第03章 电位分析法_2016

合集下载

仪器分析学习课件 第3章 电位分析法

仪器分析学习课件 第3章 电位分析法

+ 0 .2 8 2 8
+ 0 .2 4 3 8
温度校正,对于SCE,t ℃ 时的电极电位为:
Et= 0.2438- 7.6×10-4(t-25) (V)
银-氯化银电极:
银丝镀上一层AgCl沉淀,浸在一定浓度 的KCl溶液中即构成了银-氯化银电极。
电极反应:AgCl + e- == Ag + Cl-
电极内溶液的Cl-活度 一定,甘汞电极电位固定。
参比电极
表 甘汞电极的电极电位( 25℃)
0 .1 m o l/L 甘 汞 电 极标 准 甘 汞 电 极 (N C E ) 饱 和 甘 汞 电 极 (S C E )
K C l浓 度
0 .1m o l/L
1 .0m o l/L
饱 和 溶 液
电 极 电 位 ( V ) + 0 .3 3 6 5
参比电极
甘汞电极 电极反应:Hg2Cl2 + 2e- = 2Hg + 2 Cl半电池符号:Hg,Hg2Cl2(固)KCl 电极电位(25℃):
EH2gCl/H gEH O22gCl/H g0.025l9ga2(aH (H)g2agC 2(2C l)l) EH2gCl/H gEH O22gCl/H 0 g.05lg 9a(Cl)
第二类电分析化学法是以电物理量的突变作为滴定分 析中终点的指示,所以又称为电容量分析法。属于这类分 析方法的有:电位滴定,电导滴定,电流滴定等。
第三类电分析化学法是将试液中某一个待测组分通过 电极反应转化为固相,然后由工作电极上析出物的质量来 确定该组分的量。称为电重量分析法(电子做“沉淀剂” ),即电解分析法。
1、直接电位法: 零电流条件下测量指示电极相 对于参比电极的电位,据电位 与浓度的关系计算被测物含量。

《电位分析法》课件

《电位分析法》课件

氧传感器
pH传感器
电位分析法可用于制备氧传感器, 用于监测环境中氧气浓度的变化, 以及其他应用领域。
电位分析法可以应用于制备pH传 感器,用于测量溶液的酸碱性和 酸度、碱度的变化。
电位分析法的未来发展和挑战
未来,随着科技的进步,电位分析法可能会更多地与纳米技术、可穿戴设备等领域结合,但也面临着仪器精度、 样品复杂度以及快速化需求等挑战。
食品安全
电位分析法可以用于食品中有害物质的检测, 帮助保障食品安全,支持消费者的信任。
优势
电位分析法具有高灵敏度、非破坏性、快速和 低成本等优点,适用于各种分析需求。
电位分析法和标准溶液,校准电极,并确保实验环境的稳定性。
2
测量电势
将电极浸入待测溶液中,记录电极的电势变化,并根据反应进行必要的计算。
电位分析法的原理和基本概念
电位分析法基于电极与待测物质之间的化学反应,如氧化还原反应。通过测量电极的电势变化,我们可以推断 溶液中的物质浓度、物种的选择性等信息。
电位分析法的应用领域和优势
环境监测
电位分析法可以用于检测水体中的重金属离子、 有机物污染物等,有助于保护环境和人类健康。
药物分析
通过电位分析法,我们可以快速准确地测定药 物中的成分,评估其质量并指导生产过程。
3
分析结果
根据测得的电势和相关计算,得出溶液中物质的浓度或其他性质的分析结果。
电位分析法实验结果的解读和 分析
实验结果的解读和分析是电位分析法的重要环节,它们需要充分考虑反应机 制、电极响应特性和实验条件,以获得可靠的结论和科学的推理。
电位分析法实验案例分享
滴定实验
通过电位分析法进行滴定实验, 可以确认酸碱滴定终点和测定溶 液中特定组分的含量。

电位分析法

电位分析法

电位分析法一、概论:电位分析法是通过化学电池的电流为零的一类方法二、电位分析法指示电极分类1、第一类电极:金属及其离子溶液2、第二类电极:金属及其难溶盐(或络合离子)3、第三类电极:金属与具有两种共同阴离子的难溶盐或难解离的络合离子4、第零类电极:惰性金属Pt 、Au 、C 等三、参比电极与盐桥1、参比电极1标准氢电极:在任何温度下电位值都为零,但一般不使用,因为操作麻烦又贵。

2甘汞电极和银-氯化银电极:电极电位可从P362查表获得甘汞电极:)/(|)(),(22L xmol KCl s Cl Hg l Hg 银-氯化银电极:)/(|)(),(L xmol KCl s AgCl s Ag 2、盐桥1作用:联通电路,消除或减小液接电位2使用条件:不含被测离子、正负电子迁移率基本相等、离子浓度尽可能大,减少液接电位。

四、离子选择电极1、膜电电位E 膜=in Dd out D E E E ++=l in l out a a nF RT k ln '±(d E :扩散电位,D E :界面电位,a :活度)2、离子选择电极电位:l out ISE a nF RT const E ln '±=(负离子➕,正离子➖)l out ISE SCEBattery a nFRT K E E E ln ±=-=(负离子➖,正离子➕)ISE :离子选择电极,SCE :参比电极3、离子选择电极类型及其相应机理1玻璃电极:玻璃在纯水或稀酸中浸泡时,玻璃中的+Na 与溶液里的+H 发生交换,在玻璃表面形成水化胶层。

此时玻璃的结构为:内外水化胶层+中间干玻璃层;干玻璃层靠+Na 导电,而水化胶层靠+H 扩散导电。

2晶体膜电极A 、氟离子单晶电极:敏感膜为3LaF 的单晶薄片,氟离子能扩散进入膜相的缺陷空穴,膜中的氟离子也可以进入溶液,因而在两相界面上产生了膜电位。

B 、硫、卤素离子电极。

电位分析法

电位分析法
M
RT Pot z / m Pot z / n K ln a M K m a K ...... ,i i m, ja j ZF


0.059 Pot z / m Pot z / n M K ln a M K m a K ...... ,i i m, j a j Z
★ 试样组分较稳定的试液,如火力发电厂水 蒸气中Na+的测定。
<二> 校准曲线法: 配制试液和一系列标准溶液,加 1. 方法要点: 入总离子强度调节缓冲溶液,使 各溶液的实验条件一致。分别测 定它们的电动势,根据标准系列 溶液的浓度,作E~C曲线,再用 内插法求试液中被测物含量。 2. 适用范围: ★ 适用于大批量试样的分析。
二、膜电位的产生: 〈一〉膜电位: ● 膜电位: 膜两侧接触不同浓度电解质 溶液而产生的电位差。
〈一〉膜电位产生的模型: 1.扩散电位:
●C1>C2:产生浓差扩散 ●H+迁移较Cl-快:造 成溶液界面上的电荷 分布不匀 ●C1负电荷多而C2正电 荷多:在相界面产生 电位差 ●电位差的产生,使离子 的扩散速度减慢,最后 达到平衡,使两相界面 之间有稳定的界面电位
① 当正、负离子的迁移数相等时,扩散电位 等于零;
② 扩散电位可以出现在液体、固体界面上; ③ 扩散电位不具备强制性和选择性; ④ 扩散电位是膜电位的组成部,它存在于膜 相内部。
2.道南电位:
●渗透膜:它至少能阻止 一种离子从一个液相扩 散到另一个液相。 ●C1>C2:产生浓差扩散
●仅允许少量的K+通过,
§3—1 电位分析法原理
一、电位分析法:
●将指示电极和参比电极同时浸入试液,组 成电池,在通过电路的电流为零的条件下, 测量指示电极的平衡电位,从能斯特方程 式求待测离子浓度的方法,称电位分析法。

电位分析法原理的应用

电位分析法原理的应用

电位分析法原理的应用1. 什么是电位分析法•电位分析法是一种基于电荷分布状况和电势差的测量方法。

•它通过测量电极之间的电势差来推测样品溶液中的各种离子活性和浓度。

2. 原理和基本原则•基本原理:电位分析法是基于化学平衡原理和电势差的理论基础。

•电化学平衡:在溶液中存在着一系列反应,形成各种离子和分子,达到了一个动态的平衡状态。

•电位差:电极之间的电势差可以通过电极上的电荷分布和反应的平衡程度来进行测量。

3. 应用领域电位分析法广泛应用于以下领域:3.1 环境监测•电位分析法可以用于环境水体中重金属离子、有机物等的浓度分析。

•通过分析环境水体中的离子活性和浓度可以评估水质状况。

3.2 药物研发•电位分析法可以用于药物的分子结构分析,特别是药物的酸碱性质。

•通过电位分析法可以研究药物的溶解度、稳定性和药效等方面的指标。

3.3 食品安全监测•电位分析法可以用于食品中有毒有害物质的检测,如重金属、农药残留等。

•通过电位分析法可以对食品样品进行快速分析和检测,确保食品的安全性。

3.4 电化学能源•电位分析法在燃料电池、锂电池等电化学能源领域有重要应用。

•通过电位分析法可以评估电化学反应的动力学和稳定性。

4. 电位分析法的优势•非破坏性分析:电位分析法不需要破坏样品,可以进行非破坏性的分析。

•快速便捷:电位分析法可以快速获得结果,适用于大规模样品分析。

•灵敏度高:电位分析法对低浓度离子和微量分析具有较高的灵敏度。

5. 电位分析法的局限性•有限的适用范围:电位分析法只适用于具有一定电化学反应性质的样品。

•高要求的操作技术:电位分析法对操作技术和实验条件有一定要求。

•需要参考标准:电位分析法需要使用标准物质进行校准和比对。

6. 结论电位分析法是一种基于电荷分布和电势差的测量方法,可以广泛应用于环境监测、药物研发、食品安全监测和电化学能源等领域。

它具有非破坏性分析、快速便捷和高灵敏度等优势,但也有适用范围有限、操作技术要求高和需要参考标准等局限性。

电位分析法3

电位分析法3
由此式可以看出: a. T影响斜率S,为了校正
这种效应的影响,一般测量仪器上都有 温度
补偿器来进行调节; b. T影响截距 K',K'项 包括参比电极、液接电位等,这些都与 T有 关,在整个测量过程中应保持温度恒定 。
第十七页,编辑于星期二:十四点 十六分。
?电动势的测量
RT E = k + lnc
电位分析方法及应用
直接电位分析法 (P27 ,pH测定前面已讲过)
校准曲线法
直接电位定 量分析方法 标准加入法
格氏作图法
第一页,编辑于星期二:十四点 十六分。
1. 标准曲线法
配制一系列与试样溶液组成相似的标准溶
液Ci和试样溶液,测出相应的电动势。然后以
测得的电位 E对相应的标准溶液的 lgai (或lgCi )
∑∑ Ei
-
b
=
S lg
c xVx Vx
+ cs +
Vi Vi
Ei - b
∑ 10 S
=
cxVx + cs
Vi
∑ Vx + Vi
Ei
∑ 10 S
b
∑ 10 S
= cxVx + cs Vi V x + Vi
(阳离子)
( ∑ ) ( ∑ ) Vx + Vi 10Ei / S = 10b/ S cxVx + cs Vi
24.25
24.35
390
4400
830
第二十八页,编辑于星期二:十四点 十六分。
?2E
?
??
?
E
?
?
?
? ?
?
E
?

仪器分析-第三章电位分析法

仪器分析-第三章电位分析法

5 lg A 9 []2 g k ' 0 .05 lg S 9 2 ] [2 2
既可以为Ag+离子选择电极,也可以作为S2-离子选择电极。
该电极在一定情况下可以测定CN-离子。测定时向试液 中(本身不含Ag+)加入少量的Ag(CN)2- 使其浓度为10-5~ 10-6 mol•L-1 ,试液中存在下面的平衡:
种类繁多
例如,葡萄糖电极、尿素电极、尿酸电极、胆固醇 电极、乳酸电极、丙酮酸电极等等。就是葡萄糖电 极也并非只有一种,有用pH电极或碘离子电极作 为转换器的电位型葡萄糖电极等。
氨基酸的测定用氨基酸脱羧酶和氨基酸氧化酶 催化,例如:
HO6H C4CH 2CHN 2CHOO氨 H 基 酸 脱 羧酶 HO6H C4CH 2CH 2NH 2+CO 2
非晶体膜电 极
均相晶体膜电极
非均相晶体膜电 极 刚性基质电极
流动载体电极
敏化离子选择 电极是以原电 极为基础装配 成的离子选择 电极。
敏化电极
气敏化电极 酶(底物)电极
(1)玻璃电极
玻璃电极的膜电位的建立是一个典型的例子。 玻璃电极:pH、pNa、pK玻璃电极等。
pH 玻璃电极是最早出现 的 ISE , 底 部 敏 感 膜 很 薄 0.1mm , 两 边 厚 。 内 充 0.1mol·L-1HCl 溶 液 作 为 内 参 比溶液,内参比电极是 Ag|AgCl。
由于电极的内参比溶液和试液中离子的活度不 同,感应膜的内外均形成双电层,在膜的内外壁之 间产生电位差(膜电位),此电位差与待测离子的活 度有定量关系。
(a)离子接触型;(b)全固态型 全固态型电极制作简单,可以在任意方向倒置使 用,而且消除了压力和温度对内部溶液的限制。

3电位分析法解析

3电位分析法解析
ISE与金属基指示电极在基本原理上有本质区别
3 应用
➢用于测定阴阳离子(包括碱金属离子及一价 阴离子)、有机离子、生物物质,并用于气体 分析
➢适用的浓度范围宽
➢医疗卫生部门、工业流程自动控制、环境监 测等各种传感器
➢微型及超微型电极用于单细胞等活体分析
➢与化学平衡理论相结合测定有关常数
§2 离子选择电极电位法基本原理
电位分析法的理论依据是能斯特公式,它 是通过测量电池电动势进行定量分析。
E电池 ISE SCE 液接
那么,ISE(离子选择电极,膜电极)的
电极电位 ISE 是多少?
一、膜电位的产生
1 含义——膜的一侧或两侧与电解质溶液接触 而产生的电位差,它实质上是一种相间电位。
2 产生 膜电位的产生是由于离子在溶液与膜相内
同理,膜对RZ-产生响应时,

k '
RT ZF
ln

故对阴、阳离子产生响应时:

k '
RT ZF
ln 外
3 离子选择电极的电极电位
ISE 内参 膜
膜电位和膜电极的电 极电位(ISE的电极 电位)有不同的含义
k RT ln
ZF
(k由膜内界面上的相间 电位、内外膜表面不完 全相同的不对称电位和 内参比电极电位决定)
离子缔合物 (有机相)
由于只有响应离子能通过膜与溶液的界面进行扩散,因此
破坏了两相界面附近电荷分配的均匀性,产生相间电位。
电极的选择性决定于缔合物的稳定性及响应离 子在有机溶剂中的淌度;电极的灵敏度取决于活 性物质(缔合物)在有机相和水相中的分配系数, 分配系数越大,灵敏度越高。
➢流动载体
测定阳离子采用带负电荷的流动载体,测定阴离 子采用带正电荷的流动载体,形成离子缔合物

第三章 电位分析法

第三章 电位分析法

缺点:
选择性差:既对本身阳离子响应,亦对其它 阳离子响应; 这类电极只能在碱性或中性溶液中使用,因 为酸可使其溶解; 电极易被氧化,并形成氧化层; 一些“硬”金属,如Fe, Cr, Co, Ni。其电极 电位的重现性差; E ~ paMn+作图,所得斜率与理论值(-0.059/n) 相差很大、且难以预测。
通过测量滴定分析过程中指示电极的 电位变化来确定滴定终点,再按滴定 所消耗溶液的体积和浓度来计算待测 物质含量的方法。 该方法实际是一种容量分析法。与一 般的滴定分析法的根本差别在于确定 终点的方法不同。
七、电位分析法的理论基础:
能斯特方程(电极电位与溶液中待测离 子间的定量关系)。
RT aRe d 0 E=E ln nF aOx
n+ = EM /M 0+0.059/n(lga n+) E M
例如:Ag+|Ag(沉淀滴定的指示电极)。
条件:
1) 在溶液中,只能产生一种形式
的简单金属离子; 2) 具有正的标准电位。
较常用的金属基电极有:
Ag/Ag+、Hg/Hg22+、Cu/Cu2+、Zn/Zn2+、
Cd/Cd2+、Bi/Bi3+、Pb/Pb2+
0.059 2+ E Pb2+ /Pb = E + lga(Pb ) 2
0

a(Pb
2+
) =
K sp (PbSO 4 ) a(SO 4 2- )
K sp (CaSO 4 ) a(Ca 2+ )
a(SO 4
2-
) =
所以: E
= E0 + 2+ Pb /Pb

第三章 电位分析法

第三章  电位分析法
液膜电极的结构如图3-9所示。将溶于有机溶剂的电活性物质浸渍在作为支持体的微孔膜的孔隙内,从而使微孔膜成为敏感膜。内参比电极Ag|AgCl插入以琼脂固定的内参比溶液中,与液体电活性物质相接触。微孔膜可用聚四氟乙烯、聚偏氟乙烯或素陶瓷片制成。
(1)硝酸根离子选择电极该电极的电活性物质是带正电荷的季铵盐,将它转换成NO型,然后溶于邻硝基苯十二烷醚中。将此溶液与含5%PVC的四氢呋喃溶液混合(1:5)后,在平板玻璃上挥发制成透明膜。其结构见图3-8。硝酸根离子选择电极的电位为:
氟离子选择电极的电位可表示为:
(3.4)
k为常数,与内参比电极、内参比溶液和膜的性质有关。
测量时组成如下电池:

298K时的电池电动势可表示为:
(3.5)
(2)硫离子选择电极膜由Ag2S粉末压片制成。硫化银是一种低电阻的导体,膜内的Ag+是电荷的传递者。硫离子选择电极的电位可表示为:
(3.6)
(3)氯、溴、碘离子选择电极它们的膜分别由Ag2S-AgCl、Ag2S-AgBr和Ag2S-AgI粉末混合压片制成。膜内的电荷也是由Ag+传递。电极电位为:
离子选择电极(Ion selective electrode, ISE)是一种电化学传感器,它由敏感膜以及电极帽、电极杆、内参比电极和内参比溶液等部分组成,如图3-2所示。敏感膜是指一个能分开两种电解质溶液并能对某类物质有选择性响应的连续层,它是离子选择电极性能好坏的关键。内参比电极通常用银-氯化银电极或用银丝。内参比溶液由离子选择电极的种类决定。也有不使用内参比溶液的离子选择电极。
pH玻璃电极是最早出现的离子选择电极。pH玻璃电极的关键部分是敏感玻璃膜,内充0.1mol·L-1HCl溶液作为内参比溶液,内参比电极是Ag|AgCl,结构如图3-3所示。敏感玻璃膜的化学组成对pH玻璃电极的性质有很大的影响,其玻璃由SiO2、Na2O和CaO等组成。由纯Si2O制成的石英玻璃的结构如下:

电位分析法

电位分析法

ZD-2型自动电位滴定计原理图
曲线记录滴定仪原理图
自动控制终点型仪器需事先将终点信号值(如pH或mV) 输入,当滴定到达终点后10s时间内电位不发生变化,则延迟 电路就自动关闭电磁阀电源,不再有滴定剂滴入。使用这些 仪器实现了滴定操作连续自动化,而且提高了分析的准确度。
2.3 金属-金属难溶盐电极

金属-金属难溶盐电极是由金属表面带有该金属难溶盐 的涂层,浸在与其难溶盐有相同阴离子的溶液中组成
的,这类电极亦称为第二类电极。
2.4 汞电极
汞电极是由金属汞(或汞齐丝)浸入含少量Hg-EDTA配合物 (1×10-6 mol·-1)及待测金属离子Mn+的溶液中所组成,这 L 类电极亦称为第三类点是不受溶液中氧化剂或还
原剂的影响,玻璃膜电极不易因杂质的作用而中毒, 能在胶体溶液和有色溶液中使用。其缺点是本身具有 很高的内阻,可达数百兆欧,必须辅以电子放大装置 才能测定,其电阻又随温度变化,一般只能在5~60 ℃使用。酸度过高(pH<1)和碱度过高(pH>9)将分别产 生测定误差—“酸差”和“钠差”。
1、电位滴定法的仪器装置及测定原理


电位滴定所用的基本仪器装置如图所示。它包括滴定 管、滴定池、指示电极、参比电极、搅拌器和测量电 动势的仪器。测量电动势可用电位计,也可以用直流 毫伏计。 进行电位滴定时,在待测溶液中插入一支指示电极和 一支参比电极组成工作电池。随着滴定剂的加入,由 于发生化学反应,待测离子的浓度将不断发生变化, 因而指示电极的电位也发生相应的变化,在化学计量 点附近,离子浓度发生突变,引起电位的突变,因此 通过测量工作电池电动势的变化,就能确定滴定终点。 溶液用电磁搅拌器进行搅拌。通常每加入一定量的滴 定剂后即测量一次电池电动势,这样就得到一系列的 滴定剂用量(V)和相应的电池电动势(E)的数据。

电位分析法

电位分析法

电位分析法
一、电化学基础知识
电极电位:M Mn+ + ne
金属离子受金属表面负电子的吸引聚集在金属表面,达到动态平衡,金属和盐溶液之产生一定电位差,这种电位差叫做电极电位。

能斯特方程:电极电位与待测离子间的定量关系。

电位分析法分类:
◆电位法:电极电位与溶液中所对应的离子活度有确定的关系,通过电极电位的测定,可以确定被测离子的活度。

◆电位滴定法:利用电极电位的变化来指示滴定终点,通过滴定剂体积和浓度求待测物质含量。

二、电位法(pH测定)
参比电极:常用的参比电极为甘汞电极和银-氯化银电极。

指示电极:测定pH值的指示电极为玻璃电极。

当内外玻璃膜与水溶液接触时,Na2SiO3晶体骨架中的Na+与水中的H+发生交换:
G-Na+ + H+====G-H+ + Na+
玻璃电极使用前,必须在水溶液中浸泡。

三、电位滴定法
在滴定液中插入指示电极和参比电极,通过测量电池电动势在滴定过程中pH或电位的变化来确定终点的方法。

进行有色或混浊液的滴定时,使用指示剂确定滴定终点会比较困难。

此时可采用电位滴定法。

酸碱滴定以玻璃电极为指示电极;氧化还原滴定以Pt为指示电极;沉淀滴定可采用Ag电极作指示电极;络合滴定以第三类电极为指示电极。

电位滴定终点确定方法
(1)E-V曲线法:曲线切线斜率最大对应的体积为滴定终点。

(2)ΔE/ΔV - V曲线法:曲线上极大值对应的体积点为滴定终点。

(3)Δ2E/ΔV 2 - V曲线法: Δ2E/ΔV 2=0对应的体积为滴定终点。

电位分析法.

电位分析法.

电位分析法.第三类:通过电极反应把被测物质,转变为金属或其它形式的搓化物,用重量法测定基会量。

2、电化学电池2.1 原电池能自发的将本身的化学能变成电能,这种化学电池称为原电池。

以铜锌原电池为例锌电极、负极(阳极):e 2Z Z 2n n +→+氧化反应铜电极、正极(阴极):u 2uC e 2C →++还原反应2.2 电解池实现某种电化学反应的能量由外电源供给则这种化学电池称为电解池仍以铜电极和锌电极为例。

锌电极、负极(阴极):n 2nZ e 2Z →++ 还原反应铜电极、正极(阳极):e 2C C 2u u +→+氧化反应应注意:阳极、阴极是对实际发生的反应而言,阳极发生氧化反应,阴极发生还原反应;正极、负极是对电荷的流向而言,电子流出为负极,电子流入为正极。

2.3 电池的表示方法Zn ZnSO 4(a 1) CuSO 4( a 2)Cu E 电池=E 右-E 左规定:⒈发生氧化反应的一极(阳极)写在左边,发生还原反应的写在右边。

⒉电池组成的每一个接界面用单竖线“∣”隔开,两种溶液通过盐桥连接,用双竖线“‖”表示。

⒊电解质溶液位于两电极之间,并应注明浓度,如有气体应注明压力、温度电池电动势左右电池-=E E E3、电位分析法概述电位分析法(potentiometry):是基于测量浸入被测液中两电极间的电动势或电动势变化来进行定量分析的一种电化学分析方法,称为电位分析法。

根据分析应用的方式又可分为直接电位法和电位滴定法。

直接电位法(direct potentiometry) :是将电极插入被测液中构成原电池,根据原电池的电动势与被测离子活度间的函数关系直接测定离子活度的方法。

电位滴定法 (potentiometric titration): 是借助测量滴定过程中电池电动势的突变来确定滴定终点,再根据反应计量关系进行定量的方法。

电位分析法的实质是通过在零电流条件下测定两电极间的电位差(即所构成原电他的电动势) 进行分析测定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
3.1 离子选择性电极及其分类
离子选择性电极的基本结构主要包括: (1)敏感膜、电极帽、电极杆 (2)内参比电极: 一般用Ag|AgCl电极 (3)内参比溶液: 一般含有与待测离子相同 的离子(可选)
7
敏感膜是指一个能分开两种电解质溶 液,并能对某类物质有选择性响应的 连续层。
敏感膜一般满足以下条件; 微溶性 导电性 选择性
Ag-AgCl 电极
ax
a
26
27
电位滴定法
φ/V
V
V/ml
利用电极电位的突跃来指示终点 28 到达的滴定方法。
3.4 离子计ຫໍສະໝຸດ ISE的内阻很高, 达108Ω , 如果检出电流为10-9A, 则造 成的电压降将为0.1 V, 相当于2个pH单位 为减少高内阻测量引起的误差, 使用高输入阻抗的电 子毫伏计; 测量误差% =
φISE=k— 0.0592 lgaF19
φISE=k - 0.0592 lg aF-
20
离子选择电极的电位与溶液中响应离子 的活度的对数值成如下线性关系
φISE=k±0.0592/z lgaM 离子选择电极的电极电位表达式(298.15 K)
21
3.2 离子选择性电极的特性参数

能斯特响应
φISE=k±0.0592/z lgaA
《仪器分析》
第三章
电位分析法
1
电位分析法
化学电池与电极电位
Zn|ZnSO4(x mol/L)||CuSO4(y mol/L) |Cu
e
E= 右,还原- 左,还原 = θ+ 0.0592/z lg n+
如果Cu2+溶液的浓度确 定,根据电动势的改变, 即可确定Zn2+溶液浓度的 变化。
Zn
玻 璃 薄 膜
Ag-AgCl 电极 a2
11
20世纪60年代,根据这一原理,人们设计了pH电极:
a2
a1
12
采用这一装置,两参比电极间的电位差与H+活 度间的关系是:
a1 E k '0.0592 lg a2 k 0.0592 lg a1 k 0.0592 pH
13
为什么玻璃薄膜能对pH产生特殊响应?
23
3.3 电位分析方法
电位法 标准曲线法 基体干扰,加入离子强度调节剂 标准加入法 减少基体干扰的最佳方法,适用于组成复 杂和份数不多的样品 直读法

24
标准加入法
25
直读法
pH测量原理:
饱 和 甘 汞 电 极
玻 璃 薄 膜
Ag-AgCl 电极
as
a
饱 和 甘 汞 电 极
玻 璃 薄 膜
31
本章要求



掌握电位法和电位滴定法的基本原理和不 同之处 掌握离子选择电极的基本构造及检测原理 掌握离子选择电极的电极电位表达式 理解电位法和电位滴定法的分析方法 了解离子计阻抗要求
32
4
电池:离子选择电极|试液(Cx)||饱和甘汞电极
离子选择电极-指示电极 饱和甘汞电极( Ag/AgCl电极)-参比电极 待测试液-电解质溶液
外部装置:离子计(或pH计)
5
指示电极:
指示被测试液中某种离 子的活度或浓度。测定 过程中溶液本体浓度不 发生变化。 参比电极: 测量电极电位时提供电 位标准
敏感玻璃膜的组成: SiO2, Na2O, CaO
14
H+
Na+ Na+ Na+ Na+ Na+
Na+
H+
a1H
H+ H+ H+ H+
干玻璃膜
Na+ Na+ Na+ Na+
H+ H+
0.1mm
a2H
H+ 浓差梯度导致扩散电位
15
16
检测原理
玻璃电极利用敏感玻璃膜分开内参比氢 离子溶液和待测氢离子溶液,通过敏感 膜对氢离子具有选择性响应,并产生膜 电位,从而将氢离子浓度转化为电极电 位而实现测量。
17
晶体膜电极
晶体膜 离 子 电极 选 非均相膜电极:多晶中掺杂惰性 择 电 物质经热压制成。 极 非晶体膜电极-如pH玻璃电极
均相膜电极:由单晶或由一种化 合物和几种化合物均匀混合的多 晶压片制成。如氟离子选择电极 ( LaF3- EuF3)
18
氟离子选择电极


敏感膜由LaF3单晶片 制成,掺杂了少量 EuF3等。 氟离子是电荷的传递 者。La3+固定在膜相 中,不参与电荷传递。

线性范围&实际响应斜率 检测下限
22
电位选择系数
问题:玻璃电极能否用于Na+的响应?
E b 0.0592 lg (a H K H,Naa Na )
当[H+] >> [Na+]时, KH,Na aNa可以忽略。 当[Na+]浓度很大时,出现误差,称为钠差。
KpotH,Na称为电位选择系数,表明pH玻璃电极 抗Na离子干扰的能力。其值越小,选择性 越好。
Cu
3
电位分析法:在通过电池的电流为零的条 件下测定电池的电动势或电极电位,利用 电极电位与浓度的关系来测定物质浓度的 一种电化学分析方法。


电位法:测量某一电极的电位,通过能斯特公 式直接获取待测离子浓度。物质游离离子的量 电位滴定法:根据滴定过程中的电极电位的突 变来确定滴定终点的分析方法。物质的总量
输入阻抗
R电极
× 100 %
R电极 + R离子计
如果要做到误差小于1%o, R离子计应大于1011Ω 。
29
离子计参数要求: R仪表应大于1011 Ω 最小分度:0.1 mV 量程: 1000 mV 离子选择电极接离子计的负端(高输入 阻抗),饱和甘汞电极接正端
30
作业
46页: 7,10
8
如果要测定H+离子,应该用什么电极?
9
玻璃电极 (玻璃膜电极)
实验发现,插在两个具有不同pH值的溶液间的薄而 导电的玻璃薄膜两侧有电位差现象。这一电势可以通过 在每个溶液中各放一支参比电极的方法加以测量。
饱 和 甘 汞 电 极
玻 璃 薄 膜 a1
Ag-AgCl 电极
a2
10
饱 和 甘 汞 电 极 a1
相关文档
最新文档