初一数学-整式的运算测试
整式的运算练习
整式的运算练习1.下列计算正确的是:()A. a·a3=a3B. a2·a3=a6C. (a2)3=a6D. a5+a5=2a25.2.下列计算正确的是:()A. a2·a5=a10B. a4·a4=a8C. x3+x3=x6D. a·a3·a4=a7.3.下列计算中结果等于x9的是:()A. (-x)2·(-x)7B. (-x2)·(-x)7C. (-x)2·(-x 7)D. x2·(-x) 7.4.若a x=2, a y=3,则a x+y的值为()A. 5B. 6C. 6D. .5.化简(x-y)3(y-x)2为( )A. (x-y)5B. (x-y)6C. (y-x)5D. (y-x)6.6.若2n+2·22=64,那么n= .7.计算:(1)106×104= .(2)(4×10n)×(2×102)= .8. (x-y)2n(y-x)2n+1(y-x)(n是正整数)= .9.已知2a=2, 2b=6, 2c=12,求a、b、c之间的关系.10.已知23n×64= 25n,求(4n-15)3的值.11.若a+3b-2=0,试求3a·27b的值.12.给出下列四个算式:○1(a3)3 =a3+3=a6○2〔(x2)2〕3 =x2×2×3=x12○3y·(y2)2=y5○4〔(-x)3〕4 =(-x)12=x12,其中正确的算式有()A.0个B. 1个C. 2个D. 3个13.2m+1·8m= ;若 22n+1+4n=48,则n= ;(a3)m·(a m+1)2= .14.如果2m=5,2n=3.求(1)2m+2n的值; (2)8m的值.15.试比较3555,4444,5333的大小.16.已知2x+3y-5=0,则4x·8y的值是多少?17.(1)若3a=6,27b=50,求33b+a的值;(2)若2x+4y-5=0,求4x·16y的值.18.已知10m=2,10n=3,求103m+2n的值.19.下列计算正确的是()A. ﹝(-a)2﹞3=-a5B.﹝(-a)2﹞3=-a6C.﹝(-a)3﹞2=-a6D.﹝(-a)2﹞3=a620.在○1(2a2)3=6a6,○2(x2y2)3=(xy)6,○3(x)2=x2,○4(a4b3)2=a6b15中,计算正确的个数是()A. 1个B. 2个C. 3个D. 4个21.用简便方法计算:(1)82012×(-0.125)2013;(2)0.252012×42013-8333×0.5999(3)(-2)×(0.25)5×()×(-4)522.如果(a n b m b)3=a9b15,那么(5m+2n)的值等于 .23.已知︱a-b+2︱+(a-2b)2=0,那么(-2a)2b的值等于 .24.已知x n=5,y n=3,试求(xy)2n的值.25.已知n为正整数,x2n=7,求(3x3n)2-4(x2)2n的值.26.下列计算正确的是()A. (2xy2-3xy)·2xy=4x2y2-6x3yB.–x(2x+3x2-2)=-3x3-2x2-2xC. -2ab(ab-3ab2-1)=-2a2b2+6a2b3-2abD. (a n+1- )·ab=a n+2b-ab227.已知a+b=m,ab=-4,化简(a-2)(b-2)的结果是()A. 6B. 2m-8C. 2mD. -2m28.已知a+b=,ab=1,化简(a-2)(b-2)的结果是 .29.若(x-2)(x+a)=x2+bx-6,那么()A. a=3,b=-5B. a=3,b=1C. a=-3,b=-1D. a=-3,b=-530. 若(2x+3)(x+m)=2x2+5x-n,那么m= ,n= .31.如果(x+3)(2x-m)的积不含x的一次项,那么m= .32.若(x2+ax+8)(x2-3x+b)中不含x3和x项,则a、b的值分别为()A. 0,0B. -3,-9C. 3,8D. -3,133.计算(x2-3x+n)(x2+mx+8)的结果中不含x2和x3的项,则m、n的值为()A. m=3,n=1B. m=0,n=0C. m=-3,n=-9D. m=-3,n=834.已知x2-5x=14,求(x-1)(2x-1)-(x+1)2+1的值.35.先化简,再求值:(1) (a+3)(4a-1)-2(3+a)(2a+0.5),其中a=-3.(2) (x+1)(x-1)+x2(x-1), 其中x=-2.36.解方程:(1) (x-1)2-(x-1)(x+5)=17 (2) (3x-1)(2x-3)=(6x-5)(x-2)+5.37.在下列多项式的乘法中,可以用平方差公式计算的是()A. (x+1)(1+x)B. (a+b)(b-a)C. (-a+b)(a-b)D. (x2-y)(x+y2)38. 在下列各式中,能用平方差公式计算的是()A. (a-b)(a-b)B. (a-b)(-a+b)C. (-a-b)( a-b)D. (-a-b)(a+b)39.若x2-y2=20,且x+y=-5,则x-y的值是()A. 5B. 4C. -4D.以上都不对40.已知a+b=2,则a2-b2+4b的值是()A. 2B. 3C. 4D. 641.20122-2011×2013的计算结果是()A. -2B. -1C. 2D. 142.若(2a+2b+1)(2a+2b-1)=63,那么a+b的值是.43.计算:99×101= , -10×9= .44.利用平方差公式求(2+1)(22+1)(24+1)(28+1)…(264+1)的值.45.老师在黑板上写出三个算式:52-32=8×2,92-72=8×4,152-32=8×27,王华接着又写了两个具有同样规律的算式:112-52=8×12,152-72=8×22,……(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出反映上述算式的规律;(3)证明这个规律的正确性.46.下列计算正确的是()A. (2a+b)2=4a2+b2B. (3a-2b)2=9a2-6ab+4b2C. (x3-y)2=x6-x3y+y2D. (-a-b)2=a2+2ab+b247.9x2+12xy+ =(3x+ )2.48.已知(a-)2=15,则a2+= ;若 x-=6,则(x+)2= .49.已知(a+b)2=10,(a-b)2=2,则ab= ;已知x+y=10,xy=24,则(x-y)2的值是 .50.若a+b=7,ab=12,则a2+3ab+b2= ;a2-ab+b2= .51.如果x2+6x+k2恰好是一个完全平方公式,那么常数k的值是 .52. 如果x2+mx+4恰好是一个完全平方公式,那么常数m的值是 .53. 如果4x2+pxy3+y6恰好是一个完全平方公式,那么常数p的值是 .54.计算:(1)592= ;(2)972-101×99= .55.已知a+b=4m+2,ab=1,若19a2+150ab+19b2的值为2012,则m= .56.下列计算错误的有()○1a6÷a2=a3○2y5÷y2=y7○3(-x)4÷(-x)2=-x2○4a3÷a=a2○5x8÷x5·x2=xA. 4个B. 3个C. 2个D. 1个57. 给出下列运算:○1(-a)4÷a2=-a2○2(-c)8÷(-c)6=c2○3106÷106=0○4x20÷x20=1 ○5a8÷a6÷a=a ○6x5n÷x n=x5其中正确的有()A. 6个B. 5个C. 4个D. 3个58.若x m=3,x n=6,则x3m-2n的值是 .59.已知m为正整数,若x m能被x6整除,那么m的取值范围是 .60.已知3x=4,3y=6,则92x-y+27x-y的值是 .61.若10m=20,10n= ,则9m÷32n的值是 .62.已知2x-5y-3=0,则4x÷32y的值是 .63.如果m x÷m n+2=m,那么x的值是 .64.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab-3ab=-ab;(3)2ab·3ab=6ab;(4)2ab÷3ab=。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.下列计算中,正确的是A.3ab2·(-2a)=-6a2b2B.(-2x2y)3=-6x6y3C.a3·a4=a12D.(-5xy)2÷5x2y=5y2【答案】A.【解析】A、3ab2•(-2a)=-6a2b2,正确;B、(-2x2y)3=-8x6y3,故此选项错误;C、a3•a4=a7,故此选项错误;D、(-5xy)2÷5x2y=5y,故此选项错误;故选A.【考点】1.单项式乘单项式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.整式的除法.2.若一多项式除以2x2-3,得到的商式为x+4,余式为3x+2,则此多项式为.【答案】2x3+8x2-10.【解析】根据“被除式=除式×商式+余式”进行计算即可求出结果.试题解析:A=(2x2-3)(x+4)+3x+2=2x3+8x2-3x-12+3x+2=2x3+8x2-10故此多项式为2x3+8x2-10.【考点】整式的除法.3.如图,从边长为a+1的正方形纸片中剪去一个边长为a-1的正方形(a>1),剩余部分沿虚线剪开,再拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2B.2a C.4a D.a2-1【答案】C.【解析】矩形的面积是(a+1)2-(a-1)2=4a.故选C.【考点】平方差公式的几何背景.4.已知a(a-2)-(a2-2b)=-4.求代数式的值.【答案】2【解析】先把a(a-2)-(a2-2b)=-4进行整理,得出b-a=2,再把要求的式子进行通分,然后合并同类项,最后把b-a的值代入即可.试题解析:∵,∴即b-a=2,∴【考点】整式的混合运算5.若= .【答案】.【解析】:a2x﹣2y=a2x÷a2y=(a x)2÷(a y)2=8)2÷32=.故答案是.【考点】1.同底数幂的除法2.幂的乘方与积的乘方.6.因式分解(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】按照提公因式的基本方法即可.试题解析:(1);(2);(3);(4).【考点】提公因式法与公式法的综合运用.7.计算:_____________;【答案】【解析】根据单项式除法法则和同底数幂相除法则即可得出答案单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.所以.注意:容易忽略负号和中a的指数为1.【考点】1.单项式除法;2.同底数幂相除.8.图a是一个长为2 m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。
初一数学整式练习题
初一数学整式练习题初一数学整式练习题数学作为一门重要的学科,对于培养学生的逻辑思维和解决问题的能力起着至关重要的作用。
初一数学整式练习题是帮助学生巩固和提高整式知识的重要工具。
本文将通过一系列的练习题,帮助初一学生更好地理解和应用整式知识。
1. 简化下列整式:(3x + 2y) + (4x - 5y)解析:根据整式的加法法则,合并同类项即可得到简化后的整式。
答案:7x - 3y2. 计算下列整式的值:3x^2 - 2x + 5,当x = 2时。
解析:将x = 2代入整式中的x,并进行计算。
答案:3(2)^2 - 2(2) + 5 = 12 - 4 + 5 = 133. 展开并简化下列整式:(2x - 3)(x + 4)解析:根据整式的乘法法则,将每一项分别与另一整式中的每一项相乘,并合并同类项。
答案:2x^2 + 5x - 124. 把下列整式相加并简化:(3x^2 - 2x + 1) + (2x^2 + 4x - 3)解析:根据整式的加法法则,合并同类项即可得到简化后的整式。
答案:5x^2 + 2x - 25. 把下列整式相减并简化:(5x^2 + 3x - 2) - (2x^2 - 4x + 1)解析:根据整式的减法法则,将减数中的每一项取相反数,然后按照整式的加法法则进行运算,并合并同类项。
答案:3x^2 + 7x - 36. 把下列整式相乘并简化:(2x - 3)(x^2 + 4x - 5)解析:根据整式的乘法法则,将第一个整式的每一项分别与第二个整式的每一项相乘,并合并同类项。
答案:2x^3 + 5x^2 - 26x + 157. 把下列整式相除并简化:(4x^2 - 6x + 2) ÷ (2x - 1)解析:根据整式的除法法则,将被除数的每一项除以除数,并合并同类项。
答案:2x - 4通过以上一系列的练习题,初一学生可以巩固和提高整式的基本操作能力。
同时,通过这些练习题,学生可以更好地理解整式的概念和运算规则,并能够应用到解决实际问题中。
七年级数学专题训练:整式的加减计算题100题(含答案)
题减整式的加计算1、已知A =4x 2-4xy +y 2,B =x 2-xy -5y 2,求3A -B2、已知A=x 2+xy +y 2,B=-3xy -x 2,求2A-3B.3、已知1232+-=a a A ,2352+-=a a B ,求BA 32-4、已知325A x x =-,2116B x x =-+,求:⑴A+2B;⑵、当1x =-时,求A+5B 的值。
5、)(4)()(3222222y z z y y x ---+-6、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =27、-)32(3)32(2a b b a -+-8、21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.9、222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭10、()()323712p p p p p +---+11、21x-3(2x-32y 2)+(-23x+y 2)12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]13、2237(43)2x x x x ⎡⎤----⎣⎦14、-22225(3)2(7)a b ab a b ab ---15、2(-a 3+2a 2)-(4a 2-3a+1)16、(4a 2-3a+1)-3(1-a 3+2a 2).17、3(a 2-4a+3)-5(5a 2-a+2)18、3x 2-[5x-2(14x -32)+2x 2]19、7a +(a 2-2a )-5(a -2a 2)20、-3(2a +3b )-31(6a -12b )21、222226284526x y xy x y x xy y x x y+---+-22、3(2)(3)3ab a a b ab -+--+;23、22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;24、(a 3-2a 2+1)-2(3a 2-2a +21)25、x-2(1-2x+x 2)+3(-2+3x-x 2)26、)24()215(2222ab ba ab b a +-+-27、-4)142()346(22----+m m m m28、)5(3)8(2222xy y x y x xy ++--+-29、ba ab b a ab ab b a 222222]23)35(54[3--+--30、7xy+xy 3+4+6x-25xy 3-5xy-331、-2(3a 2-4)+(a 2-3a)-(2a 2-5a+5)32、-12a 2b-5ac-(-3a 2c-a 2b)+(3ac-4a 2c)33、2(-3x 2-xy)-3(-2x 2+3xy)-4[x 2-(2x 2-xy+y 2)]34、-2(4a-3b)+3(5b-3a)35、52a -[2a +(32a -2a)-2(52a -2a)]36、-5xy 2-4[3xy 2-(4xy 2-2x 2y)]+2x 2y-xy37、),23()2(342222c a ac b a c a ac b a +-+---38、(2)()xy y y yx ---+39、2237(43)2x x x x ⎡⎤----⎣⎦40、7-3x-4x 2+4x-8x 2-1541、2(2a 2-9b)-3(-4a 2+b)42、8x 2-[-3x-(2x 2-7x-5)+3]+4x43、)(2)(2b a b a a +-++;44、)32(2[)3(1yz x x xy +-+--]45、)32(3)23(4)(5b a b a b a -+--+;46、)377()5(322222a b ab b ab a a ---+--47、)45()54(3223--++-x x x x 48、)324(2)132(422+--+-x x x x49、)69()3(522x x x +--++-.50、)35()2143(3232a a a a a a ++--++-51、)(4)(2)(2n m n m n m -++-+52、]2)34(7[522x x x x ----53、(2)(3)x y y x ---54、()()()b a b a b a 4227523---+-55、()[]22222223ab b a ab b a ---56、2213[5(3)2]42a a a a ---++57、()()()xy y x xy y xy x -+---+-2222232258、-32ab +43a 2b +ab +(-43a 2b )-159、已知m+n =-3,mn=2,求116432n mn mn m ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭的值;60、(2x 2-21+3x )-4(x -x 2+21);61、2x -(3x -2y +3)-(5y -2);62、已知()()()2222A=232B=231A 22x xy y x xy y B A B A -++-+--,,求;63、已知()()222222120522422a b a b a b ab a b ab ⎡⎤++-=-----⎣⎦,求;64、1-3(2ab +a )十[1-2(2a -3ab )].65、3x 2-[7x -(4x -3)-2x 2].66、已知323243253A a a a B a a a =--++=--,,当a =-2时,求A-2B 的值.67、已知xy=2,x+y=-3,求整式(4xy+10y)+[5x-(2xy+2y-3x)]的值.68、已知2222224132a ab b ab a b a ab b +=+=--++,,求及的值.69、221131222223233x y x y x y ⎛⎫⎛⎫--+-+=-= ⎪ ⎪⎝⎭⎝⎭,,70、()()232334821438361a a a a a a a -+---+-=-,其中71、已知()()()()23412043535712714m n m m n m n m n ++--=---+++-,求的值72、已知222232542A b a ab B ab b a =-+=--,,当a=1,b =-1,求3A-4B 的值.73、已知222A=23B=25C=1276x x x x x ----+,,,求A-(B-4C)的值.74、已知22A=23211x kx x B x kx +--=-+-,,且2A+4B 的值与x 无关,求k 的值.75、()()2221254322x x x x x x -----+=,其中.76、已知()()()222222120745223a a b a b a b ab a b ab -++=--+--,求的值.77、2222220A=3B=23A B C a b c a b c ++=+---+已知,且,,求C.78、()()22221532722a b ab a b ab a b ---==,且,79、(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y 80、若()0322=++-b a ,求3a 2b-[2ab 2-2(ab-1.5a 2b)+ab]+3ab 2的值;81、233(4333)(4),2;a a a a a a +----+=-其中82、22222222(22)[(33)(33)],1, 2.x y xy x y x y x y xy x y ---++-=-=其中83、()()()2222223224b ab a ab b a b ab a +-+-+----其中4.0,41=-=b a 84、3-2xy +2yx 2+6xy -4x 2y ,其中x =-1,y =-2.85、(-x 2+5+4x 3)+(-x 3+5x -4),其中x =-2;86、(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-3,b =-287、已知222244,5A x xy y B x xy y =-+=+-,其中1122x y ==-,,求3A -B88、已知A =x 2+xy +y 2,B =-3xy -x 2,其中,113x y =-=-,,求2A -3B .89、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.90、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;91、21x 2-2⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛-222231322331y x y x ,其中x =-2,y =-3492、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =293、()()233105223xy x y xy y x xy y x =-+=++-+-⎡⎤⎣⎦已知,,求的值94、已知()()22222322322A x xy y B x xy y A B B A =-+=+-+---⎡⎤⎣⎦,,求95、已知()222232232M a ab b N a ab b M N M M N =-+=+-----⎡⎤⎣⎦,,化简96、小美在计算某多项式减去2235a a +-的差时,误认为加上2235a a +-,得到答案是24a a +-,问正确答案是多少?97、已知2222113532A a b abB ab a b x y =-=+==-,,当,,求5A-3B 的值.98、已知2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求22m n -的值99、已知231x x -=,求326752019x x x +-+的值100、()()11111111321014122m n n m m n x y y x x y m n +--++-⎛⎫+---- ⎪⎝⎭,其中为自然数,为大于的整数整式的加减计算100题答案1、2211118x xy y -+2、225112x xy y ++3、2954a a -+-4、()()3231322122553084x x x x x --+--+;,5、222325x y z +-6、322312ab ab -+,7、-13a+12b8、24369x y -+,9、22122a b ab -10、325797p p p +--11、273x y -+12、-2a+8b-6c13、2533x x --14、22729a b ab -+15、3231a a -+-16、323232a a a ---17、22271a a ---18、2932x x --19、211a 20、-8a-5b 21、2224382x xy x y y x ---+22、3a+b23、2592a ab -24、32524a a a --+25、25148x x -+-26、2232a b ab+27、2261213m m --+28、22272x xy y --29、2231532a b ab+30、332615y xy x +++31、2723a a -++32、22122a b ac a c --33、224154x xy y -+34、-17a+21b 35、2112a a -36、226xy x y xy ---37、22474a b ac a c--38、xy39、2533x x --40、2128x x -+-41、21621a b -42、2108x -43、a-b44、1-3x-3xy-6yz45、-a+4b 46、2266a ab b -+47、32341x x -+48、-8x-249、2534x x -++50、32941a a a --++51、4m+4n 52、2733x x --53、4x-3y 54、4a-b 55、22710a b ab -56、2912a a -+57、225x xy y -+58、113ab -59、2660、21622x x --61、-x-3y-162、2222424109x xy y x xy y ---+;63、221462a b ab -+;64、2-7a 65、2533x x --66、7967、-2068、5,269、24369x y -+;70、-5371、-1.7572、2221716a ab b --+;73、2473026x x -+74、2/575、-2.576、22710a b ab +-;77、222a c --78、221352a b ab -;79、-x-8y;1380、212ab ab +;81、327353a a a -++-;5582、222x y xy -+;83、22478150a ab b --;84、224315x y xy -++;--21---21-85、3235137x x x -++-;86、2224ab -;87、22111388x xy y -+;88、228511289x y y ++;89、A<B90、323668x x x +-+;91、2211226x y --;827-92、232223a b ab ab -+;4893、2294、224611x xy y +-95、2221614a ab b -+96、2356a a --+97、23-98、-899、2022100、118m n x y +--+。
初一数学《整式的运算》测验题
初一数学<整式的运算>测验题班别: 学号: 姓名:一、选择题(每题3分,共24分)1、计算:05=( )A 、0B 、1C 、5D 、不能确定2、下列计算正确的是( )A 、1055x x x =+B 、5552x x x =+C 、262)31(2x x x x --=--D 、326a a a =÷3、4)2(xy -的计算结果是( )A 、442y x -B 、448y xC 、 4416y xD 、416xy4、下列计算正确的是( )A 、222)(b a b a +=+B 、222)(b a b a -=-C 、22))((b a b a b a -=+-D 、c b bc 33)(3⋅=5、计算:=-16( )A 、61 B 、6- C 、5 D 、不能确定 6、计算:=-÷)2(628a a ( )A 、43a -B 、63a -C 、43aD 、63a7、计算:=-x x x n 32( )A 、n x 6B 、23+-n xC 、33+n xD 、33+-n x8、已知92++ax x 是完全平方式,则a 的值是( )A 、3±B 、6-C 、6D 、6±二、填空题(每题3分,共15分)9、计算:多项式83547443-+-y y x xy 的次数是 ;10、单项式548ab π-的系数是 ; 11、某种分子的直径是510165.2-⨯毫米,这个数用小数表示是 毫米。
12、展开完全平方公式:=±2)(b a ,13、如果1,2009=-=+y x y x ,那么=-22y x 。
三、解答题14、(3分)计算:13022--+π15、运用公式计算:(每小题4分,共8分)(1)2198 (2)110199+⨯16、计算:(每小题4分,共8分)(1)5233⨯n (2)n n a a 325-÷17、计算:(每小题4分,共8分)(1)2)6(-x (2))3)(3(+-x x18、计算:(每小题4分,共8分)(1)223)(b b a ÷ (2))2(835n m n m -÷-19、计算:(每小题4分,共8分)(1))23(2222z y xy x -- (2))3()61527(23a a a a ÷+-20、(6分)计算:)5)(5()5(2+-+-xy xy xy21、(6分)化简求值:222)3)(3()3(b b a b a b a --+-+ 其中31-=a ,2-=b22、(6分)一个正方形的边长若增加4cm,则面积增加64cm2,求这个正方形的面积附加题:(各10分,共20分)1、已知(a+b)2=13,(a—b)2=11,则ab值2、已知两个两位数的平方差是220,且它们的十位上的数相同,一个数的个位数是6,另一个数的个位数是4,求这两个数。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2【答案】C.【解析】∵图甲中阴影部分的面积=a2-b2,图乙中阴影部分的面积=(a+b)(a-b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2-b2=(a+b)(a-b).故选C.【考点】平方差公式的几何背景.2.式子2014-a2+2ab-b2的最大值是()A.2012B.2013C.2014D.2015【答案】C.【解析】2014-a2+2ab-b2=2014-(a2-2ab+b2)=2014-(a-b)2,∵(a-b)2≥0,∴原式的最大值为:2014.故选C.【考点】1.因式分解-运用公式法;2.偶次方.3.计算:_____________;【答案】【解析】根据单项式除法法则和同底数幂相除法则即可得出答案单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.所以.注意:容易忽略负号和中a的指数为1.【考点】1.单项式除法;2.同底数幂相除.4.解方程:.【答案】.【解析】根据完全平方和公式以及平方差公式将各项展开,然后通过移项合并同类项化简方程,最终将未知数系数化为1得出方程的解.,将等式两边展开得:,移项将含有x的量移到等式左边,常数项移到右边并合并同类项得,所以方程的解为,将代入原方程进行检验.【考点】1.解方程;2.完全平方和公式;3.平方差公式;4.合并同类项.5.若与的和仍是单项式,则【答案】.【解析】两含字母的单项式的和是单项式,那么这两个单项式可以合并同类项.对于与,由同类项的定义可得,,即.所以.【考点】1.同类项;2.幂运算.6.找规律填空:……【答案】,,,.【解析】由前三个整式乘积的结果,,,猜测出的指数为.;猜测【考点】1.整式的乘法;2.归纳,猜想.7.定义一种新运算:,例如,那么的值等于()A.B.-2C.-1D.【答案】A.【解析】.故选A.【考点】1.新定义运算;2.负整数指数幂.8.( )A.B.C.D.【答案】A.【解析】.故选A.考点: 1.幂的乘方;2.同底数幂相乘.9.若3x n y2与xy1-m是同类项,则m+n= .【答案】0.【解析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值.试题解析:∵3x n y2与−xy1-m是同类项,∴1-m=2,n=1,解得:m=-1,n=1.∴m+n=-1+1=0.考点: 同类项.10.多项式与多项式的和是,多项式与多项式的和是,那么多项式减去多项式的差是()A.2B.2C.2D.2【答案】A【解析】由题意可知①;②.①②:.故选A.11.化简=________【答案】【解析】同底数幂的除法法则:同底数幂相除,底数不变,指数相减.=.【考点】同底数幂的除法点评:本题属于基础应用题,只需学生熟练掌握同底数幂的除法法则,即可完成.12.计算:()A.B.C.D.【答案】A【解析】根据单项式除以单项式的法则化简即可.,故选A.【考点】单项式除单项式点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.13.生活中有人喜欢把请人传送的便条折成图丁形状,折叠过程如图所示(阴影部分表示纸条反面),如果折成图丁形状的纸条宽x cm, 并且一端超出P点1 cm,另一端超出P点2 cm,那么折成的图丁所示的平面图形的面积为 cm2.(用含x的代数式表示)【答案】【解析】依题意分析,易知所求两个阴影三角形为正方形的一半。
初一数学(七年级上册)整式的加减运算100题(含答案)
(2)
66.(1)-6;(2) ,-2
67.(1)
(2)
68.(1)
(2)
69.(1)
(2)
70.(1)
(2)
71.(1)
(2)
72.(1)294;(2)
73.(1)1;(2) ,
74.(1)
(2)
75.(1)19;(2)3;(3) , .
76.(1)
(2)
(3)
(4)
77.(1)1
(2)
89.计算.
(1) ;
(2) ;
90.计算:
(1) ;
(2) .
91.计算:
(1)
(2)
(3)
(4)
92.(1)计算: ;
(2)计算: .
(3)先化简,再求值: ,其中 , .
93.计算:
(1) ;
(2)
94.计算:
(1) ;
(2) .
95.计算:
(1)
(2)已知 ,求 的值.
96.(1)计算: ;
1.(1) ;(2) ;
2.(1)
(2)
(3)
3.(1)
(2)
4.(1)
(2)
(3)
5.(1)3;(2)
6.(1)4;(2) ;14
7.(1)
(2)
8.(1)
(2)
(3)
(4)
9.
10.(1) ;(2) , .
11.(1)11
(2)
12.(1)4;(2) ;(3) ;6
13.(1)2
(2)
(3)
(4)
(2)计算: .
21.(1)计算:
(2)先化简,再求值: 值,其中 .
初一数学整式试题
初一数学整式试题1.若,则若则【答案】-4,18【解析】由得,则;由,.【考点】有理指数幂运算.2.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,正确.故选D.【考点】1.积的乘方与幂的乘方;2.完全平方公式;3.多项式除以单项式;4.单项式乘单项式.3.下列各式中,能用平方差公式计算的有()①;②;③;④.A.1个B.2个C.3个D.4个【答案】B.【解析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.①,故本选项错误;②符合平方差公式结构特征,故本选项正确;③,符合平方差公式结构特征,故本选项正确;④,不符合平方差公式结构特征,故本选项错误.正确的有2个,故选B.【考点】平方差公式.4.计算(1)(2)(3)【答案】(1);(2);(3).【解析】(1)分别计算单项式乘单项式、积的乘方,再合并同类项即可求出结果;(2)先算积的乘方,再算单项式除以单项式以及单项式乘以多项式,最后合并同类项即可;(3)先算乘方,再算乘除即可.试题解析:(1);(2)=;(3).【考点】整式的混合运算.5.计算:2xy2·(-3xy)2="___________" .【答案】18x3y4.【解析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.试题解析:2xy2•(-3xy)2=2xy2•(9x2y2)=18x3y4.【考点】单项式乘单项式.6.若x+2y-3=0,则2x·4y的值为__________.【答案】8.【解析】∵x+2y﹣3=0,∴x+2y=3,∴2x•4y=2x•22y=2x+2y=23=8.故答案是8.【考点】1.幂的乘方与积的乘方2.同底数幂的乘法.7.若,,则____________;【答案】7【解析】根据完全平方公式以及整体代换的思想即可得出答案观察题目,联想到完全平方公式.∵,∴两边平方得:(1),又∵,∴整体代入(1)式得:【考点】1.完全平方公式;2.整体代换思想.8.等于()A.B.C.D.【答案】C.【解析】根据同底数幂的除法法则即可求出结果.故选C.考点: 同底数幂的除法.9.化简并求值:(1),其中,,.(2),其中,.【答案】(1)0 (2)18【解析】解:(1)==.将,,代入得原式=.(2).将,代入得原式.10.若,则A、B各等于( )A、 B、 C、 D、【答案】C【解析】先根据完全平方公式去括号,再根据等式的性质即可求得结果.∵,∴故选C.【考点】完全平方公式点评:解题的关键是熟练掌握完全平方公式:.11.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式。
初一数学整式试题
初一数学整式试题1.将正整数1,2,3,…,从小到大按下面规律排列.那么第i行第j列的数为()A.i+j B.in+j C.(n-1)i+j D.(i-1)n+j【答案】D.【解析】由表格数据=行数减1的差的n倍与列数的和可知,第i行第j列的数为:(i-1)n+j.故选D.【考点】规律型:数字的变化类.2.如图,正方形ABCD的边长为6,正方形EFGC的边长为a(点B、C、E在一条直线上),求△AEG的面积。
【答案】a2.【解析】有图可得S△AGE =S正方形ABCD+S正方形GCEF-S△ABE-S△ADG-S△GFE.分别求出个部分的面积即可求的△AEG的面积.试题解析:S△AGE =S正方形ABCD+S正方形GCEF-S△ABE-S△ADG-S△GFE=36+a2-6﹒(a+6)-6﹒(6-a) a﹒a=a2【考点】三角形面积3.先化简,再求值:,其中,.【答案】;.【解析】去括号后合并同类项,最后代入,求值.试题解析:原式=,当,时,:原式=【考点】整式的化简求值.4.用一张包装纸包一本长、宽、厚如图所示的书(单位:cm),如果将封面和封底每一边都包进去3cm.则需长方形的包装纸周长为______________cm.【答案】.【解析】所用的纸的周长为(cm).故答案为:.【考点】整式的加减.5.若(x+k)(x-4)的积中不含有x的一次项,则k的值为 .【答案】4【解析】先根据多项式乘多项式法则去括号,再根据积中不含有x的一次项即可求得结果. ∵,积中不含有x的一次项∴,解得.【考点】多项式乘多项式点评:本题属于基础应用题,只需学生熟练掌握多项式乘多项式法则,即可完成.6.设a=8,a=16,则a=()A.24B.32C.64D.128【答案】D【解析】逆用同底数幂的乘法公式可得,再整体代入求值即可.当,时,,故选D.【考点】代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.7.结果为a2的式子是()A.a6÷a3B.a• a C.(a--1)2D.a4-a2=a2【答案】B【解析】A.a6÷a3=a3;C.(a--1)2= a--2;D.a4-a2已经为最简式。
初一数学整式练习题精选(含答案)
初一数学整式练习题精选(含答案)初一数学整式练习题精选(含答案)整式是数学中的一个重要概念,它是由字母和常数通过加减乘除等运算符号组成的代数式。
在初一数学中,我们需要掌握整式的运算规则和一些常见的整式类型,能够灵活运用整式解决实际问题。
下面是一些精选的整式练习题,帮助同学们巩固对初一数学整式的理解和应用。
1. 简化下列整式的和与差:a) 3x + 7y + 2x - 5yb) 4x^2 - 5x^2 + 2x^2 - 3x^2c) 8ab + 3ac - 5bc - 2ab解答:a) 合并同类项:3x + 7y + 2x - 5y = (3x + 2x) + (7y - 5y) = 5x + 2yb) 合并同类项:4x^2 - 5x^2 + 2x^2 - 3x^2 = (4 - 5 + 2 - 3)x^2 = -2x^2c) 合并同类项:8ab + 3ac - 5bc - 2ab = (8 - 2)ab + 3ac - 5bc = 6ab + 3ac - 5bc2. 计算下列整式的积:a) (2x + 3)(4x - 5)b) (3a - 2b)(a + b)解答:a) 使用分配律展开,再合并同类项:(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15b) 使用分配律展开,再合并同类项:(3a - 2b)(a + b) = 3a * a + 3a * b - 2b * a - 2b * b = 3a^2 + 3ab - 2ab - 2b^2 = 3a^2 + ab - 2b^23. 根据题目意义,列并简化代数式:a) 已知长方形的长为x+2,宽为x-1,求周长。
b) 一个三角形的面积为2x^2 - 7x + 3,底边长为x+1,求高。
解答:a) 长方形的周长等于所有边的长度之和:周长 = (x + 2) + (x - 1) + (x + 2) + (x - 1) = 4x + 2b) 三角形的面积等于底边长度乘以高再除以2:2x^2 - 7x + 3 = (x + 1) * 高 / 2将式子化简为:4x^2 - 14x + 6 = (x + 1) * 高高 = (4x^2 - 14x + 6) / (x + 1)以上是初一数学整式练习题的精选部分,通过练习,同学们可以巩固整式的基本运算和应用技巧。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.下列运算正确的是()A.a2•a=a2B.(a-b)3=a3-b3C.a10÷a5=a2D.(a2)3=a6【答案】D.【解析】试题分析:A、a2•a=a3,故A选项错误;B、(a-b)3=a3-3a2b+3ab2+b3,故B选项错误;C、a10÷a5=a5,故C选项错误;D、(a2)3=a6,故D选项正确.故选D.【考点】1.完全平方公式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.同底数幂的除法.2.化简:(-m)2÷(-m)=.【答案】-m【解析】利用分式的乘法,把(-m)2展开再(-m)相除即可求解.【考点】分式的乘除法3.已知:a+b=,ab=1,化简(a-2)(b-2)的结果是_______.【答案】2【解析】根据多项式相乘的法则展开,然后代入数据计算即可.【考点】整式的混合运算4.你能化简(x-1)(x99+x98+x97+……+x+1)吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.分别计算下列各式的值:①(x-1)(x+1)=x2-1;②(x-1)(x2+x+1)=x3-1;;③(x-1)(x3+x2+1)=x4-1;;……由此我们可以得到:(x-1)(x99+x98+x97+…+x+1)=________________;请你利用上面的结论,完成下面两题的计算:(1) 299+298+297+……+2+1;(2)(-2)50+(-2)49+(-2)48+……+(-2)+1【答案】2100-1;(1)2100-1;(2).【解析】根据平方差公式,和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;从而总结出规律是(x-1)(x99+x98+x97+…+x+1)=x100-1,根据上述结论计算下列式子即可.试题解析:根据题意:(1)(x-1)(x+1)=x2-1;(2)(x-1)(x2+x+1)=x3-1;(3)(x-1)(x3+x2+x+1)=x4-1;故(x-1)(x99+x98+x97+…+x+1)=x100-1.根据以上分析:(1)299+298+297+…+2+1=(2-1)(299+298+297+…+2+1)=2100-1;(2)(-2)50+(-2)49+(-2)48+…(-2)+1=-(-2-1)[(-2)50+(-2)49+(-2)48+…(-2)+1]=-(-251-1)=.【考点】规律型:数字的变化类.5.下列运算正确的是()A.B.C.D.【答案】D【解析】由题中A选项结果应为,B选项结果应为,C选项结果应为,只有D选项结果正确。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.若,则=____________。
【答案】512.【解析】∵∴∵∴∴【考点】幂的乘方;同底数幂的除法.2.单项式的系数是.【答案】.【解析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.试题解析:根据单项式系数的定义,单项式的系数为.【考点】单项式.3.丽丽在洗手后,没有把水龙头拧紧,该水龙头每秒会滴下2滴水,每滴水约0.05毫升,设t小时内该水龙头共滴了m毫升水,请你写出该水龙头流失的水量m与时间t的关系式:。
【答案】m=360t.(x≥0)【解析】根据m毫升=时间×每秒钟的滴水量进行解答.试题解析:∵水龙头每秒钟会滴下2滴水,每滴水约0.05毫升,∴离开t小时滴的水为3600×2×0.05t,∴m=360t.(x≥0)【考点】函数关系式.4.已知x2+2mx+9是完全平方式,则m的值为()A.1B.3C.﹣3D.±3【答案】D.【解析】已知x2+2mx+9是完全平方式,所以m=3或m=﹣3.故选D.【考点】完全平方式.5.下列运算正确的是()A.B.C.D.【答案】D【解析】由题中A选项结果应为,B选项结果应为,C选项结果应为,只有D选项结果正确。
【考点】有理指数幂运算.6.下列整式乘法运算中,正确的是()A.(x-y)(y+ x)=x2-y2B.(a+3)2=a2+9C.(a+b)(-a-b)=a2-b2D.(x-y)2=x2-y2【答案】A.【解析】利用完全平方公式及平方差公式判断即可得到结果:A、(x-y)(y+x)=x2-y2,故选项正确;B、(a+3)2=a2+9+6a,故选项错误;C、(a+b)(-a-b)=-(a+b)2=-a2-b2-2ab,故选项错误;D、(x-y)2=x2-2xy+y2,故选项错误.故选A.【考点】1.完全平方公式;2.平方差公式.7.下列各式中,能用平方差公式计算的有()①;②;③;④.A.1个B.2个C.3个D.4个【答案】B.【解析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.①,故本选项错误;②符合平方差公式结构特征,故本选项正确;③,符合平方差公式结构特征,故本选项正确;④,不符合平方差公式结构特征,故本选项错误.正确的有2个,故选B.【考点】平方差公式.8.多项式3ma2-6mab的公因式是.【答案】3ma.【解析】3ma2-6mab中,3与6的公因式是:3,ma2与mab的公因式是:ma,∴多项式3ma2-6mab的公因式是:3ma.故答案是3ma.【考点】公因式.9.先化简,再求值:(2x+1)(x-2)-(2-x)2, 其中x=-2.【答案】-4.【解析】先化简原式,利用整式的乘法和加法,再代入x=-2求值即可.原式=2x2-3x-2-4+4x-x2=x2+x-6当x=-2时,原式=(-2)2+(-2)-6=-4.【考点】整式的混合运算—化简求值.10.已知,,则等于( )A.B.C.D.【答案】D.【解析】根据幂的乘方运算法则以及同底数幂乘法法则即可得出答案∵,由幂的乘方法则可得:,同理∵,∴,∴由同底数幂相乘指数相加知:【考点】1.幂的乘方运算;2.同底数幂相乘.11..【答案】.【解析】根据单项式乘法法则即可得出答案.单项式相乘,它们的系数、相同的字母分别相乘,只有一个单项式中含有的字母连同它的指数一起写在积中,所以,.【考点】单项式乘法法则.12.计算:_____________;【答案】【解析】根据单项式除法法则和同底数幂相除法则即可得出答案单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.所以.注意:容易忽略负号和中a的指数为1.【考点】1.单项式除法;2.同底数幂相除.13.计算:___________(结果可用幂的形式表示)【答案】.【解析】巧妙运用平方差公式即可计算.观察题目特点发现,等式左边乘以(2-1),利用平方差公式可以达到简化的目的.=【考点】平方差公式.14.化简或计算(5×4=20)(1)、(2)、(3)、4x3÷(-2x)2(4)、(x-3)(x-2)-(x+1)2(5)、a(2a+3)-2(a +3)(a-3)【答案】(1)(2)(3)x (4) (5)【解析】根据整式运算法则即可计算(1)单项式与单项式相乘的顺序:(1)系数相乘,(2)相同字母相乘,(3)只在一个单项式中含有的字母连同它的指数一起写在积中..(2)多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加.注意:除式为负,多项式的每一项除以除式时都要变号..(3)、(4)、(5)注意整式的运算顺序,即先乘方,后乘除,最后算加减,有括号先算括号里面的.(3)(4)(x-3)(x-2)-(x+1)2(5)、【考点】整式运算.15.已知|a-b-1|与(b-2014)2互为相反数,求代数式a2-2ab+b2的值.【答案】1.【解析】因为|a-b-1|与(b-2014)2互为相反数,所以|a-b-1|+(b-2014)2=0,从而可求出a、b的值,代入代数式中去即可.试题解析:∵|a-b-1|+(b-2014)2=0∴a-b-1=0,b-2014=0∴a=2015,b=2014,当a=2015,b=2014时a2-2ab+b2=(a-b)2=(2015-2014)2=1.【考点】1.代数式求值;2.非负数的性质:偶次方.16.当时,代数式的值为2005,则当时,代数式的值为__________.【答案】-2 003【解析】因为当时,= 2 005,所以,所以当时,=.17.若,则的值是______.【答案】-1【解析】根据任何数的绝对值与平方均为非负数,可判断m-3=0,n+2=0.解得m=3,n=-2.故m+2n=3-4=-1【考点】整式运算点评:本题难度较低,主要考查学生整式运算知识点的掌握。
初一数学整式练习题精选含答案
初一数学整式练习题精选含答案整式是初中数学中的重要知识点。
整式是由若干项按照加法或减法连接而成的式子,其中每一项都是由一个常数和一个或多个
变量的乘积连接而成的。
下面,让我们来看几道初一数学整式练习题,加深对整式的理解。
1. 将以下两个整式相加并化简:(x^2-8x+12)+(2x^2-3x+5)
解法:将两个整式相加,按照同类项合并,得到:
(x^2+2x^2)+(-8x-3x)+(12+5)
答案为:3x^2-11x+17
2. 将以下两个整式相减并化简:(2x^3-x^2+3x-1)-(x^3-2x^2+x-4)
解法:将被减数展开,得到:
2x^3-x^2+3x-1
将减数展开并取负,得到:
-x^3+2x^2-x+4
做差,按照同类项合并,得到:
3x^3-3x^2+4
答案为:3x^3-3x^2+4
3. 将以下两个整式相乘并化简:(2x+3)(x-4)
解法:按照分配律,将两个整式相乘,得到:2x^2-5x-12
答案为:2x^2-5x-12
4. 将以下整式分解因式:3x^2-9x
解法:将3x^2-9x中的x提取出来,得到:
3x(x-3)
答案为:3x(x-3)
5. 将以下整式分解因式:x^3-4x^2+4x
解法:将x^3-4x^2+4x中的x提取出来,得到:x(x^2-4x+4)
(x-2)^2
答案为:x(x-2)^2
以上是几道初一数学整式练习题的解法及答案,希望能对初一学生加深对整式的理解和掌握。
初一数学整式试题
初一数学整式试题1.若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是()A.B.C.D.【答案】D.【解析】因为m个数的平均数x,则m个数的总和为mx;n个数的平均数y,则n个数的总和为ny;然后求出m+n个数的平均数为:.故选D.【考点】加权平均数.2.计算:(1)x4÷x3·(-3x)2(2)2x(2y-x) + (x+y)(x-y)【答案】(1);(2).【解析】(1)先算乘方,再算乘除即可.(2)先算乘法,再合并同类项即可.试题解析:(1)原式=.(2)原式=.【考点】整式的混合运算.3.下列各式中,能用平方差公式计算的有()①;②;③;④.A.1个B.2个C.3个D.4个【答案】B.【解析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.①,故本选项错误;②符合平方差公式结构特征,故本选项正确;③,符合平方差公式结构特征,故本选项正确;④,不符合平方差公式结构特征,故本选项错误.正确的有2个,故选B.【考点】平方差公式.4.如图,长为50cm,宽为cm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为cm.(1)从图可知,每个小长方形较长一边长是 cm(用含的代数式表示);(2)求图中两块阴影A、B的周长和(可以用的代数式表示);(3)分别用含,的代数式表示阴影A、B的面积,并求为何值时两块阴影部分的面积相等.【答案】(1) 50-3a ;(2)4x;(3),;.【解析】(1)由图形知:每个小长方形较长一边长为:(50-3a)cm;(2) 由图形知:A的长+B的宽=x,A的宽+B的长="x" ,可求周长和.(3)分别用含有x、a的代数式表示A、B的长和宽,从而可求阴影A、B的面积,列方程可求a的值.试题解析:(1) 50-3a ;(2)由图形知:A的长+B的宽=x,A的宽+B的长=x所以周长和=4x;(3),解得:.【考点】1.列代数式;2.解一元一次方程.5.若,【答案】35.【解析】先根据完全平方公式变形,再整体代入求出即可.试题解析:∵a+b=5,ab=-5,∴a2+b2=(a+b)2-2ab=52-2×(-5)=35.【考点】完全平方公式.6.计算:___________(结果可用幂的形式表示)【答案】.【解析】巧妙运用平方差公式即可计算.观察题目特点发现,等式左边乘以(2-1),利用平方差公式可以达到简化的目的.=【考点】平方差公式.7.把下列各式因式分解:(本大题共2小题,每题4分,计8分)①②【答案】⑴ a(a—7)(a+1)⑵(x+1)3(x—1)【解析】①=a(a2-6a-7)=" " a(a—7)(a+1)②=x3+x2-x2-2x-1=(x+1)3(x—1)【考点】因式分解点评:本题难度较低,主要考查学生对整式运算中因式分解知识点的掌握。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.(1)计算:9x2+x-(3x+2)(3x-2);(2)因式分解:(x+y)2-4xy;(3)解不等式组,并把解集在数轴表示出来.【答案】(1) x+4;(2) (x-y)2;(3) x≤-5.【解析】(1)先算乘法,再合并同类项即可;(2)先根据完全平方公式进行计算,再合并,最后根据完全平方公式分解即可;(2)先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.试题解析:(1)9x2+x-(3x+2)(3x-2)=9x2+x-9x2+4=x+4;(2)(x+y)2-4xy=x2+2xy+y2-4xy=x2-2xy+y2=(x-y)2;(3)∵解不等式①得:x<1,解不等式②得:x≤-5,∴不等式组的解集是x≤-5,在数轴上表示不等式组的解集是:【考点】1.整式的混合运算;2.因式分解-运用公式法;3.在数轴上表示不等式的解集;4.解一元一次不等式组.2..【答案】.【解析】根据单项式乘法法则即可得出答案.单项式相乘,它们的系数、相同的字母分别相乘,只有一个单项式中含有的字母连同它的指数一起写在积中,所以,.【考点】单项式乘法法则.3.下列算式能用平方差公式计算的是()A.(2a+b)(2b-a)B.C.(3x-y)(-3x+y)D.(-m + n)(- m - n)【答案】D.【解析】中不存在相同的相项故A不能用平方差公式;,B不能用平方差公式;,C不能用平方差公式;,D能用平方差公式.【考点】平方差公式.4.已知x+y=2,xy=-1,求下列代数式的值:(1)5x2+5y 2;(2)(x-y)2.【答案】(1)30;(2)8.【解析】利用完全平方公式进行解题.试题解析:(1)5x2+5y 2 ="5" (x2+y 2) ="5" [(x+y) 2-2xy] =5×[22-2×(-1)] =30;(2)(x-y)2="(x+y)" 2-4xy=22-4×(-1) =8.【考点】完全平方公式.5.已知a-b=3,ab=2,求(1)(a+b)2,(2)a2-6ab+b2的值.【答案】(1)17;(2)1.【解析】(1)先求出a+b的平方,从而得到a2+2ab+b2,再变形为a2+2ab+b2=(a-b)2+4ab,然后把a-b、ab的值代入即可解答.(2)把a2-6ab+b2变形为(a-b)2-4ab, 然后把a-b、ab的值代入即可解答.当a-b=3,ab=2时,(1)(a+b)2 =(a-b)2+4ab=32+4×2=17(2)a2-6ab+b2=(a-b)2-4ab=32-4×2=1【考点】完全平方公式.6.先化简,后求值:,其中,。
初一数学上册综合算式专项练习题整式的加减乘除练习
初一数学上册综合算式专项练习题整式的加减乘除练习练习一:整式的加法1. 计算:$3a^2 - 4ab + 2b^2 + 5a - 3b + 1$ 与 $4a^2 + 2ab - 3b^2 - 2a + 4b - 5$ 的和。
解答:首先按照指数的大小顺序排列各项,然后按照相同项进行合并:$3a^2 - 4ab + 2b^2 + 5a - 3b + 1 + 4a^2 + 2ab - 3b^2 - 2a + 4b - 5$合并同类项得:$7a^2 - 2ab - b^2 + 3a + b - 4$所以,$3a^2 - 4ab + 2b^2 + 5a - 3b + 1$ 与 $4a^2 + 2ab - 3b^2 - 2a + 4b - 5$ 的和为 $7a^2 - 2ab - b^2 + 3a + b - 4$。
2. 计算:$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1$ 与 $-3x^3 + 4xy^2 - 2x - 5y + 1$ 的和。
解答:按照指数的大小顺序排列各项,然后按照相同项进行合并:$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1 + (-3x^3) + 4xy^2 + (-2x) + (-5y) + 1$合并同类项得:$2x^3 + 2x^2y + xy^2 + 2x - 3y$所以,$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1$ 与 $-3x^3 + 4xy^2 - 2x - 5y + 1$ 的和为 $2x^3 + 2x^2y + xy^2 + 2x - 3y$。
练习二:整式的减法1. 计算:$4x^2 - 3xy + 2y^2 - 5x + 2y - 1$ 减去 $2x^2 - xy + y^2 + 3x - 3y - 2$。
解答:首先按照指数的大小顺序排列各项,然后按照相同项进行合并:$4x^2 - 3xy + 2y^2 - 5x + 2y - 1 - (2x^2 - xy + y^2 + 3x - 3y - 2)$合并同类项得:$2x^2 - 2y^2 - 8x + 5y + 1$所以,$4x^2 - 3xy + 2y^2 - 5x + 2y - 1$ 减去 $2x^2 - xy + y^2 + 3x - 3y - 2$ 的差为 $2x^2 - 2y^2 - 8x + 5y + 1$。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.计算:2xy2·(-3xy)2="___________" .【答案】18x3y4.【解析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.试题解析:2xy2•(-3xy)2=2xy2•(9x2y2)=18x3y4.【考点】单项式乘单项式.2.计算(x2+nx+3)(x2-3x)的结果不含的项,那么n= .【答案】3.【解析】把式子展开,找到所有x3项的所有系数,令其为0,可求出n的值.试题解析:∵(x2+nx+3)(x2-3x)=x4-3x3+nx3-3nx2+3x2-9x=x4+(n-3)x3+(3-3n)x2-9x.又∵结果中不含x3的项,∴n-3=0,解得n=3.【考点】多项式乘多项式.3.下列运算正确的是()A.B.C.D.【答案】D.【解析】A、a3•a2=a5,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,故本选项正确.故选D.【考点】1.平方差公式2.同底数幂的乘法3..同底数幂的除法4.完全平方公式.4.已知,,则等于( )A.B.C.D.【答案】D.【解析】根据幂的乘方运算法则以及同底数幂乘法法则即可得出答案∵,由幂的乘方法则可得:,同理∵,∴,∴由同底数幂相乘指数相加知:【考点】1.幂的乘方运算;2.同底数幂相乘.5.已知|a-b-1|与(b-2014)2互为相反数,求代数式a2-2ab+b2的值.【答案】1.【解析】因为|a-b-1|与(b-2014)2互为相反数,所以|a-b-1|+(b-2014)2=0,从而可求出a、b的值,代入代数式中去即可.试题解析:∵|a-b-1|+(b-2014)2=0∴a-b-1=0,b-2014=0∴a=2015,b=2014,当a=2015,b=2014时a2-2ab+b2=(a-b)2=(2015-2014)2=1.【考点】1.代数式求值;2.非负数的性质:偶次方.6.已知则。
初一数学整式试题
初一数学整式试题1.如果多项式x2+mx+16是一个二项式的完全平方式,那么m的值为A.4B.8C.-8D.±8【解析】∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.【考点】完全平方式.2.(1)填空:①(xy2)2=,②(-3x)3÷(-3x)=,③(-a3)·(-a2)2=,④2x·(+)=2x2+14x.(2)计算:①(3x-1)(x-2),②2-1+(-2)-2+()2.【答案】. x2y4;9x2;﹣a7;x,7(2)3x2﹣7x+2,【解析】:①利用积的乘方计算;②先算乘方,再算除法;③先算乘方,再算同底数幂的乘法;④根据积÷一个因式=另一个因式,列式计算即可(2)①原式利用多项式乘以多项式法则计算即可得到结果;②原式利用负指数幂法则及乘方的意义计算即可得到结果.试题解析:①原式=x2y4;②原式=﹣27x3÷(﹣3x)=9x2;③原式=(﹣a3)•a4=﹣a7;④原式=(2x2+14x)÷2x=x+7.故答案为:x2y4;9x2;﹣a7;x,7(2)①原式=3x2﹣7x+2;②原式=++=.【考点】(1)整式的混合运算(2)整式的混合运算;零指数幂;负整数指数幂3.因式分解:x2+x=_______【答案】x(x+1)【解析】根据观察可知原式公因式为x,直接提取可得4..【答案】.【解析】根据单项式乘法法则即可得出答案.单项式相乘,它们的系数、相同的字母分别相乘,只有一个单项式中含有的字母连同它的指数一起写在积中,所以,.【考点】单项式乘法法则.5.已知(a+b)2=7,ab=2,则a2+b2的值为.【答案】3.【解析】把(a+b)2=7展开为a2+2ab+b2=7,移项、代入即可求值.试题解析:∵(a+b)2=7∴a2+2ab+b2=7,∴a2+b2=7-2ab=7-2×2=3.【考点】完全平方公式.6.计算:(1)(a m)2·a m÷(-a2m)(2)6x3-x(x2+1)(3)(a+b)(a2-ab+b2)(4)(x-y)2-(x-2y) (x+2y)【答案】(1)-a m;(2)5x3-x;(3)a3+b3;(4)5y2-2xy.【解析】(1)按照先算乘方再算乘除的顺序进行计算即可求出答案;(2)先把括号展开,再合并同类项即可求值;(3)运用多项式乘以多项式的运算法则进行计算即可求值;(4)先运用完全平方公式和平方差公式将括号展开,再合并同类项即可.(1)原式=-a3m÷a2m=-a m(2)原式=6x3-x3-x=5x3-x(3)原式=a3-a2b+ab2+a2b-ab2+b3=a3+b3(4)原式=x2-2xy+y2-(x2-4y2)=5y2-2xy【考点】整式的乘除法.7.计算:= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学
整式的运算测试
一、选择题。
(3分×10=30分,请把你的正确答案填入表格中)
1、下列计算正确的是( )
A 、22=-a a
B 、326m m m =÷
C 、2008200820082x x x =+
D 、632t t t =⋅
2、下列语句中错误的是( )
A 、数字 0 也是单项式
B 、单项式 a 的系数与次数都是 1
C 、32ab -的系数是 32-
D 、22
21y x 是二次单项式
3、代数式 2008 ,π1
,xy 2 ,x 1
,y 21- ,)(20081
b a + 中是单项式的个数有(
)
A 、2个
B 、3个
C 、4个
D 、5个
4、一个整式减去22b a -等于22b a +则这个整式为 ( )
A 、22b
B 、22a
C 、22b -
D 、22a -
5、下列计算正确的是:( )
A 、2a 2+2a 3=2a 5
B 、2a -1=12a
C 、(5a 3)2=25a 5
D 、(-a 2)2÷a=a 3
6、下列计算错误的是:( )
①、(2x+y )2=4x 2+y 2 ②、(3b-a)2=9b 2-a 2 ③、(-3b-a)(a-3b)=a 2-9b 2 ④、(-x-y )2=x 2-2xy+y 2 ⑤、(x-12 )2=x 2-2x+14
A 、1个
B 、2个
C 、3个
D 、4个
7、黎老师做了个长方形教具,其中一边长为b a +2,另一边为b a -,则该长方形周长为( )
A 、b a +6
B 、a 6
C 、a 3
D 、b a -10
8、下列多项式中是完全平方式的是 ( )
A 、142++x x
B 、1222+-y x
C 、2222y xy y x ++
D 、41292+-a a
9、饶老师给出:1=+b a ,222=+b a , 你能计算出 ab 的值为 ( )
A 、1-
B 、3
C 、23
- D 、21
-
10、已知552=a ,443=b ,334=c , 则a 、b 、c 、的大小关系为:( )
A 、c b a >>
B 、b c a >>
C 、c a b >>
D 、a c b >>
二、填空题。
(2分×10=20分)
11、单项式 2
3b a π-的系数是 ,次数是 次。
12、代数式 x x a x a 5
154323+- 是______项式,次数是_____次。
13、化简:=---+)4()36(2222xy y x xy y x ________________。
14、若 c bx ax x x ++=-+2)4)(3( ,则=a _______、=b _______、=c _______。
15、计算:65105104⨯⨯⨯= ;
16、 ()_______)3(102
=----π。
17、已知2×8m =42m 求m= 。
18、已知2x 2-3x-1=0,求6x 2-9x-5=
19、若10m n +=,24mn =,则22m n += 。
20、2005200640.25⨯= 。
三、计算题。
(5分×7=35分)
21、)12)(2(2++x x 22、)(5)2
1(22222ab b a a b ab a -++-
23、 22232)2(2
1c b a bc a -⋅ 24、 )18()3610854(22xy xy xy y x ÷--
25、 ()()()1122
+--+x x x 26、))()((22y x y x y x -+-
27、()()()24212121+++
四、解答题。
(6分×2=12分)
28、计算下图阴影部分面积(单位:cm)
29、一个正方形的边长若增加4cm ,则面积增加64cm 2,求这个正
方形的面积。
(列方程)
五、探究及应用。
(30题6分、31题10分、32题7分,共23
分)
30、观察例题,然后回答: 例:x+1x =3,则x 2+ x -2= . 解:由x+1x =3,得(x+1x
)2=9,即x 2+x -2+2=9 所以:x 2+x -2
=9-2=7
通过你的观察你来计算:当x=6时,求 ①x 2+x -2
; ②(x- 1x )2
31、
(1)通过观察比较左、右两图的阴影部分面积,可以得到乘法公式为 。
(2)运用你所得到的公式,计算下列各题:
①7.93.10⨯ ② )2)(2(p n m p n m +--+
32、 小明在做一道数学题:“两个多项式A 和B ,其中B=3a 2-5a-7,试求A+2B 时”,错误
地将A+2B 看成了A-2B ,结果求出的答案是:-2a 2+3a+6,你能帮他计算出正确的A+2B 的
答案吗?(写出计算过程) a a b
b。