【数学】河北省邯郸市2018届高三第一次模拟考试试题(理)
河北省邯郸市高三数学下学期第一次模拟考试试题理(2021学年)
河北省邯郸市2018届高三数学下学期第一次模拟考试试题理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省邯郸市2018届高三数学下学期第一次模拟考试试题理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省邯郸市2018届高三数学下学期第一次模拟考试试题理的全部内容。
河北省邯郸市2018届高三数学下学期第一次模拟考试试题 理第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
已知复数1z i =-+,则22z z z+=+( ) A.—1 B .1 C.i - D.i 2。
设全集(3,)U =-+∞,集合2{|142}A x x =<-≤,则U C A =( ) A.(3,2)[3,)-+∞ B.(2,2)[3,)-+∞ C .(3,2](3,)-+∞ D.[2,2](3,)-+∞3。
某电视台夏日水上闯关节目中的前三关的过关率分别为0。
8,0.7,0.6,只有通过前一天才能进入下一关,且通过每关相互独立。
一选手参加该节目,则该选手只闯过前两关的概率为( )A .0。
56 B.0。
336 C .0.32 D.0.224 4.ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 20sin ab C B =,2241a c +=,且8cos 1B =,则b =( )A.6 B.42 C.35 D .75。
如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .4B .5 C.6 D.76。
若函数221,1()1,1x x f x x ax x ⎧+≥⎪=⎨-++<⎪⎩在R 上是增函数,则a 的取值范围为( )A .[2,3] B.[2,)+∞ C .[1,3] D .[1,)+∞7.记不等式组22220x y x y y +≤⎧⎪+≥⎨⎪+≥⎩,表示的平面区域为Ω,点P 的坐标为(,)x y 。
河北省2018届高三一模数学试卷(含答案)
高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 复数(2)i i +的虚部为2. 设函数2log ,0()4,0x x x f x x >⎧=⎨≤⎩,则((1))f f -= 3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2x P x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为 5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞= 6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为 8. 若21(2)n x x +*()n N ∈的二项展开式中的第9项是常数项,则n = 9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =; ③1x y π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3x y =C. 13y x = D. lg ||y x = 14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A. 221255x y +=B. 2213010x y += C. 2213616x y += D. 2214525x y +=16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b +、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列B. 可能是等差数列,但不可能是等比数列C. 不可能是等差数列,但可能是等比数列D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求:(1)异面直线11B C 与1A C 所成角的大小;(2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b -=(0)b >的左、右焦点,过2F 作垂直于x 轴的 直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求 12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数; (1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式;(3)在(2)的条件下,设n n na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4. 345. 46. 187. 75π8. 129. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题17.(1)5arccos 10;(2)33; 18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29; 20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =; 当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;。
2018届河北省模拟试题(一)数学(理)试卷(含答案)
衡水金卷2018年普通高等学校招生全国统一考试模拟试题(一)理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|20A x x x =-≤,{}|1381x B x =<<,{}|2,C x x n n N ==∈,则()A B C =U I ( ) A .{}2B .{}0,2C .{}0,2,4D .{}2,42.设i 是虚数单位,若5()2ii x yi i+=-,x ,y R ∈,则复数x yi +的共轭复数是( ) A .2i -B .2i --C .2i +D .2i -+3.已知等差数列{}n a 的前n 项和是n S ,且456718a a a a +++=,则下列命题正确的是( ) A .5a 是常数B .5S 是常数C .10a 是常数D .10S 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是( )A .316B .38C .14D .185.已知点F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,点F 到渐近线的距离是点F 到左顶点的距离的一半,则双曲线C 的离心率为( )A.2或5 3B.53C.2D.26.已知函数[]2sin,,0,()1,(0,1],x xf xx xπ⎧∈-⎪=⎨-∈⎪⎩则1()f x dxπ-=⎰()A.2π+B.2πC.22π-+D.24π-7.执行如图程序框图,则输出的S的值为()A2021B2019C.505D.50518.已知函数23()sin cos30)f x x x xωωωω=->的相邻两个零点差的绝对值为4π,则函数()f x的图象()A.可由函数()cos4g x x=的图象向左平移524π个单位而得B.可由函数()cos4g x x=的图象向右平移524π个单位而得C.可由函数()cos2g x x=的图象向右平移724π个单位而得D.可由函数()cos2g x x=的图象向右平移56π个单位而得9.61(23)(1)xx-+的展开式中剔除常数项后的各项系数和为()A.73-B.61-C.55-D.63-10.某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是()A .4πB .8πC .16πD .32π11.设O 为坐标原点,点P 为抛物线C :22(0)y px p =>上异于原点的任意一点,过点P 作斜率为0的直线交y 轴于点M ,点P 是线段MN 的中点,连接ON 并延长交抛物线于点H ,则||||OH ON 的值为( ) A .pB .12C .2D .3212.若函数()y f x =,x M ∈,对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有()()af x f x T =+恒成立,此时T 为()f x 的类周期,函数()y f x =是M 上的a 级类周期函数,若函数()y f x =是定义在区间[0,)+∞内的2级类周期函数,且2T =,当[0,2)x ∈时,212,01,()2(2),12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩函数21()2ln 2g x x x x m =-+++,若[]16,8x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是( )A .5(,]2-∞B .13(,]2-∞ C .3(,]2-∞-D .13[,)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2sin ,cos )a αα=r ,(1,1)b =-r ,且a b ⊥r r ,则2()a b -=r r .14.已知x ,y 满足约束条件20,20,4180,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩则目标函数53z x y =-的最小值为 .15.在等比数列{}n a 中,2412a a a ⋅=,且4a 与72a 的等差中项为17,设(1)nn n b a =-,*n N ∈,则数列{}n b 的前2018项和为 .16.有一个容器,下部是高为5.5cm 的圆柱体,上部是与圆柱共底面且母线长为6cm 的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+u u u r u u u r u u u r .(1)求a 及角A 的大小;(2)求||AD u u u r的值.18.在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且12BC BB ==,1160A AB A AD ∠=∠=︒.(1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为7. 19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布2(,)N μσ,利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为142.7511.95σ=≈; ②若2~(,)Z N μσ,则()0.6826P Z μσμσ-<≤+=,(22)0.9544P Z μσμσ-<≤+=.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的标准方程;(2)若直线l :2y kx =+与椭圆C 相交于A ,B 两点,点D 的坐标为1(0,)2,问直线AD 与BD 的斜率之和AD BD k k +是否为定值?若是,求出该定值,若不是,试说明理由. 21.已知函数()2(1)xf x e a x b =---,其中e 为自然对数的底数. (1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数2()(1)1xg x e a x bx =----,且(1)0g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆1C 的参数方程为1cos ,1sin x a y a θθ=-=⎧⎨=-+⎩(θ是参数,a 是大于0的常数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆2C 的极坐标方程为)4πρθ=-.(1)求圆1C 的极坐标方程和圆2C 的直角坐标方程; (2)分别记直线l :12πθ=,R ρ∈与圆1C 、圆2C 的异于原点的交点为A ,B ,若圆1C 与圆2C 外切,试求实数a 的值及线段||AB 的长. 23.选修4-5:不等式选讲 已知函数()|21|f x x =+.(1)求不等式()10|3|f x x ≤--;(2)若正数m ,n 满足2m n mn +=,求证:()(2)16f m f n +-≥.2018年普通高等学校招生全国统一考试模拟试题理数(一)答案一、选择题1-5:BADAB 6-10:DCBAB 11、12:CB二、填空题13.185 14.2- 15.100841312- 16.312256cm π三、解答题17.解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+,即2sin cos sin()sin B A A C B -=+=, 在ABC ∆中,sin 0B >, 所以1cos 2A =-, 又(0,)A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+u u u r u u u r u u u r ,得2212()33AD AB AC =+u u u r u u u r u u u r 4441421()99929=++⨯⨯⨯-=,所以2||3AD =u u u r .18.解:(1)连接1A B ,1A D ,AC ,因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1A O BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥,而1AO AC O =I ,所以BD ⊥平面1A AC , 又1AA ⊂平面1A AC ,所以1BD AA ⊥, 又11//CC AA ,所以1BD CC ⊥.(2)由112A B A D ==,及22BD AB ==,知11A B A D ⊥,于是111222AO A O BD AA ===,从而1A O AO ⊥, 结合1A O BD ⊥,AO BD O =I , 得1A O ⊥底面ABCD , 所以OA 、OB 、OA 两两垂直.如图,以点O 为坐标原点,OA u u u r的方向为x 轴的正方向,建立空间直角坐标系O xyz -,则(1,0,0)A ,(0,1,0)B ,(0,1,0)D -,1(0,0,1)A ,(1,0,0)C -,(0,2,0)DB =u u u r,11(1,0,1)BB AA ==-u u u r u u u r ,11(1,1,0)DC DC ==-u u u u r u u u r, 由11(1,0,1)DD AA ==-u u u u r u u u r ,易求得1(1,1,1)D --. 设111D E DC λ=u u u u r u u u u r ([]0,1λ∈),则(1,1,1)(1,1,0)E E E x y z λ++-=-,即(1,1,1)E λλ---. 设平面1B BD 的一个法向量为(,,)n x y z =r,由10,0,n DB n BB ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r得0,0,y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =r , 设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|DE n θ=<>u u u r r 227142(1)1λλ==⨯+--+, 解得12λ=或13λ=-(舍去). 所以当E 为11D C 的中点时,直线DE 与平面1BDB 所成角的正弦值为7.19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x 为:50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布2(,)N μσ,且26μ=,11.95σ≈,∴(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=, ∴Z 落在(14.55,38.45)内的概率是0.6826. ②根据题意得1~(4,)2X B ,04411(0)()216P X C ===;14411(1)()24P X C ===;24413(2)()28P X C ===;34411(3)()24P X C ===;44411(4)()216P X C ===.∴X 的分布列为∴1()422E X =⨯=. 20.解:(1)由已知可得22222sin 4,c ac a b c π⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得22a =,221b c ==,故所求的椭圆方程为2212x y +=. (2)由221,22,x y y kx ⎧+=⎪⎨⎪=+⎩得22(12)860k x kx +++=,则2226424(12)16240k k k ∆=-+=->,解得k <或k >. 设11(,)A x y ,22(,)B x y ,则122812k x x k +=-+,122612x x k=+, 则1112AD y k x -=,2212BDy k x -=,所以122112121()2AD BDy x y x x x k k x x +-++=12121232()2kx x x x x x ++=6603k k -==,所以AD BD k k +为定值,且定值为0. 21.解:(1)'()2(1)xf x e a =--,当函数()f x 在区间[]0,1上单调递增时,'()2(1)0xf x e a =--≥在区间[]0,1上恒成立,∴min 2(1)()1xa e -≤=(其中[]0,1x ∈),解得32a ≤; 当函数()f x 在区间[]0,1上单调递减时,'()2(1)0xf x e a =--≤在区间[]0,1上恒成立,∴max 2(1)()xa e e -≥=(其中[]0,1x ∈),解得12ea ≥+. 综上所述,实数a 的取值范围是3(,][1,)22e -∞++∞U . (2)'()2(1)()xg x e a x b f x =---=.由(0)(1)0g g ==,知()g x 在区间(0,1)内恰有一个零点, 设该零点为0x ,则()g x 在区间0(0,)x 内不单调, 所以()f x 在区间0(0,)x 内存在零点1x , 同理,()f x 在区间0(,1)x 内存在零点2x , 所以()f x 在区间(0,1)内恰有两个零点. 由(1)知,当32a ≤时,()f x 在区间[]0,1上单调递增,故()f x 在区间(0,1)内至多有一个零点,不合题意. 当12ea ≥+时,()f x 在区间[]0,1上单调递减,故()f x 在区间(0,1)内至多有一个零点,不合题意,所以3122e a <<+. 令'()0f x =,得ln(22)(0,1)x a =-∈,所以函数()f x 在区间[]0,ln(22)a -上单调递减,在区间(ln(22),1]a -内单调递增. 记()f x 的两个零点为1x ,2x 12()x x <,因此1(0,ln(22)]x a ∈-,2(ln(22),1)x a ∈-,必有(0)10f b =->,(1)220f e a b =-+->. 由(1)0g =,得a b e +=,所以1()1()102f a b e =-+=-<,又(0)10f a e =-+>,(1)20f a =->,所以12e a -<<.综上所述,实数a 的取值范围为(1,2)e -.22.解:(1)圆1C :1cos ,1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数)消去参数θ,得其普通方程为222(1)(1)x y a +++=,将cos x ρθ=,sin y ρθ=代入上式并化简,得圆1C 的极坐标方程为22sin()204a πρθ++-+=.由圆2C 的极坐标方程)4πρθ=-,得22cos 2sin ρρθρθ=+. 将cos x ρθ=,sin y ρθ=,222x y ρ+=代入上式,得圆2C 的直角坐标方程为22(1)(1)2x y -+-=.(2)由(1)知圆1C 的圆心1C (1,1)--,半径1r a =;圆2C 的圆心2(1,1)C ,半径2r =12||C C == ∵圆1C 与圆2C 外切,a =a =即圆1C的极坐标方程为)4πρθ=-+, 将12πθ=代入1C,得sin()124ππρ=-+,得ρ= 将12πθ=代入2C,得cos()124ππρ=-,得ρ=故12||||AB ρρ=-=23.解:(1)此不等式等价于1,221(3)10,x x x ⎧<-⎪⎨⎪--+-≤⎩或13,221(3)10,x x x ⎧-≤≤⎪⎨⎪++-≤⎩或3,21310.x x x >⎧⎨++-≤⎩ 解得8132x -≤<-或132x -≤≤,或34x <≤, 即不等式的解集为8,43⎡⎤-⎢⎥⎣⎦. (2)∵0m >,0n >,2m n mn +=,21(2)2(2)28m n m n m n ++=⋅≤,即28m n +≥, 当且仅当2,2,m n m n mn =⎧⎨+=⎩即4,2m n =⎧⎨=⎩时取等号.∴()(2)|21||41|f m f n m n +-=++-+|(21)(41)|m n ≥+--+|24|m n =+2(2)16m n =+≥, 当且仅当410n -+≤,即14n ≥时取等号, ∴()(2)16f m f n +-≥.。
河北省邯郸市2018年高考数学一模试卷理科 含解析
河北省邯郸市2018年高考数学一模试卷(理科)(解析版)一、选择题(每小题5分,共60分)1.若z=,则z=()A.﹣ +i B. +i C.D.2.已知集合A={x|﹣3<x<2},B={x|3x>1},则A∩(∁R B)=()A.(﹣3,1]B.(1,2) C.(﹣3,0]D.[1,2)3.若双曲线的顶点和焦点分别为椭圆+y2=1的焦点和顶点,则该双曲线方程为()A.x2﹣y2=1 B.﹣y2=1 C.x2﹣=1 D.﹣=14.现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是()A.90 B.115 C.210 D.3855.某工厂对新研发的一种产品进行试销,得到如下数据表:根据如表可得线性回归方程=x+.其中=﹣20,=﹣b,那么单价定为8.3元时,可预测销售的件数为()A.82 B.84 C.86 D.886.定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),若f(x)在区间[0,1]内单调递增,则f(﹣)、f(1)、f()的大小关系为()A.f(﹣)<f(1)<f()B.f(1)<f(﹣)<f()C.f(﹣)<f()<f(1) D.f()<f(1)<f(﹣)7.在等比数列{a n}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a118=()A.1 B.10 C.32 D.1008.执行如图所示的程序框图,则输出结果a的值为()A.2 B.C.D.﹣19.已知函数f(x)=2sin2(ωx+)(ω>0)在区间[,]内单调递增,则ω的最大值是()A.B.C.D.10.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为()A.2(1++)B.2(1+2+)C.4+2D.4(1+)11.已知函数f(x)=e x(x≥0),当x<0时,f(﹣x)=4f(x).若函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,则a的取值范围是()A.(0,1) B.(,e)C.(,e)D.(,1)12.在公差不为0的等差数列{a n}中,a2+a4=a p+a q,记+的最小值为m,若数列{b n}满足b1=m,2b n+1﹣b n b n+1=1,则b1+++…+=()A. B. C. D.二、填空题(每小题5分,共20分)13.已知向量,夹角为120°,||=5,||=2,=+λ,若⊥,则λ=.14.若x,y满足约束条件,则z=x2+y2的最小值为.15.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O的表面积为.16.已知直线y=x与椭圆C: +=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e=.三、解答题(共5小题,70分)17.(12分)(2018潮南区模拟)在△ABC中,角A、B、C的对边分别为a、b、c,满足acosB+bcosA=2ccosC.(1)求C;(2)若△ABC的面积为2,a+b=6,求∠ACB的角平分线CD的长度.18.(12分)(2018邯郸一模)如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.(1)求证:DE∥平面PBC;(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P﹣BC﹣E的余弦值.19.(12分)(2018邯郸一模)某种机器在一个工作班的8小时内,需要工作人员操控累计2个小时才能正常运行,当机器需用操控而无人操控时,机器自动暂停运行.每台机器在某一时刻是否用人操控彼此之间相互独立.(1)若在一个工作班内有4台相同机器,求在同一时刻需用人操控的平均台数.(2)若要求一人操控的所有机器正常运行的概率控制在不低于0.9的水平,且该人待工而闲的槪率小于0.6.试探讨:一人操控1台、2台、3台机器这三种工作方案中,哪种方案符合要求,并说明理由.20.(12分)(2018邯郸一模)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F 交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.21.(12分)(2018邯郸一模)设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f (1))处的切线方程为x+y﹣2=0(1)求y=f(x)的解析式;(2)证明:<1.选做题(请考生从22,23,24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选題号后的方框涂黑)22.(10分)(2018邯郸一模)如图,点A、B、D、E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=4,AD=8,求DF的长.【选项4-4:坐标系与参数方程】23.(2018邯郸一模)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,﹣1)的直线l:(t为参数)与曲线C交于M、N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)求|PM|2+|PN|2的值.【选项4-5:不等式选讲】24.(2018邯郸一模)已知函数f(x)=|x﹣a|﹣|2x﹣1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.2018年河北省邯郸市高考数学一模试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.若z=,则z=()A.﹣ +i B. +i C.D.【分析】利用复数代数形式的乘除运算化简,求得z,再由求得答案.【解答】解:∵z==,∴z=|z|2==.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.2.已知集合A={x|﹣3<x<2},B={x|3x>1},则A∩(∁R B)=()A.(﹣3,1]B.(1,2) C.(﹣3,0]D.[1,2)【分析】求出B中不等式的解集确定出B,找出A与B补集的交集即可.【解答】解:由B中不等式变形得:3x>1=30,解得:x>0,即B=(0,+∞),∴∁R B=(﹣∞,0],∵A=(﹣3,2),∴A∩(∁R B)=(﹣3,0],故选:C.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.3.若双曲线的顶点和焦点分别为椭圆+y2=1的焦点和顶点,则该双曲线方程为()A.x2﹣y2=1 B.﹣y2=1 C.x2﹣=1 D.﹣=1【分析】求得椭圆的焦点和顶点坐标,设双曲线的方程为﹣=1(a,b>0),可得a,c,进而得到b的值,可得双曲线的方程.【解答】解:椭圆+y2=1的焦点为(±1,0)和顶点(±,0),设双曲线的方程为﹣=1(a,b>0),可得a=1,c=,b==1,可得x2﹣y2=1.故选:A.【点评】本题考查双曲线的方程的求法,注意运用椭圆的方程和性质,考查运算能力,属于基础题.4.现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是()A.90 B.115 C.210 D.385【分析】根据黑球的个数分为三类,根据根据分类计数原理可得.【解答】解:分三类,两个黑球,有C42C62=90种,三个黑球,有C43C61=24种,四个黑球,有C44=1种,根据分类计数原理可得,至少有两个黑球的取法种数是90+24+1=115,故选:B.【点评】本题考查了分类计数原理,关键是分类,属于基础题.5.某工厂对新研发的一种产品进行试销,得到如下数据表:根据如表可得线性回归方程=x+.其中=﹣20,=﹣b,那么单价定为8.3元时,可预测销售的件数为()A.82 B.84 C.86 D.88【分析】根据题意,计算、,利用线性回归方程过样本的中心点,求出线性回归方程,再计算x=8.3时的值,从而得出预测结果.【解答】解:根据题意,计算=×(8+8.2+8.4+8.6+8.8+9)=8.5,=×(90+84+83+80+75+68)=80,线性回归方程=x+中=﹣20,=﹣b=80﹣(﹣20)×8.5=250,所以线性回归方程=﹣20x+250,当x=8.3时,=﹣20×8.3+250=84,可预测单价定为8.3元时,销售件数为84.故选:B.【点评】本题考查了线性回归方程过样本中心点的应用问题,也考查了利用线性回归方程进行预测的应用问题,是基础题目.6.定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),若f(x)在区间[0,1]内单调递增,则f(﹣)、f(1)、f()的大小关系为()A.f(﹣)<f(1)<f()B.f(1)<f(﹣)<f()C.f(﹣)<f()<f(1) D.f()<f(1)<f(﹣)【分析】根据函数奇偶性和周期性的关系进行转化,结合函数单调性的性质进行比较即可得到结论.【解答】解:∵定义在R上的偶函数f(x)满足:f(x+1)=f(x﹣1),∴由f(x+1)=f(x﹣1),得f(x+2)=f(x),则f(﹣)=f(﹣+2)=f(),f()=f(﹣2)=f(﹣)=f(),∵f(x)在区间[0,1]内单调递增,∴f(﹣)<f()<f(1),即f()<f()<f(1),故选:C.【点评】本题主要考查函数值的大小比较,根据函数奇偶性,周期性和单调性的关系进行转化是解决本题的关键.7.在等比数列{a n}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a118=()A.1 B.10 C.32 D.100【分析】由题意列关于等比数列的首项和公比的方程组,求解方程组得答案.【解答】解:在等比数列{a n}中,公比q≠1,由a1+a2,a3+a4,a5+a6成等差数列,且a1+a2+a3=1,得,即:,解得.∴数列{}是常数列1,1,1,…,则a12+a22+…+a118=10.故选:B.【点评】本题考查等比数列的通项公式,考查方程组的解法,是基础题.8.执行如图所示的程序框图,则输出结果a的值为()A.2 B.C.D.﹣1【分析】模拟执行程序,依次写出每次循环得到的a,n的值,观察规律可得a的取值以3为周期,从而有当i=2018时,不满足条件n≤2018,退出循环,输出a的值为﹣1,从而得解.【解答】解:模拟执行程序,可得a=2,n=1,满足条件n≤2018,a=,n=3满足条件n≤2018,a=﹣1,n=4满足条件n≤2018,a=2,n=5…观察规律可知,a的取值以3为周期,由2018=672×3,从而有:满足条件n≤2018,a=,n=2018满足条件n≤2018,a=﹣1,n=2018不满足条件n≤2018,退出循环,输出a的值为﹣1.故选:D.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基本知识的考查.9.已知函数f(x)=2sin2(ωx+)(ω>0)在区间[,]内单调递增,则ω的最大值是()A.B.C.D.【分析】由条件利用二倍角公式化简函数的解析式,再利用余弦函数的单调性求得ω的最大值.【解答】解:∵函数f(x)=2sin2(ωx+)=2=1﹣cos(2ωx+)(ω>0)在区间[,]内单调递增,故y=cos(2ωx+)在区间[,]内单调递减,∴2ω+≤π,∴ω≤,故选:C.【点评】本题主要考查二倍角公式的应用,余弦函数的单调性,属于基础题.10.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为()A.2(1++)B.2(1+2+)C.4+2D.4(1+)【分析】根据三视图知几何体是三棱锥P﹣ABC是棱长为2的正方体一部分,由正方形的性质求棱长、判断位置关系,由三角形的面积公式求出该四面体的表面积.【解答】解:根据三视图知几何体是三棱锥P﹣ABC是棱长为2的正方体一部分,直观图如图所示:由正方体的性质可得,PC=PA=AC=2,PB=,∴BC⊥PC,AB⊥PA,∴该四面体的表面积:S=+=2(1+2+),故选:B.【点评】本题考查三视图求几何体的体积,由三视图冰借助于正方体复原几何体是解题的关键,考查空间想象能力.11.已知函数f(x)=e x(x≥0),当x<0时,f(﹣x)=4f(x).若函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,则a的取值范围是()A.(0,1) B.(,e)C.(,e)D.(,1)【分析】由题意得,y=f(x)与y=ax+a(a>0)有唯一交点.由f'(x)=e x(x≥0),得切线方程为y﹣e m=e m(x﹣m),由此能求出结果.【解答】解:由题意得,∵函数g(x)=f(x)﹣ax﹣a(a>0)有唯一零点,∴y=f(x)与y=ax+a(a>0)有唯一交点.由图可得a1<a<a2,由题意得,,∵f'(x)=e x(x≥0),设切点横坐标为m,∴切线斜率k=f'(m)=e m=a2,切线方程为y﹣e m=e m(x﹣m),且过点(﹣1,0)解得m=0,∴,∴.故选:D.【点评】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质和数形结合思想的合理运用.12.在公差不为0的等差数列{a n}中,a2+a4=a p+a q,记+的最小值为m,若数列{b n}满足b1=m,2b n+1﹣b n b n+1=1,则b1+++…+=()A. B. C. D.【分析】根据题意,求出+的最小值m,从而求出b1与通项公式b n,再求出以及b1+++…+的值.【解答】解:在等差数列{a n}中,由a2+a4=a p+a q得,p+q=6,因为+=(+)(p+q)=(1+9++)=+(+)≥+2=,当且仅当q=3p时取得最小值,此时p=,q=(不合题意,舍去);应取p=2,q=4,此时+取得最小值是,所以m=,b1=;又由2b n+1﹣b n b n+1=1,可归纳出b n=,所以=;所以b1+++…+=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:C.【点评】本题考查了等差数列与数列求和的应用问题,也考查了逻辑推理与运算能力,是综合性题目.二、填空题(每小题5分,共20分)13.已知向量,夹角为120°,||=5,||=2,=+λ,若⊥,则λ=.【分析】根据向量数量积的公式,结合向量垂直的关系即可得到结论.【解答】解:∵向量,夹角为120°,||=5,||=2,∴=||||cos120°=5×2×(﹣)=﹣5,∵=+λ,⊥,∴(+λ)=(+λ)(﹣)=0,即﹣+λ﹣λ=0,∴﹣5﹣25+4λ+5λ=0解得λ=,故答案为:.【点评】本题主要考查平面向量的基本运算,利用向量垂直和数量积之间的关系是解决本题的关键.14.若x,y满足约束条件,则z=x2+y2的最小值为5.【分析】画出满足条件的平面区域,求出角点的坐标,结合z=x2+y2的几何意义求出其最小值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(2,1),z=x2+y2的几何意义表示平面区域内的点到原点的距离的平方,故z=z=x2+y2=4+1=5,故答案为:5.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.15.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O的表面积为12π.【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC的三个侧面的面积之和最大,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:由题意三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC的三个侧面的面积之和最大,三棱锥P﹣ABC的外接球就是它扩展为正方体的外接球,求出正方体的对角线的长:2所以球的直径是2,半径为,球的表面积:4π×=12π.故答案为:12π.【点评】本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.16.已知直线y=x与椭圆C: +=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e=.【分析】联立直线y=x和椭圆方程,求得A,B的坐标,以及|OA|2,将直线OP方程为,代入椭圆方程,求得P的坐标及|OP|2,再由|OP|2=3|OA|2,结合离心率公式,可得e.【解答】解:因为,所以;由题设直线OP方程为,所以,所以,所以.故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的对称性和等边三角形的性质,考查化简整理的运算能力,属于中档题.三、解答题(共5小题,70分)17.(12分)(2018潮南区模拟)在△ABC中,角A、B、C的对边分别为a、b、c,满足acosB+bcosA=2ccosC.(1)求C;(2)若△ABC的面积为2,a+b=6,求∠ACB的角平分线CD的长度.【分析】(I)根据正弦定理将边化角,化简得出cosC;(II)根据三角形的面积公式列方程解出CD.【解答】解:(Ⅰ)∵acosB+bcosA=2ccosC,∴sinAcosB+sinBcosA=2sinCcosC,即sinC=2sinCcosC,因为0<C<π,所以,故;(Ⅱ)在△ABC中,∵CD平分∠ACB,∴.∵S△ABC=S△ACD+S△BCD,∴2=a+=(a+b)CDsin.解得.【点评】本题考查了正弦定理在解三角形中的应用,属于中档题.18.(12分)(2018邯郸一模)如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.(1)求证:DE∥平面PBC;(2)若平面PAB⊥平面ABCD,PA=PB=2,求二面角P﹣BC﹣E的余弦值.【分析】(1)取AB中点F,连接EF、DF,则EF∥PB,由∠CBD=∠FDB=30°,得DF∥BC,从而平面DEF∥平面PBC,由此能证明DE∥平面PBC.(2)连接DF,分别取FB,FD,FP所在直线为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角P﹣BC﹣E的余弦值.【解答】证明:(1)取AB中点F,连接EF、DF,…(1分)∵E为棱PA的中点,∴EF∥PB,∵∠CBD=∠FDB=30°∴DF∥BC∵EF、DF⊂平面DEF,PB、BC⊂平面PBC∴平面DEF∥平面PBC,…(4分)∵DE⊂平面DEF,∴DE∥平面PBC.…(6分)解:(2)∵PA=PB=2,∴PF⊥AB,∵平面PAB⊥平面ABCD,交线为AB,∴PF⊥平面ABCD,且PF=1,连接DF,分别取FB,FD,FP所在直线为x,y,z轴建立空间直角坐标系,如图所示.…(7分)则点,B(,0,0),,D(0,3,0),P(0,0,1),E(﹣,0,),…(8分)设平面BCP的法向量为则,∴,即,∴y=0,x=1,即…(10分)设平面BCE的法向量为,,则,∴,∴…(11分)∴cos<>==,∴二面角P﹣BC﹣E的余弦值为.…(12分)【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.19.(12分)(2018邯郸一模)某种机器在一个工作班的8小时内,需要工作人员操控累计2个小时才能正常运行,当机器需用操控而无人操控时,机器自动暂停运行.每台机器在某一时刻是否用人操控彼此之间相互独立.(1)若在一个工作班内有4台相同机器,求在同一时刻需用人操控的平均台数.(2)若要求一人操控的所有机器正常运行的概率控制在不低于0.9的水平,且该人待工而闲的槪率小于0.6.试探讨:一人操控1台、2台、3台机器这三种工作方案中,哪种方案符合要求,并说明理由.【分析】(Ⅰ)用X表示四台机器在同一时刻需用人操控的台数,则X服从二项分布B(4,),由此能求出在同一时刻需用人操控的平均台数.(Ⅱ)设X表示n台机器在同一时刻需用人操控的台数,当n=1时,X服从两点分布;当n=2时,P(X)=,k=0,1,2;当n=3时,,k=0,1,2,3.由此得到一个工作人员操控2台机器符合要求.【解答】解:(Ⅰ)用X表示四台机器在同一时刻需用人操控的台数,则X服从二项分布:,k=0,1,2,3,4,∴在同一时刻需用人操控的平均台数EX==1.….(4分)(Ⅱ)设X表示n台机器在同一时刻需用人操控的台数.①当n=1时,X服从两点分布:此时,一人操控1台机器,工作人员能够及时操控机器,不会出现机器等待操控的情形,但工作人员待工而闲的概率为>0.60.…(6分)②当n=2时,P(X)=,k=0,1,2.P(X=0)==,P(X=1)==,P(X=2)=()2=,即X的分布列为:此时,一人操控2台机器,在同一时刻需要操控2台机器的概率为,故一人操控的2台机器正常运行的概率为.工作人员待工而闲的概率为()2=0.526<0.60.….(8分)③当n=3时,,k=0,1,2,3.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()3=,即X的分布列为:此时,一人操控3台机器,出现机器等待工作人员操控而不能正常运行的概率为:3×()2×+()3=,故一人操控的3台机器正常运行的概率为.工作人员待工而闲的概率为()3==0.421875<0.60.…(10分)综上所述,一个工作人员操控2台机器符合要求.….(12分)【点评】本题考查离散型随机变量的分布列及数学期望的求法及应用,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.20.(12分)(2018邯郸一模)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F 交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.【分析】(1)利用梯形的中位线定理和抛物线的性质列出方程解出p即可;(2)设l斜率为k,联立方程组解出AB的中点即M的坐标,根据切线的性质列方程解出k即可得出l的方程和圆的圆心与半径.【解答】解:(1)设A(x1,y1),B(x2,y2),则|AB|=y1+y2+p,又∵以AB为直径的圆M与直线y=﹣1相切,∴|AB|=y1+y2+2,故p=2,∴抛物线C的方程为x2=4y.(2)设直线l的方程为y=kx+1,代入x2=4y中,化简整理得x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4,∴,∴圆心的坐标为M(2k,2k2+1),∵圆M与直线相切于点Q,∴|MQ|=|MN|,∴,解得,此时直线l的方程为,即x﹣2y+2=0,圆心,半径,∴圆M的方程为.【点评】本题考查了抛物线的性质,直线与圆锥曲线的位置关系,切线的性质,属于中档题.21.(12分)(2018邯郸一模)设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f (1))处的切线方程为x+y﹣2=0(1)求y=f(x)的解析式;(2)证明:<1.【分析】(1)求函数的导数,根据导数的几何意义建立方程关系即可求y=f(x)的解析式;(2)将不等式进行转化,构造函数,求函数的导数,利用导数研究函数的单调性和极值即可证明:<1.【解答】解:(1)因为,所以f′(1)=1+a=﹣1,所以a=﹣2又点(1,f(1))在切线x+y﹣2=0上,所以1+b﹣2=0,所以b=1所以y=f(x)的解析式为f(x)=(x﹣2)lnx+1.….(4分)(2)令g(x)=x﹣e x,(x>0)因为g′(x)=1﹣e x所以当x>0时,g′(x)<0所以g(x)在区间(0,+∞)内单调递减,所以g(x)<g(0)=﹣1<0所以等价于f(x)﹣1>g(x).….(6分)我们如果能够证明f(x)﹣1>﹣1,即f(x)>0即可证明目标成立.下面证明:对任意x∈(0,+∞),f(x)>0.由(1)知,令则,所以h (x )在(0,+∞)内单调递增,又h (1)=﹣1<0,h (2)=ln2>0,所以存在x 0∈(1,2)使得h (x 0)=0. 当0<x <x 0时,h (x )<0即f ′(x )<0,此时f (x )单调递减; 当x >x 0时,h (x )>0即f ′(x )>0,此时f (x )单调递增;所以f (x )≥f (x 0)=(x 0﹣2)lnx 0+1.由f ′(x 0)=0得所以f (x )≥f (x 0)=(x 0﹣2)lnx 0+1=(x 0﹣2)(﹣1)+1=5﹣(x 0+).令,则r ′(x )=1﹣=<0所以r (x )在区间(1,2)内单调递减,所以r (x )<r (1)=5所以f (x )>5﹣(x +)>5﹣5=0.综上,对任意x ∈(0,+∞),.….(12分)【点评】本题主要考查导数的综合应用,利用导数的几何意义以及构造函数是解决本题的关键.综合性较强,难度较大.选做题(请考生从22,23,24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选題号后的方框涂黑) 22.(10分)(2018邯郸一模)如图,点A 、B 、D 、E 在⊙O 上,ED 、AB 的延长线交于点C ,AD 、BE 交于点F ,AE=EB=BC .(1)证明:=;(2)若DE=4,AD=8,求DF 的长.【分析】(1)证明∠BAD=∠EAD ,即可证明: =;(2)证明△EAD ∽△FED ,利用比例关系求DF 的长. 【解答】(1)证明:∵EB=BC∴∠C=∠BEC∵∠BED=∠BAD∴∠C=∠BED=∠BAD…(2分)∵∠EBA=∠C+∠BEC=2∠C,AE=EB∴∠EAB=∠EBA=2∠C,又∠C=∠BAD∴∠EAD=∠C∴∠BAD=∠EAD…(4分)∴.…(5分)(2)解:由(1)知∠EAD=∠C=∠FED,又∠EDA=∠EDA∴△EAD∽△FED…(8分)∴又∵DE=4,AD=8,∴DF=2.…(10分)【点评】本题考查相似三角形的判定与性质,考查等角对等弧,考查学生分析解决问题的能力,属于中档题.【选项4-4:坐标系与参数方程】23.(2018邯郸一模)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,﹣1)的直线l:(t为参数)与曲线C交于M、N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)求|PM|2+|PN|2的值.【分析】(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,把,代入即可得出直角坐标方程.根据(t为参数),消去t得普通方程.(2)将直线l的参数方程化为(t为参数)代入y2=2x中,整理得.由参数的几何意义,可知:|PM|2+|PN|2==﹣4t1t2即可得出.【解答】解:(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,∵,∴y2=2x;根据(t为参数),消去t得,x﹣y﹣3=0,故曲线C的直角坐标方程和直线l的普通方程分别是y2=2x,x﹣y﹣3=0.(2)将直线l的参数方程化为(t为参数)代入y2=2x中,整理得.设t1,t2是该方程的两根,则,由参数的几何意义,可知.【点评】本题考查了直角坐标与极坐标的互化、参数方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.【选项4-5:不等式选讲】24.(2018邯郸一模)已知函数f(x)=|x﹣a|﹣|2x﹣1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.【分析】(1)问题转化为解关于x的不等式组,求出不等式的解集即可;(2)根据x的范围,去掉绝对值号,从而求出a的范围即可.【解答】解:(1)当a=2时,由f(x)≥﹣3,可得|x﹣2|﹣|2x﹣1|≥﹣3,①或②或③,解①得;解②得;解③得x=2,综上所述,不等式的解集为{x|﹣4≤x≤2};(2)若当x∈[1,3]时,f(x)≤3成立,即|x﹣a|≤3+|2x﹣1|=2x+2,故﹣2x﹣2≤x﹣a≤2x+2,即:﹣3x﹣2≤﹣a≤x+2,∴﹣x﹣2≤a≤3x+2对x∈[1,3]时成立,∴a∈[﹣3,5].【点评】本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.。
河北省邯郸市2018届高三上学期摸底考试数学(理)试题含答案
高三数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|20}A x xx =-->,{|0}B x x =>,则A B =( )A .(1,2)B .(0,2)C .(2,)+∞D .(1,)+∞ 2.若复数z 满足(1)23i z i -=+,则复数z 的实部与虚部之和为( ) A .—2 B .2 C .-4 D .4 3。
在ABC ∆中,若4AB AC AP +=,则PB =( ) A .3144AB AC - B .3144AB AC -+C .1344AB AC -+ D .1344AB AC -4。
12,F F 分别是双曲线C :22197x y -=的左、右焦点,P 为双曲线C 右支上一点,且1||8PF =,则12PF F ∆的周长为( )A . 15B .16 C. 17 D .185.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为( )A .127B .23C 。
827D .496。
如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .4,10n V ==B .5,12n V ==C 。
4,12n V ==D .5,10n V == 7.若sin()2(sin 2cos )4πααα+=+,则sin 2α=()A .45- B .45C. 35- D .358。
设函数()f x 的导函数为'()f x ,若()f x 为偶函数,且在(0,1)上存在极大值,则'()fx 的图像可能为( )A .B .C 。
D .9。
我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭",其意思为:一尺的木棍,每天截取一半,永远都截不完,现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )10.已知函数2()1f x ax bx =-+,点(,)a b 是平面区域201x y x my +-≤⎧⎪≥⎨⎪≥-⎩内的任意一点,若(2)(1)f f -的最小值为-6,则m 的值为( )A . —1B . 0C 。
2018届邯郸市高考数学模拟试卷及答案
()
A.B.CD.
10.一个几何体的三视图如图所示,则该几何体的体积为()
A.B.5C.D.6
11.已知点是抛物线与圆在第一象限的公共点, 且点到抛物线焦 点的距离为.若抛物线上一动点到其准线与到点的距离之和的最小值 为,为坐标原点,则直线被圆所截得的弦长为()
(2)由表可知在8人中成绩不优良的人数为,则的可能取值为
0,1,236分
;Hale Waihona Puke 8分;.10分的分布列为:
11分
所以.
20.解:(1)设,,则, ,即,①
,,即,②
由①②得,
又,,
椭圆的方程为
(2)设直线方程为:,
由得,
为重心,,…………………………7分
点在椭圆上,故有,
可得, 而,
(或利用是()到距离的3倍得到),
2.已知复数的实部与虚部之和为4,则复数在复平面上对应的 点在()
A.第一象限B.第二象限C.第三象限D.第四象限
3.已知,则等于()
A.B.C.D.
4.已知向量与的夹角为60°,,,则在方向上的投影为()
A.B.2C.D.3
5.如果实数,,满足条件,则的最大值为()
A.B.C.D.
6.已知,则等于()
三点共线,且是线段的中点,则圆心到直线的距离为所求的弦长为
12.
,则时,;当时,.所以,,令,设,作函数的图像如图所示,
由得或,的最大值为3.
二、填空题
13.三人中有一人或两人达标,其概率为.
14.化简得,则双曲线的离心率.
15.连结交于,则可证得平面,连接,则就是直线与平面所成 的角,即,,,,四棱锥的外接球的半径为,则所求外接球的表面积 为.
2018届河北省邯郸市高三第一次模拟考试理科综合试题及答案 精品推荐
邯郸市2018年高三第一次模拟考试 理科综合能力测试 2018.3本试卷分第I 卷(选择题)和第II 卷(非选择题)。
第I 卷1至5页,第II 卷6至16页,共300分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号。
第II 卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束后,监考员将试题卷、答题卡一并交回。
以下数据可供解题时参考相对原子质量(原子量):H-1 C-12 N-14 O-16 Na-23 Mg-24 Al-27 Si-28 S-32 Cl-35.5 K-39 Ca-40 Fe-56 Cu-64 Ag-108第I 卷(选择题 共126分)本卷共21小题,每小题6分,共126分。
1.关于右图的说法不正确的是A .图中分子所含元素种类相同B .图中有五种碱基、八种核苷酸C .图中所进行的过程都要遵循碱基互补配对原则 ①② ③④⑤D.图中进行的过程是转录和翻译2.右图①②③表示人体细胞间信息传递的三种方式。
下列描述错误..的是A. 方式①②中有体液调节,方式③属于神经调节B. 方式③的信息传递不通过体液C. 方式①的调节特点是速度较缓慢、范围较广泛等D. 体温调节可能涉及①②③三种传递方式3. 关于酶和ATP的叙述正确的是A.酶和ATP在细胞代谢中的作用相同B.所有的细胞代谢都需要酶和ATP的共同参与C.酶和ATP 在细胞内合成的场所相同D.细胞的能量供应和利用需要多种酶和ATP的参与4.癌细胞有多种检测方式。
切取一块组织鉴定是否为癌细胞,下列最可靠的依据是用光学显微镜观察细胞A.细胞中染色体数目是否改变 B.细胞原癌基因是否突变C.细胞的形态是否改变 D.细胞膜外的糖蛋白是否减少5. 某二倍体动物的某细胞内含有10条染色体、10个DNA分子,且细胞膜开始缢缩,则该细胞A. 处于有丝分裂后期B. 正在发生基因自由组合C. 将形成配子D. 正在发生DNA复制6.随着城市化的发展,城市水污染问题日益突出。
河北省邯郸市2018届高三第一次模拟考试数学理试题 含答案
高三数学试题(理科)第Ⅰ卷(选择题 共60分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2|3100A x x x =-->,集合{}|3x 4B x =-<<,则AB 等于A. ()2,4-B.()4,5C. ()3,2--D.()2,4 2.已知i 是虚数单位,若复数22aiz i+=+在复平面内对应的点在第四象限内,则实数a 的值可以是A. 2-B. 1C. 2D.3 3.已知角θ的终边过点()2,3,则7tan4πθ⎛⎫+ ⎪⎝⎭等于 A. 15-B. 15C. 5-D.5 4. 已知点()()()2,,1,2,3,1A m B C ,若AB CB AC ⋅=,则实数m 等于A. 1B.53 C. 2 D.735. 如图是一个程序框图,则输出的n 的值等于A.4B. 5C. 6D.76.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(),0F c ,直线x a =与双曲线C 的渐近线在第一象限的交点为,A O 为坐标原点,若OAF ∆的面积为213a ,则双曲线C 的离心率为A.B. C. D.7.已知等差数列{}n a 的前n 项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为 A.15 B. 16 C. 314D.138.已知函数()2215,11,241,1,xx f x x x ⎧⎛⎫⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎪+≥⎪⎩,设1m n >≥,且()()f m f n =,则)m f⋅的最小值为A. 4B. 2C.D.9.如图是某几何体的三视图,图中圆的半径均为1,且俯视图中两条半径相互垂直,则该几何体的体积为 A. 2π+ B. 43π C. 32π D. 2π10.将函数()2cos2f x x =的图象向右平移6π个单位得到函数()g x 的图象,若函数()g x 在区间0,3a ⎡⎤⎢⎥⎣⎦和72,6a π⎡⎤⎢⎥⎣⎦上均为单调递增,则实数a 的取值范围是 A. ,32ππ⎡⎤⎢⎥⎣⎦ B. ,62ππ⎡⎤⎢⎥⎣⎦ C. ,63ππ⎡⎤⎢⎥⎣⎦ D. 3,48ππ⎡⎤⎢⎥⎣⎦ 11. 如图,在直三棱柱111ABC A B C -中,1,2,AB AC AB AA AC ⊥===过BC 的中点D 作平面1ACB 的垂线,交平面11ACC A 于E ,则BE 与平面11ABB A 所成角的正切值为A.5 B.10C. 10D.512.设点()()11,M x f x 和点()()22,N x f x 分别是函数()212xf x e x =-和()1g x x =-图象上的点,且120,0x x ≥>,若直线//MN x 轴,则,M N 两点间的距离的最小值为 A. 1 B. 2 C. 3 D. 4第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分.13.()42112x x x ⎛⎫+- ⎪⎝⎭的展开式的常数项为 .14.在数列{}n a 中,2337,23a a ==,且数列{}1n na +是等比数列,则n a = . 15.如果实数,x y 满足约束条件240,20,230,x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,且()22x a y ++的最小值为6,0a >,则a = .16.已知等腰梯形ABCD 的顶点都在抛物线22(0)y px p =>上,且//,24,60,AB CD CD AB ADC ==∠=则点A 到抛物线的焦点的距离是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且()c o s 3c o s .a B c b A =- (1)若sin a B =求b ;(2)若a =ABC ∆ABC ∆的周长.18.(本小题满分12分)在一次篮球定点投篮训练中,规定每人最多投3次.在A 处投进一球得3分,在B 处投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次.某同学在A 处的投中率10.25q =,在B 处的投中率为2q .该同学选择先在A 处投一球,以后都在B 处投,且每次投篮都互不受影响.用X 表示该同学投篮训练结束后得到的总分,其分布列为:(1)求2q 的值;(2)求随机变量X 的数学期望()E X ;(3)试比较该同学选择上述方式投篮得分超过3分与选在都在B 处投篮得分超过3分的概率的大小.19.(本小题满分12分)如图,在四棱锥P A B C D -中,PD ⊥底面A B C D ,底面ABCD 是直角梯形,//,,3,2, 5.AB DC AB AD AB CD PD AD ⊥==== (1)在PD 上确定一点E ,使得//PB 平面ACE ,并求出PEED的值;(2)在(1)的条件下,求平面PAB 与平面ACE 所成锐二面角的余弦值.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,椭圆C 过点1,2P ⎛⎫ ⎪ ⎪⎝⎭,直线1PF 交y 轴于Q ,且22,O PF QO =为坐标原点. (1)求椭圆C 的方程;(2)设M 是椭圆C 的上顶点,过点M 分别作直线,MA MB 交椭圆C 于,A B 两点,设这两条直线的斜率分别为12,k k ,且122k k +=,求证:直线AB 过定点.21.(本小题满分12分)已知函数()22ln ,f x x a x ax a R =-+∈且0.a ≠(1)若函数()f x 在区间[)1,+∞上是减函数,求实数a 的取值范围;(2)设函数()()()2231g x a x a a x =+-+,当1x >时,()()f x g x <恒成立,求a 的取值范围.考生从第22、23、24三题中任选一题作答.注意:只能做所选的题目.如果多做,则按所做的第一个题计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆切于点A ,过P 作直线与圆交于,C D 两点,点B 在圆上,且.P A C B C D∠=∠ (1)求证:PCA BAC ∠=∠(2)若22PC AB ==,求APBC.23.(本小题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点M 的极坐标为4π⎛⎫ ⎪⎝⎭,曲线C 的参数方程为12cos ,2sin ,x y αα=+⎧⎨=⎩(α为参数).(1)直线L 过M 且与曲线C 相切,求直线l 的极坐标方程;(2)点N 与点M 关于y 轴对称,求曲线C 上的点到点N 的距离的取值范围.24.(本小题满分10分)不等式选讲 设函数()1..fx x x a x R=++-∈ (1)若0a <,且()2log 2f x >对任意x R ∈恒成立,求实数a 的取值范围; (2)若0a >,且关于x 的不等式()32f x x <有解,求实数a 的取值范围.。
河北省邯郸市2018届高三上学期摸底考试数学(理)试题(解析版)
高三数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】C【解析】由题意可得:,则.本题选择C选项.2. 若复数满足,则复数的实部与虚部之和为()A. -2B. 2C. -4D. 4【答案】B【解析】由题意可得:,则实部与虚部之和为.本题选择B选项.3. 在中,若,则()A. B. C. D.【答案】A【解析】由题意可得:,则。
本题选择A选项.4. 分别是双曲线的左、右焦点,为双曲线右支上一点,且,则的周长为()A. 15B. 16C. 17D. 18【答案】D【解析】由双曲线的方程可知:,则,据此可知的周长为.本题选择D选项.点睛:双曲线定义的集合语言:P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|}是解决与焦点三角形有关的计算问题的关键,切记对所求结果进行必要的检验5. 用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.【答案】C【解析】由题意可得:每个实数都大于的概率为,则3个实数都大于的概率为.本题选择C选项.6. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有个面是矩形,体积为,则()A. B. C. D.【答案】D【解析】由三视图可知,该几何体为直五棱柱,底面为俯视图所示,高为2,故.本题选择D选项.点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.7. 若,则()A. B. C. D.【答案】C【解析】本题选择C选项.8. 设函数的导函数为,若为偶函数,且在上存在极大值,则的图像可能为()A. B.C. D.【答案】C【解析】若为偶函数,则为奇函数,故排除B、D.又在上存在极大值,故排除A选项,本题选择C选项.9. 我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完,现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()【答案】B【解析】一共取了7次,,A、C、D不能完成功能,B能完成功能.本题选择B选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10. 已知函数,点是平面区域内的任意一点,若的最小值为,则的值为()A. -1B. 0C. 1D. 2【答案】A【解析】由函数的解析式可得:,结合题意可得目标函数在给定的可行域内的最小值为,可行域的顶点坐标为,结合目标函数的几何意义可得目标函数在点处取得最小值,即:,解得:.本题选择A选项.点睛:由于约束条件中存在参数,所以可行域无法确定,此时一般是依据所提供的可行域的面积或目标函数的最值,来确定含有参数的某不等式所表示的坐标系中的某区域,从而确定参数的值11. 若函数恰有4个零点,则的取值范围为()A. B.C. D.【答案】B【解析】设,作出这两个函数在上的图像,如图所示,在上的零点为,在上的零点为,数形结合可得,.本题选择B选项.点睛:(1)问题中参数值影响变形时,往往要分类讨论,需有明确的标准、全面的考虑;(2)求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.12. 直线与抛物线相交于两点,,给出下列4个命题:的重心在定直线上;的最大值为;的重心在定直线上;的最大值为.其中的真命题为()A. B. C. D.【答案】A【解析】联立直线与抛物线的方程整理可得:,结合题意可得:,且:,则△ABC的重心坐标为,的重心在定直线上;由弦长公式可得:,据此可得:,令,则,据此可得函数在区间上单调递增,在区间上单调递减,,据此可得:的最大值为;本题选择A选项.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在中,若,则__________.【答案】【解析】由正弦定理可得:,不妨设,则.14. 若,则__________.【答案】【解析】由对数的运算法则可得:,且:,据此可得:.15. 若的展开式中的系数为20,则__________.【答案】【解析】由题意可得:则含有的项为:,则的系数为:,解得:.16. 已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________.【答案】【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在等差数列中,,公差.记数列的前项和为. (1)求;(2)设数列的前项和为,若成等比数列,求.【答案】(1);(2) .【解析】试题分析:(1)由题意可求得数列的首项为1,则数列的前n项和.(2)裂项可得,且,据此可得.试题解析:(1)∵,∴,∴,∴,∴,.(2)若成等比数列,则,即,∴,∵,∴.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 如图,在底面为矩形的四棱锥中,.(1)证明:平面平面;(2)若异面直线与所成角为,,,求二面角的大小.【答案】(1)证明见解析;(2) .【解析】试题分析:(1)由题意结合几何关系可证得平面,结合面面垂直的判断定理即可证得平面平面.(2)建立空间直角坐标系,结合半平面的法向量可得二面角的大小是.试题解析:(1)证明:由已知四边形为矩形,得,∵,,∴平面.又,∴平面.∵平面,∴平面平面.(2)解:以为坐标原点,建立如图所示的空间直角坐标系.设,,则,,,,所以,,则,即,解得(舍去).设是平面的法向量,则,即,可取.设是平面的法向量,则即,可取,所以,由图可知二面角为锐角,所以二面角的大小为.19. 共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:租用单车数量(千辆) 2 3 4 5 8每天一辆车平均成本(元) 3.2 2.4 2 1.9 1.7根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.(1)为了评价两种模型的拟合效果,完成以下任务:①完成下表(计算结果精确到0.1)(备注:,称为相应于点的残差(也叫随机误差));租用单车数量(千辆) 2 3 4 5 8每天一辆车平均成本(元) 3.2 2.4 2 1.9 1.7估计值 2.4 2.1 1.6模型甲残差0 -0.1 0.1模型乙估计值 2.3 2 1.9残差0.1 0 0②分别计算模型甲与模型乙的残差平方和及,并通过比较,的大小,判断哪个模型拟合效果更好.(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).【答案】(1)模型乙的拟合效果更好;(2) 1万辆.【解析】试题分析:(1)由题意完成表格,计算残差平方和可得,,则模型乙的拟合效果更好.(2)分别计算投放量为8千辆和1万辆时公司一天获得的总利润可得投放1万辆能获得更多利润,应该增加到投放1万辆.试题解析:(1)①经计算,可得下表:②,,,故模型乙的拟合效果更好.(2)若投放量为8千辆,则公司一天获得的总利润为元,若投放量为1万辆,由(1)可知,每辆车的成本为(元)所以公司一天获得的总利润为(元)因为,所以投放1万辆能获得更多利润,应该增加到投放1万辆.学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...20. 如图,设椭圆:的离心率为,分别为椭圆的左、右顶点,为右焦点,直线与的交点到轴的距离为,过点作轴的垂线,为上异于点的一点,以为直径作圆.(1)求的方程;(2)若直线与的另一个交点为,证明:直线与圆相切.【答案】(1) ;(2)证明见解析.【解析】试题分析:(1)结合题意可求得,,则的方程为.(2)由题意可得,直线与圆相切时,直线的斜率为,结合(1)中求得的椭圆方程即可证得题中的结论. 试题解析:(1)解:由题可知,,∴,,设椭圆的方程为,由,得,∴,,,故的方程为.(2)证明:由(1)可得:,设圆的圆心为,则,圆的半径为,直线的方程为.设过与圆相切的直线方程为,则,整理得:,由,得,又∵,∴直线与圆相切.21. 已知函数的图象在处的切线过点.(1)若函数,求的最大值(用表示);(2)若,证明:.【答案】(1) ;(2)证明见解析.【解析】试题分析:(1)由题意可得:.结合导函数研究函数的单调性可得.(2)由题意结合(1)的结论有,构造函数,结合函数的特征即可证得题中的结论.试题解析:(1)由,得,的方程为,又过点,∴,解得.∵,∴,当时,,单调递增;当时,,单调递减.故.(2)证明:∵,∴,,∴令,,,令得;令得.∴在上递减,在上递增,∴,∴,,解得:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线的极坐标方程为,点,以极点为原点,以极轴为轴的正半轴建立平面直角坐标系,已知直线(为参数)与曲线交于两点,且.(1)若为曲线上任意一点,求的最大值,并求此时点的极坐标;(2)求.【答案】(1) ,;(2) .【解析】试题分析:(1)利用题意结合辅助角公式可得当时,取得最大值,此时,的极坐标为.(2)联立直线的参数方程和圆的直角坐标方程,结合韦达定理可得的值是.试题解析:(1),,∴当时,取得最大值,此时,的极坐标为.(2)由,得,即,故曲线的直角坐标方程为.将代入并整理得:,解得,∵,∴由的几何意义得,,,故.23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若函数的图像在上与轴有3个不同的交点,求的取值范围.【答案】(1) ;(2) .【解析】试题分析:(1)利用不等式的特点零点分段可得不等式的解集为(2)令,结合函数的图象和题意可得的取值范围是.试题解析:(1)由,得,∴或或,解得,故不等式的解集为.(2),当时,,当且仅当,即时取等号,∴,当时,递减,由,得,又,结合的图像可得.。
河北省邯郸市高三下学期第一次模拟考试数学(理)试题Word版含答案
高三数学考试(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数1z i =-+,则22z z z +=+( )A .-1B .1C .i -D .i2.设全集()U =+∞,集合2{|142}A x x =<-≤,则U C A =( ) A.()+∞ B.()+∞ C.()+∞ D.[)+∞3.某电视台夏日水上闯关节目中的前三关的过关率分别为0.8,0.7,0.6,只有通过前一天才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为( ) A .0.56 B .0.336 C .0.32 D .0.2244.ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 20sin ab C B =,2241a c +=,且8cos 1B =,则b =( )A .6 B.C. D .75.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .4B .5C .6D .76.若函数221,1()1,1x x f x x ax x ⎧+≥⎪=⎨-++<⎪⎩在R 上是增函数,则a 的取值范围为( ) A .[2,3] B .[2,)+∞ C .[1,3]D .[1,)+∞7.记不等式组22220x y x y y +≤⎧⎪+≥⎨⎪+≥⎩,表示的平面区域为Ω,点P 的坐标为(,)x y .有下面四个命题:1p :P ∀∈Ω,x y -的最小值为6;2p :P ∀∈Ω,224205x y ≤+≤;3p :P ∀∈Ω,x y -的最大值为6;4p :P ∀∈Ω,225x y ≤+≤其中的真命题是( ) A .1p ,4p B .1p ,2p C .2p ,3p D .3p ,4p8.若(12)n x x -的展开式中3x 的系数为80,其中n 为正整数,则(12)nx x -的展开式中各项系数的绝对值之和为( )A .32B .81C .243D .256 9.我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S 的单位为钱,则输出的x ,y 分别为此题中好、坏田的亩数的是( )A .B .C .D .10.若仅存在一个实数(0,)2t π∈,使得曲线C :sin()(0)6y x πωω=->关于直线x t =对称,则ω的取值范围是( )A .17[,)33B .410[,)33C .17(,]33D .410(,]3311.设正三棱锥P ABC -的高为H ,且此棱锥的内切球的半径为R ,若二面角P AB C --的H R =( )A .5B .6C .7D .812.设双曲线Ω:22221(0,0)x y a b a b -=>>的左顶点与右焦点分别为A ,F ,以线段AF 为底边作一个等腰AFB ∆,且AF 边上的高h AF=.若AFB ∆的垂心恰好在Ω的一条渐近线上,且Ω的离心率为e ,则下列判断正确的是( )A .存在唯一的e ,且3(,2)2e ∈B .存在两个不同的e ,且一个在区间3(1,)2内,另一个在区间3(,2)2内 C .存在唯一的e ,且3(1,)2e ∈ D .存在两个不同的e ,且一个在区间3(1,)2内,另一个在区间3(,2)2内第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.在平行四边形ABCD 中,若AD AC BA λμ=+,则λμ+= .14.若圆C :221()2x y n m ++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,则圆C 的标准方程为 .15.若22cos ()422παβ--13sin()αβ=+-,,(0,)2παβ∈,则tan tan αβ= .16.已知集合1{|}2M x x=≥-,32{|310}A x M x x a =∈-+-=,{|20}B x M x a =∈--=,若集合A B 的子集的个数为8,则a 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21n n n b a -=+,且1222n nn S T n ++=+-. (1)求n n T S -;(2)求数列{}2n n b 的前n 项和n R .18.某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有3个红球,3个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会; ②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;③若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包; ④若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包; ⑤若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包. 抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.(1)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分); (2)记一次抽奖获得的红包奖金数(单位:元)为X ,求X 的分布列及数学期望,并计算这20位顾客(假定每位获得抽奖机会的顾客都会去抽奖)在抽奖中获得红包的总奖金数的平均值.19.如图,在各棱长均为2的正三棱柱111ABC A B C -中,D ,E 分别为棱11A B 与1BB 的中点,M ,N 为线段1C D 上的动点,其中,M 更靠近D ,且1MN C N =.(1)证明:1A E ⊥平面1AC D ;(2)若NE 与平面11BCC B所成角的正弦值为,求异面直线BM 与NE 所成角的余弦值.20.已知0p >,抛物线1C :22x py =与抛物线2C :22y px =异于原点O 的交点为M ,且抛物线1C 在点M 处的切线与x 轴交于点A ,抛物线2C 在点M 处的切线与x 轴交于点B ,与y 轴交于点C .(1)若直线1y x =+与抛物线1C 交于点P ,Q,且PQ =OP OQ ⋅;(2)证明:BOC ∆的面积与四边形AOCM 的面积之比为定值.21.已知函数2()3x f x e x =+,()91g x x =-.(1)比较()f x 与()g x 的大小,并加以证明;(2)当0x a <≤时,45()x xe x f x a ++->,且2(3)350m m e m m --++=(02)m <<,证明:0a m <<.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔将所选题目对应的题号右侧方框涂黑,并且在解答过程中写清每问的小题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线M的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩t 为参数,且0t >),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos ρθ=. (1)将曲线M 的参数方程化为普通方程,并将曲线C 的极坐标方程化为直角坐标方程;(2)求曲线M 与曲线C 交点的极坐标(0,02)ρθπ≥≤<. 23.[选修4-5:不等式选讲] 已知函数()413f x x x =-+--.(1)求不等式()2f x ≤的解集;(2)若直线2y kx =-与函数()f x 的图象有公共点,求k 的取值范围.高三数学详细参考答案(理科) 一、选择题1-5: ABDAC 6-10: ACCBD 11、12:CA 二、填空题13. 2 14. 22(1)4x y ++= 15. 2 16. 51[,1)(1,)28---三、解答题17.解:(1)依题意可得113b a -=,225b a -=, (21)nn b a -=+, ∴n n T S -1212()()n n b b b a a a =++⋅⋅⋅+-++⋅⋅⋅+2(222)nn =+++⋅⋅⋅+122n n +=+-. (2)∵2n n n S S T =+()n n T S --2n n =-,∴22n n nS -=, ∴1n a n =-.又21n n n b a -=+,∴2nn b n =+. ∴122n nn b n =+, ∴n R n =+212()222n n ++⋅⋅⋅+,则1122n R n =+23112()222n n +++⋅⋅⋅+, ∴1122n R n =+21111()2222n n n +++⋅⋅⋅+-, 故111222112n n R n +-=+⨯-2222n n n n n +-=+-. 18.解:(1)获得抽奖机会的数据的中位数为110,平均数为1(10111++++11+++143813111=≈.(2)X 的可能取值为2,5,10,(10)P X =272235C ==,(5)P X =113327935C C C ==, (2)P X =21342722435C C C ==, 则X 的分布列为故249()253535E X =⨯+⨯2113103535+⨯=.这20位顾客中,有8位顾客获得一次抽奖的机会,有3位顾客获得两次抽奖的机会,故共有14次抽奖机会.所以这20位顾客在抽奖中获得红包的总奖金数的平均值为1131445.235⨯=元.19.解:(1)证明:由已知得111A B C ∆为正三角形,D 为棱11A B 的中点,∴111C D A B ⊥,在正三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,则11AA C D ⊥.又1111A B AA A = ,∴1C D ⊥平面11ABB A ,∴11C D A E ⊥. 易证1A E AD ⊥,又1AD C D D = ,∴1A E ⊥平面1AC D .(2)解:取BC 的中点O ,11B C 的中点1O ,则AO BC ⊥,1OO BC ⊥,以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则(0,1,0)B ,(0,1,1)E ,1(0,1,2)C -,1,2)2D ,设11C N C D λ=3(,,0)22λ=,则11NE C E C N =-3(0,2,1),,0)2λ=--3(,2,1)2λ=--,易知(1,0,0)n =是平面11BCC B 的一个法向量,∴cos ,NE n <>==,解得13λ=.∴3(,1)2NE =- ,112C M C D λ==,11BM BC C M =+1,2)=-,,∴cos ,NE BM <>132---==, ∴异面直线NE 与BM所成角的余弦值为40.20.(1)解:由212y x x py =+⎧⎨=⎩,消去y 得2220x px p --=.设P ,Q 的坐标分别为11(,)x y ,22(,)x y ,则122x x p +=,122x x p =-.∴PQ ==0p >,∴1p =.∴1212OP OQ x x y y ⋅=+1212(1)(1)x x x x =+++121221x x x x =+++4211=-++=-. (2)证明:由2222y px x py ⎧=⎪⎨=⎪⎩,得2x y p ==或0x y ==,则(2,2)M p p .设直线AM :12(2)y p k x p -=-,与22x py =联立得221124(1)0x pk x p k ---=. 由222111416(1)0p k p k ∆=+-=,得21(2)0k -=,∴12k =. 设直线BM :22(2)y p k x p -=-,与22y px =联立得222224(1)0k y py p k ---=. 由22222416(1)0p p k k ∆=+-=,得22(12)0k -=,∴212k =.故直线AM :22(2)y p x p -=-,直线BM :12(2)2y p x p -=-,从而不难求得(,0)A p ,(2,0)B p -,(0,)C p ,∴2BOC S p ∆=,23ABM S p ∆=,∴B O C ∆的面积与四边形AOCM 的面积之比为222132p p p =-(为定值).21.(1)解:()()f x g x >. 证明如下:设()()()h x f x g x =-2391x e x x +-+,∵'()329x h x e x =+-为增函数, ∴可设0'()0h x =,∵'(0)60h =-<,'(1)370h e =->,∴0(0,1)x ∈.当0x x >时,'()0h x >;当0x x <时,'()0h x <.∴min 0()()h x h x =0200391x e x x =+-+, 又003290x e x +-=,∴00329x e x =-+, ∴2min 000()2991h x x x x =-++-+2001110x x =-+00(1)(10)x x =--. ∵0(0,1)x ∈,∴00(1)(10)0x x -->, ∴min ()0h x >,()()f x g x >.(2)证明:设()45()x x xe x f x ϕ=++-2(3)45(0)x x e x x x =--++>,令'()(2)(2)0xx x e ϕ=--=,得1ln 2x =,22x =, 则()x ϕ在(0,ln 2)上单调递增,在(ln 2,2)上单调递减,在(2,)+∞上单调递增.2(2)92e ϕ=-<,设()2(ln 22)t t ϕ=<<,∵2(3)350m m e m m --++=(02)m <<, ∴2(3)45m m e m m m --++=(02)m <<,即()m m ϕ=(02)m <<. 当0a t <<时,()(0)2x a ϕϕ>=>,则45()xxe x f x a ++->. 当t a m ≤≤时,min ()()x a ϕϕ=,∵45()x xe x f x a ++->,∴()a a ϕ>,∴t a m ≤<. 当2m a <<或2a ≥时,不合题意. 从而0a m <<.22.解:(1)∵y t x =,∴x x =,即2)y x -,又0t >0>,∴2x >或0x <,∴曲线M的普通方程为2)y x =-(2x >或0x <).∵4cos ρθ=,∴24c o s ρρθ=,∴224x y x +=,即曲线C 的直角坐标方程为2240x x y -+=.(2)由222)40y x x x y ⎧=-⎪⎨-+=⎪⎩得2430x x -+=,∴11x =(舍去),23x =,则交点的直角坐标为,极坐标为)6π. 23.解:(1)由()2f x ≤,得1222x x ≤⎧⎨-≤⎩或1402x <<⎧⎨≤⎩或4282x x ≥⎧⎨-≤⎩, 解得05x ≤≤,故不等式()2f x ≤的解集为[0,5].(2)()413f x x x =-+--22,10,1428,4x x x x x -≤⎧⎪=<<⎨⎪-≥⎩, 作出函数()f x 的图象,如图所示,直线2y kx =-过定点(0,2)C -,当此直线经过点(4,0)B 时,12k =;当此直线与直线AD 平行时,2k =-. 故由图可知,1(,2)[,)2k ∈-∞-+∞ .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省邯郸市2018届高三第一次模拟考试数学试题(理)第Ⅰ卷一、选择题1.已知复数1i z =-+,则22z z z+=+( ) A .-1 B .1 C .i - D .i2.设全集()U =+∞,集合2{|142}A x x =<-≤,则U C A =( ) A.([3,)+∞B.([3,)+∞C.((3,)+∞D.[(3,)+∞3.某电视台夏日水上闯关节目中的前三关的过关率分别为0.8,0.7,0.6,只有通过前一天才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为( )A .0.56B .0.336C .0.32D .0.2244.ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 20sin ab C B =,2241a c +=,且8cos 1B =,则b =( )A .6B .C .D .75.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .4B .5C .6D .76.若函数221,1()1,1xx f x x ax x ⎧+≥⎪=⎨-++<⎪⎩在R 上是增函数,则a 的取值范围为()A .[2,3]B .[2,)+∞C .[1,3]D .[1,)+∞7.记不等式组22220x y x y y +≤⎧⎪+≥⎨⎪+≥⎩,表示的平面区域为Ω,点P 的坐标为(,)x y .有下面四个命题:1p :P ∀∈Ω,x y -的最小值为6;2p :P ∀∈Ω,224205x y ≤+≤;3p :P ∀∈Ω,x y -的最大值为6;4p :P ∀∈Ω22x y ≤+≤其中的真命题是( )A .1p ,4pB .1p ,2pC .2p ,3pD .3p ,4p8.若(12)n x x -的展开式中3x 的系数为80,其中n 为正整数,则(12)n x x-的展开式中各项系数的绝对值之和为( )A .32B .81C .243D .2569.我国古代数学名著《九章算术》里有一道关于买田的问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”其意思为:“今有好田1亩价值300钱;坏田7亩价值500钱.今合买好、坏田1顷,价值10000钱.问好、坏田各有多少亩?”已知1顷为100亩,现有下列四个程序框图,其中S 的单位为钱,则输出的x ,y 分别为此题中好、坏田的亩数的是( )A .B .C .D .10.若仅存在一个实数π(0,)2t ∈,使得曲线C :πsin()(0)6y x ωω=->关于直线x t =对称,则ω的取值范围是( ) A .17[,)33 B .410[,)33 C .17(,]33 D .410(,]3311.设正三棱锥P ABC -的高为H ,且此棱锥的内切球的半径为R ,若二面角P AB C --HR=( ) A .5 B .6 C .7 D .812.设双曲线Ω:22221(0,0)x y a b a b-=>>的左顶点与右焦点分别为A ,F ,以线段AF 为底边作一个等腰AFB ∆,且AF 边上的高h AF =.若AFB ∆的垂心恰好在Ω的一条渐近线上,且Ω的离心率为e ,则下列判断正确的是( ) A .存在唯一的e ,且3(,2)2e ∈B .存在两个不同的e ,且一个在区间3(1,)2内,另一个在区间3(,2)2内 C .存在唯一的e ,且3(1,)2e ∈D .存在两个不同的e ,且一个在区间3(1,)2内,另一个在区间3(,2)2内第Ⅱ卷二、填空题13.在平行四边形ABCD 中,若AD AC BA λμ=+,则λμ+=.14.若圆C :221()2x y n m++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,则圆C 的标准方程为.15.若22cos ()422παβ--13sin()αβ=+-,π,(0,)2αβ∈,则tan tan αβ=. 16.已知集合1{|}2M x x =≥-,32{|310}A x M x x a =∈-+-=,{|20}B x M x a =∈--=,若集合A B 的子集的个数为8,则a 的取值范围为.三、解答题(一)必考题.17.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21n n n b a -=+,且1222n n n S T n ++=+-.(1)求n n T S ; (2)求数列{}2nn b 的前n 项和n R .18.某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有3个红球,3个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会; ②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;③若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包; ④若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包; ⑤若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包. 抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.(1)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);(2)记一次抽奖获得的红包奖金数(单位:元)为X ,求X 的分布列及数学期望,并计算这20位顾客(假定每位获得抽奖机会的顾客都会去抽奖)在抽奖中获得红包的总奖金数的平均值.19.如图,在各棱长均为2的正三棱柱111ABC A B C -中,D ,E 分别为棱11A B 与1BB 的中点,M ,N 为线段1C D 上的动点,其中,M 更靠近D ,且1MN C N =.(1)证明:1A E ⊥平面1AC D ;(2)若NE 与平面11BCC B 所成角的正弦值为20,求异面直线BM 与NE 所成角的余弦值.20.已知0p >,抛物线1C :22x py =与抛物线2C :22y px =异于原点O 的交点为M ,且抛物线1C 在点M 处的切线与x 轴交于点A ,抛物线2C 在点M 处的切线与x 轴交于点B ,与y 轴交于点C .(1)若直线1y x =+与抛物线1C 交于点P ,Q ,且PQ =OP OQ ⋅; (2)证明:BOC ∆的面积与四边形AOCM 的面积之比为定值.21.已知函数2()3e xf x x =+,()91g x x =-. (1)比较()f x 与()g x 的大小,并加以证明; (2)当0x a <≤时,e 45()x x x f x a ++->,且2(3)e 350mm m m --++=(02)m <<,证明:0a m <<.(二)选考题22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线M的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩t 为参数,且0t >),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos ρθ=. (1)将曲线M 的参数方程化为普通方程,并将曲线C 的极坐标方程化为直角坐标方程; (2)求曲线M 与曲线C 交点的极坐标(0,02π)ρθ≥≤<.23.[选修4-5:不等式选讲] 已知函数()413f x x x =-+--. (1)求不等式()2f x ≤的解集;(2)若直线2y kx =-与函数()f x 的图象有公共点,求k 的取值范围.【参考答案】一、选择题1-5: ABDAC 6-10: ACCBD 11、12:CA 二、填空题13. 2 14. 22(1)4x y ++= 15. 2 16. 51[,1)(1,)28---三、解答题17.解:(1)依题意可得113b a -=,225b a -=,…,21n n n b a -=+,∴n n T S -1212()()n n b b b a a a =++⋅⋅⋅+-++⋅⋅⋅+2(222)n n =+++⋅⋅⋅+122n n +=+-.(2)∵2n n n S S T =+()n n T S --2n n =-,∴22n n n S -=,∴1n a n =-.又21n n n b a -=+,∴2n n b n =+.∴122n n nb n =+, ∴n R n =+212()222n n ++⋅⋅⋅+,则1122n R n =+23112()222n n+++⋅⋅⋅+,∴1122n R n =+21111()2222n n n +++⋅⋅⋅+-, 故111222112n n R n +-=+⨯-2222n n n n n +-=+-. 18.解:(1)获得抽奖机会的数据的中位数为110, 平均数为1(10110210410810911++++110112115188189200)++++++143813111=≈. (2)X 的可能取值为2,5,10,(10)P X =272235C ==, (5)P X =113327935C C C ==, (2)P X =21342722435C C C ==, 则X 的分布列为故249()253535E X =⨯+⨯2113103535+⨯=. 这20位顾客中,有8位顾客获得一次抽奖的机会,有3位顾客获得两次抽奖的机会, 故共有14次抽奖机会.所以这20位顾客在抽奖中获得红包的总奖金数的平均值为1131445.235⨯=元. 19.(1)证明:由已知得111A B C ∆为正三角形,D 为棱11A B 的中点, ∴111C D A B ⊥,在正三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,则11AA C D ⊥. 又1111A B AA A =,∴1C D ⊥平面11ABB A ,∴11C D A E ⊥.易证1A E AD ⊥,又1ADC D D =,∴1A E ⊥平面1AC D .(2)解:取BC 的中点O ,11B C 的中点1O ,则AO BC ⊥,1OO BC ⊥, 以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则(0,1,0)B ,(0,1,1)E ,1(0,1,2)C -,1,2)2D , 设11C N C D λ=3,,0)2λ=, 则11NE C E C N =-3(0,2,1),,0)2λ=--3(,2,1)2λ=--, 易知(1,0,0)n =是平面11BCC B 的一个法向量,∴cos ,NE n <>==,解得13λ=.∴3(,1)2NE =--,112C M C D λ==,11BM BC C M =+1,2)=-,, ∴cos ,NE BM <>132---=40=-,∴异面直线NE 与BM 所成角的余弦值为40.20.(1)解:由212y x x py=+⎧⎨=⎩,消去y 得2220x px p --=. 设P ,Q 的坐标分别为11(,)x y ,22(,)x y ,则122x x p +=,122x x p =-.∴PQ ==0p >,∴1p =. ∴1212OP OQ x x y y ⋅=+1212(1)(1)x x x x =+++121221x x x x =+++4211=-++=-.(2)证明:由2222y px x py⎧=⎪⎨=⎪⎩,得2x y p ==或0x y ==,则(2,2)M p p . 设直线AM :12(2)y p k x p -=-,与22x py =联立得221124(1)0x pk x p k ---=. 由222111416(1)0p k p k ∆=+-=,得21(2)0k -=,∴12k =.设直线BM :22(2)y p k x p -=-,与22y px =联立得222224(1)0k y py p k ---=. 由22222416(1)0p p k k ∆=+-=,得22(12)0k -=,∴212k =. 故直线AM :22(2)y p x p -=-,直线BM :12(2)2y p x p -=-, 从而不难求得(,0)A p ,(2,0)B p -,(0,)C p ,∴2BOC S p ∆=,23ABM S p ∆=,∴BOC ∆的面积与四边形AOCM 的面积之比为222132p p p =-(为定值). 21.(1)解:()()f x g x >.证明如下:设()()()h x f x g x =-23e 91x x x +-+,∵'()3e 29x h x x =+-为增函数, ∴可设0'()0h x =,∵'(0)60h =-<,'(1)3e 70h =->,∴0(0,1)x ∈. 当0x x >时,'()0h x >;当0x x <时,'()0h x <.∴min 0()()h x h x =02003e 91x x x =+-+,又003e 290x x +-=,∴003e 29x x =-+,∴2min 000()2991h x x x x =-++-+2001110x x =-+00(1)(10)x x =--. ∵0(0,1)x ∈,∴00(1)(10)0x x -->,∴min ()0h x >,()()f x g x >.(2)证明:设()e 45()x x x x f x ϕ=++-2(3)e 45(0)x x x x x =--++>, 令'()(2)(e 2)0x x x ϕ=--=,得1ln 2x =,22x =,则()x ϕ在(0,ln 2)上单调递增,在(ln 2,2)上单调递减,在(2,)+∞上单调递增. 2(2)9e 2ϕ=-<,设()2(ln 22)t t ϕ=<<,∵2(3)e 350m m m m --++=(02)m <<,∴2(3)e 45m m m m m --++=(02)m <<,即()m m ϕ=(02)m <<. 当0a t <<时,()(0)2x a ϕϕ>=>,则e 45()x x x f x a ++->.当t a m ≤≤时,min ()()x a ϕϕ=,∵45()x xe x f x a ++->,∴()a a ϕ>,∴t a m ≤<. 当2m a <<或2a ≥时,不合题意.从而0a m <<.22.解:(1)∵y t x =,∴x x=,即2)y x =-, 又0t >0>,∴2x >或0x <, ∴曲线M的普通方程为2)y x =-(2x >或0x <).∵4cos ρθ=,∴24cos ρρθ=,∴224x y x +=,即曲线C 的直角坐标方程为2240x x y -+=.(2)由222)40y x x x y ⎧=-⎪⎨-+=⎪⎩得2430x x -+=, ∴11x =(舍去),23x =,则交点的直角坐标为,极坐标为π)6.23.解:(1)由()2f x ≤,得1222x x ≤⎧⎨-≤⎩或1402x <<⎧⎨≤⎩或4282x x ≥⎧⎨-≤⎩, 解得05x ≤≤,故不等式()2f x ≤的解集为[0,5].(2)()413f x x x =-+--22,10,1428,4x x x x x -≤⎧⎪=<<⎨⎪-≥⎩,作出函数()f x 的图象,如图所示,直线2y kx =-过定点(0,2)C -, 当此直线经过点(4,0)B 时,12k =; 当此直线与直线AD 平行时,2k =-. 故由图可知,1(,2)[,)2k ∈-∞-+∞.。