二、仔细判一判。
1、4a表示4个a相乘的积。
()当a=2时,a2和2a一定会相等。
2、方程一定是等式,但等式不一定是方程()
3、15x=0,x的值表示没有,所以此方程没有解()
4、未知数的值就是方程的解。
()
5、方程2x=1的解与方程x÷2=1的解相同。
()
二、拓展延伸(小组合作交流学习)
(1)小刚今年a岁,小红今年(a+5)岁,再过10年后,他们相差()岁。
A 、5
B 、10
C 、15
(2)在5+2x>10,x+x-18;x=3;11+13=4×6;x—0.5x=2;5个式子中,有()是方程
A 、3
B 、2
C 、4
(3)下面各组中,相等的是()
A a3与3a
B 3a+3a和2a+4a
C a+a与a2
(4)M是奇数,n是偶数,下面结果是奇数的式子是()
A 3m+3
B 2m+n C、2(m+n)
(5)甲数是a,比乙数的5倍少3,表示乙数的式子是()
A、a×5—3
B、(a-3)÷5
C、(a+3)÷5
三、用你喜欢的方法解方程。
3x-6+4=16x+0.25x=101+0.25x=10。