中考数学专题复习模拟演练实数
中考数学模拟题汇总《实数》练习题及答案
中考数学模拟题汇总《实数》练习题及答案一、选择题1.2021的倒数是()A.﹣2021 B.2021 C.D.﹣2.2021年5月19日,第三届阿里数学竞赛预选赛顺利结束,本届大赛在全球范围内吸引了约5万名数学爱好者参加.阿里数学竞赛旨在全球范围内引领开启关注数学、理解数学、欣赏数学、助力数学的科学风尚.5万用科学记数法表示为()A.0.5×105B.5×104C.50×104D.5×1053.化简(1)--的结果为()A.1-B.0 C.1 D.24.据《吉林日报》2022年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A.37.00610⨯B.47.00610⨯C.370.0610⨯D.40.700610⨯5. -5的相反数是( )A.15- B.15C. 5D. -56.﹣(﹣2)的值为()A.B.﹣C.2 D.﹣2 7.2021的相反数是()A.﹣2021 B.2021 C.D.﹣8.实数√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点9.16的平方根是()A.4 B.±4 C.8 D.±8 10.计算|﹣3|﹣(﹣2)的最后结果是()A.1 B.﹣1 C.5 D.﹣5 11.下表是几种液体在标准大气压下的沸点:液体名称 液态氧 液态氢 液态氮 液态氦 沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是( ) A .液态氧 B .液态氢 C .液态氮D .液态氦12.已知a =﹣,b =,c =﹣,判断下列各式之值何者最大?( ) A .|a +b +c |B .|a +b ﹣c |C .|a ﹣b +c |D .|a ﹣b ﹣c |13.若a 、b 为正整数,且a ×b =25×32×5,则下列何者不可能为a 、b 的最大公因数?( ) A .1B .6C .8D .1214.下列实数是无理数的是( ) A .﹣2B .1C .D .215.设6a ,小数部分为b ,则(2a b 的值是( )A.6B .C .12D .二、填空题16.截至2020年末,达州市金融精准扶贫共计392.5亿元,居全省第2,惠及建档立卡贫困户8.96万人,将392.5亿元用科学记数法表示应为 元. 17.已知a ,b 满足等式a 2+6a +9+√b −13=0,则a 2021b 2020= .18.实数√16的算术平方根是 .19.中国杂交水稻之父、中国工程院院士、共和国勋章获得者袁隆平于2021年5月22日因病去世,享年91岁,袁隆平的去世是中国乃至全世界的重大损失.袁隆平一生致力于水稻杂交技术研究,为提高我国水稻亩产量做出了巨大贡献.截至2021年,“种三产四”丰产工程项目累计示范推广面积达2000多万亩,增产20多亿公斤.将20亿这个数据用科学记数法表示为 .20.如图,实数−√5,√15,m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D .若m 为整数,则m 的值为 .21.计算:= .22.要使二次根式在实数范围内有意义,x 的取值范围是 .23.写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)24.若把第n个位置上的数记为x n,则称x1,x2,x3,…,x n有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,y n,其中y n是这个数列中第n个位置上的数,n=1,2,…,k且y n=并规定x0=x n,x n+1=x1.如果数列A只有四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是.三、解答题25.(1)计算:(1)﹣2+(3.14﹣π)0+|3−√12|﹣4sin60°.226.计算:﹣12+(π﹣2021)0+2sin60°﹣|1−√3|.27.计算:√4+(1+π)0﹣2cos45°+|1−√2|.28.计算:(3.14﹣π)0−√27+|1−√3|+4sin60°.29.计算:0.30.计算:23×(﹣+1)÷(1﹣3).参考答案与解析一、选择题1.2021的倒数是()A.﹣2021 B.2021 C.D.﹣【分析】根据乘积是1的两个数互为倒数判断即可.【解答】解:2021的倒数是.故选:C.【点评】此题主要考查了倒数,正确掌握相关定义是解题关键.2.2021年5月19日,第三届阿里数学竞赛预选赛顺利结束,本届大赛在全球范围内吸引了约5万名数学爱好者参加.阿里数学竞赛旨在全球范围内引领开启关注数学、理解数学、欣赏数学、助力数学的科学风尚.5万用科学记数法表示为()A.0.5×105B.5×104C.50×104D.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:5万=50000=5×104,故选:B.【点评】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.--的结果为()3.化简(1)A.1-B.0 C.1 D.2【分析】括号前面是减号时,去掉括号,括号内加号变减号,减号变加号.--=,【解答】解:(1)1故选:C.【点评】本题考查去括号,解题关键是掌握去括号法则.4.据《吉林日报》2022年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A.3⨯D.470.06100.700610⨯7.00610⨯C.37.00610⨯B.4a<,a不为分数形式,n为整数).【分析】把一个数表示成a与10的n次幂相乘的形式(1||10【解答】解:4=⨯,700607.006010故选:B.【点评】本题考查科学记数法,解题关键是熟练掌握用科学记数法表示较大的数.5. -5的相反数是( )A.15B.15C. 5D. -5【答案】C【解析】【分析】根据相反数的定义解答即可.【详解】-5的相反数是5故选C【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键. 6.﹣(﹣2)的值为()A.B.﹣C.2 D.﹣2【分析】直接根据相反数的定义可得答案.【解答】解:﹣(﹣2)的值为2.故选:C.7.2021的相反数是()A.﹣2021 B.2021 C.D.﹣【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解答】解:2021的相反数是:﹣2021.故选:A.8.实数√2+1在数轴上的对应点可能是()A.A点B.B点C.C点D.D点【考点】实数与数轴.【分析】先确定2<√2+1<3,再根据数轴上点的位置可得结论.【解答】解:∵1<2<4,∴1<√2<2,∴2<√2+1<3,则实数√2+1在数轴上的对应点可能是点D,故选:D.9.16的平方根是()A.4 B.±4 C.8 D.±8【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.10.计算|﹣3|﹣(﹣2)的最后结果是()A.1 B.﹣1 C.5 D.﹣5【考点】绝对值;有理数的减法.【分析】根据绝对值的性质以及有理数的减法法则计算即可;有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:|﹣3|﹣(﹣2)=3+2=5.故选:C.11.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183 ﹣253 ﹣196 ﹣268.9 则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最高的液体是液态氧.故选:A.12.已知a=﹣,b=,c=﹣,判断下列各式之值何者最大?()A.|a+b+c| B.|a+b﹣c| C.|a﹣b+c| D.|a﹣b﹣c|【分析】根据有理数加减混合运算及绝对值的意义解题即可.【解答】解:∵a=﹣,b=,c=﹣,a﹣b+c是最小的,∴相应的绝对值最大.故选:C.【点评】本题主要考查绝对值的定义,有理数加减混合运算的应用是解题关键.13.若a、b为正整数,且a×b=25×32×5,则下列何者不可能为a、b的最大公因数?()A.1 B.6 C.8 D.12【分析】根据a×b=25×32×5,取a、b的不同值解题即可.【解答】解:∵最大公因数为a、b都有的因数,而8=23,a×b=25×32×5,a、b不可能都含有23,∴8不可能为a、b的最大公因数.故选:C.【点评】本题考查实数中最大公因数的概念,掌握求两个数的最大公因数是解题的关键.14.下列实数是无理数的是()A.﹣2 B.1 C.D.2【分析】根据无理数的定义逐个判断即可.【解答】解:A.﹣2是有理数,不是无理数,故本选项不符合题意;B.1是有理数,不是无理数,故本选项不符合题意;C.是无理数,故本选项符合题意;D.2是有理数,不是无理数,故本选项不符合题意;故选:C.15.设6a,小数部分为b,则(2a b的值是()A.6B.C.12D.【答案】A四、填空题16.截至2020年末,达州市金融精准扶贫共计392.5亿元,居全省第2,惠及建档立卡贫困户8.96万人,将392.5亿元用科学记数法表示应为 3.925×1010元.【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【解答】解:392.5亿=39250000000=3.925×1010. 故答案为:3.925×1010.17.已知a ,b 满足等式a 2+6a +9+√b −13=0,则a 2021b 2020= ﹣3 .【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【分析】利用非负数的性质以及二次根式的性质得出a ,b 的值,进而得出答案.【解答】解:∵a 2+6a +9+√b −13=0,∴(a +3)2+√b −13=0,∴a +3=0,b −13=0, 解得:a =﹣3,b =13,则a 2021b 2020=(﹣3)2021•(13)2020=﹣3×(﹣3×13)2020=﹣3. 故答案为:﹣3.18.实数√16的算术平方根是 2 . 【考点】算术平方根.【分析】一个正数的正的平方根叫它的算术平方根,由此即可求出结果. 【解答】解:√16=4, 4的算术平方根是2,所以实数√16的算术平方根是2. 故答案为:2.19.中国杂交水稻之父、中国工程院院士、共和国勋章获得者袁隆平于2021年5月22日因病去世,享年91岁,袁隆平的去世是中国乃至全世界的重大损失.袁隆平一生致力于水稻杂交技术研究,为提高我国水稻亩产量做出了巨大贡献.截至2021年,“种三产四”丰产工程项目累计示范推广面积达2000多万亩,增产20多亿公斤.将20亿这个数据用科学记数法表示为 2×109 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:20亿=2000000000=2×109.故答案为:2×109.20.如图,实数−√5,√15,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为﹣3.【考点】实数与数轴.【分析】先求出点D表示的数,然后确定点C的取值范围,根据m为整数,即可得到m的值.【解答】解:∵点B表示的数是√15,点B关于原点O的对称点是点D,∴点D表示的数是−√15,∵点C在点A、D之间,∴−√15<m<−√5,∵﹣4<−√15<−3,﹣3<−√5<−2,∴−√15<−3<−√5,∵m为整数,∴m的值为﹣3.答案为:﹣3.21.计算:=.【分析】根据二次根式的基本性质进行解答即可.【解答】解:原式==5.故答案为:5.22.要使二次根式在实数范围内有意义,x的取值范围是x≥﹣1.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a ≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)【答案】,1.010010001π⋅⋅⋅等) 【解析】【分析】从无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数, 【详解】根据无理数的定义写一个无理数,满足14x <<即可; 所以可以写:①开方开不尽的数:②无限不循环小数,1.010010001……, ③含有π的数,2π等.只要写出一个满足条件的x 即可.,1.010010001π……等)【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.24.若把第n 个位置上的数记为x n ,则称x 1,x 2,x 3,…,x n 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:y 1,y 2,y 3,…,y n ,其中y n 是这个数列中第n 个位置上的数,n =1,2,…,k 且y n =并规定x 0=x n ,x n +1=x 1.如果数列A 只有四个数,且x 1,x 2,x 3,x 4依次为3,1,2,1,则其“伴生数列”B 是 0,1,0,1 .【分析】根据“伴生数列”的定义依次取n =1,2,3,4,求出对应的y n 即可. 【解答】解:当n =1时,x 0=x 4=1=x 2, ∴y 1=0,当n =2时,x 1≠x 3, ∴y 2=1,当n =3时,x 2=x 4, ∴y 3=0,当n =4时,x 3≠x 5=x 1, ∴y 4=1,∴“伴生数列”B 是:0,1,0,1,故答案为0,1,0,1.五、解答题25.(1)计算:(1)﹣2+(3.14﹣π)0+|3−√12|﹣4sin60°.2【分析】(1)根据负整数指数幂的意义、零指数幂的意义,特殊角的锐角三角函数的值以及绝对值的性质即可求出答案;【解答】解:原式=4+1+√12−3﹣4×√32=5+2√3−3﹣2√3=2.26.计算:﹣12+(π﹣2021)0+2sin60°﹣|1−√3|.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.−(√3−1)【解答】解:原式=﹣1+1+2×√32=﹣1+1+√3−√3+1=1.27.(1)计算:√4+(1+π)0﹣2cos45°+|1−√2|.+√2−1【解答】解:(1)原式=2+1﹣2×√22=2+1−√2+√2−1=2;28.计算:(3.14﹣π)0−√27+|1−√3|+4sin60°.【考点】绝对值;算术平方根;实数的运算;零指数幂;特殊角的三角函数值.【分析】根据零指数幂,二次根式的运算法则,去绝对值,特殊角的三角函数值化简各项,再计算加减法.【解答】解:原式=1−3√3+√3−1+4×√32=1−3√3+√3−1+2√3=0.29.计算:0.【分析】根据乘法的定义、零指数幂以及sin60°=,然后进行乘法运算和去绝对值运算,再合并即可.【解答】解:原式=﹣1﹣2×+1=﹣1﹣+1=0.【点评】本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,最后进行加减运算.也考查了零指数幂、以及特殊角的三角函数值.30.计算:23×(﹣+1)÷(1﹣3).【分析】原式先计算乘方运算,再计算括号内的加减运算,最后算乘除运算即可求出值.【解答】解:原式=8×÷(﹣2)=4÷(﹣2)=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
中考数学专题训练:实数的运算、化简求值(含答案)
中考数学专题训练:实数的运算、化简求值1. (2012黑龙江)计算:3202)1(2)330cos (-+--︒-π.【答案】解:原式=211111==0444--+-。
2. (2012内蒙古)20sin 30(2)-︒+--; 【答案】解:原式=1111=1424-+--。
3. (2012青海)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭【答案】解:原式=2152+2+1=92-⨯。
4. (2012甘肃)计算:02112sin 30( 3.14)(2π---︒+-+ 【答案】解:原式=11214=52-⨯++。
5. (2012广西)计算:0201264sin 45(1)-++-. 【答案】解:原式64172=+⨯+=6. (2012广西)计算:|-3|+2-1+12(π-3)0-tan60°;【答案】解:原式=3+12+12×1-3=1。
7. (2012广西)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。
【答案】解:原式=4×2+1-6 =-+1+6 =7。
8. (2012山东)计算:(1013tan 60+13-⎛⎫-- ⎪⎝⎭【答案】解:原式=32--- 9. (2012山东)计算:2012022(1)(3)(2)π--+-⨯---【答案】解:原式=11321144+⨯-=- 10. (2012贵州)计算:)()2201212sin 30+13π-⎛⎫---- ⎪⎝⎭【答案】解:原式=129+12+1=102-⨯---。
11. (2012贵州)计算:)20111+2sin 602-⎛⎫---⎪⎝⎭【答案】解:原式=4+11+2- 12. (2012贵州)计算:0222214sin 60+3π⎛⎫--- ⎪⎝⎭.【答案】解:原式=4143131=4---------。
13. (2012四川)计算:()()120121312π-⎛⎫-⨯- ⎪⎝⎭14. (2012四川)计算:161)1(130sin )2(2+-+-+--o o π. 【答案】解:原式=11111=2424+-++。
2023年中考数学考点讲练专题3 实数的运算
专题3 实数的运算考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,3-π-中,最小的数是( ) A . 3.14-B .-3C .3D .π-2.(2022·湖南益阳·21,2,13中,比0小的数是( )A 2B .1C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( ) A .0a > B .a b <C .10b -<D .0ab >4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( ) A .3B .32-C .23-D .235.(2022·天津红桥·中考三模)估计17- ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间D .2-和1-之间6.(2022·山东临沂·23“>”或“<”或“=”).7.(2022·海南·310___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟预测)下列计算结果是正数的是( ) A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|59.(2022·河北唐山·中考三模)运算后结果正确的是( ) A .12332=B 342 C 8220= D 2632=10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( ) A 31- B .12-C 32D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( ) A .0 B .4 C .-2D .3212.(2022·广东深圳·01(1+的结果是( )A .1BC .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3=______.15.(2022·四川攀枝花·0(1)=-__________.16.(2022·辽宁阜新·中考真题)计算:22-=______.17.(2022·广东肇庆·______________.18.(2022·湖北黄石·中考真题)计算:20(2)(2022--=____________.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( )A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .023.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅=-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-+.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.29.(2022·广东北江实验学校三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒+-.答案与解析考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,π-中,最小的数是( ) A. 3.14- B .-3C .D .π-∴33 3.14<,在实数 3.14-,-3,3-,故选:D .【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.(2022·湖南益阳·中考真题)四个实数﹣1,2,13中,比0小的数是( )A B .1 C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0a >B .a b <C .10b -<D .0ab >【答案】B【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意; ∴10b ->,故C 错误,不符合题意; ∴0ab <,故D 错误,不符合题意; 故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键. 4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( )A .B .32-C .23-D .23【详解】解:13<<,故A 不符合题意;B 不符合题意;,故C 符合题意;5.(2022·天津红桥·中考三模)估计 ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间 D .2-和1-之间【详解】解:1617<5-【点睛】本题考查无理数的估算,是基础考点,掌握相关知识是解题关键.6.(2022·山东临沂·“>”或“<”或“=”).【详解】解:22()2=1123>,∴223>故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.7.(2022·海南·___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟)下列计算结果是正数的是( )A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|【点睛】本题考查了实数,有理数的混合运算,熟练掌握运算法则是解本题的关键. 9.(2022·河北唐山·中考三模)运算后结果正确的是( )A.12=B 2 C 0= D =10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( )A 1B .12-C D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( )A .0B .4C .-2D .32故选:B .【点睛】本题考查了实数的运算,正确理解实数的运算法则是解本题的关键.12.(2022·广东深圳·01(1+的结果是( )A.1 B C .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3-=______.15.(2022·四川攀枝花·0-__________.(1)=-【答案】3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.=--=-.【详解】解:原式213-.故答案为:3【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.16.(2022·辽宁阜新·中考真题)计算:22-______.17.(2022·广东肇庆·中考二模)计算:=______________.18.(2022·湖北黄石·中考真题)计算:20--=____________.(2)(2022【答案】3【分析】根据有理数的乘法与零次幂进行计算即可求解.-=.【详解】解:原式=413故答案为:3.【点睛】本题考查了实数的混合运算,掌握零次幂以及有理数的乘方运算是解题的关键.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( ) A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 【答案】A【分析】把较高次幂拆分后逆用积的乘方法则,进行运算即可得解.22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .01123122 312122=+-- =2,23.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________. 【答案】-1【分析】根据负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简等计算法则求解即可.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-++.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.=3.【点睛】本题考查了特殊角的三角函数值、绝对值的意义和负整数指数幂的运算法则等知识,熟记特殊角的三角函数值是解答本题的关键.29.(2022·广东中考三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒++-.。
中考数学专题复习《实数的运算》测试卷-附带答案
中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
1.1实数及其运算知识点演练(讲练)-2023届中考数学一轮大单元复习(解析版)
专题1.1实数及其运算知识点演练考点1:实数的分类例1.(2022·浙江·温州市南浦实验中学七年级期中)把下列各数的序号填入相应的集合里.,④7,⑤36,⑥3.1313313331⋯(两个“1”之间依次多一个“3”).①0,②―4,③23整数∶______;分数∶______;无理数∶________;1.(2022·陕西宝鸡·八年级期中)下列说法中正确的是( )A.有理数都是有限小数B.无限小数都是无理数C.无理数都是无限小数D.π是分数2【答案】C【分析】根据有理数的定义及无理数的定义即可得到答案.【详解】解:A选项无限循环小数也是有理数,故A不正确;B选项无限循环小数也是有理数,故B不正确;2.(2022·江苏·沭阳县怀文中学七年级期中)下列各数中,是无理数的是()A.13B.1.732C.―πD.2273.(2022·四川·成都嘉祥外国语学校八年级期中)以下四个数:―2,3.14,227,0.101,无理数的个数是( )A.1B.2C.3D.44.(2022·广东河·八年级期中)在5,―0.333⋯,0,0.10010001⋯,38,(―2)0,3.1415,2.10101⋯(相邻两个1之间有1个0)中,无理数有()A.1个B.2个C.3个D.4个5.(2022·吉林·农安县新农乡初级中学八年级期中)下列各数3.1415926,9,1.212212221……(相邻两,2―π,―2020,4中,有理数有___________个.个l之间2的个数逐次加1),176.(2022··七年级期中)把下列各数填入相应的横线内:,0,5.-6,π,―23整数:__________________;负数:__________________;实数:__________________.7.(2022·浙江·余姚市子陵中学教育集团七年级期中)把下列各数的序号分别填入相应的大括号内:①0,②-π,③1.5,④―25,⑤―6,⑥1.1010010001…(每两个“1”之间依次多1个“0”)7负数:{___________…};整数:{___________…};无理数:{___________…}.8.(2022·浙江宁波·七年级期中)把下列各数对应的序号填在相应的括号里.①0;②3;③-2.5;④π2;⑤-57;⑥|―3|;⑦1.202002…… (每两个“2”之间依次多一个“0”).正整数:()负分数:()无理数:()【答案】⑥;③⑤;②④⑦【分析】根据正整数,负分数和无理数的概念,即可求解.【详解】解:|―3|=3,正整数:(⑥)负分数:(③⑤)无理数:(②④⑦)【点睛】本题主要考查实数的分类,掌握无理数是无限不循环小数是解题的关键.9.(2022·福建省大田县教师进修学校八年级期中)把下列各数填入相应的括号内:2 3,3―5,0.·7,―3.14,36,(―2)2,1.010010001⋯(1)无理数:{…};(2)负实数:{…};(3)整数:{…};(4)分数:{…};10.(2022·浙江金华·七年级期中)把下列各数对应的编号填在相应的大括号里:(1)―49,(2)18,(3)57,(4)π2,(5)—3.141,(6)0,(7)7,(8)80%,(9)―|―5|,(10)0.101001...(自左而右每两个1之间依次多一个0).整 数:____________________________________分 数:____________________________________无理数:___________________________________例2.(1)(2022·山东·宁津县育新中学九年级阶段练习)下列选项中,对2的说法错误的是().A.2的相反数是―2B.2的倒数是22C.2的绝对值是2D.2是有理数(2)(2022·河北唐山·八年级期中)3―5的绝对值是___________.个单位长度的圆,将圆上的点A放在原点,并把(3)(2022·河北邢台·八年级期中)如图,有一个半径为12圆沿数轴逆时针方向滚动一周,点A到达点A′的位置,则点A′表示的数______;若点B表示的数是―10,则点B在点A′的______(填“左边”、“右边”).1.(2022·山西实验中学八年级期中)实数―3的相反数是( )A.3B.3C.―3D.―332.(2022·陕西·西安市铁一中学七年级期中)―5的绝对值是( )A.5B.―5C.5D.―53.(2022·安徽省马鞍山市第七中学七年级期中)已知a为实数,则―a+|a|的值为()A.0B.不可能是负数C.可以是负数D.可以是正数也可以是负数【答案】B【分析】通过分类讨论去绝对值,即可判断结果.【详解】当a>0时,―a+|a|=―a+a=0;当a=0时,―a+|a|=―a+a=0;当a<0时,―a+|a|=―a―a=―2a>0.综上所述,―a+|a|的值不可能是负数.故选:B.【点睛】本题主要考查了实数的绝对值,a是实数时,正数、0、负数三种情况都要考虑到,用到了分类讨论的方法.4.(2022·江苏无锡·八年级期中)5―2的相反数是()A.―0.236B.5+2C.2―5D.―2+5【点睛】本题考查了相反数的定义,解决本题的关键是掌握其定义:只有符号不同的两个数互为相反数.5.(2022·河北石家庄·八年级期中)在以下说法中:①无理数和有理数统称为实数;②实数和数轴上的点是一一对应的;③0的算术平方根是0;④无限小数都是无理数.正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的相关概念、实数与数轴的对应关系、算术平方根的概念对各小题分析判断即可得解【详解】①无理数和有理数统称为实数,说法正确②实数和数轴上的点是一一对应的,说法正确③0的算术平方根是0,说法正确④无限小数都是无理数,说法错误,因为无限循环小数是有理数故选C【点睛】本题主要考查实数的相关概念、实数与数轴的对应关系、算术平方根的概念,算数平方根的概念是解题的关键6.(2022·湖北黄石·中考真题)1―2的绝对值是()A.1―2B.2―1C.1+2D.±(2―1)7.(2022·浙江·七年级专题练习)数轴上表示1,2的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.2―1B.1―2C.2―2D.2―2【答案】C8.(2022·四川省成都市七中育才学校八年级期中)5―1的相反数是____,绝对值是__________.9.(2022·四川·成都外国语学校八年级期中)已知a、b、c在数轴上的位置如图所示.化简a2―|a+b|+ (c―a)2+|b+c|―3b3=___________.10.(2022·江苏·苏州工业园区金鸡湖学校一模)计算:|―3|+(π+3)0―12.11.(2022·福建省永春第三中学七年级期中)已知实数a,b满足|a|=b, |ab|+ab=0,化简|a|+|―2b| +3a.【答案】2a+2b【分析】根据实数的性质,绝对值的性质,相反数的意义,判断出a,b的符号,进而化简绝对值,再根据整式的加减进行化简即可求解.【详解】解:∵|a|=b, |ab|+ab=0∴b≥0,ab≤0∴a≤0∴|a|+|―2b|+3a=―a+2b+3a=2a+2b.【点睛】本题考查了实数的性质,整式的加减,化简绝对值,判断出a,b的符号是解题的关键.12.(2022·安徽·合肥市第四十五中学橡树湾校区七年级期中)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示―2,设点B所表示的数为m.(1)实数m的值是______;(2)求|m―1|―|1―m|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与d―4互为相反数,求2c+3d的平方根.13.(2022·福建三明·八年级期中)实数与数轴上的点一一对应,无理数也可以在数轴上表示出来,体现了数形结合思想.(1)由数到形:在数轴上用尺规作图作出―5对应的点P(不要写作法,保留作图痕迹).(2)由形到数:如图,在数轴上,点A,B表示的数分别为0,2,作BC⊥AB于点B,截取BC=1;连接AC,以点C为圆心,CB长为半径画弧交AC于点D;以点A为圆心,AD长为半径画弧交AB于点E,则点E表示的实数是________________.作法:作线段AB的垂直平分线MN;以点为半径作弧交数轴负半轴于点P.(2)解:由作法知CD=CB=1,AD考点3:平方根、算术平方根、与立方根例3.(2022·山东·德州市第九中学九年级期中)本学期第六章《实数》中学习了平方根和立方根,下表是平方根和立方根的部分内容:平方根立方根定义一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根).性质一个正数有两个平方根,它们互为相反数:0的平方根是0;负数没有平方根.正数的立方根是正数;0的立方根是0;负数的立方根是负数.【类比探索】(1)探索定义:填写下表x411681x类比平方根和立方根,给四次方根下定义:______.(2)探究性质:①1的四次方根是______;②16的四次方根是______;③0的四次方根是______;④-625 ______(填“有”或“没有”)四次方根.类比平方根和立方根的性质,归纳四次方根的性质:______;1.(2022·四川·绵阳中学英才学校二模)若―3x m y和5x3y n的和是单项式,则(m+n)3的平方根是()A.8B.―8C.±4D.±8【答案】D【分析】根据题意可得―3x m y和5x3y n是同类项,从而得到m=3,n=1,再代入,即可求解.【详解】解:∵―3x m y和5x3y n的和是单项式,∴―3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,∴(m+n)3的平方根是±8.故选:D.【点睛】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到―3x m y和5x3y n是同类项是解题的关键.2.(2022·广东北江实验学校三模)下列说法不正确的是()A.125的平方根是±15B.(-0.1)2的平方根是±0.1C.-9是81的算术平方根D.3-27=-33.(2022·江苏·连云港市新海初级中学三模)9的值为_______.4.(2022·上海嘉定·九年级期中)长为3、4的线段的比例中项长是___________.5.(2022·山西临汾·九年级期中)已知y=x―2+2―x―3,则(x+y)2022(x―y)2023的值为_____.【答案】2+3##3+26.(2022·山东·测试·编辑教研五二模)如图,这是由8个同样大小的立方体组成的魔方,体积为8,若阴影部分为正方形ABCD,则此正方形的边长是______.7.(2022·四川攀枝花·中考真题)3―8―(―1)0=__________.【答案】―3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.【详解】解:原式=―2―1=―3.故答案为:―3.【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.8.(2022·广东·东莞市万江第三中学三模)计算下列各题:(1)4的平方根是______;(2)25的算术平方根是______;(3)―8的立方根是______;9.(2022·全国·九年级专题练习)已知c<b<0<a,且|b|<|a|,求(a―b)2+c2―|b+c|―|―b|―3(b―a)3的值.【答案】2a【分析】根据绝对值的意义可得a―b>0,b+c<0,―b>0,b―a<0,然后通过计算可得.【详解】解:∵c<b<0<a,|b|<|a|,10.(2022·全国·九年级专题练习)已知正数a的两个不同平方根分别是2x―2和6―3x,a―4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b3+3a―17的立方根.【答案】(1)a=36,b=5(2)6【分析】(1)首先利用正数的平方根有两个,它们互为相反数,再利用互为相反数的两个数相加为0,即可得出两个平方根,进而得出正数a的值,然后再利用题意“a―4b的算术平方根是4”,把a的值代入a―4b,即可得出b的值.(2)根据(1)得出a=36,b=5,然后把a=36,b=5代入b3+3a―17,求出值,然后再开立方,即可得出结果.【详解】(1)解:∵正数a的两个不同平方根分别是2x―2和6―3x,∴2x―2+6―3x=0,解得:x=4,∴2x―2=2×4―2=6,6―3x=6―3×4=―6,∵(±6)2=36,∴a=36,又∵a―4b的算术平方根是4,又∵42=16,∴a―4b=16,∴把a=36代入a―4b=16,可得:36―4b=16,解得:b=5.例4.(1)(2022·山东济南·模拟预测)最新统计,中国注册志愿者总数已超30000000人,30000000用科学记数法表示为()A.3×107B.3×106C.30×106D.3×105:30000000=3×107.故选:A.(2)(2022·四川德阳·二模)已知某种细胞的直径约为2.13×10―4cm,请问2.13×10―4这个数原来的数是()A.21300B.2130000C.0.0213D.0.000213解:2.13×10-4=0.000213,故选:D.知识点训练1.(2022·山东·济南市历城区教育教学研究中心一模)2021年5月15日,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆火星,为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A.47×107B.4.7×107C.4.7×108D.0.47×109【答案】C【分析】根据科学记数法的表示方法确定a,n的值即可.【详解】解:470000000=4.7×108,故选:C.【点睛】题目主要考查科学记数法的表示方法,熟练掌握科学记数法的表示方法是解题关键.2.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( )A.1.076×107B.1.076×108C.10.76×106D.0.1076×108【分析】科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正整数;当原数的绝对值<1时,n是负整数,由此即可得到答案.【详解】解:1076万=10760000=1.076×107.故选:A.【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.3.(2022·福建·九年级专题练习)某种细胞的直径是5×10―4毫米,这个数用小数表示是()A.0.00005B.0.0005C.―50000D.50000【答案】B【分析】根据科学记数法a×10n得到n=―4,所以小数点向前移动4位来求解.【详解】解:∵5×10―4∴n=―4,∴5×10―4=0.0005.故选:B.【点睛】本题主要考查了把科学记数法还原原数,还原原数时,关键是看n,n<0时,|n|是几,小数点就向前移几位.4.(2022·全国·七年级专题练习)据科学家估计,地球的年龄大约是4.6×109年,4.6×109是一个()A.7位数B.8位数C.9位数D.10位数【答案】D【分析】把科学记数转化为原数即可求得答案.【详解】解:4.6×109=4600000000,故选D.【点睛】本题考查了把科学记数法转化为原数,解题的关键是熟练掌握科学记数法的表示形式.5.(2022·全国·七年级专题练习)一个整数x用科学记数法表示为1.381×1028,则x的位数为()A.27B.28C.29D.30【答案】C【分析】将科学记数法表示的数的指数加上1得到原来的数的整数位,由此解答即可.【详解】x的整数数位少1位为28,则x的位数为29.【点睛】本题考查了把科学记数法表示的数整数位与指数的关系.6.(2022·河南·九年级专题练习)数据0.0000037用科学记数法表示成3.7×10―n,则3.7×10n表示的原数为().A.3700000B.370000C.37000000D.―3700000【答案】A【分析】根据用科学记数法表示绝对值小于1的数的方法,可确定n的值.即得出3.7×10n表示的数为3.7×106,再将其转化为数字即可.【详解】∵数据0.0000037用科学记数法表示成3.7×10―n,∴n=6,∴3.7×10n即为3.7×106,∴3.7×10n表示的原数为3700000.故选A.【点睛】本题主要考查数科学记数法之间的转换.掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同是解题关键.7.(2022·四川广安·九年级专题练习)近似数3.48×103精确到()A.百分位B.个位C.十位D.百位【答案】C【分析】先把科学记数法表示的数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.【详解】近似数3.48×103=3480,8在十位上,故精确到十位故选C【点睛】本题考查了求近似数,将科学记数法还原是解题的关键.8.(2022·山东师范大学第二附属中学模拟预测)数据0.0000314用科学记数法表示为( )A.3.14×10―5B.31.44×10―4C.3.14×10―6D.0.314×10―6【答案】A【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10―n,其中n为正整数,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000314=3.14×10―5故选:A.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10―n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(2022·河北邯郸·七年级期末)0.000985用科学记数法表示为9.85×10―n,则9.85×10n还原为原数为()A.9850000B.985000C.98500D.9850【答案】C【分析】用科学记数法表示的数还原成原数时,n> 0时,n是几,小数点就向右移几位.【详解】∵0.000985= 9.85×10-4∴n=4,∴9.85×104= 98500.故选: C.【点睛】本题考查写出用科学记数法表示的原数,将科学记数法a× 10n”表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数科学记数法a×10n表示的数,还原成通常表示的数,就是把a的小数点向右移动n位所得到的数;把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.(2022·吉林长春·一模)“天文单位”是天文学中用来计量距离的一种单位.1天文单位用科学记数法表示为1.496×108千米,这个数也可以写成______亿千米.【答案】1.496【分析】根据1亿=108,对这个数进行换算即可作答.【详解】解:∵1亿=108,∴1.496×108千米=1.496亿千米,故答案为:1.496.【点睛】本题考查了科学记数法−−−原数,解题的关键是掌握科学记数法表示的数与原数的关系.考点5:实数的大小比较例5.(1)(2022·四川乐山·九年级专题练习)在实数|―3.14|,-3,―3,―π中,最小的数是()A.|―3.14|B.-3C.―3D.―π【答案】D【分析】根据实数的比较大小的规则比较即可.(2)(2022·山东济南·中考真题)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|b|D.a+1<b+1【答案】D【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【详解】解:根据图形可以得到:―3<a<―2<0,0<b<1,∴ab<0,故A项错误,a+b<0,故B项错误,|a|>|b|,故C项错误,a+1<b+1,故D项错误.故选:D.知识点训练1.(2022·山东·测试·编辑教研五二模)下列实数中,最大的数是()A.―4B.―5C.0D.3【答案】D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数绝对值大的反而小,据此判断即可.【详解】解:∵―5<―4<0<3,∴最大的数是3,故选:D.【点睛】此题考查实数的大小比较的方法,熟练掌握:负实数<0<正实数,两个负数绝对值大的反而小,是解答此题的关键.2.(2022·湖南·长沙市南雅中学一模)下列实数中,最大的数是()A.0B.2C.πD.―33.(2022·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)在四个数―2,―0.6,1,3中,绝对值2最小的数是( )D.3A.―2B.―0.6C.124.(2022·江西·寻乌县教育局教学研究室二模)1,―2,0,3中最小的数是()A.1B.―2C.0D.35.(2022·四川·峨眉山市教育局二模)在2,-1,0,π这四个实数中,最小的一个实数是()2A.2B.-1C.0D.π26.(2022·河南·郑州市树人外国语中学九年级期末)下列四个实数中,绝对值最小的数是()A.﹣4B.―3C.2D.37.(2022·四川乐山·九年级专题练习)比较23和32的大小,下面结论正确的是( )A.23<32B.23=32C.23>32D.无法比较8.(2022·河北承德·九年级期中)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2} =1,因此,min{―2,―3}=__________;min(x2+2x+3),0=__________;若min(x―1)2,x2=1,则x=_____________.【答案】―3 0 2或―1##―1或29.(2022·河北·大名县束馆镇束馆中学三模)定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{﹣2,﹣4}=﹣2.(1)max{26,5}=_____;(2)若max{﹣12,(一1)2}=2x,则x=_____.2―x考点6与实数的相关的计算例6.(2022·山东烟台·九年级期中)计算(1)sin230°+2sin60°+tan45°―tan60°+cos230°(2)8―2sin45°+2cos60°+|1―2|+1.1.(2022·重庆市开州区德阳初级中学模拟预测)计算:|―3|+2―1=______.2.(2022·山东济南·模拟预测)计算:12―(2022―π)0―2×cos30°+(―12)―1.3.(2022·山东济南·模拟预测)计算:1―|3―1|+3tan30°+(2022―π)0.4.(2022·吉林长春·一模)计算:12―3tan30°+(2022―π)0―1.5.(2022·四川·峨眉山市教育局二模)计算:38+|3―23|―tan60°+(3)2+(π―2022)06.(2022·江苏·盐城市初级中学三模)计算:364+|sin45°―tan45°|+1.7.(2022·广西·南宁市第四十七中学九年级期中)计算:―(―1)2022+10÷2×12―1―3tan30°。
中考数学专题练习 实数(含解析)
实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
中考数学模拟题《实数的概念及运算》专项测试卷(附答案)
中考数学模拟题《实数的概念及运算》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(50题)一 单选题1.(2023·四川德阳·统考中考真题)下列各数中 是无理数的是( ) A .2023-B 2023C .0D .120232.(2023·山东·统考中考真题)实数10 1.53π-,,,中无理数是( ) A .πB .0C .13-D .1.53.(2023·贵州·统考中考真题)5的绝对值是( ) A .5±B .5C .5-D 54.(2023·湖北荆州·统考中考真题)在实数1- 3 123.14中 无理数是( )A .1-B 3C .12D .3.145.(2023·江苏无锡·统考中考真题)实数9的算术平方根是( ) A .3B .3±C .19D .9-6.(2023·湖北恩施·统考中考真题)下列实数:1- 0 2 12- 其中最小的是( )A .1-B .0C 2D .12-7.(2023·江苏徐州·2023 ) A .25与30之间 B .30与35之间C .35与40之间D .40与45之间8.(2023·湖南·统考中考真题)下列各数中 是无理数的是( ) A .17B .πC .1-D .09.(2023·湖南·统考中考真题)2023的倒数是( ) A .2023-B .2023C .12023D .12023-10.(2023·浙江杭州·统考中考真题)22(2)2-+=( )A .0B .2C .4D .811.(2023·湖南常德·统考中考真题)下面算法正确的是( )A .()()5995-+=--B .()710710--=-C .()505-+=-D .()()8484-+-=+ 12.(2023·山西·统考中考真题)计算()()13-⨯-的结果为( ).A .3B .13C .3-D .4-13.(2023·山东临沂·统考中考真题)计算(7)(5)---的结果是( )A .12-B .12C .2-D .214.(2023·湖北鄂州·统考中考真题)10的相反数是( )A .-10B .10C .110-D .11015.(2023·宁夏·统考中考真题)23-的绝对值是( ) A .32-B .32C .23D .23-16.(2023·山东东营·统考中考真题)2-的相反数是( )A .2B .2-C .12D .12-17.(2023·湖南常德·统考中考真题)实数3的相反数是( )A .3B .13C .13-D .3-18.(2023·湖南张家界·统考中考真题)12023的相反数是( ) A .12023B .12023-C .2023D .2023-19.(2023·辽宁·统考中考真题)2的绝对值是( )A .12-B .12C .2-D .220.(2023·江苏苏州·统考中考真题)有理数23的相反数是( )A .23-B .32C .32-D .2321.(2023·湖北·统考中考真题)32-的绝对值是( )A .23-B .32-C .23D .3222.(2023·湖北恩施·统考中考真题)如图 数轴上点A 所表示的数的相反数是( )A .9B .19-C .19D .9-23.(2023·内蒙古通辽·统考中考真题)2023的相反数是( )A .12023B .2023-C .2023D .12023-24.(2023·四川雅安·统考中考真题)在0123- 2四个数中 负数是( ) A .0B .12C .3-D .225.(2023·吉林长春·统考中考真题)实数a b c d 伍数轴上对应点位置如图所示 这四个数中绝对值最小的是( )A .aB .bC .cD .d26.(2023·四川巴中·统考中考真题)下列各数为无理数的是( )A .0.618B .227C 5D 327-27.(2023·内蒙古赤峰·统考中考真题)如图 7的点可能是( )A .点PB .点QC .点RD .点S28.(2023·山东临沂·统考中考真题)在实数, , a b c 中 若0,0a b b c c a +=->->,则下列结论:①|a |>|b| ①0a > ①0b < ①0c < 正确的个数有( )A .1个B .2个C .3个D .4个29.(2023·山东·统考中考真题)面积为9的正方形 其边长等于( )A .9的平方根B .9的算术平方根C .9的立方根D .5的算术平方根30.(2023·湖南永州·统考中考真题)下列各式计算结果正确的是( )A .2325x x x +=B 93=±C .()2222x x =D .1122-=31.(2023·宁夏·23 )A .3.5和4之间B .4和4.5之间C .4.5和5之间D .5和5.5之间32.(2023·湖北宜昌·统考中考真题)下列运算正确的个数是( ).①|2023|2023= ①20231︒= ①1203232120-=2023=. A .4B .3C .2D .133.(2023·内蒙古赤峰·统考中考真题)化简()20--的结果是( )A .120-B .20C .120D .20-34.(2023·黑龙江绥化·统考中考真题)计算052-+的结果是( )A .3-B .7C .4-D .635.(2023·江苏徐州·统考中考真题)如图 数轴上点,,,A B C D 分别对应实数a b c d ,,, 下列各式的值最小的是( )A .aB .bC .cD .d36.(2023·山东·统考中考真题)ABC 的三边长a b c 满足2()|0a b c --=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形37.(2023·山东·统考中考真题)实数a b c 在数轴上对应点的位置如图所示 下列式子正确的是( )A .()0c b a -<B .()0b c a -<C .()0a b c ->D .()0a c b +>38.(2023·浙江杭州·统考中考真题)已知数轴上的点,A B 分别表示数,a b 其中10a -<< 01b <<.若a b c ⨯= 数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是( )A .B .C .D .二 填空题39.(2023·湖北武汉·统考中考真题)写出一个小于4的正无理数是 .40.(2023·山东滨州·统考中考真题)一块面积为25m 的正方形桌布 其边长为 .41.(2023·湖北黄冈·统考中考真题)计算 ()02113⎛⎫-+= ⎪⎝⎭.42.(2023·四川巴中·统考中考真题)在210,,π,23⎛⎫--- ⎪⎝⎭四个数中 最小的实数是 . 43.(2023·内蒙古·统考中考真题)若,a b 为两个连续整数 且3a b <,则a b += .44.(2023·湖南·5的点所表示的整数有 .(写出一个即可)45.(2023·山东滨州·统考中考真题)计算23--的结果为 . 46.(2023·湖南永州·统考中考真题)0.5- 3 2-三个数中最小的数为 .47.(2023·湖北荆州·统考中考真题)若21(3)0a b -+-=a b + .48.(2023·湖南·统考中考真题)已知实数a b 满足()2210a b -++=,则b a = .49.(2023·四川内江·统考中考真题)若a b 互为相反数 c 为8的立方根,则22a b c +-= . 50.(2023·山东烟台·统考中考真题)如图 利用课本上的计算器进行计算 其按键顺序及结果如下:①按键的结果为4①按键的结果为8①按键的结果为0.5①按键的结果为25.以上说法正确的序号是 .参考答案一 单选题1.(2023·四川德阳·统考中考真题)下列各数中 是无理数的是( ) A .2023- BC .0D .12023【答案】B【分析】根据无理数的定义判断即可. 【详解】解:0 2023- 12023为有理数 故选:B .【点睛】本题考查了无理数的概念即无限不循环小数为无理数 掌握其概念是解题的关键.初中范围内学习的无理数有:π 2π等 开方开不尽的数 以及像0.1010010001…… 等有这样规律的数. 2.(2023·山东·统考中考真题)实数10 1.53π-,,,中无理数是( ) A .π B .0C .13-D .1.5【答案】A【分析】根据无理数的概念求解.【详解】解:实数1,0,,1.53π-中 π是无理数 而10,,1.53-是有理数故选A .【点睛】本题主要考查无理数 熟练掌握无理数的概念是解题的关键. 3.(2023·贵州·统考中考真题)5的绝对值是( )A .5±B .5C .5-D 【答案】B【分析】正数的绝对值是它本身 由此可解. 【详解】解:5的绝对值是5 故选B .【点睛】本题考查绝对值 解题的关键是掌握正数的绝对值是它本身.4.(2023·湖北荆州·统考中考真题)在实数1-3123.14中无理数是()A.1-B3C.12D.3.14【答案】B【分析】根据无理数的特征即可解答.【详解】解:在实数1-3123.14中3故选:B.【点睛】本题考查了无理数的特征即为无限不循环小数熟知该概念是解题的关键.5.(2023·江苏无锡·统考中考真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.93=故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根它们互为相反数0的平方根是0 负数没有平方根.6.(2023·湖北恩施·统考中考真题)下列实数:1-0 212-其中最小的是()A.1-B.0C2D.1 2 -【答案】A【分析】根据实数大小比较的法则解答.【详解】解:①11022-<-<<①最小的数是1-故选:A.【点睛】此题考查了实数的大小比较:正数大于零零大于负数两个负数绝对值大的反而小熟练掌握实数的大小比较法则是解题的关键.7.(2023·江苏徐州·2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解①①160020232025<<.4045<40与45之间. 故选D .【点睛】本题主要考查了估算无理数的大小 正确估算无理数的取值范围是解题关键. 8.(2023·湖南·统考中考真题)下列各数中 是无理数的是( ) A .17B .πC .1-D .0【答案】B【分析】根据无理数的定义解答即可.【详解】解:A .17是分数 属于有理数 故本选项不符合题意B .π是无限不循环小数是无理数 故本选项符合题意C .1-是整数 属于有理数 故本选项不符合题意D .0是整数 属于有理数 故本选项不符合题意. 故选:B .【点睛】本题考查的是无理数 熟知无限不循环小数叫做无理数是解题的关键. 9.(2023·湖南·统考中考真题)2023的倒数是( ) A .2023- B .2023C .12023D .12023-【答案】C【分析】直接利用倒数的定义 即若两个不为零的数的积为1,则这两个数互为倒数 即可一一判定. 【详解】解:2023的倒数为12023. 故选C .【点睛】此题主要考查了倒数的定义 熟练掌握和运用倒数的求法是解决本题的关键. 10.(2023·浙江杭州·统考中考真题)22(2)2-+=( )A .0B .2C .4D .8【答案】D【分析】先计算乘方 再计算加法即可求解.【详解】解:22(2)2448-+=+= 故选:D .【点睛】本题考查有理数度混合运算 熟练掌握有理数乘方运算法则是解题的关键. 11.(2023·湖南常德·统考中考真题)下面算法正确的是( )A .()()5995-+=--B .()710710--=-C .()505-+=-D .()()8484-+-=+ 【答案】C【分析】根据有理数的加减法则计算即可. 【详解】A ()5995-+=- 故A 不符合题意 B ()710710--=+ 故B 不符合题意 C ()505-+=- 故C 符合题意D ()()()8484-+-=-+ 故D 不符合题意 故选:C .【点睛】本题主要考查有理数的加减法 解答的关键是对相应的运算法则的掌握. 12.(2023·山西·统考中考真题)计算()()13-⨯-的结果为( ).A .3B .13C .3-D .4-【答案】A【分析】根据有理数乘法运算法则计算即可. 【详解】解:()()133-⨯-=. 故选A .【点睛】本题主要考查了有理数乘法 掌握“同号得正 异号得负”的规律是解答本题的关键. 13.(2023·山东临沂·统考中考真题)计算(7)(5)---的结果是( )A .12-B .12C .2-D .2【答案】C【分析】直接利用有理数的减法法则进行计算即可. 【详解】解:2(7)(5)()57=----+=-故选C.【点睛】本题考查有理数的减法熟练掌握减一个负数等于加上它的相反数是解题的关键.14.(2023·湖北鄂州·统考中考真题)10的相反数是()A.-10B.10C.110-D.110【答案】A【分析】根据相反数的定义直接求解.【详解】解:10的相反数是-10.故选:A.【点睛】本题主要考查了相反数的定义熟练掌握相反数的定义是解答本题的关键.15.(2023·宁夏·统考中考真题)23-的绝对值是()A.32-B.32C.23D.23-【答案】C【分析】根据绝对值的性质解答即可.【详解】22 33 -=故选:C.【点睛】本题考查了绝对值掌握绝对值的性质是解答本题的关键.16.(2023·山东东营·统考中考真题)2-的相反数是()A.2B.2-C.12D.12-【答案】A【分析】利用相反数的定义判断即可.【详解】解:2-的相反数是2故选:A.【点睛】此题考查了相反数的定义熟练掌握相反数的定义是解本题的关键.17.(2023·湖南常德·统考中考真题)实数3的相反数是()A.3B.13C.13-D.3-【答案】D【分析】根据相反数的定义进行判断即可.【详解】解:实数3的相反数3-故D正确.故选:D.【点睛】本题考查了相反数的定义熟练掌握知识点只有符号不同的两个数互为相反数是解题关键.18.(2023·湖南张家界·统考中考真题)12023的相反数是()A.12023B.12023-C.2023D.2023-【答案】B【分析】根据相反数的定义求解即可只有符号不同的两个数互为相反数.【详解】解:12023的相反数是12023-.故选:B.【点睛】本题考查了相反数的定义掌握相反数的定义是解题的关键.19.(2023·辽宁·统考中考真题)2的绝对值是()A.12-B.12C.2-D.2【答案】D【分析】根据绝对值的意义即可求解.【详解】解:2的绝对值是是2故选:D.【点睛】本题考查了绝对值的计算掌握正数的绝对值是它本身零的绝对值是零负数的绝对值是它的相反数是解题的关键.20.(2023·江苏苏州·统考中考真题)有理数23的相反数是()A.23-B.32C.32-D.23【答案】A【分析】根据互为相反数的定义进行解答即可.【详解】解:有理数23的相反数是23-故选A【点睛】本题考查的是相反数仅仅只有符号不同的两个数互为相反数熟记定义是解本题的关键.21.(2023·湖北·统考中考真题)32-的绝对值是()A.23-B.32-C.23D.32【答案】D【分析】根据绝对值的性质即可求出答案.【详解】解:33 22 -=.故选:D.【点睛】本题考查了绝对值解题的关键在于熟练掌握绝对值的性质负数的绝对值等于这个负数的相反数.22.(2023·湖北恩施·统考中考真题)如图数轴上点A所表示的数的相反数是()A.9B.19-C.19D.9-【答案】D【分析】先根据数轴得到A表示的数再求其相反数即可.【详解】解:由数轴可知点A表示的数是9 相反数为9-故选:D.【点睛】本题考查数轴和相反数掌握相反数的定义是解题的关键.23.(2023·内蒙古通辽·统考中考真题)2023的相反数是()A.12023B.2023-C.2023D.12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-故选:B.【点睛】本题考查了相反数的定义熟练掌握相反数的定义是解题的关键.24.(2023·四川雅安·统考中考真题)在0 122四个数中负数是()A.0B.12C.D.2【答案】C【分析】根据负数的定义① 比0小的数叫做负数即可得出答案.【详解】解:0既不是正数也不是负数12和2是正数故选:C.【点睛】本题考查了正数和负数掌握在正数前面加负号是负数是解题的关键.25.(2023·吉林长春·统考中考真题)实数a b c d 伍数轴上对应点位置如图所示 这四个数中绝对值最小的是( )A .aB .bC .cD .d【答案】B【分析】根据绝对值的意义即可判断出绝对值最小的数.【详解】解:由图可知 3a > 01b << 01c << 23d <<比较四个数的绝对值排除a 和d根据绝对值的意义观察图形可知 c 离原点的距离大于b 离原点的距离 <b c ∴∴这四个数中绝对值最小的是b .故选:B.【点睛】本题考查了绝对值的意义 解题的关键在于熟练掌握绝对值的意义 绝对值是指一个数在数轴上所对应点到原点的距离 离原点越近说明绝对值越小.26.(2023·四川巴中·统考中考真题)下列各数为无理数的是( )A .0.618B .227C 5D 327- 【答案】C【分析】根据无理数是无限不循环小数进行判断即可.【详解】解:由题意知 0.618227 3273-=- 均为有理数5 故选:C .【点睛】本题考查了无理数 立方根.解题的关键在于熟练掌握无理数是无限不循环小数.27.(2023·内蒙古赤峰·统考中考真题)如图 7的点可能是( )A .点PB .点QC .点RD .点S【答案】B看它介于哪两个整数之间 从而得解.【详解】解:①479<<< 即23<①Q故选:B .【点睛】本题考查无理数的大小估算28.(2023·山东临沂·统考中考真题)在实数, , a b c 中 若0,0a b b c c a +=->->,则下列结论:①|a |>|b| ①0a > ①0b < ①0c < 正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【分析】根据相反数的性质即可判断① 根据已知条件得出b c a >> 即可判断①① 根据=-b a 代入已知条件得出0c < 即可判断① 即可求解.【详解】解:①0a b += ①a b = 故①错误①0,0a b b c c a +=->->①b c a >>又0a b +=①0,0a b <> 故①①错误①0a b +=①=-b a①0b c c a ->->①a c c a -->-①c c ->①0c < 故①正确或借助数轴 如图所示故选:A .【点睛】本题考查了不等式的性质 实数的大小比较 借助数轴比较是解题的关键.29.(2023·山东·统考中考真题)面积为9的正方形 其边长等于( )A .9的平方根B .9的算术平方根C .9的立方根D .5的算术平方根 【答案】B【分析】根据算术平方根的定义解答即可.【详解】解:①面积等于边长的平方①面积为9的正方形 其边长等于9的算术平方根.故选B .【点睛】本题考查了算术平方根的意义 一般地 如果一个正数x 的平方等于a 即2x a = 那么这个正数x 叫做a 的算术平方根.30.(2023·湖南永州·统考中考真题)下列各式计算结果正确的是( )A .2325x x x +=B 93=±C .()2222x x =D .1122-= 【答案】D【分析】根据合并同类项的运算法则 二次根式的运算 积的乘方运算法则 以及负整数幂运算法则 逐个进行计算即可.【详解】解:A 325x x x += 故A 不正确 不符合题意B 93= 故B 不正确 不符合题意C ()2224x x = 故C 不正确 不符合题意D 1122-= 故D 正确 符合题意 故选:D .【点睛】本题主要考查了合并同类项的运算法则 二次根式的运算 积的乘方运算法则 以及负整数幂运算法则 解题的关键是熟练掌握相关运算法则并熟练运用.31.(2023·宁夏·23 )A .3.5和4之间B .4和4.5之间C .4.5和5之间D .5和5.5之间【答案】C【分析】先找到所求的无理数在哪两个和它接近的有理数之间 然后判断出所求的无理数的范围.【详解】①1625<23<①45< 排除A 和D又①23更接近2554.5和5之间故选:C .【点睛】此题主要考查了无理数的大小估算 现实生活中经常需要估算 估算应是我们具备的数学能力 “夹逼法”是估算的一般方法 也是常用方法.32.(2023·湖北宜昌·统考中考真题)下列运算正确的个数是( ).①|2023|2023= ①20231︒= ①1203232120-=2023=. A .4B .3C .2D .1 【答案】A 【分析】根据()()()0000a a a a a a ⎧>⎪==⎨⎪-<⎩ ()010a a =≠ ()10p p a a a -=≠a 进行逐一计算即可.【详解】解:①20230> 20232023∴= 故此项正确①20230≠ ∴20231︒= 故此项正确 ①1203232120-= 此项正确20232023== 故此项正确∴正确的个数是4个.故选:A .【点睛】本题考查了实数的运算 掌握相关的公式是解题的关键.33.(2023·内蒙古赤峰·统考中考真题)化简()20--的结果是( )A .120-B .20C .120D .20-【答案】B【分析】()20--表示20-的相反数 据此解答即可.【详解】解:()2020--=故选:B【点睛】此题考查了相反数 熟练掌握相反数的定义是解题的关键.34.(2023·黑龙江绥化·统考中考真题)计算052-+的结果是( )A .3-B .7C .4-D .6【答案】D 【分析】根据求一个数的绝对值 零指数幂进行计算即可求解. 【详解】解:052-+516=+=故选:D .【点睛】本题考查了求一个数的绝对值 零指数幂 熟练掌握求一个数的绝对值 零指数幂是解题的关键.35.(2023·江苏徐州·统考中考真题)如图 数轴上点,,,A B C D 分别对应实数a b c d ,,, 下列各式的值最小的是( )A .aB .bC .cD .d【答案】C【分析】根据数轴可直接进行求解.【详解】解:由数轴可知点C 离原点最近 所以在a b c d 中最小的是c故选C .【点睛】本题主要考查数轴上实数的表示 有理数的大小比较及绝对值 熟练掌握数轴上有理数的表示 有理数的大小比较及绝对值是解题的关键.36.(2023·山东·统考中考真题)ABC 的三边长a b c 满足2()23|320a b a b c ---+-=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形 【答案】D【分析】由等式可分别得到关于a b c 的等式 从而分别计算得到a b c 的值 再由222+=a b c 的关系 可推导得到ABC 为直角三角形.【详解】解①2()23|320a b a b c ---+-=又①()2000a b c ⎧-≥-≥⎪⎩①()2000a b c ⎧-=-=⎪⎩①02300a b a b c ⎧-=⎪--=⎨⎪-⎩解得33a b c ⎧=⎪=⎨⎪=⎩ ①222+=a b c 且a b =①ABC 为等腰直角三角形故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识 求解的关键是熟练掌握非负数的和为0 每一个非负数均为0 和勾股定理逆定理.37.(2023·山东·统考中考真题)实数a b c 在数轴上对应点的位置如图所示 下列式子正确的是( )A .()0c b a -<B .()0b c a -<C .()0a b c ->D .()0a c b +> 【答案】C【分析】根据数轴可得 0a b c <<< 再根据0a b c <<<逐项判定即可.【详解】由数轴可知0a b c <<<①()0c b a -> 故A 选项错误①()0b c a -> 故B 选项错误①()0a b c -> 故C 选项正确①()0a c b +< 故D 选项错误故选:C .【点睛】本题考查实数与数轴 根据0a b c <<<进行判断是解题关键.38.(2023·浙江杭州·统考中考真题)已知数轴上的点,A B 分别表示数,a b 其中10a -<< 01b <<.若a b c ⨯= 数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是( )A .B .C .D .【答案】B 【分析】先由10a -<< 01b << a b c ⨯= 根据不等式性质得出0a c << 再分别判定即可.【详解】解:①10a -<< 01b <<①0a ab <<①a b c ⨯=①0a c <<A 01b c <<< 故此选项不符合题意B 0a c << 故此选项符合题意C 1c > 故此选项不符合题意D 1c <- 故此选项不符合题意故选:B .【点睛】本题考查用数轴上的点表示数 不等式性质 由10a -<< 01b << a b c ⨯=得出0a c <<是解题的关键.二 填空题39.(2023·湖北武汉·统考中考真题)写出一个小于4的正无理数是 . 2(答案不唯一)【分析】根据无理数估算的方法求解即可.【详解】解:216< 24. 2.【点睛】本题主要考查了无理数的估算 准确计算是解题的关键.40.(2023·山东滨州·统考中考真题)一块面积为25m 的正方形桌布 其边长为 .【分析】由正方形的边长是其面积的算术平方根可得答案.【详解】解:一块面积为25m 的正方形桌布【点睛】本题考查的是算术平方根的含义 理解题意 利用算术平方根的含义表示正方形的边长是解本题的关键.41.(2023·湖北黄冈·统考中考真题)计算 ()02113⎛⎫-+= ⎪⎝⎭ . 【答案】2【分析】1-的偶数次方为1 任何不等于0的数的零次幂都等于1 由此可解.【详解】解:()02111123⎛⎫-+=+= ⎪⎝⎭ 故答案为:2.【点睛】本题考查有理数的乘方 零次幂 解题的关键是掌握:1-的偶数次方为1 奇数次方为1- 任何不等于0的数的零次幂都等于1.42.(2023·四川巴中·统考中考真题)在210,,π,23⎛⎫--- ⎪⎝⎭四个数中 最小的实数是 . 【答案】π- 【分析】先计算出21319-=⎛⎫ ⎪⎝⎭ 再根据比较实数的大小法则即可. 【详解】解:21319-=⎛⎫ ⎪⎝⎭π 3.14-≈- 故21π203⎛⎫-<-<<- ⎪⎝⎭ 故答案为:π-.【点睛】本题考查了平方的定义及比较实数的大小法则 熟练运用比较实数的大小法则是解题的关键.43.(2023·内蒙古·统考中考真题)若,a b 为两个连续整数 且3a b <,则a b += .【答案】3【分析】根据夹逼法求解即可.【详解】解:①2132<< 即222132<< ①132<①1,2a b ==①3a b +=.故答案为:3.【点睛】题目主要考查无理数的估算 熟练掌握估算方法是解题关键.44.(2023·湖南·5的点所表示的整数有 .(写出一个即可)【答案】2(答案不唯一)【分析】根据实数与数轴的对应关系 5 且为整数 再利用无理数的估算即可求解.【详解】解:设所求数为a 55a < 且为整数 则55a -< 459 即253<<①a 可以是2±或1±或0.故答案为:2(答案不唯一).【点睛】本题考查了实数与数轴 无理数的估算 掌握数轴上的点到原点距离的意义是解题的关键. 45.(2023·山东滨州·统考中考真题)计算23--的结果为 .【答案】1-【分析】化简绝对值 根据有理数的运算法则进行计算即可. 【详解】23231--=-=-故答案为:1-.【点睛】本题考查有理数的加减法则 熟练掌握有理数的加减法则是解题的关键.46.(2023·湖南永州·统考中考真题)0.5- 3 2-三个数中最小的数为 .【答案】2-【分析】根据有理数比较大小的法则即可求出答案. 【详解】解:0.5- 2- 3三个数中 只有3是正数∴3最大. 0.50.5-= 22-=0.5<2∴0.5>-2∴-.2∴-最小.故答案为:2-.【点睛】本题考查了有理数比较大小 解题的关键在于熟练掌握有理数比较大小的方法:正数始终大于负数 两个负数比较 绝对值大的反而小.47.(2023·湖北荆州·统考中考真题)若21(3)0a b -+-=.【答案】2【分析】根据绝对值的非负性 平方的非负性求得,a b 的值进而求得a b +的算术平方根即可求解.【详解】解:①21(3)0a b -+-=①10,30a b -=-=解得:1,3a b ==2故答案为:2.【点睛】本题考查了求一个数的算术平方根 熟练掌握绝对值的非负性 平方的非负性求得,a b 的值是解题的关键.48.(2023·湖南·统考中考真题)已知实数a b 满足()2210a b -++=,则b a = .【答案】12【分析】由非负数的性质可得20a -=且10b += 求解a b 的值 再代入计算即可. 【详解】解:①()2210a b -++=①20a -=且10b +=解得:2a = 1b①1122b a -== 故答案为:12.【点睛】本题考查的是绝对值的非负性 偶次方的非负性的应用 负整数指数幂的含义 理解非负数的性质 熟记负整数指数幂的含义是解本题的关键.49.(2023·四川内江·统考中考真题)若a b 互为相反数 c 为8的立方根,则22a b c +-= .【答案】2-【分析】利用相反数 立方根的性质求出a b +及c 的值 代入原式计算即可得到结果.【详解】解:根据题意得:02a b c +==,22022a b c ∴+-=-=-故答案为:2-【点睛】此题考查了代数式求值 相反数 立方根的性质 熟练掌握运算法则是解本题的关键. 50.(2023·山东烟台·统考中考真题)如图 利用课本上的计算器进行计算 其按键顺序及结果如下:①按键的结果为4 ①按键的结果为8 ①按键的结果为0.5 ①按键的结果为25.以上说法正确的序号是 .【答案】①①【分析】根据计算器按键 写出式子 进行计算即可.【详解】解:①按键的结果为3644= 故①正确 符合题意 ①按键的结果为()3424+-=- 故①不正确 不符合题意 ①按键的结果为()sin 4515sin300.5︒-︒=︒= 故①正确 符合题意 ①按键的结果为2132102⎛⎫-⨯= ⎪⎝⎭ 故①不正确 不符合题意综上:正确的有①①.故答案为:①①.【点睛】本题主要考查了科学计算器是使用解题的关键是熟练掌握和了解科学计算器各个按键的含义.。
初中数学中考复习——实数专题(含答案)
初中数学中考复习——实数专题选择题下列各数中,绝对值最小的是()A. -3B. 2C. 0D. π如果一个实数的相反数是它本身,那么这个数一定是()A. 正数B. 负数C. 零D. 无法确定一个数的平方根是它本身的数有()A. 0B. 1C. -1D. A和B实数-5和7在数轴上对应的点之间的距离是()A. 2B. 12C. 10D. 14利用科学记数法表示的数,下列哪个选项是错误的()A. 350 = 3.5 × 10²B. 0.05 = 5 × 10⁻²C. 500 = 5 × 10²D. 0.0006 = 6 × 10⁻⁴下列哪个数不是无理数()A. πB. √2C. 0.333...(3无限重复)D. 22/7如果a和b是两个实数,且a的绝对值大于b的绝对值,那么|a| - |b|的值()A. 一定为正B. 一定为负C. 可能是正数或负数D. 无法确定对于实数x,以下哪个条件可以保证x² - 4x + 4 = 0()A. x = 2B. x = -2C. x = 0D. x = 4下列哪个表达式的结果不是实数()A. √16B. √(-1)C. -√(-4)D. √9如果一个数的立方根是2,那么这个数是()A. 6B. 8C. -8D. 4正确答案:CCDCBCAABC填空题实数包括有理数和无理数,其中有限小数和无限循环小数属于______。
一个数的相反数是与它符号相反的数,例如,数-7 的相反数是______。
一个数的绝对值是它到原点的距离,因此,|-5| 等于______。
如果一个数的平方根是4,则这个数的算术平方根是______。
立方根的定义是,如果一个数的立方等于a,则这个数叫做 a 的立方根。
例如,3 的立方根是______。
在实数大小比较中,数轴上右边的数总是比左边的数大。
因此,在数轴上,5 大于______。
专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
1.实数的概念:有理数和无理数统称为实数。
2.有理数:有限小数或无限循环小数叫做有理数。
3.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8 等; (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等。
第一部分 数与式
专题 01 实数(含二次根式)(8 大考点)
核心考点一 实数的分类 核心考点二 相反数、倒数、绝对值 核心考点三 数轴 核心考点四 科学记数法
核心考点
核心考点五 实数的大小比较 核心考点六 平方根、立方根 核心考点七 二次根式及其运算 核心考点八 实数的运算 新题速递
核心考点一 实数的分类
【变式 1】(2022·广西桂林·一模)实数 , ,2,-6 中,为负整数的是( )
A.
B.
C.2
D.- 6
【答案】D
【分析】根据实数的分类即可做出判断.
【详解】解:A 选项是负分数,不符合题意;
Байду номын сангаас
B 选项是无理数,不符合题意;
C 选项是正整数,不符合题意;
D 选项是负整数,符合题意;
故选:D.
【点睛】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和 0.
是无理数; 故答案为: . 【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围 内常见的无理数有三类:①π 类,如 2π,π3 等;②开方开不尽的数,如 等;③虽有规 律但却是无限不循环的小数,如 0.1010010001…(两个 1 之间依次增加 1 个 0), 0.2121121112…(两个 2 之间依次增加 1 个 1)等.
中考数学模拟题汇总《实数》专项练习(带答案解析)
中考数学模拟题汇总《实数》专项练习(带答案解析)一.选择题1、2的相反数是()A.−12B.12C.2D.−22、赤道长约为40 000 000m,用科学记数法可以把数字40 000 000表示为()A.4×107B.40×106C.400×105D.4000×1033、根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×1094、2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×1055、2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元6、﹣2的绝对值是()A.﹣2 B.1 C.2 D.127、−72的相反数是()A.−72B.−27C.27D.728.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣109.若1x=−4,则x的值是()A.4 B.14C.−14D.﹣410.下列各数中,最小的数是()A.﹣3 B.0 C.1 D.211.数1,0,−23,﹣2中最大的是()A.1 B.0 C.−23D.﹣2 12.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.12 13.|﹣2020|的结果是()A.12020B.2020 C.−12020D.﹣202014.下列等式成立的是()A.√81=±9 B.|√5−2|=−√5+2C.(−12)﹣1=﹣2 D.(tan45°﹣1)0=115.3的绝对值是()A.﹣3 B.3 C.√3D.1316.实数2√10介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间17.在实数﹣1,−√2,0,14中,最小的实数是()A.﹣1 B.14C.0 D.−√218.无理数√10在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间19.实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a>b B.﹣a<b C.a>﹣b D.﹣a>b 20.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b>0 21.数4的算术平方根是()A.2 B.﹣2 C.±2 D.√222.下列各数中,比3大比4小的无理数是( ) A .3.14B .103C .√12D .√17二.填空题(共16小题)23.请你写出一个大于1,且小于3的无理数是 .24.计算:|1−√2|+20= .25.与√14−2最接近的自然数是 .26.计算:(15)﹣1−√4= .27.下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有 个.28.实数8的立方根是 .29.计算:√9−1= .30.9的平方根等于 .31.请写出一个大于1且小于2的无理数 .32.计算:√12−√3的结果是 .33.新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为 .34.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 .35.我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是 ℃.36.将数4790000用科学记数法表示为 .37.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为 .38.用“>”或“<”符号填空:﹣7 > ﹣9.三、解答题35.计算:(√3)0+2−1+√2cos45°−|−12|.36.计算:√9−(−2022)0+2−1.37.计算:(−10)×(−12)−√16+20220.38.计算:(−1)2022+|−2|−(12)0−2tan45°.39.计算:(−2022)0−2tan45°+|−2|+√9.40.计算:(12)0−√16+(−2)2.41.计算:(12)−1−√9+3tan30°+|√3−2|.(2)解不等式组:{3(x +2)≥2x +5 ①x2−1<x−23 ②.42.计算:√12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2.43.对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N 是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中为整数,求出满足任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16条件的所有数A.参考答案与解析一.选择题(共22小题)1、【答案】D【解析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.2、【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,故选:A.【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.3、【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a |<10,n 是正整数,正确确定a 的值和n 的值是解题的关键.4、【答案】B 【解析】 【分析】科学记数法的表现形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:14600000=1.46×107. 故选:B . 【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求. 5、【答案】C 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数. 【详解】解:26.62亿=2662000000=2.662×109. 故选C . 【点睛】本题考查了科学记数法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数,确定a 与n 的值是解题的关键.6、【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案. 【解析】﹣2的绝对值为2. 故选:C .7、【分析】直接利用相反数的定义分析得出答案. 【解析】−72的相反数是:72.故选:D . 8.【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可. 【解析】点A 表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10, 点A 表示的数是﹣3,右移7个单位,得﹣3+7=4. 所以点B 表示的数是4或﹣10. 故选:D . 9.【分析】根据倒数的定义求出即可. 【解析】∵1x =−4, ∴x =−14,故选:C . 10.【分析】根据正数大于0,0大于负数,正数大于负数,可得答案. 【解析】∵﹣3<0<1<2,∴这四个数中最小的数是﹣3. 故选:A . 11.【分析】根据有理数大小比较的方法即可得出答案. 【解析】﹣2<−23<0<1,所以最大的是1. 故选:A . 12.【分析】利用正数与负数的定义判断即可.【解析】﹣1是负数;0既不是正数也不是负数;0.2是正数;12是正数.故选:A . 13.【分析】根据绝对值的性质直接解答即可. 【解析】|﹣2020|=2020; 故选:B . 14.【分析】根据算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定逐一判断即可得. 【解析】A .√81=9,此选项计算错误; B .|√5−2|=√5−2,此选项错误;C .(−12)﹣1=﹣2,此选项正确; D .(tan45°﹣1)0无意义,此选项错误; 故选:C .15、【分析】根据绝对值的意义,可得答案. 【解析】|3|=3, 故选:B .16.【分析】首先化简2√10=√40,再估算√40,由此即可判定选项. 【解析】∵2√10=√40,且6<√40<7, ∴6<2√10<7. 故选:C . 17.【分析】直接利用实数比较大小的方法得出答案. 【解析】∵|−√2|>|﹣1|, ∴﹣1>−√2,∴实数﹣1,−√2,0,14中,−√2<−1<0<14.故4个实数中最小的实数是:−√2. 故选:D .18.【分析】由√9<√10<√16可以得到答案. 【解析】∵3<√10<4, 故选:B . 19.【分析】根据数轴即可判断a 和b 的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【解析】根据数轴可得:a <0,b >0,且|a |>|b |, 则a <b ,﹣a >b ,a <﹣b ,﹣a >b . 故选:D . 20.【分析】直接利用数轴上a ,b 的位置进而比较得出答案.【解析】如图所示:A 、a <b ,故此选项错误; B 、|a |>|b |,正确;C 、﹣a >b ,故此选项错误;D 、a +b <0,故此选项错误; 故选:B . 21.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解析】∵2的平方为4, ∴4的算术平方根为2. 故选:A . 22.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解. 【解析】3=√9,4=√16,A 、3.14是有理数,故此选项不合题意;B 、103是有理数,故此选项不符合题意;C 、√12是比3大比4小的无理数,故此选项符合题意;D 、√17比4大的无理数,故此选项不合题意; 故选:C .二.填空题(共16小题)23.请你写出一个大于1,且小于3的无理数是 √2 .【分析】根据算术平方根的性质可以把1和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可. 【解析】∵1=√1,3=√9,∴写出一个大于1且小于3的无理数是√2. 故答案为√2(本题答案不唯一).24.计算:|1−√2|+20= √2 .【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值.【解析】原式=√2−1+1 =√2.故答案为:√2.25.与√14−2最接近的自然数是 2 .【分析】根据3.5<√14<4,可求1.5<√14−2<2,依此可得与√14−2最接近的自然数. 【解析】∵3.5<√14<4, ∴1.5<√14−2<2,∴与√14−2最接近的自然数是2. 故答案为:2. 26.计算:(15)﹣1−√4= 3 .【分析】先计算负整数指数幂和算术平方根,再计算加减可得. 【解析】原式=5﹣2=3, 故答案为:3.27.下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有 3 个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.3这3个,【解析】在所列实数中,无理数有1.212212221…,2﹣π,√4故答案为:3.28.实数8的立方根是 2 .【分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解析】实数8的立方根是:3=2.√8故答案为:2.29.计算:√9−1= 2 .【分析】直接利用二次根式的性质化简进而得出答案.【解析】原式=3﹣1=2.故答案为:2.30.9的平方根等于±3 .【分析】直接根据平方根的定义进行解答即可.【解析】∵(±3)2=9,∴9的平方根是±3.故答案为:±3.31.请写出一个大于1且小于2的无理数√3.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【解析】大于1且小于2的无理数是√3,答案不唯一.故答案为:√3.32.计算:√12−√3的结果是√3.【分析】首先化简√12,然后根据实数的运算法则计算.【解析】√12−√3=2√3−√3=√3.故答案为:√3.33.新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为8.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解析】数字8500000用科学记数法表示为8.5×106,故答案为:8.5×106.34.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 4.26×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解析】将42600用科学记数法表示为4.26×104,故答案为:4.26×104.35.我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是 5 ℃.【分析】先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.【解析】4﹣(﹣1)=4+1=5. 故答案为:5.36.将数4790000用科学记数法表示为 4.79×106.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【解析】4790000=4.79×106,故答案为:4.79×106. 37.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为 1.18×106.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【解析】1180000=1.18×106,故答案为:1.18×106.38.用“>”或“<”符号填空:﹣7 > ﹣9. 【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小,即可解答.【解析】∵|﹣7|=7,|﹣9|=9,7<9, ∴﹣7>﹣9, 故答案为:>.三、解答题35.计算:(√3)0+2−1+√2cos45°−|−12|.【答案】2 【解析】 【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可. 【详解】原式=1+12+√2×√22−12=2. 【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键. 36.计算:√9−(−2022)0+2−1. 【答案】52【解析】 【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 【详解】解:√9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.计算:(−10)×(−12)−√16+20220.【答案】2【解析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.计算:(−1)2022+|−2|−(12)0−2tan45°. 【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.计算:(−2022)0−2tan45°+|−2|+√9.【答案】4【解析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.计算:(12)0−√16+(−2)2. 【答案】1【解析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】(12)0−√16+(−2)2 =1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.计算:(12)−1−√9+3tan30°+|√3−2|.(2)解不等式组:{3(x +2)≥2x +5 ①x 2−1<x−23 ②. 【答案】(1)1;(2)−1≤x <2【解析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(1)(12)−1−√9+3tan30°+|√3−2|=2−3+3×√33+2−√3 =−1+√3+2−√3=1.(2){3(x +2)≥2x +5 ①x 2−1<x−23 ②不等式①的解集是x ≥-1;不等式②的解集是x <2;所以原不等式组的解集是-1≤x <2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.计算:√12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2.【答案】14【解析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解: √12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2=2√3+1−3√3+√3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中为整数,求出满足任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出a+b+c=12,根据a>b>c,F(A)是最大的两位数,G(A)是=k(k为整数),结合a+b+c=12得出b=最小的两位数,得出F(A)+G(A)=10a+2b+10c,F(A)+G(A)1615−2k,根据已知条件得出1<b<6,从而得出b=3或b=5,然后进行分类讨论即可得出答案.(1)解:∵357÷(3+5+7)=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴a+b+c=12,∵a>b>c,∴在a,b,c中任选两个组成两位数,其中最大的两位数F(A)=10a+b,最小的两位数G(A)=10c+b,∴F(A)+G(A)=10a+b+10c+b=10a+2b+10c,为整数,∵F(A)+G(A)16=k(k为整数),设F(A)+G(A)16=k,则10a+2b+10c16整理得:5a+5c+b=8k,根据a+b+c=12得:a+c=12−b,∵a>b>c,∴12−b>b,解得b<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴a>b>c>0,∴b>1,∴1<b<6,把a+c=12−b代入5a+5c+b=8k得:5(12−b)+b=8k,整理得:b=15−2k,∵1<b<6,k为整数,∴b=3或b=5,当b=3时,a+c=12−3=9,∵a>b>c>0,∴a>3,0<c<3,∴a=7,b=3,c=2,或a=8,b=3,c=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当a=7,b=3,c=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当a=8,b=3,c=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当b=5时,a+c=12−5=7,∵a>b>c>0,∴5<a<7,∴a=6,b=5,c=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
中考数学专题复习训练3实数的概念试题
第三章 实数的概念一.填空题:1.一个直角三角形的两边长分别为3和4,那么第三边长是 ; 2.列各数:①、②……、③75-、④π、⑤252.±、⑥32-、⑦……〔相邻两个3之间0的个数逐次增加2〕、⑧0中。
其中是有理数的有 ;是无理数的有 ;〔填序号〕3.以下各数: 3π,,0,·····,81, 23-,654.0 ,其中无理数是 ; 4.算术平方根等于它本身的数是 ;立方根等于它本身的数是 ; 5. 6的相反数是 ;绝对值等于2的数是 . 6.估算面积是20平方米的正方形,它的边长是 米〔误差小于米〕; 7.一个正方体的体积变为原来的27倍,那么它的棱长变为原来的 倍; 8.假设一正数的平方根是12-a 与2+-a ,那么_____=a ; 9.满足52<<-x 的整数x 是 ;10.假设14+a 有意义,那么a 能取的最小整数为 ;11..假设2-=xy ,125-=-y x ,那么________)1)(1(=-+y x ; 12.假如0<a ,那么2a =________,(a -)2=________;13.〔2-3〕2021·〔2+3〕2021=______;14.a a a =-+-20052004,那么________20042=-a ;二.选择题:15.0196.0的算术平方根是 〔 〕 A 14.0 B 014.0 C 14.0± D 014.0±16.2)6(-的平方根是 〔 〕A -6B 36C ±6D ±617.以下计算或者判断:①±3都是27的立方根;②a a =33;③64的立方根是2;④4)8(32±=±,其中正确的个数有 〔 〕A 1个B 2个C 3个D 4个 18.在以下各式子中,正确的选项是〔 〕A 2)2(33=-B 4.0064.03-=-C 2)2(2±=±D 0)2()2(332=+- 19.以下说法正确的选项是〔 〕A 有理数只是有限小数B 无理数是无限小数C 无限小数是无理数 D3π是分数20.以下运算中,错误的有 〔 〕①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A 1个 B 2个 C 3个 D 4个 21.()0432=-+-b a ,那么ba的平方根是 〔 〕 A 23±B 2-C 43± D 4- 22.在Rt △ABC 中,∠C = 90°,c 为斜边,a 、b 为直角边,那么化简b ac c b a ---+-2)(2的结果为 〔 〕A. c b a -+3B. c b a 33+--C. c b a 33-+D. a 2 23.以下计算中,正确的选项是〔 〕A. 23+32=55B.〔3+7〕·10=10·10=10C.〔3+23〕〔3-23〕=-3D.〔b a +2〕(b a +2)=2a +b24.当41<<x 时,化简221x x +--1682+-x x 结果是 〔 〕 A 3- B. 3C. 2x -5D. 525.如图:点A ,B ,C ,D 表示数2-,1,2,3,那么表示74-的点P 应在线段 〔 〕 A AB 上 B BC 上 C CD 上 D O B上26.化简:)0,0(3><-b a b a 等于 〔 〕 A ab a - B ab a - C ab a -- D ab a 三.解答题:27.3282- 28.123127+-29.(2+3)(23-)+ 212 30.25(42034525)-+31.如图 化简22)(b a b a a -+--O C B A 4321-1-3-232.如图 ,OA=OB , 〔1〕说出数轴上表示点A 的实数(2) 比拟点A 所表示的数与5.2-的大小33.小东在学习了b a ba =后, 认为ba b a =也成立,因此他认为一个化简过程:545520520-⨯-=--=--545-⋅-==24=是正确的. 你认为他的化简对吗?说说理由.2B34.如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。
中考数学专题复习题 实数(含解析)
2017-2018年中考数学专题复习题:实数一、选择题1.下列说法中,其中不正确的有任何数都有算术平方根;一个数的算术平方根一定是正数;的算术平方根是a;算术平方根不可能是负数.A. 0个B. 1个C. 2个D. 3个2.若x、y都是实数,且,则xy的值为A. 0B.C. 2D. 不能确定3.若一个数的平方根与它的立方根完全相同则这个数是A. 1B.C. 0D. ,04.已知,,则约等于A. B. C. D.5.如图,数轴上表示1、的对应点分别为点A、点若点A是BC的中点,则点C所表示的数为A. B. C. D.6.在实数,,,,,,,,相邻两个1中间一次多1个中,无理数有A. 2个B. 3个C. 4个D. 5个7.若,,则A. B. C. 或 D.或8.定义表示不超过实数x的最大整数,如,,函数的图象如图所示,则方程的解为A. 0或B. 0或2C. 1或D. 或9.若的小数部分为a,的小数部分为b,则的值为A. 0B. 1C.D. 210.用计算器计算,,根据你发现的规律,判断与为大于1的整数的值的大小关系为A. B. C. D. 与n的取值有关二、填空题11.若m是的算术平方根,则 ______ .12.已知,则 ______ .13.已知,则的平方根为______ .14.若,,则 ______ .15.已知实数a满足,那么的值是______ .16.在实数,,,,,,0,,中,无理数的个数为______ .17.定义新运算:对于任意实数a,b,都有,等式右边是通常的加法、减法及乘法运算比如:则的值为______.18.比较大小______填“”、“”、“”19.已知:m、n为两个连续的整数,且,则______.20.规定:表示a,b之间的一种运算.现有如下的运算法则:.例如:,,则 ______ .三、计算题21.先化简,再求值:先化简,然后从的范围内选取一个合适的整数作为x的值代入求值.22.计算:.23.已知一个正数的两个平方根分别是和,求这个数的立方根.24.观察:,即,的整数部分为2,小数部分为,请你观察上述式子规律后解决下面问题.规定用符号表示实数m的整数部分,例如:,,填空: ______ ; ______ .如果的小数部分为a,的小数部分为b,求的值.【答案】1. D2. C3. C4. A5. D6. C7. C8. A9. B10. C11. 512.13.14.15. 201616. 317. 518.19. 720.21. 解:原式,且,,,x是整数,,当时,原式.22. 解:原式.23. 解:根据题意得:,解得:,这个正数是100,则这个数的立方根是.24. 5;1。
中考数学实数复习练习题
中考(Kao)数学实数复习练习题1.若向南(Nan)走记(Ji)作2m,则向北(Bei)走2m记(Ji)作2m.2.2m的(De)相反数是.3. 2m的绝对值(Zhi)是.4.随着电子制造技术的不断进步,电子元件(Jian)的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为()A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-85.下列各式正确的是()A.2m B.2m C.2m D.2m6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则2m的值为()A. 2mB. 99!C. 9900D. 2!练习1. -3的相反数是______,-2m的绝对值是_____,2-1=______,2m.2. 某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件 .(填“合格”或“不合格”)3. 下列各数中:-3,2m ,0,2m,2m,0.31,2m,22m,2.161 161 161…,(-2 005)0是无理数的是___________________________.4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字)5.若2m,则2m的值为.6. 2.40万精确到__________位,有效数字有__________个.7. 2m的倒数是 ( )A.2m B.2m C.2m D.5 8.点A在数轴上表示+2,从A点沿数轴向左平移3个单位到点B,则点B所表示的实数是() A.3 B.-1 C.5 D.-1或39.如果□+2=0,那么“□”内应填的实数是()A.2m B.2m C.2m D.210.下列各组数中,互为相反数的是()A.2和2m B.-2和-2m C.-2和|-2| D.2m和2m11. 16的算术平方根是() A.4 B.-4 C.±4 D.1612.实数a、b在数轴上的位置如图所示,则a与b的大小关系是()A.a > b B.a = b C. a < b D.不能判断13.若x的相反数是3,│y│=5,则x+y的值为()A.-8 B.2 C.8或(Huo)-2 D.-8或(Huo)214.如(Ru)图,数轴上A、B两(Liang)点所表示的两数的()A. 和为正(Zheng)数B. 和为负(Fu)数C. 积(Ji)为正数D. 积为负(Fu)数15.下列关于2m的说法中,错误的是A.2m是无理数 B.3<2m<4C.2m是12的算术平方根 D.2m不能再化简16.如图,数轴上表示1,的对应点分别为点A,点B.若点B关于点A的对称点为点C,则点C所表示的数是A. B.C. D.17.估算2m的值()A.在4和5之间B.在5和6之间C.在6和7之间D.在7和8之间计算题:1、20080+|-1|-2m cos30°+ (2m)3;2、已知2m、2m互为相反数,2m、2m互为倒数,2m的绝对值是2,求2m的值.3、2m;4计算:2m﹡5. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2m(2m是正整数)来表示.有规律排列的一列数:2m,…(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?代数式——整式运算及因式分解1.下列计算(Suan)正确的是()A.2m B.2m C.2m D.2m2.某工厂一月份(Fen)产值为万元,二月份比一(Yi)月份增长(Chang)5%,则二月份产(Chan)值为()A.·5%万(Wan)元(Yuan)B. 5%a万(Wan)元C.(1+5%) a万元D.(1+5%)a3、若2m且2m,2m,则2m的值为()A.2m B.1 C.2m D.2m3.分解因式:32m2m-27= .1. 计算(-3a3)2÷a2的结果是( )A. -9a4B. 6a4C. 9a2D. 9a42.下列运算中,结果正确的是()A.2mB.2mC.2m D.2m﹡3.已知代数式2m的值为9,则2m的值为()A.18 B.12 C.9 D.74.分解因式2m.5.将2m分解因式的结果是.6.分解因式=_____ _____;7.下列多项式中,能用公式法分解因式的是()A.x2-xy B.x2+xy C.x2-y2D.x2+y28. 若2m是同类项,则m + n =____________.9.观察下面的单项式:x,-2x,4x3,-8x4,…….根据你发现的规律,写出第7个式子是 .10. 先化简,再求值:⑴2m,其中2m,2m;﹡11.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则2m.﹡12.已知2m、2m、2m是△ABC的三边,且满足2m,试判断△ABC的形状.阅读下面解题过程:解:由2m得:2m①2m②即2m③∴△ABC为Rt△。
中考数学考点大串讲(北师大版):专题02 实数必刷易错50题(原卷版)
专题02实数(易错50题6种题型)一、认识无理数1.(2022秋·陕西西安·八年级校考期中)下列实数中,属于无理数的是()A .3.14159B .176C .3D .3642.(2021春·福建厦门·七年级校考期中)在2 ,4,2,3.14,327 ,3,这6个数中,无理数共有()A .4个B .3个C .2个D .1个3.(2022秋·江苏连云港·七年级校考阶段练习)在“223,,2,0.1010010007 ”中无理数有个.4.(2023春·广西南宁·八年级校考阶段练习)如图,数轴上点A 表示的数是.5.(2022秋·江苏宿迁·七年级校考阶段练习)将下列各数填入相应的集合中:7,0, 2.55555,3.01,9,4.020020002,10%,2有理数集合:{…};无理数集合:{…};整数集合:{…};分数集合:{…}6.(2023春·安徽六安·八年级统考期中)下面各图都是边长为1的小正方形组成的网格,小正方形的边所在直线的交点称为格点,若两个格点间的距离是无理数,则称该无理数为这两个格点的“无理间距”.例如,图①中无理间距有2,共有1个(数值相等的,不重复计数,下同);图②中无理间距除了2外,还有5,22,共有123 个.观察图形,解决下面问题:(1)图③中无理间距应有1236 个,除了2,5,22外,还有________;(2)请在图③中画出端点为格点的线段,使它们的长度分别为你在(1)中所填的无理间距.(每个无理间距画一条线段即可)二、平方根7.(2023秋·山西长治·八年级长治市第六中学校校考阶段练习)9的平方根是()A .3B .81C .3D .3 8.(2023秋·全国·八年级专题练习)已知 24a 与1b 互为相反数,则a b 的平方根是()A .5B .3C .5 D .39.(2022春·江西新余·七年级校考期中)若12a ,24b ,且0ab ,则a b 的值是.10.(2023春·新疆阿克苏·七年级校考期末)若一个正数的两个不同平方根是35a 和7a ,则这个正数是.11.(2023秋·四川成都·八年级校考阶段练习)已知3m 的算术平方根是3,12n ,求m n 的算术平方根.12.(2023秋·甘肃武威·八年级统考开学考试)已知2a b 的平方根是3 ,52a b 的算术平方根是4,求3a b 的值.13.(2023秋·河北保定·八年级校考阶段练习)我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术平方根都是整数,则称这三个数为“完美组合数”.例如:9 ,4 ,1 这三个数, 946 , 913 , 412 ,其结果6,3,2都是整数,所以9 ,4 ,1 这三个数为“完美组合数”.(1)18 ,8 ,2 这三个数是“完美组合数”吗?请说明理由.(2)若三个数3 ,m ,12 是“完美组合数”,其中有两个数乘积的算术平方根为12,求m 的值.三、立方根14.(2023秋·山西长治·八年级长治市第六中学校校考阶段练习)若一个数的立方根等于2 ,则这个数等于()A .4B .8C .8D .815.(2023春·湖北襄阳·七年级校考阶段练习)已知x 是5的算术平方根,则213x 的立方根是()A .513-B .513 C .2D .216.(2023春·云南昭通·七年级统考阶段练习)已知311x x ,则x 的值为.17.(2023春·湖南永州·八年级校考开学考试)(1)81的平方根是;(2)若 30.70.027x ,则x.18.(2023春·广东广州·七年级校考期中)已知一个正数的平方根是6a 与29a ,(1)求a 的值;(2)求关于x 的方程3640ax 的解.19.(2022秋·山西太原·八年级校考阶段练习)求下列未知数x 的值(1) 22511000x (2) 3823125x 20.(2021春·上海浦东新·七年级校考期中)已知一个正方体的棱长是7cm ,要再做一个正方体,使它的体积是原正方体的体积的8倍,求新做的正方体的棱长.四、估算21.(2023秋·重庆九龙坡·八年级重庆实验外国语学校校考阶段练习)估计1021 的值应在()A .4和5之间B .5和6之间C .6和7之间D .7和8之间22.(2023春·山东滨州·七年级统考期中)如图,用两个面积为29cm 的小正方形拼成一个大的正方形.则大正方形的边长最接近的整数是()A .4cmB .5cmC .6cmD .7cm23.(2022·湖南株洲·株洲二中校考二模)写出一个大于7小于27的整数.24.(2023春·湖北恩施·七年级校考期中)已知511 的小数部分为m ,511 的小数部分为n ,则m n .25.(2023秋·陕西榆林·八年级校考阶段练习)已知41a 的立方根是3 ,2 a b 的算术平方根是3,c 是15的整数部分.(1)求a ,b ,c 的值;(2)求5a b c 的平方根.26.(2023春·四川凉山·七年级校考阶段练习)我们知道2 1.414 ,于是我们说:“2的整数部分为1,小数部分则为21 ”.(1)21 的整数部分为_______,小数部分可以表示为______;(2)已知31 的小数部分为a ,51 的小数部分为b ,求a b 的值.五、实数27.(2023秋·广西南宁·八年级校考阶段练习)在下列四个实数中,最小的数是()A .5 B .0C .1D .328.(2022春·河北邯郸·七年级校考期中)下列说法正确的有几个()①两个无理数的和可能是有理数;②任意一个无理数都可以用数轴上的点表示;③2m 一定没有平方根;④实数包括有理数、无理数和零;⑤立方根等于本身的数是1.A .1个B .2个C .3个D .4个29.(2023秋·全国·七年级课堂例题)定义21*2a b ab b a b .若2*3x ,则x 的值是()A .4B .3C .6D .730.(2023秋·江苏淮安·九年级统考阶段练习)已知实数m 满足210m m ,则32232024m m m .31.(2023秋·江西抚州·八年级校考阶段练习)把无理数3,5,11,17表示在数轴上,在这四个无理数中,最有可能被墨迹(如图所示)盖住的无理数是.32.(2023秋·重庆渝中·七年级重庆市求精中学校校考阶段练习)观察下列等式:133 ,239 ,3327 ,4381 ,53243 ,63729 ,…,则234202333333 的末位数字是.33.(2023春·河北沧州·七年级校考期中)实数a 在数轴上对应的点的位置如图,化简:2a a .34.(湖南省长沙市明德教育集团2022-2023学年九年级期上学期中数学试题)计算:112633(3.14)2 35.(山西省临汾市两县一市2023-2024学年八年级上学期月考数学试题)计算.(1)33116827;(2)3912532 .36.(2023春·吉林松原·八年级校考阶段练习)如图①是由8个同样大小的立方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长;(3)把正方形ABCD 放到数轴上,如图②,使得点A 与1重合,那么点D 在数轴上表示的数为______.六、二次根式37.(山西省临汾市两县一市2023-2024学年九年级上学期月考数学试题)下列计算中正确的是()A .1553 B .3223 C .2510 D .571238.(2022春·陕西安康·八年级校考期中)下列各式中,是最简二次根式的是()A .3B .38C .12D .6339.(2023秋·四川眉山·九年级校考阶段练习)下列二次根式中与5是同类二次根式的是()A .10B .20C .25D .3040.(2023春·河北沧州·八年级校考期中)当12a 时,式子221a a 的值为()A .32a B .23a C .1 D .141.(山西省临汾市两县一市2023-2024学年九年级上学期月考数学试题)计算320154的结果是.42.(2023秋·陕西西安·八年级校考阶段练习)若88y x x 有意义,则3x .43.(2023秋·四川内江·九年级校考阶段练习)∵2(21)322 ,∴32221 ;∵2(21)322 ,∴32221 ;∵2(23)743 ,∴74323 .请你根据以上规律,结合你的经验化简843 .44.(2023春·福建龙岩·八年级校考期中)已知实数a b 、在数轴上的位置如图所示,则化简代数式222(a b)a b 的结果45.(山西省临汾市两县一市2023-2024学年九年级上学期月考数学试题)计算(1) 26363253 ,(2)1512245153108846.(2023秋·贵州·八年级统考阶段练习)计算并解答:(1)12273(2)61822 (3)实数a b 、在数轴上的位置如图所示,且a b ,化简2a a b47.(2023秋·四川眉山·九年级校考阶段练习)已知,x y 为实数且229913x x y x ,求56x y 的平方根.48.(2023秋·河南南阳·九年级校考阶段练习)如图,面积为248cm 的正方形的四个角是面积为23cm 的小正方形,现将这四个角剪掉,制作一个无盖的长方体盒子,这个长方体盒子的底面边长和高分别是多少?(结果保留根号)49.(2022秋·山西太原·八年级校考阶段练习)阅读材料:材料一:两个含有二次根式而非雾的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.例如:333 ,6262624 ,我们称3的一个有理化因式是3,62 的一个有理化因式是62 .材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如11333333 862883326224626262 请你仿照材料中的方法探索并解决下列问题:(1)13的有理化因式为______,75 的有理化因式为______;(均写出一个即可)(2)将下列各式分母有理化:①315;②11253 .(要求;写出变形过程)50.(2023秋·四川宜宾·八年级校考阶段练习)若23(1)0xy y .(1)求x ,y 的值;(2)求1111(2)(2)(4)(4)(2022)(2022)xy x y x y x y 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习模拟演练实数
撰写人:__________________
时 间:__________________
一、选择题
1.﹣125开立方,结果是( )
A.±5 B. 5 C. -5 D.±
2.与数轴上的点一一对应的数是()
A.分数 B.有理数 C.无理数 D.实数
3.在下列各式中,正确的是()
20.(1)解:原式=3﹣3π﹣7+2 =2﹣3π;
(2)解:原式= ÷( ﹣ )= •
= ,
当a=3时,原式= = .
21.解:∵a<0,b<0,c>0,
∴a<c
∴原式=|b|﹣|a﹣c|+(a+b)
=﹣b+(a﹣c)+(a+b)
=﹣b+a﹣c+a+b
=2aห้องสมุดไป่ตู้c.
22.解:∵ =8,∴a=11或﹣5,
15.(20xx•锦州)计算: ﹣6 +tan60°=________.
16.已知5x-2的立方根是-3,则x+69的算术平方根是________;
17. =a, =b,则 =________.
18.从﹣2、1、 这三个数中任取两个不同的数相乘,积是无理数的概率是________.
三、解答题
19.在数轴上点A表示的数是 .
22.已知: =8,则点A(1,a)关于y轴的对称点为点B,将点B向下平移2个单位后,再向左平移3个单位得到点C,则C点与原点及A点所围成的三角形的面积为多少?
23.正数x的两个平方根分别为3﹣a和2a+7.
(1)求a的值;
(2)求44﹣x这个数的立方根.
参考答案
一、选择题
C D C A A A D C B A
∴这个正数是169.
44﹣x=44﹣169=﹣125,
﹣125的立方根是﹣5
二、填空题
11.312. 5 13.>14.18﹣4
15.2 16.8 17.0.1b 18.
三、解答题
19.解:(1)点B表示的数是 ﹣2.
(2)点C表示的数是2﹣ .
(3)由题可得:A表示 ,B表示 ﹣2,C表示2﹣ ,
∴OA= ,OB= ﹣2,OC=|2﹣ |= ﹣2.
∴OA+OB+OC= + -2+ -2=3 ﹣4.
(1)若把点A向左平移2个单位得到点为B,则点B表示的数是什么?
(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?
(3)求出线段OA,OB,OC的长度之和.
20.(1)(1﹣π)× ﹣( )﹣1+|﹣2|
(2)先化简,再求值: ÷(a﹣1﹣ ,其中a=3.
21.如图,a、b、c分别是数轴上A、B、C所对应的实数,试化简: ﹣|a﹣c|+ .
①当C′(﹣4,﹣7)时,与原点及x轴所围成的三角形的面积为:
S△C′OA′=5×7﹣ ×1×5﹣ ×5×2﹣ ×4×7=13.5.
23.(1)解:∵正数x的两个平方根是3﹣a和2a+7,∴3﹣a+(2a+7)=0,
解得:a=﹣10
(2)解:∵a=﹣10,∴3﹣a=13,2a+7=﹣13.
∴这个正数的两个平方根是±13,
A. =±6 B. C. =0.1 D.
4.25的算术平方根是( )
A. 5 B. -5 C.±5 D.
5.下列各数中无理数是( )
A. B. C. D.
6.如图所示,在数轴上点A所表示的数为a,则a的值为()
A.﹣1﹣ B. 1﹣ C.﹣ D.﹣1+
7.下列运算正确的是()
A.(﹣2a3)2=﹣4a6 B. =±3 C. m2•m3=m6 D. x3+2x3=3x3
∴点A(1,11)或(1,﹣5),
∴关于y轴的对称点为点B为(﹣1,11)或(﹣1,﹣5),
∵将点B向下平移2个单位后,再向左平移3个单位得到点C,
∴C(﹣1﹣3,11﹣2)或(﹣1﹣3,﹣5﹣2),
即:C(﹣4,9)或(﹣4,﹣7),
①当C(﹣4,9)时,与原点及x轴所围成的三角形的面积为:
S△ACO=5×11﹣ ×2×5﹣ ×4×9﹣ ×1×11=26.5;
A. B与C B. C与D C. E与F D. A与B
二、填空题
11.9的算术平方根是________.
12.计算:|﹣5|+(3﹣π)0﹣6×3﹣1+ ﹣2sin60°=________.
13.比较大小:4________ (填“>”或“<”)
14.已知 的整数部分为a,小数部分为b,则a2+b2的值为________.
8.估计2 ﹣1的值介于()
A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间
9.下列说法正确的有()①无理数是无限小数;②无限小数是无理数;③开方开不尽的数是无理数;④两个无理数的和一定是无理数;⑤无理数的平方一定是有理数.
A. 1个B. 2个C. 3个D. 4个
10.(20xx•潍坊)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.