第四届两岸四地华罗庚金杯少年数学精英邀请赛
第四届两岸四地华罗庚金杯少年数学精英邀请赛
第四届两岸四地华罗庚金杯少年数学精英邀请赛
笔试二试卷(小学高年级组)
一、填空题(每题20分,共60分)
1.小红和小明两人都带了钱想买《趣味数学》这本书,到书店一看,小红带的钱缺2元2角,小明带
的钱缺1元8角. 而两人带的钱合起来刚好买一本. 则《趣味数学》每本定价元.
2.如右图所示,小正方形EFGH在大正方形ABCD的内部,阴影
、在边AD上,O为线段
部分的总面积为124平方厘米,E H
CF的中点. 则四边形BOGF的面积为平方厘米.
3.一些边长是1的小正方体码放成一个立体,从上向下看这个立体,如左下图,从正面看这个立体,
如右下图. 在这个立体的体积最大时,将这些小正方体码放成一个底面积为4的长方体,则这个长方体的高是.
二、解答题(每题20分,共60分)
4.已知两个正整数之和为432,这两个正整数的最小公倍数与最大公约数之和为7776. 则这两个正整
数的乘积是多少?
5.设不同的字母代表不同的非零数码,相同的字母代表相同的数码,若
⨯=
AB CB DDD
、、、.
且AB CB
<,求A B C D
6.奥运会男子足球小组赛,每组四个队进行单循环比赛. 每场比赛胜队得3分,败队得0分,平局时
两队各得1分. 小组赛全部赛完以后,每组取积分最高的两个队出线进图下轮比赛(对积分相同的队,按更细规则排序). 那么在所有能够出线的情况中,一个出现对的得分最少是多少?请说明理由.
1.。
2012年-2017年华罗庚金杯少年数学邀请赛初赛真题合集(小高组)附答案
目录第二十二届华罗庚金杯少年数学邀请赛 (1)第二十一届华罗庚金杯少年数学邀请赛 (3)第二十一届华罗庚金杯少年数学邀请赛 (5)第二十届华罗庚金杯少年数学邀请赛 (7)第二十届华罗庚金杯少年数学邀请赛 (9)第十九届华罗庚金杯少年数学邀请赛 (11)第十九届华罗庚金杯少年数学邀请赛 (13)第十八届华罗庚金杯少年数学邀请赛 (15)第十八届华罗庚金杯少年数学邀请赛 (17)第十七届华罗庚金杯少年数学邀请赛 (19)第十七届华罗庚金杯少年数学邀请赛 (21)第二十二届华罗庚金杯少年数学邀请赛答案 (23)第二十一届华罗庚金杯少年数学邀请赛答案 (24)第二十一届华罗庚金杯少年数学邀请赛答案 (25)第二十届华罗庚金杯少年数学邀请赛答案 (26)第二十届华罗庚金杯少年数学邀请赛答案 (27)第十九届华罗庚金杯少年数学邀请赛答案 (28)第十九届华罗庚金杯少年数学邀请赛答案 (29)第十八届华罗庚金杯少年数学邀请赛答案 (30)第十八届华罗庚金杯少年数学邀请赛答案 (31)第十八届华罗庚金杯少年数学邀请赛答案 (32)第十七届华罗庚金杯少年数学邀请赛答案 (33)第十七届华罗庚金杯少年数学邀请赛答案 (34)A B 第二十二届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间 2016 年 12 月 10 日 10:00-11:00)一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.A .16B .17C .18D .192. 小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟,某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟. A .6 B .8 C .10 D .123. 将长方形 ABCD 对角线平均分成 12 段,连接成右图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是( )平方厘米.A .14B .16C .18D .204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是( ).A .2986B .2858C .2672D .27545. 在序列 20170……中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是( )A .8615B .2016C .4023D .20176. 从 0 至 9 选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.× 71 0 2罗华金杯ABG FHDEC二、填空题.(每小题 10 分,共 40 分)7. 若( 1 5 245 3— )× 9 2 5 7 ÷ 2 +2.25=4,那么A 的值是 .3 34 1A8. 右图中,“华罗庚金杯”五个汉字分别代表 1-5 这五个不同的数字,将各线段两端点的数字相加得到五个和,共有 种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为 CD 的中点,AE 和 BD 的交点为 F ,AC 和 BE 的交点为 H ,AC 和BD 的交点为 G ,四边形 EHGF 的面积是 15 平方厘米,则 ABCD 的面积是平方厘米.10. 若 2017,1029 与 725 除以 d 的余数均为 r ,那么 d -r 的最大值是 .庚第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组A 卷) (时间:2015 年 12 月 12 日 10:00~11:00一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内) 1. 算式999 9 × 999 9 的结果中含有( )个数字 0.2016个92016个9A .2017B .2016C .2015D .20142. 已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A 、B 出发,相向而行,在距 A 地 140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒( )米.A . 2 2B . 2 4C .3D . 3 15 5 53. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,则这个七位数最大是( )A .9981733B .9884737C .9978137D .98717734. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么共有( )种不同的排法. A .1152B .864C .576D .2885. 在等腰梯形 ABCD 中,AB 平行于 CD ,AB =6,CD =14,∠AEC 是直角,CE =CB ,则 AE 2 等于( )A .84B .80C .75D .646. 从自然数 1,2,3,…,2015,2016 中,任意取 n 个不同的数,要求总能在这 n 个不同的数中找到 5个数,它们的数字和相等.那么 n 的最小值等于( ). A .109 B .110 C .111 D .112EABD C二、填空题.(每小题 10 分,共 40 分)AP M O7. 两个正方形的面积之差为 2016 平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.8. 如下图,O ,P ,M 是线段 AB 上的三个点,AO = 4 AB ,BP = 2AB ,M 是 AB 的中点,且 OM =2,那5 3么 PM 长为 .9. 设 q 是一个平方数.如果 q -2 和 q +2 都是质数,就称 q 为 p 型平方数.例如,9 就是一个 p 型平方数.那么小于 1000 的最大 p 型平方数是 .10. 有一个等腰梯形的纸片,上底长度为 2015,下底长度为 2016.用该纸片剪出一些等腰梯形,要求剪出的梯形的两底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出 个同样的等腰梯形.第二十一届华罗庚金杯少年数学邀请赛初赛试卷 B (小学高年级组)(时间:2015 年 12 月 12 日 10:00~11:00)一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内) 1. “凑 24 点”游戏规则是:从一副扑克牌中抽去大小王剩下 52 张,(如果初练也可只用 1 至 10 这 40 张牌)任意抽取 4 张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成 24.每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是 3,8,8,9,那么算式为(9- 8)×8×3 或(9-8÷8)×3 等.在下面 4 个选项中,唯一无法凑出 24 点的是( ). A .1,2,2,3 B .1,4,6,7 C .1,5,5,5 D .3,3,7,72. 有一种数,是以法国数学家梅森的名字命名的,它们就是形如 2n -1( n 为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如:22-1=3 就是一个梅森质数.第一个梅森合数是( ).A .4B .15C .127D .20473. 有一种饮料包装瓶的容积是 1.5 升.现瓶里装了一些饮料,正放时饮料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如下图.那么瓶内现有饮料( )升.A .1B .1.2C .1.25D .1.3754. 已知 a ,b 为自然数, 4 = 1 + 1,那么 a +b 的最小值是( ).15 a bA .16B .20C .30D .65. 如下图,平面上有 25 个点,每个点上都钉着钉子,形成 5×5 的正方形钉阵.现有足够多的橡皮筋,最多能套出( )种面积不同的正方形.A .4B .6C .8D .106. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是( ).A .9981733B .9884737C .9978137D .9871773二、填空题.(每小题 10 分,共 40 分)华 杯 赛 三 十 年× 杯 杯今 年 认 真 赛 好今 年 认 真 赛 好 三 十 年 华 杯 赛 好7. 计算:20152+20162-2014×2016-2015×2017= .8. 在下边的算式中,相同汉字代表相同数字,不同汉字代表不同数字.当杯代表 5 时,“华杯赛”所代表的三位数是 .9. 于 2015 年 10 月 29 日闭幕的党的十八届五中全会确定了允许普遍二孩的政策.笑笑的爸爸看到当天的新闻后跟笑笑说:我们家今年的年龄总和是你年龄的 7 倍,如果明年给妳添一个弟弟或妹妹,我们家 2020 年的年龄总和就是你那时年龄的 6 倍.那么笑笑今年 岁.10. 教育部于 2015 年 9 月 21 日公布了全国青少年校园足球特色学校名单,笑笑所在的学校榜上有名.为 了更好地备战明年市里举行的小学生足球联赛,近期他们学校的球队将和另 3 支球队进行一次足球友 谊赛.比赛采用单循环制(即每两队比赛一场),规定胜一场得 3 分,负一场得 0 分,平局两队各得 1分;以总得分高低确定名次,若两支球队得分相同,就参考净胜球、相互胜负关系等决定名次.笑笑学校的球队要想稳获这次友谊赛的前两名,至少要得 分.第二十届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2015 年 3 月 14 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 现在从甲、乙、丙、丁四个人中选出两个人参加一项活动,规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去参加活动的两个人是( )A .甲、乙B .乙、丙C .甲、丙D .乙、丁2. 以平面上任意 4 个点为顶点的三角形中,钝角三角形最多有( )个.A .5B .2C .4D .33. 桌上有编号 1 至 20 的 20 张卡片,小明每次取出 2 张卡片,要求一张卡片的编号是另一张卡片的 2 倍多 2,则小明最多取出( )张卡片. A .12B .14C .16D .184. 足球友谊比赛的票价是 50 元,赛前一小时还有余票,于是决定降价,结果售出的票增加了三分之一, 而票房收入增加了四分之一,那么每张票售价降了( )元.A .10B . 25C . 50D .25235. 一只旧钟的分针和时针每重合一次,需要经过标准时间 66 分,那么,这只旧钟的 24 小时比标准时间的 24 小时( ).A .快 12 分B .快 6 分C .慢 6 分D .慢 12 分6. 在下图的 6×6 方格内,每个方格中只能填 A 、B 、C 、D 、E 、F 中的某个字母,要求每行、每列、每个标有粗线的 2×3 长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是( ).A .E 、 C 、 D 、 FB .E 、D 、C 、FC .D 、 F 、 C 、E D .D 、C 、F 、EB CA B D ABCE二、填空题(每小题 10 分,共 40 分) - - - = AFDPBEC7. 计算4811 + 265 1 + 904 129 41 55184160 7036 12 2030 42 568. 过正三角形 ABC 内一点 P ,向三边作垂线,垂足依次为 D 、E 、F ,连接 AP 、BP 、CP .如果正三角形ABC 的面积是 2028 平方厘米,三角形 PAD 和三角形 PBE 的面积都是 192 平方厘米,则三角形 PCF的面积为平方厘米.9. 自然数 2015 最多可以表示成 个连续奇数的和.10. 由单位正方形拼成的 15×15 网格,以网格的格点为顶点作边长为整数的正方形,则边长大于 5 的正方形有 个.第二十届华罗庚金杯少年数学邀请赛A BED H C 初赛 C 试卷(小学高年级组)(时间:2015 年 3 月 14 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算:( 9 - 11 + 13 - 15 + 17 )×120- 1 ÷ 1=( )20 30 42 56 72 3 4A .42B .43C .15 1D .16 2332. 如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成 45 度角.最高的小树高 2.8 米,最低的小树高 1.4 米,那么从左向右数第 4 棵树的高度是( )米.A .2.6B .2.4C .2.2D .2.03. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生,事后,甲、乙、丙、丁 4 位同学有如下的对话: 甲:“丙、丁之中至少有 1 人捐了款.” 乙:“丁、甲之中至多有 1 人捐了款.” 丙:“你们 3 人中至少有 2 人捐了款.” 丁:“你们 3 人中至多有 2 人捐了款.” 已知这 4 位同学说的都是真话且其中恰有 2 位同学捐了款,那么这 2 位同学是( ).A .甲、乙B .丙、丁C .甲、丙D .乙、丁4. 六位同学数学考试的平均成绩是 92.5 分,他们的成绩是互不相同的整数,最高的 99 分,最低的 76分,那么按分数从高到低居第三位的同学的分数至少是( ). A .94 B .95 C .96D .975. 如图,BH 是直角梯形 ABCD 的高,E 为梯形对角线 AC 上一点;如果△DEH 、△BEH 、△BCH 的面积依次为 56、50、40,那么△CEH 的面积是( ).A .32B .34C .35D .366. 一个由边长为 1 的小正方形组成的n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的 4 个角上的小正方形不全同色,那么正整数 n 的最大值是( ).A .3B .4C .5D .645°二、填空题(每小题10 分,共40 分)7.在每个格子中填入1 至6 中的一个,使得每行、每列及每个2×3 长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是3 月 1 4相约华杯8.整数n 一共有10 个约数,这些约数从小到大排列,第8 个数是n.那么整数n 的最大值是39.在边长为300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是厘米.(π取3.14)10.A 地、B 地、C 地、D 地依次分布在同一条公路上,甲、乙、丙三人分别从A 地、B 地C 地同时出发,匀速向D 地行进.当甲在C 地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9 分钟,乙也追上了丙,这时乙的速度减少25%;乙追上丙后再行50 米,三人同时到D 地.已知乙出发时的速度是每分钟60 米,那么甲出发时的速度是每分钟米,A、D 两地间的路程是米.第十九届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2014 年 3 月 15 日 8:00—9:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线互相平行.A .0B .2C .3D .42. 某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分.小龙得分 120 分,那么小龙最多答对了( )道试题.A .40B .42C .48D .503. 用左下图的四张含有 4 个方格的纸板拼成了右下图所示的图形.若在右下图的 16 个方格分别填入 1、3、5、7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么 A 、B 、C 、D 四个方格中数的平均数是( ).A . 4B . 5C D .74. 小明所在班级的人数不足 40 人,但比 30 人多,那么这个班男、女生人数的比不可能是( ).A .2︰3B .3︰4C .4︰5D .3︰75. 某学校组织一次远足活动,计划 10 点 10 分从甲地出发,13 点 10 分到达乙地,但出发晚了 5 分钟, 却早到达了 4 分钟.甲、乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是( ). A .11 点 40 分 B .11 点 50 分 C .12 点 D .12 点 10 分6. 如图所示,AF =7cm ,DH =4cm ,BG =5cm ,AE =1cm .若正方形 ABCD 内的四边形 EFGH 的面积为78 平方厘米,则正方形的边长为( )cm .A .10B .11C .12D .13ABA EDHF BC二、填空题(每小题 10 分,共 40 分)甲 乙7. 五名选手 A 、B 、C 、D 、E 参加“好声音”比赛,五个人站成一排集体亮相.他们胸前有每人的选手编号牌,5 个编号之和等于 35.已知站在 E 右边的选手的编号和为 13;站在 D 右边的选手的编号和为 31;站在 A 右边的选手的编号和为 21;站在 C 右边的选手的编号和为 7.那么最左侧与最右侧的选手编号之和是 .8. 甲、乙同时出发,他们的速度如下图所示,30 分钟后,乙比甲一共多行走了米.9. 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成方体(经过旋转得到相同的正方体视为同一种情况).种不同的 2×2×2 的正10. 在一个圆周上有 70 个点,任选其中一个点标上 1,按顺时针方向隔一个点的点上标 2,隔两个点的点上标 3,再隔三个点的点上标 4,继续这个操作,直到 1,2,3,…,2014 都被标记在点上.每个点可 能不止标有一个数,那么标记了 2014 的点上标记的最小整数是分分5 10 15 202530 5 10 15 202530第十九届华罗庚金杯少年数学邀请赛初赛 B 试卷(小学高年级组)(时间:2014 年 3 月 15 日 8:00—9:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线互相平行.A .0B .2C .3D .42. 在下列四个算式中: AB ÷ CD =2,E ×F =0,G -H =1,I +J =4,A ~J 代表 0~9 中的不同数字,那么两位数 AB 不可能是( ). A .54 B .58 C .92 D .963. 淘气用一张正方形纸剪下了一个最大的圆(如图甲),笑笑用一张圆形纸剪下了七个相等的最大圆(如图乙),在这两种剪法中,哪种剪法的利用率最高?(利用率指的是剪下的圆形面积和占原来图形面积的百分率)下面几种说法中正确的是( ).A .淘气的剪法利用率高B .笑笑的剪法利用率高C .两种剪法利用率一样D .无法判断4. 小华下午 2 点要到少年宫参加活动,但他的手表每个小时快了 4 分钟,他特意在上午 10 点时对好了表.当小华按照自己的表于下午 2 点到少年宫时,实际早到了( )分钟.A .14B .15C .16D .175. 甲、乙、丙、丁四个人今年的年龄之和是 72 岁.几年前(至少一年)甲是 22 岁时,乙是 16 岁.又知道,当甲是 19 岁的时候,丙的年龄是丁的 3 倍(此时丁至少 1 岁).如果甲、乙、丙、丁四个人的年龄互不相同,那么今年甲的年龄可以有( )种情况.A .4B .6C .8D .106. 有七张卡片,每张卡片上写有一个数字,这七张卡片摆成一排,就组成了七位数 2014315.将这七张卡片全部分给了甲、乙、丙、丁四人,每人至多分 2 张.他们各说了一句话: 甲:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 8 的倍数.” 乙:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数仍不是 9 的倍数.” 丙:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 10 的倍数.” 丁:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 11 的倍数.” 已知四个人中恰好有一个人说了谎,那么说谎的人是( ).A .甲B .乙C .丙D .丁甲 乙二、填空题(每小题 10 分,共 40 分)13 ÷ 3 + 3 ÷ 2 1 + 17. 算式 1007× 4 44 3 ÷19 的计算结果是 .(1 + 2 + 3 + 4 + 5)⨯ 5 - 228. 海滩上有一堆栗子,这是四只猴子的财产,它们想要平均分配,第一只猴子来了,它左等右等别的猴子都不来,便把栗子分成四堆,每堆一样多,还剩下一个,它把剩下的一个顺手扔到海里,自己拿走了四堆中的一堆.第二只猴子来了,它也没有等到别的猴子,于是它把剩下的栗子等分成四堆,还剩下一个,它又扔掉一个,自己拿走一堆.第三只猴子也是如此,等分成四堆后,把剩下的一个扔掉, 自己拿走一堆;而最后一只猴子来,也将剩下的栗子等分成了四堆,扔掉多余的一个,取走一堆.那 么这堆栗子原来至少有 个.9. 甲、乙二人同时从 A 地出发匀速走向 B 地,与此同时丙从 B 地出发匀速走向 A 地.出发后 20 分钟甲与丙相遇,相遇后甲立即掉头;甲掉头后 10 分钟与乙相遇,然后甲再次掉头走向 B 地.结果当甲走到 B 地时,乙恰走过 A 、B 两地中点 105 米,而丙离 A 地还有 315 米.甲的速度是乙的速度的 倍,A 、B 两地间的路程是 米.10. 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组成的等差数列中包含 1 的有 种取法;总共有 种取法.第十八届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2013 年 3 月 23 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 2012.25×2013.75-2010.25×2015.75=( )A .5B .6C .7D .82. 2013 年的钟声敲响了,小明哥哥感慨地说:这是我有生以来第一次将要渡过一个没有重复数字的年份.已知小明哥哥出生的年份是 19 的倍数,那么 2013 年小明哥哥的年龄是( )岁.A .16B .18C .20D .223. 一只青蛙 8 点从深为 12 米的井底向上爬,它每向上爬 3 米,因为井壁打滑,就会下滑 1 米,下滑 1 米的时间是向上爬 3 米所用时间的三分之一.8 点 17 分时,青蛙第二次爬至离井口 3 米之处,那么青蛙从井底爬到井口时所花的时间为( )分钟.A .22B .20C .17D .164. 一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为 9︰7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为 7︰5,那么盒子里原有的黑子数比白子数多( )个.A .5B .6C .7D .85. 图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF 平行于 BD .若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )平方厘米.A .5B .10C .15D .206. 水池 A 和 B 同为长 3 米,宽 2 米,深 1.2 米的长方体.1 号阀门用来向 A 池注水,18 分钟可将无水的A 池注满;2 号阀门用来从 A 池向B 池放水,24 分钟可将 A 池中满池水放入 B 池.若同时打开 1 号和2 号阀门,那么当 A 池水深 0.4 米时,B 池有( )立方米的水.A .0.9B .1.8C .3.6D .7.2D F MCAEB二、填空题(每小题 10 分,共 40 分)D E AFB7. 小明、小华、小刚三人分 363 张卡片,他们决定按年龄比来分.若小明拿 7 张,小华就要拿 6 张;若小刚拿 8 张,小明就要拿 5 张.最后,小明拿了 张;小华拿了张.张;小刚拿了8. 某公司的工作人员每周都工作 5 天休息 2 天,而公司要求每周从周一至周日,每天都至少有 32 人上班,那么该公司至少需要名工作人员.9. 如图,AB 是圆 O 的直径,长 6 厘米,正方形 BCDE 的一个顶点 E 在圆周上,∠ABE =45°.那么圆 O中非阴影部分的面积与正方形 BCDE 中非阴影部分面积的差等于 平方厘米(取 π=3.14)10. 圣诞老人有 36 个同样的礼物,分别装在 8 个袋子中.已知 8 个袋子中礼物的个数至少为 1 且各不相 同.现要从中选出一些袋子,将选出的袋子中的所有礼物平均分给 8 个小朋友,恰好分完(每个小朋 友至少分得一个礼物).那么,共有 种不同的选择.第十八届华罗庚金杯少年数学邀请赛AB 初赛 B 试卷(小学高年级组)(时间:2013 年 3 月 23 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 一个四位数,各位数字互不相同,所有数字之和等于 6,并且这个数是 11 的倍数,则满足这种要求的四位数共有( )个.A .6B .7C .8D .92. 2+2×3+2×3×3+……+2× 3 ⨯ 3 ⨯⨯ 3 个位数字是( ). 9个3A .2B .8C .4D .63. 在下面的阴影三角形中,不能由下图中左面的阴影三角形经过旋转、平移得到的是图( )中的三角形.ABCD4. 某日,甲学校买了 56 千克水果糖,每千克 8.06 元.过了几日,乙学校也需要买同样的 56 千克水果糖,不过正好赶上促销活动,每千克水果糖降价 0.56 元,而且只要买水果糖都会额外赠送 5%同样的水果糖.那么乙学校将比甲学校少花( )元.A .20B .51.36C .31.36D .10.365. 甲、乙两仓的稻谷数量一样,爸爸、妈妈和阳阳单独运完一仓稻谷分别需要 10 天、12 天和 15 天.爸爸、妈妈同时开始分别运甲、乙两仓的稻谷,阳阳先帮妈妈,后帮爸爸,结果同时运完两仓稻谷.那么阳阳帮妈妈运了( )天. A .3B .4C .5D .66. 如图,将长度为 9 的线段 AB 分成 9 等份,那么图中所有线段的长度的总和是( ).A .132B .144C .156D .165二、填空题(每小题10 分,共40 分)7.将乘积0.2˙43˙×0.32˙5233˙化为小数,小数点后第2013 位的数字是.8.一只青蛙8 点从深为12 米的井底向上爬,它每向上爬3 米,因为井壁打滑,就会下滑1 米,下滑1 米的时间是向上爬3 米所用时间的三分之一.8 点17 分时,青蛙第二次爬至离井口3 米之处,那么青蛙从井底爬到井口时所花的时间为分钟.9.一个水池有三个进水口和一个出水口.同时打开出水口和其中的两个进水口,注满整个水池分别需要6 小时、5 小时和4 小时;同时打开出水口和三个进水口,注满整个水池需要3 小时.如果同时打开三个进水口,不打开出水口,那么注满整个水池需要小时.10.九个同样的直角三角形卡片,用卡片的锐角拼成一圈,可以拼成类似下图所示的平面图形.这种三角形卡片中的两个锐角中较小的一个的度数有种不同的可能值.(下图只是其中一种可能的情况)第十七届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2012 年 3 月 17 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算:[(0.8+ 1 )×24+6.6]÷ 9-7.6=( ).5 14A .30B .40C .50D .602. 以平面上 4 个点为端点连接线段,形成的图形中最多可以有( )个三角形.A .3B .4C .6D .83. 一个奇怪的动物庄园里住着猫和狗,狗比猫多 180 只.有 20%的狗错认为自己是猫;有 20%的猫错认为自己是狗.在所有的猫和狗中,有 32%认为自己是猫,那么狗有( )只.A .240B .248C .420D .8424. 下图的方格纸中有五个编号为 1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是( )A .1,2B .2,3C .3,4D .4,55. 在下图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是( ) A .369B .396C .459D .5496. 下图是由相同的正方形和相同的等腰直角三角形构成,则正方形的个数为( )A .83B .79C .72D .651 253 4A B C + D E F H IJ二、填空题(每小题 10 分,共 40 分)百十个百 十 个A EC HFB7. 如图的计数器三个档上各有 10 个算珠,将每档算珠分成上下两部分,得到两个三位数.要求上面部分是各位数字互不相同的三位数,且是下面三位数的倍数,则上面部分的三位数是.8. 四支排球队进行单循环比赛,即每两队都要赛一场,且只赛一场.如果一场比赛的比分是 3:0 或 3:1.则胜队得 3 分,负队得 0 分;如果比分是 3:2,则胜队得 2 分,负队得 1 分.比赛的结果各队得分恰好是四个连续的自然数,则第一名的得分是 分.9. 甲、乙两车分别从 A 、B 两地同时出发,且在 A 、B 两地往返来回匀速行驶.若两车第一次相遇后,甲车继续行驶 4 小时到达 B ,而乙车只行驶了 1 小时就到达 A ,则两车第 15 次(在 A ,B 两地相遇次数不计)相遇时,它们行驶了 小时.10. 正方形 ABCD 的面积为 9 平方厘米,正方形 EFGH 的面积为 64 平方厘米.如图所示,边 BC 落在 EH上.己知三角形 ACG 的面积为 6.75 平方厘米,则三角形 ABE 的面积为 平方厘米.。
小学四年级奥数竞赛班作业第27讲:流水行船初步
流水行船练习题一.夯实基础:1.一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?2.两个码头相距352千米,一船顺流而下,行完全程需要11小时;逆流而上,行完全程需要16小时,求这条河水流速度.3.一只小船在静水中的速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?4.一只船在河里航行,逆流而上,每小时行20千米,已知船顺流航行2小时恰好与逆流航行3小时的路相等.求船速和水速?5.两地相距320千米,一艘轮船去时顺流用了16小时,回来时逆流用了20小时,水流速度是多少?二.拓展提高:6.一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?7.甲乙两港相距120千米,一轮船往返两港一次需10小时.逆流航行比顺流航行多用2小时.现有一机帆船,静水中的速度是每小时11千米.这机帆船往返两地要多少小时?8.船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时.由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?9.两港相距120千米,甲船往返两港需60小时,逆流航行比顺流航行多用了20小时.乙船的静水速度是甲船的静水速度的3倍,那么乙船往返两港需要多少小时?三. 超常挑战10.某船第一天顺流航行21千米,逆流航行4千米.第二天在同一河道中顺流航行12千米,逆流航行7千米.两次所用的时间相等.假设船本身速度及水流速度保持不变,顺水船速是逆水船速的多少倍?11.甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇.已知水流速度是4千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?12.江上有甲、乙两码头,相距15千米.甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船.又行驶了1小时,货船上有一物品掉入江中(该物品可用浮在水面上),6分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇.则游船在静水中的速度为每小时多少千米?13.某河有相距45千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行.一天甲船从上游码头出发时掉下一物,此物浮于水面顺水漂下,4分钟后,与甲船相距1千米.预计乙船出发后几小时可以与此物相遇?四.杯赛演练:14.(春蕾杯五年初赛试题)一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距多少千米?15.(两岸四地华罗庚金杯数学精英邀请赛)A、B两景点相距10千米,一艘观光游船从A景点出发抵达B景点后立即返回,共用3小时.已知第一小时比第三小时多行8千米,那么水速为每小时多少千米?16.(希望杯初赛试题)甲乙两个港口相距400千米,一艘轮船从甲港顺流而下,20小时可到达乙港。
“华罗庚金杯”少年数学邀请赛1-9届试题及详解
1 63 =1 64 64 63 米。 64
答:七根竹竿的总长是1
【分析与讨论】 中国古代就有 “一尺之棰, 日取其半, 万世不竭” 这样一个算术问题。就是说,有一根一尺长的短棍,每天截去它的一 半,永远也截不完。那么,每天剩下多少呢?第七天剩下多少呢? 用上面的解法计算七根竹竿的总长,时间是绰绰有余的。但如果 先把每根竹竿都算出来再相加,需要通分,时间恐怕就来不及了。同 学们不妨试一试。 有三条线段 A、B、C,A 长 2.12 米,B 长 2.71 米,C 长 3.53 米, 以它们作为上底、下底和高,可以作出三个不同的梯形。问:第几个 梯形的面积最大? 【解法】首先注意,梯形的面积=(上底+下底)×高÷2。但 我们现在是比较三个梯形面积的大小, 所以不妨把它们的面积都乘以 2,这样只须比较(上底+下底)×高的大小就行了。我们用乘法分配 律: 第一个梯形的面积的 2 倍是: (2.12+3.53)×2.71=2.12×2.17+3.53×2.71
而王师傅从甲地到乙地的实际行驶速度只有55公里小时这样一来实际行驶1公里所花费的时间是55小时为了能按时返回甲地王师傅从乙地返回甲地时行驶1公里所花的时间必须比原计划时间少55小时
历年华罗庚金杯试题 第一届“华罗庚金杯”少年数学邀请赛
初赛试题
1.1966、1976、1986、1996、2006 这 5 个数的总和是多少? 2.每边长是 10 厘米的正方形纸片,正中间挖一个正方形的洞, 成为一个宽度是 1 厘米的方框。把 5 个这样的ቤተ መጻሕፍቲ ባይዱ框放在桌面上,成为 这样的图案。 问桌面上被这些方框盖住的部分面积是多少平方厘米?
的时间。这样一来,问题就化为求 9 和 33 的最小公倍数的问题了。 不难算出 9 和 33 的最小公倍数是 99,所以答案为 99÷9=11。 答:小圆上的蚂蚁爬了 11 圈后,再次碰到大圆上的蚂蚁。 【分析与讨论】这个题目的关键是要看出问题实质是求最小公倍 数的问题。注意观察,看到生活中的数学,这 是华罗庚教授经常启发青少年们去做的。 图 33 是一个跳棋棋盘, 请你算算棋盘上共 有多少个棋孔? 【解法】这个题目的做法很多。由于时间 所限,直接数是来不及的,而且容易出错。下 图(图 34)给出一个较好的算法。把棋盘分 割成一个平行四边形和四个小三角形,如图 34。平行四边形中的棋孔数为 9×9=91,每个 小三角形中有 10 个棋孔。所以棋孔的总数是 81+10×4=121 个 答:共有 121 个棋孔。 【分析与讨论】 玩过跳棋的同学们, 你们以前数过棋孔的数目吗? 有兴趣的同学在课余时都可以数一数,看谁的方法最巧? 有一个四位整数。在它的某位数字前面加上一个小数点,再和这 个四位数相加,得数是 2000.81。求这个四位数。 【解法 1】由于得数有两位小数,小数点不可能加在个位数之前。 如果小数点加在十位数之前,所得的数是原米四位数的百分之一,再 加上原来的四位数,得数 2000.81 应该是原来四位数的 1.01 倍,原来 的四位数是 2000.81÷1.01=1981。 类似地,如果小数点加在百位数之前,得数 2000.81 应是原来四
五大奥数比赛
“华罗庚金杯”少年数学邀请赛(难度星级★★★★)“华杯赛”是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
参赛时间:初赛在每年3月初;复赛在每年4月初。
总决赛在7月进行;进入总决赛的另一途径:报名参加华杯赛冬令营(在每年1月份进行,一等奖可以直接进入华杯赛全国个人总决赛)。
参赛年级:小学组(五、六年级)、初中组(初一年级)杯赛特色及作用:1、“华杯赛”是唯一一个具有初赛、复赛、总决赛三轮严格选拔的全国性数学赛事。
2、“华杯赛”是唯一一个具有多项配套活动的系列数学竞赛。
包括全国总决赛、“两岸四地华杯精英赛”、“华杯冬令营”等活动3、“华杯赛”作为目前全国最权威的小学数学比赛,备受北京市各重点中学的认可。
华杯赛初赛考试时间短、题量少、难度低,难度梯度也小,所以考试平均分偏高,进入复赛分数线也高。
但是华杯决赛试题梯度宽、难度大,题量多,所以考试时间也长(一个半小时),但是华杯赛的的奖项含金最高、升学保障最稳,赛题水准最高、决赛规模最大。
“华杯赛”是优秀中小学生必参与、重点中学必关注、小升初必参考的重大赛事之一。
数学解题能力展示(迎春杯)(难度星级★★★★★)“迎春杯”是北京市的一项传统中小学赛事,对激发学生学习数学的兴起,发现优秀的数学特长生,推动北京中、小学数学教学改革等主面都起了很大的作用。
后更名为数学解题能力展示。
参赛时间:初赛在每年的12月初复赛在第二年的2月初参赛年级:小学中年级组(三、四年级)学生、小学高年级组(五、六年级)学生。
杯赛特色及作用:1、低年级夺奖难度降低:很多低年级家长并没有意识到竞争的压力,此时如果能够先人一步,在竞赛奖项上取得一些优异的成绩,不仅可以增加竞争的砝码,更重要的是可以增加孩子的学习信心,提高学习的兴趣,进而获得持续的进步空间。
2、迎春杯是很多重要比赛的资格赛:如去年参加的“华杯赛”两岸四地的精英邀请赛、走美的全国总决赛、日本算术奥林匹克等国内国际的比赛,其参赛标准就是需要获得迎春杯三等奖以上的成绩。
小学奥数--圆柱与圆锥-精选练习例题-含答案解析(附知识点拨及考点)
立体图形表面积 体积 圆柱h r222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱圆锥hr 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体 板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)11111.50.5【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【答案】32.97【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例题精讲圆柱与圆锥【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米). 【答案】307.72【例 3】 (希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米) 当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米. 【答案】300π立方厘米或360π立方厘米【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【答案】100.48立方米【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米),原来的长方形的面积为:10462.81022056()()(平方厘米).⨯+⨯⨯=【答案】2056【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2⨯⨯==(立方厘米).π188π25.12【答案】25.12【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56⨯=(平方厘米),两÷=(厘米),侧面积是:12.5612.56157.7536个底面积是:()2⨯÷÷⨯=(平方厘米).所以表面积为:3.1412.56 3.142225.12+=(平方厘米).157.753625.12182.8736【答案】182.8736【例 6】(两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱)体木棒的侧面积是________2cm.(π取3.14【考点】圆柱与圆锥【难度】3星【题型】解答第2题【解析】根据题意可知,切开后表面积增加的就是两个长方形纵切面.设圆柱体底面半径为r,高为h,那么切成的两部分比原来的圆柱题表面积大:2r h⨯=,所以,圆柱体侧面积为:502(cm)222008(cm)r h⨯⨯=,所以22⨯⨯⨯=⨯⨯=.r h2π2 3.145023152.56(cm)【答案】3152.56【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了=)40平方厘米,求圆柱体的体积.(π3【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为2r,则210240r=(厘米).圆柱体积为:r⨯⨯=,12⨯⨯=(立方厘米).π11030【答案】30【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【考点】圆柱与圆锥【难度】3星【题型】解答【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为()2÷⨯=(厘米),所以增加的表面积为2421650.24 3.1424⨯⨯=(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.142 6.28⨯=厘米,所以侧面长方形的面积为50.24 6.288÷=平方厘米,所以增加的表面积为8216⨯=平方厘米.【答案】16【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【考点】圆柱与圆锥【难度】3星【题型】解答【解析】这是一个半圆柱体与长方体的组合图形,通过分割平移法可求得表面积和体积分别为:11768平方厘米,89120立方厘米.【答案】89120【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输2.5毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【答案】150【例 10】(”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【考点】圆柱与圆锥【难度】3星【题型】解答【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【答案】100.48【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的623÷=倍.所以酒精的体积为326.4π62.17231⨯=+立方厘米,而62.172立方厘米62.172=毫升0.062172=升.【答案】0.062172【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)253015【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm ,因为酒瓶深30cm ,这样所剩空间为高5cm 的圆柱,再加上原来15cm 高的酒即为酒瓶的容积. 酒的体积:101015π375π22⨯⨯= 瓶中剩余空间的体积1010(3025)π125π22-⨯⨯= 酒瓶容积:375π125π500π1500(ml)+==【答案】1500【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米.【答案】60【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3=)5cm【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥的高为x 厘米.由于两次放置瓶中空气部分的体积不变,有:()22215π611π6π63x x ⨯⨯=-⨯⨯+⨯⨯⨯,解得9x =, 所以容器的容积为:221π612π69540π16203V =⨯⨯+⨯⨯⨯==(立方厘米). 【答案】1620【例 11】 (希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 在水中的木块体积为55375⨯⨯=(立方厘米),拿出后水面下降的高度为7550 1.5÷=(厘米)【答案】1.5【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将圆柱体分别放入A 盒、B 盒后,两个盒子的底面被圆柱体占据的部分面积相等,所以两个盒子的底面剩余部分面积也相等,那么两个盒子的剩余空间的体积是相等的,也就是说A 盒中装的水恰好可以注满B 盒而无剩余,所以A 盒余下的水是0立方厘米.【答案】A 盒余下的水是0立方厘米【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 最后拉出的面条直径是原先面棍的164,则截面积是原先面棍的2164,细面条的总长为:21.6646553.6⨯=(米).注意运用比例思想.【答案】6553.6【例 14】 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 因为18分钟水面升高:502030-=(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:20181230⨯=(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的13:124=,所以长方体底面面积与容器底面面积之比为3:4. 【答案】3:4【例 15】 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米).(提问”圆柱高是15厘米”,和”高为12厘米的长方体铁块”这两个条件给的是否多余?)【答案】10【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米【答案】12.4【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米【总结】铁块放入玻璃杯会出现三种情况:①放入铁块后,水深不及铁块高;②放入铁块后,水深比铁块高但未溢出玻璃杯;③水有溢出玻璃杯.【说明】教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事. 一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题.当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:”我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【答案】15【例 16】 一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是72—6×6=36(平方厘米).水的体积是72 2.5180⨯=(立方厘米).后来水面的高为180÷36=5(厘米).【答案】5【例 17】 一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若圆柱体能完全浸入水中,则水深与容器底面面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:222515217517.72πππ⨯⨯+⨯⨯⨯=(厘米).它比圆柱体的高度要大,可见圆柱体可以完全浸入水中.于是所求的水深便是17.72厘米.【答案】17.72【例 18】 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 两个圆柱直径的比是1:2,所以底面面积的比是1:4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的14,即120.54⨯=(厘米). 【答案】0.5【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的520,即41,钢材底面积就是水桶底面积的161.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.6÷(520)2=96(厘米),(法2):3.14×202×6÷(3.14×52)=96(厘米). 【答案】96【例 19】 一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若铁圆柱体能完全浸入水中,则水深与容积底面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:22251521817.725πππ⨯⨯+⨯⨯=⨯(厘米);它比铁圆柱体的高度要小,那么铁圆柱体没有完全浸入水中.此时容器与铁圆柱组成一个类似于下图的立体图形.底面积为225221πππ-=,水的体积保持不变为2515315ππ⨯=.所以有水深为315617217ππ=(厘米),小于容器的高度20厘米,显然水没有溢出于是6177厘米即为所求的水深. 【答案】6177【例 20】 如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?【关键词】华杯赛,初赛,3题【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 圆锥的体积是211624,33ππ⨯⨯⨯=,圆柱的体积是248128ππ⨯⨯=.所以,圆锥体积与圆柱体积的比是16:1281:243ππ=. 【答案】1:24【例 21】 一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米? 【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥形容器底面积为S ,圆柱体内水面的高为h ,根据题意有:1243S Sh ⨯⨯=,可得8h =厘米. 【答案】8【例 22】 (”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆锥容器的底面积是现在装水时底面积的4倍,圆锥容器的高是现在装水时圆锥高的2倍,所以容器容积是水的体积的8倍,即508400⨯=升.【答案】400【例 23】 如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥容器的底面半径为r ,高为h ,则甲、乙容器中水面半径均为23r ,则有21π3V r h =容器,221228ππ33381V r h r h =⨯=乙水(),222112219πππ333381V r h r h r h =-⨯=甲水(),2219π198188π81r h V V r h ==甲水乙水,即甲容器中的水多,甲容器中的水是乙容器中水的198倍. 【答案】198倍【例 24】 张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍? 【关键词】华杯赛,决赛,口试,23题【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 底面周长是3,半径是32π,2233()24πππ⨯=所以今年粮囤底面积是234π,高是2.同理,去年粮囤底面积是224π,高是1.2232(2)(1) 4.5.44ππ⨯÷⨯=因此,今年粮囤容积是去年粮囤容积的4.5倍.【答案】4.5【例 25】 (仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是 平方米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 缠绕在一起时塑料薄膜的体积为:22208ππ1008400π22⎡⎤⎛⎫⎛⎫⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为0.04厘米,所以薄膜展开后的面积为8400π0.04659400÷=平方厘米65.94=平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为22208ππ84π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π0.046594÷=厘米,所以展开后薄膜的面积为6594100659400⨯=平方厘米65.94=平方米.【答案】65.94【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4 毫米,问:这卷纸展开后大约有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积. 因此,纸的长度 :()22 3.1410093.1410 3.1437143.50.040.04⨯-⨯-⨯≈≈==纸卷侧面积纸的厚度(厘米)所以,这卷纸展开后大约71.4米.【答案】71.4【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 卷在一起时铜版纸的横截面的面积为2218050ππ7475π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π0.025938860÷=厘米9388.6=米.所以这卷铜版纸的总长是9388.6米. 本题也可设空心圆柱的高为h ,根据展开前后铜版纸的总体积不变进行求解,其中h 在计算过程将会消掉.【答案】9388.6米【例 26】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 ⑴先求表面积.表面积可分为外侧表面积和内侧表面积.外侧为6个边长10厘米的正方形挖去4个边长4厘米的正方形及2个直径4厘米的圆,所以,外侧表面积为:210106444π225368π⨯⨯-⨯⨯-⨯⨯=-(平方厘米);内侧表面积则为右上图所示的立体图形的表面积,需要注意的是这个图形的上下两个圆形底面和前后左右4个正方形面不能计算在内,所以内侧表面积为:()24316244π22π232192328π24π22416π⨯⨯+⨯⨯-⨯+⨯⨯⨯=+-+=+(平方厘米),所以,总表面积为:22416π5368π7608π785.12++-=+=(平方厘米).⑵再求体积.计算体积时将挖空部分的立体图形取出,如右上图,只要求出这个几何体的体积,用原立方体的体积减去这个体积即可.挖出的几何体体积为:24434444π2321926424π25624π⨯⨯⨯+⨯⨯+⨯⨯⨯=++=+(立方厘米);所求几何体体积为:()10101025624π668.64⨯⨯-+=(立方厘米). 【答案】668.64板块二 旋转问题【例 27】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC ∆扫出的立体图形的体积.(π 3.14=)CB A43【考点】旋转问题 【难度】3星 【题型】解答【解析】 如右上图所示,ABC ∆扫出的立体图形是一个圆锥,这个圆锥的底面半径为3,高为4,体积为:21π3412π37.683⨯⨯⨯==.【答案】37.68【例 28】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14) 【考点】旋转问题 【难度】3星 【题型】解答【解析】 以3cm 的边为轴旋转一周所得到的是底面半径是4cm ,高是3cm 的圆锥体,体积为2313.144350.24(cm )3⨯⨯⨯= 以4cm 的边为轴旋转一周所得到的是底面半径是3cm ,高是4cm 的圆锥体,体积为2313.143437.68(cm )3⨯⨯⨯= 以5cm 的边为轴旋转一周所得到的是底面半径是斜边上的高345 2.4⨯÷=cm 的两个圆锥,高之和是5cm 的两个圆的组合体,体积为2313.14 2.4530.144(cm )3⨯⨯⨯=【答案】30.144【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC【考点】旋转问题 【难度】3星 【题型】解答【解析】 设BC a =,AC b =,那么以BC 边为轴旋转一周,所形成的圆锥的体积为2π3ab ,以AC 边为轴旋转一周,那么所形成的圆锥的体积为2π3a b ,由此可得到两条等式:224836ab a b ⎧=⎪⎨=⎪⎩,两条等式相除得到43b a =,将这条比例式再代入原来的方程中就能得到34a b =⎧⎨=⎩,根据勾股定理,直角三角形的斜边AB 的长度为5,那么斜边上的高为2.4.如果以AB 为轴旋转一周,那么所形成的几何体相当于两个底面相等的圆锥叠在一起,底面半径为2.4,高的和为5,所以体积是22.4π59.6π3⨯=.【答案】9.6π【例 29】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)。
第四届两岸四地精英赛一试试题和答案(小学高年级组)
第四届两岸四地华罗庚金杯少年数学精英邀请赛笔试一试卷和答案(小学高年级组)共12题,每题10分1. 计算185292[(4.32 1.681)]162511735+--⨯-÷= .2. 今天是13日,如果将若干自然数按下表排列,那么这个表中所有自然数的总和是 . 12 3 4 … 12 13 23 4 5 … 13 14 3 4 5 6 … 14 15 … … … … … … …13 14 15 16 ... (25)3. 一只油桶,装的油占全桶装油量的35,卖出18千克后,还剩原有油的60%。
那么这只油桶能装 千克油.4. 在ABC △中,123D D D 、、为AB 边的内分点,123E E E 、、为AC 边的内分点,那么下图中有 个三角形.5. 两个带小数相乘,将得到的积四舍五入可得27.6 . 现已知这两个小数都是一位小数,且它们个位上都是5,那么这两个小数相乘所得的准确积是 .6. A 、B 两地共有学生81人,其中A 地的第一个学生与B 地的10个学生联系过,第二个学生与B 地的11个学生联系过,第三个学生与B 地的12个学生联系过,…,第n 个学生与B 地的所有学生都联系过. 那么A 、B 两地各有学生.7.有一种八边形,它的每条边的长度都是一个整厘米数. 若从该八边形中取出任意三条边的都不能构成三角形. 则符合这些条件的八边形周长最短是cm.8.在小于2012的所有正整数n中,使得2-能被7整除的n共有2n n个.9.三角形ABC中,1,6,2,2====,三角形BE EF FC BD ADAHG的面积是4.86,三角形GFC的面积是2,则四边形BEHD的面积是.⨯的矩形棋盘(其中,m n为不超过10的正整数),10.由单位正方形组成的m n在棋盘的左下角单位正方形里放有一枚棋子,甲乙两人轮流行棋. 规则是:或者向上走任意多格,或者向右走任意多格,但是不能走出棋盘或者不走. 若规定不能再走者为负(即最先将棋子移至右上角者获胜). 那么能使先行棋的甲m n共有个.有必胜策略的正整数对(,)11.将自然数2、3、4……、n分成两组,满足①同一组任意两个数的乘积不在这个组;②任意一个数与它的平方不在同一组. 则n最大是. 12.一个棱长为4的正方形盒子放一个半径为1的球,球在盒子里随意移动,盒子也可以随意翻动. 则球接触不到的正方体内表面的面积是.答案:1、2—2、21973、754、645、27.566、36,457、548、5769、2.86 10、90 31、31 12、725 12。
第四讲:几何综合 (小升初真题集锦讲练)
第四讲真题选讲及检测1、(小数报02届)王大伯从家(A点处)去河边挑水,然后把水挑到积肥潭里(B点处)。
请帮他找一条最短的路线,在右图表示出来,并写出过程。
2、(小数报06届)下面5个图形都具有两个特点:(1)由4个连在一起的同样大小的正方形组成;(2)每个小正方形至少和另一个小正方形有一条公共边。
我们把具有以上两个特点的图形叫做“俄罗斯方块”。
3、如果把某个俄罗斯方块在平面上旋转后与另一个俄罗斯方块相同(比如上面图中的B与E),那么这两个俄罗斯方块只算一种。
除上面4种外,还有好几种俄罗斯方块,请你把这几种都画出来。
4、(第12届迎春杯)比赛用的足球是由黑、白两色皮子缝制的,其中黑色皮子为正五边形,白色皮子为正六边形,并且黑色正五边形与白色正六边形的边长相等。
缝制的方法是:每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其他白色皮子的边缝在一起。
如果一个足球表面上共有12块黑色正五边形皮子,那么,这个足球应有正六边形皮子块。
5、(第13届迎春杯)在一张四边形的纸上共有10个点,如果把四边形的顶点算在一起,则一共有14个点,已知这些点中的任意三个点都不在同一直线上。
按下面规定把这张纸剪成一些三角形:(1)每个三角形的顶点都是这14个点中的3个;(2)每个三角形内,都不再有这些点。
那么,这张四边形的纸最多可以剪出个三角形。
6、(第2届希望杯)如图2,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的 。
图27、(第二届两岸四地华罗庚金杯少年数学精英邀请赛)如图,房间里有一只老鼠,门外有一只小猫,如果每块正方形地砖的边长为50厘米,那么老鼠在地面上能避开小猫视线的活动范围为______平方厘米。
(将小猫和老鼠分别看作两个点,墙的厚度忽略不计)8、(第2届希望杯)下图中的(A )、(B )、(C )是三块形状不同的铁皮,将每块铁皮沿虚线弯折后焊接成一个无盖的长方体铁桶。
小学奥数操作与策略题库版
1. 通过实际操作寻找题目中蕴含的数学规律2. 在操作过程中,体会数学规律的并且设计最优的策略和方案3. 让孩子掌握各种趣题的不同思考方式.实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。
模块一、制胜策略【例 1】 (圣彼得堡数学奥林匹克)尤拉想出一个数,将它乘以13,删去乘积的末位数,将所得的数再乘以7,再删去乘积的末位数,最终得到的数为21.问:尤拉最初所想的是哪一个数? 【解析】 解法一:(从分析结果入手)在第二次删去末位数之前,尤拉面临的是一个三位数,其值在210至219之间.在这些数中,只有两个数是7的倍数:210730=⨯和217731=⨯.这就意味着在乘以7之前,尤拉的数是30或31.因而在第一次删去末位数之前,尤拉所面临的数为300到319之间的一个三位数.在这些数中只有一个数是13的倍数:3122413=⨯,所以尤拉最初所想出的数是24.解法二:(利用单调性)容易看出,如果增大一开始的数,发现最终所得的数不会减小,这是因为无论是乘法运算,还是删去末位数的操作,都具有“非降性”.如果开始所想的数是25,那么运算过程如下:25→325→32→224→22.综合上述两方面,即知尤拉最初所想的数是24.例题精讲知识点拨教学目标第十四讲:操作与策略【巩固】 (2008年第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 号白盒中恰有k 个球,可将这k 个球取出,并给0号、1号、…,(1)k -号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有 个球. 【解析】 使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.【例 2】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?【解析】 设圆周上余a 枚棋子,从第9次越过A 处拿走2枚棋子到第10次将要越过A 处棋子时,小洪拿了2a 枚棋子,所以在第9次将要越过A 处棋子时,圆周上有3a 枚棋子. 依次类推,在第8次将要越过A 处棋子时,圆周上有23a 枚棋子,…,在第1次将要越过A 处棋子时,圆周上有93a 枚棋子,在第1次将要越过A 处棋子之间,小洪拿走了()92311a -+枚棋子,所以99102(31)1331N a a a =-++=-.1031590491N a a =-=-是14的倍数,N 是2和7的公倍数,所以a 必须是奇数;又()78435417843541N a a a =⨯+-=⨯+-,所以41a -必须是7的倍数.当21a =,25,27,29时,41a -不是7的倍数,当23a =时,4191a -=是7的倍数. 所以,圆周上还有23枚棋子.【例 3】 (2008年北大附中“资优博雅杯”数学竞赛)一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是 颜色(填黑或者白) 【解析】 由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【例 4】 今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币和真币的重量不同.现需弄清楚伪币究竟比真币轻还是重、但只有一架没有砝码的天平,那么怎样利用这架天平称两次,来达到目的? 【解析】 101枚硬币,如果进行称重的话应该保证天平两边的硬币数相等.因此应该首先拿掉一个,把剩下的100枚硬币在天平两边各放50个.如果这时天平两边重量相等的话,就说明剩下的那个是伪币.只要任意拿出一个真币和这个伪币再称一次就可以知道真币和伪币那种比较重了.如果天平两边重量不相等的话,就是说伪币还在这100个硬币中.可以拿出其中比较轻的50个.这时同样还是把他们分成两个25枚,分到天平两边称重.如果两边重量相等,说明这50个硬币都是真的.伪币在比较重的那50个中,因此伪币就应该比真币重.如果两边重量不相等,说明伪币就在这50个比较轻的硬币中,显然伪币就应该比真币轻.同样道理,也可以把比较重的那50个硬币分成两个25进行称重,同样也可以得出结论【巩固】9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)? 【解析】第一次在左右两托盘各放置3个:(一)如果不平衡,那么较轻的一侧的3个中有一个是假的.从中任取两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②如果平衡,剩下的一个是假的;(二)如果平衡,剩下的三个中必有一个为假的.从中任取两个分别放在两托盘内:①如果不平衡,较低的一侧的那个是假的;②如果平衡,剩下的那个是假的.这类称量找假币的问题,一定要会分类,并尽量是每一类对应天平称量时的不同状态(轻,重,平),所以分成3堆是很常见的分法.【例5】有大,中,小3个瓶子,最多分别可以装入水1000克,700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动使得中瓶和小瓶上标出100克水的刻度线,问最少要倒几次水?【解析】通过对三个数字的分析,我们发现700-300-300=100,是计算步数最少的得到100的方法.而由于我们每计算一步就相当于倒一次水,所以倒水最少的方案应该是:1.大瓶往中瓶中倒满水.2.中瓶往小瓶中倒满水,这时中瓶中还剩下400克水.3.小瓶中水倒回大瓶.4.中瓶再往小瓶中倒满水,这时中瓶中只剩下100克水,标记.5.小瓶中水倒回大瓶.6.中瓶中100克水倒入小瓶,标记.所以最少要倒6次水.本题关键是,小瓶中的水每次都要倒掉,不然无法再往小瓶中倒水的.【例6】 (第七届“华杯赛”决赛)对一个自然数作如下操作:如果是偶数则除以2;如果是奇数则加1. 如此进行直到为1操作停止. 求经过9次操作变为1的数有多少个?【分析】可以先尝试一下,得出下面的图:其中经1次操作变为1的1个,即2,经2次操作变为1的1个,即4,经3次操作变为1的2个,即3,8,…,经6次操作变为1的有8个,即11,24,10,28,13,30,64,31.于是,经1、2、…次操作变为1的数的个数依次为1,1,2,3,5,8,…①这一串数中有个特点:自第三个开始,每一个等于前两个的和,即 2=1+1,3=2+1,5=3+2,8=5+3,… 如果这个规律正确,那么8后面的数依次是 8+5=13,13+8=21,21+13=34,… 即经过9次操作变为1的数有34个. 为什么上面的规律是正确的呢?道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,…【巩固】 对于任意一个自然数n ,当n 为奇数时,加上121;当n 为偶数时,除以2,这算一次操作.现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么? 【解析】 同学们碰到这种题,可能会“具体操作”一下,得到这个过程还可以继续下去,虽然一直没有得到100,但也不能肯定得不到100.当然,连续操作下去会发现,数字一旦重复出现后,这一过程就进入循环,这时就可以肯定不会出现100.因为这一过程很长,所以这不是好方法.我们可以从另一个方面来考虑,因为231和121都是11的倍数,而2不是11的倍数,所以在操作过程中产生的数也应当是11的倍数.100不是11的倍数,所以不可能出现.【巩固】 小牛对小猴说:“对一个自然数n 进行系列变换:当n 是奇数时,则加上2007;当n 是偶数时,则除以2.现在对2004连续做这种变换,变换中终于出现了数2008.”小猴说:“你骗人!不可能出现2008.”请问:小牛和小猴谁说得对呢?为什么? 【解析】 试着按照规则进行变换,得到的结果依次如下:2004,1002,501,2508,1254,627,2634,1317,3324,1662,831,2838,……从中发现不了什么规律,所以应该从另外的角度进行分析.观察可知2004和2007都是3的倍数,那么不论变换多少次,得到的数也还是3的倍数.而2008不是3的倍数,所以不可能出现2008.【例 7】 (2005年武汉“明星奥数挑战赛”)有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,2-,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,4-,2-,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?【解析】观察操作次数:开始第一次第二次第三次…总和:7 10 13 16 …易发现每操作一次总和增加3.因此操作100次后产生的新数串所有数之和为+⨯=.73100307【巩固】 (武汉“明星奥数挑战赛”)将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是与.【解析】由题意,我们可以多给几组数按题目所给操作方法进行操作,从中找出规律.例如:136,63→…→1,136,27→…→9,984,36→…→12,12考察操作后所得结果,不难发现每次所得的最终结果是开始两数的最大公约数,因此我们只需找到两个尽量小的四位数,他们都是15的倍数,可得1005和1020.【例8】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【巩固】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:6 2 8 1 0 1 1 2 3 ……则这个整数的数字之和是()。
教师团队风采介绍词
教师团队风采介绍词导语::介绍词,也叫讲解词,即口头解释说明的词,它通过对事物的准确描述、词语的渲染,来感染观众或听众,使其了解事物的来龙去脉和意义,收到宣传的效果。
下面是收集的教师团队风采介绍词,希望可以帮助到大家!第十五届“华杯赛”总决赛成都代表队领队(代表队取得一金三银六铜的佳绩),第四届两岸四地华罗庚金杯少年数学精英邀请赛成都代表队领队(代表队取得2名一等奖,8名二等奖,2名三等奖的优异成绩)。
第十届、十一届、十二届、十三届、十四届“少文杯”主试委员会成员。
xx年毕业于四川师范大学,长期从事教学及管理工作,有丰富的教学经历和感染力,在教学中将女教师的细致与耐心发挥得淋漓尽致。
教学风格轻松愉悦,讲解生动,善于化繁为简,擅长培养学生的学习兴趣,标准学生的学习习惯,训练学生的思维能力,引导学生总结适合自己的学习方法。
所教多名学生考入“七中育才”、“七中嘉祥”等五升六衔接班并在六年级顺利升入知名中学,所教学生陈阳、等同学在小升初择校考试中成绩斐然,在“少文杯”、“华杯赛”、“奥赛”等重大比赛中也屡屡斩获一、二、三等奖。
教育格言:习于智长,优于心成。
第十九届、十八届华杯赛全国总决赛成都代表队领队(团队取得1金4银9铜团体第10的历史最正确成绩),“数学英豪”系列班级创办人,“数学英豪”核心教学体系架构师。
执教生涯连续蝉联华杯赛优秀教练员称号,从事一线数学教学工作至今,竭力开展发现式的数学教学模式,致力于将数学教育变成浅显易懂、美轮美奂、生动有趣的体验过程。
逐渐形成了知识严谨却不拘一格、语言诙谐幽默、崇尚启发的教学风格。
“数学英豪”成立第一年,由唐寅老师领衔的第一届“数学英豪”系列班级学员在各大竞赛累计获奖人数破百,有六人入选今年成都市“华赛全国总决赛集训队”,自身所提倡的“思维素质教育”与讲座大受欢迎。
“数学英豪“成立第二年,在唐寅老师应试教育和素质教育两手抓的策略下,涌现出大量优秀学员。
与此同时,唐寅老师作为全成都市素质教育先锋的破冰之举——受邀于成都小学成功举办了首例小学数学建模讲座!课上同学兴趣满满,课后积极进展数据调查,并反响给唐寅老师。
小学五大奥数竞赛杯赛介绍
小学五大奥数竞赛杯赛介绍现在很多小学生在业余时间都会学习一些奥数,希望以此来提高自己的学习能力,甚至很多同学为了证明自己都会参加一些奥数竞赛,今天沪江的小编在这里为大家整理了小学五大奥数竞赛杯赛的介绍,希望能够帮助到有需要的朋友。
“华罗庚金杯”少年数学邀请赛(难度星级★★★★)“华杯赛”是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
参赛时间:初赛在每年3月初;复赛在每年4月初。
总决赛在7月进行;进入总决赛的另一途径:报名参加华杯赛冬令营(在每年1月份进行,一等奖可以直接进入华杯赛全国个人总决赛)。
参赛年级:小学组(五、六年级)、初中组(初一年级)杯赛特色及作用:1、“华杯赛”是唯一一个具有初赛、复赛、总决赛三轮严格选拔的全国性数学赛事。
2、“华杯赛”是唯一一个具有多项配套活动的系列数学竞赛。
包括全国总决赛、“两岸四地华杯精英赛”、“华杯冬令营”等活动3、“华杯赛”作为目前全国最权威的小学数学比赛,备受北京市各重点中学的认可。
华杯赛初赛考试时间短、题量少、难度低,难度梯度也小,所以考试平均分偏高,进入复赛分数线也高。
但是华杯决赛试题梯度宽、难度大,题量多,所以考试时间也长(一个半小时),但是华杯赛的的奖项含金最高、升学保障最稳,赛题水准最高、决赛规模最大。
“华杯赛”是优秀中小学生必参与、重点中学必关注、小升初必参考的重大赛事之一。
数学解题能力展示(迎春杯)(难度星级★★★★★)“迎春杯”是北京市的一项传统中小学赛事,对激发学生学习数学的兴起,发现优秀的数学特长生,推动北京中、小学数学教学改革等主面都起了很大的作用。
后更名为数学解题能力展示。
参赛时间:初赛在每年的12月初复赛在第二年的2月初参赛年级:小学中年级组(三、四年级)学生、小学高年级组(五、六年级)学生。
杯赛特色及作用:1、低年级夺奖难度降低:很多低年级家长并没有意识到竞争的压力,此时如果能够先人一步,在竞赛奖项上取得一些优异的成绩,不仅可以增加竞争的砝码,更重要的是可以增加孩子的学习信心,提高学习的兴趣,进而获得持续的进步空间。
四年级三大原理乘法原理学生版
知识要点乘法原理乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.一、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.简单分步【例1】 在图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过。
问:这只甲虫最多有几种不同走法?BA【例2】 在图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过。
问:这只甲虫最多有几种不同走法?BA【例3】 在图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过。
问:这只甲虫最多有几种不同走法?BA三、乘法原理解题三部曲1、完成一件事分N 个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例4】在图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过。
香港首届精英赛决赛试题和解答
首届两岸四地华罗庚金杯少年数学精英邀请赛决赛试题笔试一、填空题(每题12分,满分60分)1. 如下数表由从1开始的连续自然数写成,并且每行最右边的一个数都是平方数:则表中第10行所写出的各数的和等于.2.图中,长方形ABCD的长BC = 10厘米,宽AB = 6厘米. 在BC上取点M,在AD上取点N,使得四边形BMDN是一个菱形. 则菱形BMDN的面积是平方厘米.3.100名少年运动员胸前的号码分别是1,2,3,……,99,100. 选出其中的k名运动员,使得他们的号码数之和等于2008. 那么k的最大值是.4. 自然数b与175的最大公约数记为d. 如果176(111)51b d d⨯-⨯+=⨯+,则b = .5.华罗庚爷爷说:数学是我国人民所擅长的学科. 请小朋友求解《九章算术》中的一个古代问题:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐.问葛长几何?”白话译文:如图2,有圆柱形木棍直立地面,高20尺,圆柱底面周长3尺. 葛藤生于圆柱底部A点,等距缠绕圆柱七周恰好长到圆柱上底面的B点. 则葛藤的长度是尺.(图2-1)二、解答下列各题,要求写出简要过程(每小题15分,满分45分)6. 如图3,摆放2×2的“4宫格”要用12根火柴棍;摆放3×3的“9宫格”要用24根火柴棍. 小明用1300根火柴棍,恰好摆放成一个m×m的“m2宫格”,问m=?(图3)7. 图4中,M是AB的中点,N是BC上一点,CN = 2BN.连接AN交MC于O点. 若四边形BMON的面积为14平方厘米,求:(1)CO︰OM=?(2)三角形ABC的面积= ?(图4)8. 在1 ~ 30m(其中m是非零自然数)这些自然数中,(1)能被2整除的合数共有多少个?能被3整除的合数共有多少个?(2)请说明:在1 ~ 30m这些自然数中,质数的个数不超过10m .三. 解答下列各题,要求写出详细过程(第9题20分,第10题25分,满分45分)9. 在A到B的公路段上,每30千米设一个慢车站,每50千米设一个快车站,如果相邻两个车站间的路程大于15千米,则在这段路程的中点设一个维修点. 如果一个车站既是慢车站也是快车站,则在这个车站设一家商店. 已知从A到B共设有7家商店,A和B既是慢车站也是快车站. 问:(1)从A到B的路程有多少千米? (2)从A到B的途中共设有多少个维修点?10.图5是由16个面积为1的等边三角形组成的一个大的等边三角形,这个大的等边三角形内部及边上共有15个交叉点. 请回答:(1)以这些交叉点为顶点,可以连成多少个等边三角形?(图5)(2)所连成的全部等边三角形的面积的总和是多少?首届两岸四地华罗庚金杯少年数学精英邀请赛决赛试题笔试(二)及答案一、填空题(每题12分,满分60分)题号 1 2 3 4 5答案1729 40.8 62 385 291. 如下数表由从1开始的连续自然数写成,并且每行最右边的一个数都是平方数:则表中第10行所写出的各数的和等于 . 解:第10行是从82 ~ 100共19个自然数之和:82 + 83 + 84 + …… + 99 + 100 = 808449010451001729⨯++⨯++=.注:计算82 + 83 + 84 + …… + 99 + 100的方法很多,比如:82 + 83 + 84 + …… + 99 + 100 {}1(82100)(8399)(8498)(10082)2=++++++++L 11821991191820191729.2=⨯⨯=⨯=-= 或 82 + 83 + 84 + …… + 99 +100(118)1810019(1218)19002+⨯=⨯-++=-L 190019919001711729.=-⨯=-=2. 图1中,长方形ABCD 的长BC = 10厘米,宽AB = 6厘米. 在BC 上取点M ,在AD 上取点N ,使得四边形BMDN是一个菱形. 则菱形BMDN 的面积是 平方厘米.解:因为BMDN 是一个菱形,可设 BM MD ND BN x ====,则10AN x =-. 在直角三角形ABN 中,由勾股定理得 2226(10)x x +-=,即13620x =,解得 6.8x =. 菱形BMDN 的面积 = 6.8×6 = 40.8(平方厘米).3.100名少年运动员胸前的号码分别是1,2,3,……,99,100. 选出其中的k 名运动员,使得他们的号码数之和等于2008. 那么k 的最大值是 .解:显然,选号码越小的,可以使选出的人数越多. 因此,考虑先选前n 名运动员,他们的号码是1~n 的连续自然数,并且号码数之和不超过2008.(图1)由于 (1)12320082n n n +++++=≤L , 得(1)2008,(1)40162n n n n +≤+≤. ,49007070,36006060=⨯=⨯Θ 故 n 是二位数,其十位数字是6. 从小到大,逐一试算)1(+n n ,得到401640326463,401639066362>=⨯<=⨯,即选出的运动员不可能多于62人.又因为 5519532008,195326362=-=⨯,可以选如下号码的运动员: 1,2,3,…,7,9,…,62,63,这些号码数的和是(1953-8+63)=2008,所以,k的最大值是62.4. 自然数b 与175的最大公约数记为d . 如果 176(111)51b d d ⨯-⨯+=⨯+,则b = .解:由于(175,)d b =,d 必为175的约数,而175=5×5×7,所以d 只能取1,5,7,25,35,175中的某一个. 另外由176(111)51b d d ⨯-⨯+=⨯+ 可知 111b d -+为非0自然数, 即1111b d -+≥,因此 5117635.d d +≥⇒≥ 所以d =35或175.将d =35代入176(111)51b d d ⨯-⨯+=⨯+,得b = 385. 将d =175代入176(111)51b d d ⨯-⨯+=⨯+,得 176(111751)51751876b ⨯-⨯+=⨯+=,即44(111751)219b ⨯-⨯+=,左边是偶数,右边是奇数,矛盾!所以d =175不合要求.所以b = 385.5. 华罗庚爷爷说:数学是我国人民所擅长的学科. 请小朋友求解《九章算术》中的一个古代问题:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐.问葛长几何?” 白话译文:如图2,有圆柱形木棍直立地面,高20尺,圆柱底面周长3尺. 葛藤生于圆柱底部A 点,等距缠绕圆柱七周恰好长到圆柱上底面的B 点. 则葛藤的长度是 尺.解:设想从A 点将葛藤剪断,顶点处B 不动,将缠绕的葛藤解开拉直,如图2-1所示:A(图2)点变为地面上的C 点. 则葛藤长为Rt BAC∆的斜边BC . 由AB =20,AC =21和勾股定理得:2222021BC =+400441=+= 841=222230601302301(301)29-+=-⨯+=-=. 所以BC =29(尺).答:葛长29尺.二、解答下列各题,要求写出简要过程(每小题15分,满分45分)6. 如图3,摆放2×2的“4宫格”要用12根火柴棍;摆放3×3的“9宫格”要用24根火柴棍. 小明用1300根火柴棍,恰好摆放成一个m ×m 的“m 2宫格”,问m =? 解:在“m 2宫格”中,横向的火柴棍有1+m 行,每行有m 根,共有)1(+m m 根. 同样,纵向的火柴棍有1+m 列,每列有m 根,也共有)1(+m m 根. 所以,摆放“m 2宫格”共用了2m (m +1)根火柴. ……(10分)由2(1)1300m m +=, 得到2(1)65025132526m m +==⨯⨯=⨯,因此25.m =……(15分)7. 图4中,M 是AB 的中点, N 是BC 上一点,CN = 2BN .连接AN 交MC 于O 点. 若四边形BMON 的面积为14平方厘米, 求:(1)CO ︰OM =?(2)三角形ABC 的面积 = ?解;连接BO ,如图4 -1所示,设,BMO BNO S x S y ==V V , 则,2,3AMO CNO ACO S x S y S y ===V V V .由顶点相同并且底边共线的两个三角形面积之比等于底边之比的关系,可得:23322ABO AOC BON NOC x S AO S y y S ON S y =====V V V V , 所以 4x = 3y . ……(5分)(图3)(图4)因此,(1)344.ACOAMOCO S y xOM S x x====VV……(10分)(2)由37148,644y yx x y y x=⇒+==⇒==,所以三角形ABC的面积26266860x y=+=⨯+⨯=(平方厘米). ……(15分)8. 在1 ~ 30m(其中m是非零自然数)这些自然数中,(1)能被2整除的合数共有多少个?能被3整除的合数共有多少个?(2)请说明:在1 ~ 30m这些自然数中,质数的个数不超过10m .解:(1)在1 ~ 30m(其中m是非零自然数)这些自然数中,被2整除的数有15m 个,由于2是质数,所以偶合数共有15m – 1个;……(3分)被3整除的数有10m个,由于3是质数,其中的合数有10m – 1个.……(6分)(2)由(1)的结果可知:在1 ~ 30m(其中m = 1,2,3,……)这些自然数中,被2整除的合数有15m – 1个;被3整除的合数有10m – 1个;既被2整除同时又被3整除的数有5m个,每一个都是合数. ……(9分)在1 ~ 30m(其中m = 1,2,3,……)这些自然数中,减去15m – 1个偶合数;再减去10m – 1个被3整除的合数,其中被6整除的数减重复了,注意再补回5m个重复减掉的被6整除的合数. 注意,1不是质数也不是合数;此外,对任意非零自然数m,在1 ~ 30m中,25是既不被2整除也不被3整除的一个合数,因而尚未被除去. 所以,再除掉1与25这两个数后,质数包含在剩下部分的数中,因此,质数的个数不会超过剩下部分的数的个数,也就是质数的个数不会超过30(151)(101)5210m m m m m----+-=……(15分)另一解法:从1到30m中,能被2整除的数共有15m个,能被3整除的数共有10m 个,能被5整除的数共有6m个;能被2和3整除的数共有5m个,能被2和5整除的数共有3m个,能被3和5整除的数共有2m个;能被2、3和5整除的数共有m 个.由“包含排除”原理,1到30m中不能被2或3或5整除的数共有mmmmmmmmm8)235()61015(30=-+++++-(个)设1到30m中质数的个数为z,因为2、3和5都是质数,1既不是质数也不是合数,因此28318+=+-≤mmz. 由8210+≤m m,得到1 ~ 30m中,质数的个数不超过10m .三. 解答下列各题,要求写出详细过程(第9题20分,第10题25分,满分45分)9. 在A 到B 的公路段上,每30千米设一个慢车站,每50千米设一个快车站,如果相邻两个车站间的路程大于15千米,则在这段路程的中点设一个维修点. 如果一个车站既是慢车站也是快车站,则在这个车站设一家商店. 已知从A 到B 共设有7家商店,A 和B 既是慢车站也是快车站. 问:(1)从A 到B 的路程有多少千米? (2)从A 到B 的途中共设有多少个维修点?解:(1)计算从A 到B 的路程和快车站、慢车站的站数. 易知A 是第1个商店,其余各商店到A 的路程是30和50的公倍数,而[30,50]=150,B 是第7个商店,所以,从A 到B 的路程是(71)1506150900-⨯=⨯=(千米). ……(8分)(2)途中的5个商店将全路程等分成6等份,每个等份中快车站、慢车站的设置完全相同. 由于A 是第1个商店,因此只要考虑从A 到第2个商店这一段150千米的路程上的快车站与慢车站的分布情况就可以了.设第2个商店为C 点,则AC =150千米. 在AC 这一段上(不包括A,C ),有4个慢车站,2 个快车站,如图所示:绿色□表示快车站,△表示慢车站. 从图上可以看出:相邻两站的路程为30千米的路段有3段;相邻两站的路程为20千米的路段有2段;相邻两站的路程为10千米的路段也有2段. 其中相邻两站的路程大于15千米的路段共有5段,因此在AC 这一路段上应该设有5个维修站点. 从A 到B 全路程上应该设有5630⨯=个维修站点. ……(18分)答:从A 到B 的路程为900千米;途中共设有30个维修站点. ……(20分)另解:若学生按比例画出示意图,从图中标出A ,B 及快车站、慢车站,商店和维修点,从图中数出全程长900千米;一共设有30个维修站点. 也给满分20分.10. 图5是由16个面积为1的等边三角形组成的一个大的等边三角形,这个大的等边三角形内部及边上共有15个交叉点. 请回答:(1)以这些交叉点为顶点,可以连成多少个等边三角形?(2)所连成的全部等边三角形的面积的总和是多少? 解:(1)总计可以连成35个等边三角形.其中:面积是1的等边三角形有16个;面积是4的等边三角形有7个;面积是9的等边三角形有3个;面积是16的等边三角形有1个;……(10分)利用对称的性质,如图5-1,红色等边三角形的面积是由6个面积是1的等边三角形组成的正六边形面积的一半,等于3,面积是3的等边三角形共有6个;利用对称的性质,如图5-2,蓝色等边三角形的面积是7362116=⨯⨯-, 面积是7的等边三角形共有2个; ……(18分) 此外,不能再连成别的等边三角形了.因此,可以连成的等边三角形总计有16 + 7 + 3 + 1 + 6 + 2 = 35个. ……(20分)(2)所连成的全部等边三角形面积的总和等于11647931613672119⨯+⨯+⨯+⨯+⨯+⨯=. ……(25分)答:可以连成35个等边三角形;所有等边三角形的面积总和是119.(图5-1)(图5-2)。
2020年第四届两岸四地“无悔金杯”少年数学精英邀请赛小学组试卷(五年级)
2012年第四届两岸四地“华罗庚金杯”少年数学精英邀请赛小学组试卷(五年级)一、填空题:(把答案填入括号内,不用写过程.每题7分,共63分.)1.(7分)计算:123×32×125=.2.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.3.(7分)7×17×27×37×47×57×67×77×87×97积的个位数字是.4.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.5.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.6.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.7.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.8.(7分)将偶数按下图进行排列,问:2008排在第列.2468161412101820222432302826…9.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.二、简答题:(需要写出简要过程及理由,每小题10分)10.(10分)幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?11.(10分)请把12、15、33、44、51、85这六个数平均分成两组,使每组四个数的乘积相等.三、详答或论述题:(写出详细过程、方法及结果.本题17分)12.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?2012年第四届两岸四地“华罗庚金杯”少年数学精英邀请赛小学组试卷(五年级)参考答案与试题解析一、填空题:(把答案填入括号内,不用写过程.每题7分,共63分.)1.(7分)计算:123×32×125=492000.【分析】32=4×8,然后再根据乘法交换律和结合律进行简算.【解答】解:123×32×125=123×(4×8)×125=(123×4)×(8×125)=492×1000=492000.故答案为:492000.2.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.【解答】解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.3.(7分)7×17×27×37×47×57×67×77×87×97积的个位数字是9.【分析】因为该算式的这10个数的个位都是7,只要判断出10个7相乘的个位数是几即可,先分别求出71、72、73、74、75、76的数值可得出个位数成规律变化,继而可得出答案.【解答】解:71=7,72=49、73=343、74=2401、75=16807、76=117649,所以可得出个位数分别为7、9、3、1且黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。
第四届华杯赛复赛试题及解答
第四届华杯赛复赛试题1.化简:2.电视台要播放一部30集电视连续剧。
假如要求每天支配播出的集数互不相等,该电视连续剧最多可以播几天?3.一个正方形的纸盒中,恰好能放入一个体积为628立方厘米的圆柱体,纸盒的容积有多大?(圆周率=3.14)。
4.有一筐苹果,把它们三等分后还剩2个苹果,取出其中两份,将它们三等分后还剩2个;然后再取出其中两份,又将这两份三等分后还剩2个,问:这筐苹果至少有几个?5.计算:6.长方形ABCD周长为16米,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方米,求长方形ABCD的面积7.“华罗庚”金杯少年数学邀请赛,第一届在1986年进行,其次届在1988年进行,第三届是在1991年进行,以后每2年进行一届。
第一届“华杯赛”所在年份的各位数字和是:A1=1+9+8+6=24。
前二届所在年份的各位数字和是:A2=1+9+8+6+1+9+8+8=50问:前50届“华杯赛”所在年份的各位数字和A50=?8.将自然数按如下顺次排列:1 2 6 7 15 16 …3 5 8 14 17 …4 9 13 …10 12 …11 …在这样的排列下,数字3排在其次行第一列,13排在第三行第三列,问:1993排在第几行第几列?9.在下图中所示的小圆圈内,试分别填入1、2、3、4、5、6、7、8这八个数字,使得图中用线段连接的两个小圆圈内所填的数字之差(大数字减小数字)恰好是1、2、3、4、5、6、7这七个数字。
10.除以3的余数是几?为什么?11.A、B、C、D、E、F六个选手进行乒乓球单打的单循环竞赛(每人都与其他选手赛一场),每天同时在三张球台各进行一场竞赛,已知第一天B对D,其次天C对E,第三天D对 F,第四天B对C,问:第五天A与谁对阵?另外两张球台上是谁与谁对阵?12.有一批长度分别为1、2、3、4、5、6、7、8、9、10和11厘米的细木条,它们的数量都足够多,从中适当选取3根本条作为三条边,可围成一个三角形。
七年级数学竞赛 第16讲 一元一次不等式
15.求最大的正整数 n,使不等式 8 n 7 对唯一的一个整数 k 成立。 15 n + k 13
(“希望杯”邀请赛试题)
16.设 x1,x2,x3,x4,x5,x6,x7 是自然数,且 x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+x3=x4,x3+x4=x5,x4+x5=x6, x5+x6=x7,又 x1+x2+x3+x4+x5+x6+x7=2010,求 x1+x2+x3 的最大值。
)。
A. −11 a − 5
4
2
B. −11 a − 5
4
2
C. −11 a − 5
4
2
D. −11 a − 5
4
2
(山东省竞赛Leabharlann )8.已知关于x的不等式组
|
x
+ 1 | x
4x a
−
1
无解,则实数
a
的取值范围是(
)。
A.a< 2 3
B.a≤ 2 3
C.a> 2 3
D.a≥ 2 3
共有 13( )。
A.49 对
B.42 对
C.36 对
D.13 对
解题思路:借助数轴,分别建立 m,n 的不等式,确定整数 m,n 的值。
(江苏省竞赛题)
例 3.解下列关于 x 的不等式: (1)(2mx+3)−n<3x; (2)|x−2|≤2x−10; (3)|x−5|−|2x+3|<1。 (上海市竞赛题)
。 (上海市“宇振杯”竞赛题)
五大奥数比赛
五大奥数比赛Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】“华罗庚金杯”少年数学邀请赛(难度星级★★★★)“华杯赛”是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
参赛时间:初赛在每年3月初;复赛在每年4月初。
总决赛在7月进行;进入总决赛的另一途径:报名参加华杯赛冬令营(在每年1月份进行,一等奖可以直接进入华杯赛全国个人总决赛)。
参赛年级:小学组(五、六年级)、初中组(初一年级)杯赛特色及作用:1、“华杯赛”是唯一一个具有初赛、复赛、总决赛三轮严格选拔的全国性数学赛事。
2、“华杯赛”是唯一一个具有多项配套活动的系列数学竞赛。
包括全国总决赛、“两岸四地华杯精英赛”、“华杯冬令营”等活动3、“华杯赛”作为目前全国最权威的小学数学比赛,备受北京市各重点中学的认可。
华杯赛初赛考试时间短、题量少、难度低,难度梯度也小,所以考试平均分偏高,进入复赛分数线也高。
但是华杯决赛试题梯度宽、难度大,题量多,所以考试时间也长(一个半小时),但是华杯赛的的奖项含金最高、升学保障最稳,赛题水准最高、决赛规模最大。
“华杯赛”是优秀中小学生必参与、重点中学必关注、小升初必参考的重大赛事之一。
数学解题能力展示(迎春杯)(难度星级★★★★★)“迎春杯”是北京市的一项传统中小学赛事,对激发学生学习数学的兴起,发现优秀的数学特长生,推动北京中、小学数学教学改革等主面都起了很大的作用。
后更名为数学解题能力展示。
参赛时间:初赛在每年的12月初复赛在第二年的2月初参赛年级:小学中年级组(三、四年级)学生、小学高年级组(五、六年级)学生。
杯赛特色及作用:1、低年级夺奖难度降低:很多低年级家长并没有意识到竞争的压力,此时如果能够先人一步,在竞赛奖项上取得一些优异的成绩,不仅可以增加竞争的砝码,更重要的是可以增加孩子的学习信心,提高学习的兴趣,进而获得持续的进步空间。
2020年第五届两岸四地“无悔金杯”少年数学精英邀请赛试卷(小高组笔试一)
2014年第五届两岸四地“华罗庚金杯”少年数学精英邀请赛试卷(小高组笔试一)一、填空题Ⅰ(每题8分,共32分)1.(8分)算式的计算结果是.2.(8分)今年是2014年,2014不是完全平方数,但可以将它的各位数字改变顺序,使得到的新四位数是完全平方数,例如1024=322,已知用数字2、0、1、4各一个还能组成另一个四位完全平方数,那么这个新的四位完全平方数是.3.(8分)在不同的历史时期,“斤”和“两”之间的进制不同,成语“半斤八两”就是由16进制而来的.为了方便计算,我们认为古代16两是1斤,每斤为现代的600克;现在的10两是1斤,每斤为现代的500克.有一批药品,有一部分按古制称,另一部分按现制称,统计发现,“斤”数和是5,“两”数和是68.那么,这批药品共有克.4.(8分)两个完全相同的正三角形可以拼成一个菱形,如果正三角形的边长为10,则这个菱形内部最大的正方形面积为.二、填空题Ⅱ(每题10分,共40分)5.(10分)A=,与A×100最接近的整数是.6.(10分)如图所示,由75个小方格组成了15×5的图案,图中一些小方格已经被涂上了阴影,现在要继续把一些空白的小方格涂上阴影,保证任意2×2的方格中阴影小方格的数量都多于一半,那么最少需要再把个小方格涂上阴影.7.(10分)自然数A除本身以外最大的约数是d,自然数A+2除本身以外最大的约数是d+2,那么A的值是.8.(10分)如图,三横、三竖、三斜共9条街道,编号为1~9的9个路口,A、B、C、D、E五位警察在其中5个不同的路口站岗,如果两个警察在同一条街道上,那么他们就能互相看到,他们各自说了如下的一句话:A:“我能看到另4位警察”.B:“我能看到另4位警察中的3位”.C:“我能看到另4位警察中的2位”.D:“我只能看到B”.E:“我谁也看不到”.已知他们恰有一人说谎,且说谎的警察所在路口的编号是五位警察中最小的,那么,A、B、C、D、E所在路口编号依次组成的五位数是.三、填空题Ⅲ(每题12分,共48分)9.(12分)四个小伙伴想办“亲情套餐”,即缴纳一定金钱后,四人之间发短信免费,但是尴尬的是,当地只有10元的“三人间免费”的A套餐和5元的“两人间免费”的B套餐,四人想了一下,觉得可以开几个这种套餐,使得小伙伴们可以通过由中间人转发器到相互之间都可以免费发短信,那么在花钱最少的情况下,他们有种开通套餐的方式.10.(12分)如图,正八边形中连出3条对角线围成一个三角形(图中阴影部分),如果该正八边形的边长为60,那么阴影部分的面积是.11.(12分)A、B两地相距291千米,甲、乙两人同时从A地出发匀速前往B地,与此同时丙从B地出发匀速前往A地,当乙走了p千米后与丙相遇时,甲走了q千米,又过了一段时间,当甲、丙相遇时,乙共走了r千米,如果p、q、r均是质数,那么p、q、r 的和是.2014年第五届两岸四地“华罗庚金杯”少年数学精英邀请赛试卷(小高组笔试一)参考答案与试题解析一、填空题Ⅰ(每题8分,共32分)1.(8分)算式的计算结果是2.【分析】先把分子部分10×12×黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。
2023年小升初奥数多面体的表面积与体积
立体部分 ---表面积与体积
【例 24】如图,甲、乙两容器相似,甲容器中水旳高度是锥高旳1
3
,乙容器中水旳高度是锥高旳2
3
,
比较甲、乙两容器,哪一只容器中盛旳水多?多旳是少旳旳几倍?
甲
乙
【例 25】(仁华考题)如图,有一卷紧紧缠绕在一起旳塑料薄膜,薄膜旳直径为20厘米,中间有一直径为8厘米旳卷轴,已知薄膜旳厚度为0.04厘米,则薄膜展开后旳面积是平方米.
20cm8cm
100cm
【巩固】图为一卷紧绕成旳牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米旳卷轴.已知纸旳厚度为0.4毫米,问:这卷纸展开后大概有多长?
【例 26】如图,ABC是直角三角形,AB、AC旳长分别是3和4.将ABC
∆绕AC旋转一周,求ABC
∆扫出旳立体图形旳体积.(π 3.14
=)
C
B A
4 3
【例 27】已知直角三角形旳三条边长分别为3cm,4cm,5cm,分别以这三边轴,旋转一周,所形成旳立体图形中,体积最小旳是多少立方厘米?(π取3.14)。
2008年第二届两岸四地华罗庚金杯少年数学精英邀请赛
2008年第二届两岸四地华罗庚金杯少年数学精英邀请赛笔试二试卷 (小学组)(2008年8月10日,60分钟)。
一、填空题(每题20分, 共60分)1. 某奥运自愿小组负责在奥运村沿公路一侧插彩旗。
若要求三种颜色的彩旗按照6面绿气,5面黄旗,4面红旗循环排列,则第2008面彩旗的颜色是( );前2008面旗中,红旗用了( )面。
答案:红色。
534提示:每6+5+4=15面一周期,2008÷15=133……13.2008面彩旗与周期中的第13面旗颜色相同,是红色。
红旗一共用了133×4+2=534面。
2.令a=70236921681967176615651364117123702169196817671566136511⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯,若将a 化成小数,则a 的百分位数字是( )。
答案:1提示:a=1+702369216819671766156513641123211917151311⨯+⨯+⨯+⨯+⨯+⨯+⨯++++++ a 的百分位数字实质是702369216819671766156513641123211917151311⨯+⨯+⨯+⨯+⨯+⨯+⨯++++++的百分位数字。
令b=702369216819671766156513641123211917151311⨯+⨯+⨯+⨯+⨯+⨯+⨯++++++ 但我们以往求的都是整数位是多少,很少求小数部分是多少?如何将这一题转化成求以前经常练习的呢?一个方法就是将b 乘100。
100b=702369216819671766156513641123211917151311⨯+⨯+⨯+⨯+⨯+⨯+⨯++++++×100 =702369216819671766156513641110023100211001910017100151001310011⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯ =1+70236921681967176615651364113023312132193317341535133611⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯ 显然,100b 的整数位是1,所以b 的百分位是1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四届两岸四地华罗庚金杯少年数学精英邀请赛
笔试二试卷(小学高年级组)
一、填空题(每题20分,共60分)
1.小红和小明两人都带了钱想买《趣味数学》这本书,到书店一看,小红带的钱缺2元2角,小明带的
钱缺1元8角. 而两人带的钱合起来刚好买一本. 则《趣味数学》每本定价元.
2.如右图所示,小正方形EFGH在大正方形ABCD的内部,阴影
、在边AD上,O为线段
部分的总面积为124平方厘米,E H
CF的中点. 则四边形BOGF的面积为平方厘米.
3.一些边长是1的小正方体码放成一个立体,从上向下看这个立体,如左下图,从正面看这个立体,如
右下图. 在这个立体的体积最大时,将这些小正方体码放成一个底面积为4的长方体,则这个长方体的高是.
二、解答题(每题20分,共60分)
4.已知两个正整数之和为432,这两个正整数的最小公倍数与最大公约数之和为7776. 则这两个正整数的
乘积是多少?
5.设不同的字母代表不同的非零数码,相同的字母代表相同的数码,若
⨯=
AB CB DDD
、、、.
且AB CB
<,求A B C D
6.奥运会男子足球小组赛,每组四个队进行单循环比赛. 每场比赛胜队得3分,败队得0分,平局时两队
各得1分. 小组赛全部赛完以后,每组取积分最高的两个队出线进图下轮比赛(对积分相同的队,按更细规则排序). 那么在所有能够出线的情况中,一个出现对的得分最少是多少?请说明理由.
1.。