静电场中的导体与电介质
电磁学02静电场中的导体与介质
A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:
(整理)静电场中的导体和电介质
第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。
(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。
第六章静电场中的导体与电介质
第六章 静电场中的导体和电介质
33
物理学
第五版
6 静电场中的导体与电介质
电位移线
方向: 切线 大小:
电位移线起始于正自由电荷终止于负自由电荷, 与束缚电荷无关。
电场线起始于正电荷终止于负电荷,包括自由 电荷和与束缚电荷。
第六章 静电场中的导体和电介质
34
物理学
第五版
SD dS
有介质时的高斯定理
n
D dS S
Q0i
i 1
第六章 静电场中的导体和电介质
28
物理学
第五版
6 静电场中的导体与电介质
第三节 电介质中的高斯定理 电位移矢量
电介质中的高斯定理 电介质中高斯定理的应用
第六章 静电场中的导体和电介质
29
物理学
第五版
6 静电场中的导体与电介质
一、电位移矢量 电介质中的高斯定理
电介质 有极分子:(水、有机玻璃等) 正电荷的
等效中心
定义:分子电矩——由分子(或
原子)中的正负电荷中心决定的
电偶极子的电偶极矩,用 表
示:
电子云的
第六章 静电场中的导体和电介质 负电中心
5
物理学
第五版
6 静电场中的导体与电介质
1)无极分子(非极性分子)
分子内正负电荷中心重合
甲烷分子 CH4
+H 正负电荷
真空中:
自由电荷
电介质中:
极化电荷如何求?
极化电荷 自由电荷
向外,'>0,正极化电荷在外,闭合曲
面内留下负极化电荷;
+
向内,'<0,负极化电荷在外,闭合曲 -
静电场中的导体和电介质
2 20
3 20
联立:
1
2
0
3 2
导体中电荷发生
2
2
0
3 2
迁移,重新分布
由导体表面附近一点的场强公式
E
0
Ep
2 0
0 20
3 20
或者:由场强的叠加原理,视为三个无限大带电平面的叠加
EP2 1 0 2 2 0 2 30 2 0 0 2 30
两种解法结论一致
4 导体表面电荷分布规律
静电场中的导体和电介质
➢主要内容
➢导体静电平衡条件和性质 ▲ ➢电场中导体和电介质的电学性质 ➢有介质时的高斯定理Gauss’s Law in Dielectric ▲ ➢电容器的性质和计算 ➢静电场的能量Energy of Electrostatic Field ▲
§1静电场中的导体
Effects of Conductor in Electrostatic Field
++
++++ + + + +
感应电荷
➢问:这种静电感应的过程是否会一直进行下去?
E
E外
E 附加电场
E 内E外 E
当 E内0
电荷的宏观定向运动将停止
➢定义:静电平衡状态
当一个带电体系中的电荷没有定向运动,从而电场分布不随 时间变化时,称该带电体达到静电平衡状态。
2 静电平衡
+
E0
+
➢极化电荷不能转移到其他物体,而自由电荷可以转移到其他物体。
➢极化电荷可以吸附导体中的自由电荷,但不能被中和,而自由电荷 可以被中和。
➢极化电荷可作微小移动,在介质内产生的场强可削弱 介质内的外场,是不能宏观分开的正、负电荷。 ➢自由电荷是能够宏观分开的正、负电荷,在导体内部 所产生的场强完全抵消外场。
2、静电场中的导体和电介质
思考题
1. 导体静电平衡时,有什么特点? 2. 现有甲、乙二人,站在与地绝缘的泡沫板上, 甲带有正电荷,乙不带电。你只有一根导线。 (1)如何让乙也带上正电荷? (2)如何让乙带上负电荷? 3. 电极化强度矢量满足何种边界条件?
学习动物精神
11、机智应变的猴子:工作的流程有时往往是一成不变的, 新人的优势在于不了解既有的做法,而能创造出新的创意 与点子。一味 地接受工作的交付, 只能学到工作方法 的皮毛,能思考应 变的人,才会学到 方法的精髓。
垂直的端面上出现极化电荷。
对于非均匀电介质,除在电介质表面上出现极化
电荷外,在电介质内部也将产生体极化电荷。
2.5.2
电极化强度
当电介质处于极化状态时,在电介质内部任一宏观小 体积元V内分子的电矩矢量和不等于零,即Σp≠0(其中p 为分子电矩)。 为了定量地描述电介质的极化程度,引入电极化强度 矢量P,它等于介质单位体积内分子电矩的矢量和。
导体静电平衡的特点
(1)导体内部任意一点的电场强度等于零。
(2)导体表面上任一点的场强必定垂直于导体表面。
(3)导体为等势体,导体表面是等势面。 (4)电荷都分布在导体的表面上,导体内部任一小体积 元内的净电荷等于零。 (5)导体在电场中达到静电平衡时,其表面上电荷的分
布不一定是均匀的,一般地讲,表面曲率大的地方,电荷
力线只能终止(或起始)于导体表面,并与导体表面垂直,
不能穿过导体进入内部。也就是说,空腔导体内部的物体不 会受到外部电场的影响。 空腔导体使其内部不受外电场影响的性质叫静电屏蔽。 在静电防护领域,为了使对静电敏感的器件不受外界静
电场的影响,通常将敏感器件装在屏蔽袋中。
静电场中的导体和电介质
第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。
(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。
静电场中的导体和电介质
静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。
(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。
导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。
定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。
拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。
测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。
库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。
所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。
所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。
以上是库仑平方反比定律验证的发展历史。
见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。
使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。
则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。
孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。
电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。
然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。
静电场中的导体和电介质
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理
静电场中的导体与电介质
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
电场中的导体和电介质
二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。
根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9
R
q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V
大学物理-第18章静电场中的导体与电介质
+
O
+- H+ - H+
++
-
++
+
He
H2O
有极分子对外影响等效为一个电偶极子,电矩 Pe ql
事只实不上过lq所在为中为有无从心分分电负 的子子 场电 有中均 时荷 向所可 ,作 线有等 无用 段正效 极中电为 分心荷电 子指的偶 的向代极电正数子偶电和的极作;模矩用型为
综 1)不管是位移极化还是取向极化,其最后的 述:宏观效果都是产生了极化电荷。
2)两种极化都是外场越强,极化越厉害 所产生的分子电矩的矢量和也越大。
三、电介质内的场强、有介质时的高斯定理
1、电介质内的场强
EE0E'
c
E0
E'
a
b
EE0E'
实验发现,在均匀介质中
E
2 3 0 ……(3)
在板内任选一点P,其场强是四个面的场强的叠加,有
EP210220230240
又 EP 0 12340 Q
联立四式得:
……(4) 1 2 3 4
12432Q S
I
II III
P
由于静电平衡时表面面电荷密度与表面附近场强大小成
E0
E
E0
r
r 1
0
++
E0
+ +-
E
+ +-
静电场中的导体和电介质
2.1.1 导体的静电平衡条件 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,则该带电体系达到了静电平衡。 均匀导体的静电平衡条件就是其体内场强处为0。 从导体静电平衡条件还可导出以下推论: (1)导体是个等位体,导体表面是个等位面。 (2)导体以外靠近其表面地方的场强处处与表面垂直。
2.2.3 电容器的并联、串联 (1) 并联 电容器并联时,总电容等于个电容器电容之和。 (2) 串联 电容器串联后,总电容的倒数是各电容器电容的到数之和
2.2.4 电容器储能(电能) 设每一极板上所带电荷量的绝对值为Q,两极板间的电压为U,则电容器储存的电能 从这个意义上说,电容C也是电容器储能本领大小的标志。
(2)极化电荷的分布与极化强度矢量的关系 以位移极化为模型,设想介质极化时,每个分子中的正电“重心”相对负电“重心”有个位移l。用q代表分子中正、负电荷的数量,则分子电矩P分子=ql。设单位体积内有 n个分子,则极化强度矢量P=np分子=nql。
取任意闭合面S,根据电荷守恒定律,P通过整个闭合面S的通量应等于S面内净余的极化电荷∑q′的负值 ,即 这个公式表达了极化强度矢量P与极化电荷分布的一个普遍关系。
(3)库仑平方反比率的精确验证 用实验方法来研究导体内部是否确实没有电荷,可以比库仑扭秤实验远为精确的验证平方反比律。 卡文迪许的验证实验装置见教材中图2-11。实验时,先使连接在一起的球1和壳3带电,然后将导线抽出,将球壳3的两半分开并移去,再用静电计检验球1上的电荷。反复实验结果表明球1上总没有电荷。
(1) 平行板电容器 平行板电容器由两块彼此靠得很近的平行金属极板组成。设两极板A、B的面积为S , 带电量分别为±q , 则电荷的面密度分别为 ±σe =±q/S 根据式(2.1),场强为 E = σe/ε0 , 电位差为 根据电容的定义
静电场中的导体和电介质电磁学
如前所述,导体壳的外表面保护了它所 包围的区域,使之不受导体壳外表面上的 电荷或外界电荷的影响,这个现象称为静 电屏蔽.
图2.12 <a> 腔内无电 荷
图2.12 <b>腔内有电荷
图2.12 <c> 导体腔接
图2.12 <d> c的等效图
地
图2.12 静电屏蔽
〔3〕静电场边值问题的唯一性定理
其中任意两导体之间都有电容,但并不完全取决 于自己的几何形状和相对位置,与周围其他导
§2.4 静电场中的电介质
1、电介质的极化 2、极化强度与退极化场 3、电介质的极化规律
§2.4.1 电介质的极化
1、电介质〔dielectrics〕 是绝缘体,内部大量的束缚电荷. 与导体和静电场的相互作用,既有相似之 处,但也有重要差别.
第二章 静电场中的导体和电介质
第二章 静电场中的导体和电介质
§2.1 物质的电性质 §2.2 静电场中的导体 §2.3 电容和电容器 §2.4 静电场中的电介质 §2.5 电介质中静电场的基本定理 §2.6 边值关系和有介质存在时的唯一性
定理
§2.1 物质的电性质
1、 导体、绝缘体与半导体 2、 物质的电结构
由于空气中存在离散的自由电荷,永电体 表面上的极化电荷会吸引一些自由电荷 而最终会被中和失去作用.
2、极化率与相对介电常数
设平行板电容器未填充电介质时极板间的场强
为E0<外场>,填充电介质后电场为E,由介质极
化规律知,介质极化强度为: P 0 E
与电容器正极板相对的介质表面有极化电荷面
密度:' P•nP,与负极板相对的介质表
§2.1.1 导体、绝缘体与半导体
6静电场中的导体和电介质
V表面 常量
2. 导体上电荷分布 1)静电平衡时,导体内无净电荷,电荷只分布在导体 外表面上。 证明: (1)导体内无空腔 .p
E内 ds 0 q内 0
(2)导体内有空腔,腔内无其它带电体
可以看成已经达到静电平衡的实心导体,从中 挖出空腔,由于没有挖去净电荷,不会影响电 荷分布,也不影响电场分布。内表面无净电荷。
r
D1 E1 R1 2 r1 2 1r1 r R1 r1 r : E1 21r1 E1 2 r2 E 2 1r1 同理:r r2 R2 : E2 22 r2
R2
r R2 V d r1 dr2 ln ln 21r1 22 r2 21 R1 22 r R r
q
§6—7 静电场中的电介质 电介质 绝缘体(不导电) 1.电介质的电结构 带负电的电子→束缚电子 每个分子 带正电的原子核 正负重心不重合 两类电介质: 正负重心重合 E 2.电极化现象 E外 0 1)有极分子 2)无极分子
所有负电荷负重心 所有正电荷正重心
有极分子 p p 0 无极分子
q q A B
(3)内球与地相接,设内球带电q’:
R1
q q VA dr dr 2 2 R 4 r R2 4 r o o q 1 1 q q 1 ( ) 0 可解出 q 4o R R1 4o R2 q q 1 VB 4o R2
R
o
R
q
q
4 R 4
o
dq
q
o
2R
0
q q R 2R
q 4o R
静电场中的导体和电介质
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
第二章 静电场中的导体与电介质
第二章 静电场中的导体与电介质2.1 导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很大(相差10多个数量级,而不同导体间电导率数量级最多就相差几个数量级)。
(2)微观上导体内部存在大量的自由电子,在外电场下会发生定向移动,产生宏观上的电流而电介质内部的电子处于束缚状态,在外场下不会发生定向移动(电介质被击穿除外)。
2.2静电场中的导体1. 导体对电场的响应:静电场中的导体,其内部的自由电子会发生定向漂移,电荷分布会发生变化,这是导体对电场的响应方式称为静电感应,导体表面会产生感应电荷,感应电荷激发的附加场会在导体内部削弱外电场直至导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,这时导体处于静电平衡状态。
2. 导体处于静电平衡状态的必要条件:0i E =(当导体处于静电平衡状态时,导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,自然其内部电场(指外场与感应电荷产生的电场相叠加的总电场)必为0。
3. 静电平衡下导体的电学性质:(1)导体内部没有净电荷,电荷(包括感应电荷和导体本身带的电荷)只分布在导体表面。
这个可以由高斯定理推得:ii sq E ds ε⋅=⎰⎰,S 是导体内“紧贴”表面的高斯面,所以0i q =。
(2)导体是等势体,导体表面是等势面。
显然()()0b a b i a V V E dl -=⋅=⎰,a,b 为导体内或导体表面的任意两点,只需将积分路径取在导体内部即可。
(3)导体表面以处附近空间的场强为:0ˆEn δε=,δ为邻近场点的导体表面面元处的电荷密度,ˆn为该面元的处法向。
简单的证明下:以导体表面面元为中截面作一穿过导体的高斯柱面,柱面的处底面过场点,下底面处于导体内部。
由高斯定理可得:12i s s dsE ds E ds δε⋅+⋅=⎰⎰⎰⎰,1s ,2s 分别为高斯柱面的上、下底面。
因为导体表面为等势面所以ˆE En=,所以1s E ds Eds ⋅=⎰⎰而i E =0所以0ds Eds δε=,即0ˆE n δε=(0δ>E 沿导体表面面元处法线方向,0δ<E 沿导体表面面元处法线指向导体内部)。
静电场中的导体和电介质
平行板电容器的电容,与极板的面积成正比,与极板 间的距离成反比。
圆柱形电容器的电容
两柱面间的场强大小 E Q 2 0 Lr 方向沿着径向 两柱面间的电势差
U A U B Edr Q 2 0 L ln R2 R1
R2
Q 2 0 Lr
R1
dr
柱形电容器的电容
dWe we dV
取半径为r,厚为dr的球壳, 电场总能量为: 其体积元为: 2
8r
2
dr
dV 4r dr
2
Q We dWe 8
R2
R1
dr 1 Q2 ( R2 R1 ) 2 r 2 4R2 R1
Q C U
4 0 R
★电量按半径比例进行重新分配
2 1 Q Q 2 Q 3 3 F 2 2 4π 0 R 18π 0 R
二. 电容器及其电容 常见的电容器: 平行板电容器----两块导体薄板; 圆柱形电容器----导体薄柱面; 球形电容器----导体薄球面; 当电容器的两极板分别带有等值异号电荷Q时,电荷Q与 两极板A、B间的电势差 (UA-UB) 的比值定义为电容器的 电容:
外 内
E内 ? S
★电荷只分布在外表面,内表面上处处无电荷
内表=0
E内=0
2、 若导体壳包围的空间(腔)有电荷:
内
q S ★内表面带电总量为-q,内表面上各处 电荷面密度取决于腔内电荷的分布
外
q内表 q
E内 0
3、静电屏蔽
S
A
Q
B
E内 0
在电子仪器中,用金属网罩把电路包起来,使其 不受外界带电体的干扰。 传送微弱电信号的导线,外表用金属丝编成的网 包起来,这种的导线叫屏蔽线。
静电场中的导体和电介质
1/ R1 1/ R2 q
R3 40r 2
40R3 40R3 1/ R1 1/ R2 1/ R3
例6-2 两块大导体平板,面积为S ,分别带电q1和 q2, 两板间距远小于板的线度。求平板各表面的电荷密 度。
q1
q2
1 2 3 4
A
B
解:电荷守恒
1S 2S q1
3S 4S q2
导体板内 E = 0
§6-1 导体的静电平衡性质 §6-2 静电场中的电介质 §6-3 电容和电容器 §6-4 静电场的能量
1.导体的静电平衡
1.1 导体
1.2 导体的静电平衡过程
F
-e E0
E
E=0
(a)
(b)
(c)
2.导体静电平衡时的性质
电场: 1)导体内部的场强处处为零。 2)导体外靠近表面处的场强方向与导体表面垂直。
C1
C2
qn
VU
Cn
C C1 C2 ...... Cn
电容器的并联
例6-5 一平行板电容器,中间有两层厚度分别为 d1
和 d2 的电介质,它们的相对介电常数分别为 r1 和 r2 ,极板面积为 S ,求该电容器的电容。
A
q
O
d1
r1
d2
r2
-q B x
解:D
E
E(x)
D
0
r1
0 r1
C-4
H+
H+
O--
H+
H+
无极分子:CH4
有极分子:H2O
1.2 电介质的极化过程
±±±±± ±±±±± ±±±±±
+
+ E0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们称D为电位移矢量。 这样我们就避免了求极化电荷,从而利用 这个推广的高斯定理来求解介质中的场强。 我们得到一般的求解介质中的场强的方法: 我们能解的问题 要求自由电荷的分布是均匀对称的,电场的分布也是对称的,介质必须是均 匀各向同 性,充满电场所在的整个空间,或者充 满等势面之间的空间。然后就可以根据具体的条件来选取合 适的高 斯面,而得到D的值,进一步就可以得到介质中的电场强度E,电极化矢量,以及极化电荷面密度。 最后我们需要了解几个有关电场 中的电介质的理论的实际应 用,这就是: 电介质的损耗与击穿。 变电体和压电现象。 对于这几种现象,关键是要求我 们善于应用理论知识来把握实际问题中的物理 图象,也就是善于区分 主要因素与次要因素,能抓住复杂现象中的关键过程。 电容和电容器。 带电体激 发电场,然后电场 本身从能量的角度来看,是具备能量的。对于不同的带电体,单位电荷所 产生的电场 的电势是不同的,这 个差别来自于带电 体本身的属性,要描述 这种属性,我 们引入一 个物理 量—电容。 最简单的是孤立导体的 电容,由于是孤立 导体,它所激发的电场不受到任何其他的影响,那么它的电 势U可以取为相对于无穷远处的电势,如果它所带电量为q那么我们定义它的电容
file://F:\00000\popular\physics_baபைடு நூலகம்ic\10.htm
6/3/2003
第十章
Page 2 of 4
度矢量成正比,比例系数为真空介 电常数和电介质的电极化率的乘 积。所谓电极化率是反映材料属性 的一个实验数据,必须通过实验测量得到,而不能通过其它方法计算得到。 介质中的高斯定理。电位移。 我们上面 讨论的高斯定理是在真空的情形,那么在介质中,由于增加了附加电场 ,高斯定理就必须作 一些推广。 首先任何 静电场 都肯定满足高斯定理,但由于 介质中的等效 电荷在实际问题中并不容易求出,因此我 们必须引入一 个新的起 辅助作用的物理量 D,使得:
第十章
Page 1 of 4
第十章.静电场中的导体与电介质
大量的电现 象都 涉及到 电场 中的物质由于 电场 的作用而发生的 现象,不 仅是自然界广泛存在,而且 在我们认识到这里的物理规律后,更是广泛的应用于电气设计与电子器件。本章我们就要依据电场对电 荷 的作用这样的基本 规律,来分析各种表面看起来似乎非常复杂的电场对宏观物体的作用。 电场中的导体。 在静电场 中的导体总会达到一 种平衡 状态,就是所谓静电平衡的状态。在这种状态下,导体的内部与 外部都不存在电荷的宏观运动。由于导体的性质就是电荷的自由运动,因此 这种状态实际 上就意味着 (1)导体内部的 电场强度处处为 0,而 导体表面的 电场强度的方向 总是和导 体的几何表面垂直。否 则,很显然就会出现电荷的宏观运动。 ( 2)导体任意位置的电势都相等,显然如果不是这样的话,同样也会出现电荷的宏观运动。 这样一种状态的导体具有一些特定的性质: (1)最主要的特征就是导体的内部和表面具有完全不同的特点,即在导体的内部所带的净电 荷为0, 而如果导体带电 的话,也只是分布在导体的外表面。这是由于在外部电场 的作用下,导体的自由 电荷在电 场力的作用下运动,而又受到导体表面的 约束,从而停留在 导体的外表面,建立了一 种动态 平衡所导致的 结果。 (2)建立平衡后稳定下来的导体,电荷面密度的大小与该处的表面曲率成正比。 (3)导体表面附近真空的 电场强度的大小为该处的电荷面密度和真空介 电常数的比值,方向为垂直 于导体的外表面并向外。 电场对导体的这种作用,能使电场中的空腔导体产生非常有趣的现象: (1)当空腔 内不含 带电体时,空腔导体就只是在外部电场 的作用下,这时由于导体在电场 中的独特 性质,使得空腔内部的电场强度为0,同时电荷也不会分布在空腔内表面,而只是分布在空腔外表面。 (2)当空腔体内含有 带电 体时,导体本身内部的 电场 强度仍然为 0,空腔 内由带电体激 发的电场 与 空腔外部的任何 电场没有关系,完全由空腔内的带电 体决定,并且导致空腔内表面产生与空腔内部所包含 电荷异号等量的电荷。而空腔外部的任何电场只决定于空腔外表面的电荷分布, 可以看出空腔导体使得其内部与外部完全隔绝了电场的相互作用,这种性质非常有 应用价值。 即一方面可以使得空腔内部不受任何外部电场 的影 响,另一方面如果使空腔 导体接地,则任何空腔 内部电场 所激发的分布在外壳的电荷都可以被释放,从而对空腔外部不产生任何影响,而在内表面激发的 电荷就只是局限于内表面上。这样就起到了静电屏蔽的作用。 电场中的电介质。电介质的极化 所谓电介质就是相对于导体而言的,即内部电荷被拘束,从而不能有宏观运动,但一般仍然会出现微 观的运动,如分子的转动,这样就导致极化现象。 对于极化现象,我 们必须强调与静电感应现象的物理 实质上的 区别,这两 种现象在表面看来是很类似 的,但 静电感应所产生的电荷是导体内部的自由电荷,而极化现象中出现的分布在 导体两个相对表面上的 电荷则是束缚电荷,它们都是内部电荷对外部电场的反应,但它们形成内部电场的方式不同。 电介质的组成分子通 过微观运动而形成 内部电场的机制有两种 情况,一 种是有极分子转动产 生的极 化,一种是无极分子通过微观位移 导致的位移 极化,而静电感应则是内部自由电荷从一个表面到另一个表 面的长程运动。这两种现象的感应和极化程度都和外部的电场强度相关。 由于极化的实质 就是电介质内部电偶极矩的 产生,因此 为了刻 划电介质的极化程度,我们给 出一个物 理量就是描述电偶极矩的“密度”。这就是电极化强度矢量P,定义为体积元内所有电偶极矩的矢量和。 对于一个在外部电场作用下的 电介质,其内部的合电场强度是外加 电场强度和内部极化电荷产生的 电 场强度的矢量和,这个合场强与电极化强度矢量存在一个实验归纳 性质的唯象关系,即合场强与电极化强
q C= U 。
可以看出电容这个概念衡量的是导体的一种能力,与它是否带电无关。 注意在国际单位制中,电容的单位法拉并不实用,我们在实际问题中常常是取微法和皮法。 实用的电容总是运用静电屏蔽的原理,使得带电导体所激发的电场不受外界的影响。也即总是设计 成 把用于储存能量的电场局限在一定的空间里,这样电场的电势就是相对电势,电容的定义就变成了: