【含答案与解析】新人教数学7年级上同步训练:第4章第2节 直线、射线、线段

合集下载

人教版七级上《4.2直线、射线、线段》同步练习含解析

人教版七级上《4.2直线、射线、线段》同步练习含解析

人教版数学七年级上册第4章 4.2直线、射线与线段同步练习一、单选题(共10题;共20201、线段AB=5cm,BC=2cm,则线段AC的长度是( )A、3cmB、7cmC、3cm或7cm2、两条相交直线与另一条直线在同一平面,它们的交点个数是( )A、1B、2C、3或2D、1或2或33、平面上有四点,经过其中的两点画直线最多可画出( )A、三条B、四条C、五条D、六条4、以下条件能确定点C是AB中点的条件是( )A、AC=BCB、C、AB=2CBD、AB=2AC=2CB5、平面内四条直线最少有a个交点,最多有b个交点,则a+b=( )A、6B、4C、2D、06、如图,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是( )A、5B、6C、7D、87、平面上有四个点,经过其中的两点画直线最少可画a条直线,最多可画b条直线,那么a+b的值为( )A、4B、5C、6D、78、下列说法中正确的是( )A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有( )A、0个B、1个C、2个D、3个10、如图,点A,B在直线m上,点P在直线m外,点Q是直线m上异于点A,B的任意一点,则下列说法或结论正确的是( )A、射线AB和射线BA表示同一条射线B、线段PQ的长度就是点P到直线m的距离C、连接AP,BP,则AP+BP>ABD、不论点Q在何处,AQ=AB-BQ或AQ=AB+BQ二、填空题(共5题;共11分)11、往返于甲,乙两地的客车,中途停靠3个车站(来回票价一样)准备________种车票.12、线段有________个端点,射线有________个端点,直线有________个端点.13、如图所示,共有线段________条,共有射线________条.14、如图,A,B,C,D是一直线上的四点,则________ +________=AD﹣AB,AB+CD =________﹣________.15、往返于两个城市的客车,中途停靠三个站,且任意两站间的票价都不同,则共有________种不同票价.三、作图题(共1题;共5分)16、按下列要求画出图形(在原图上画)如图,平面上有三点A,B,C ①画直线AB ②画射线BC③画线段AC.四、解答题(共5题;共25分)17、已知AB=10cm,点C在直线AB上,如果BC=4cm,点D是线段AC的中点,求线段BD的长度.18、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.19、如图,点D为线段CB的中点,AD=8cm,AB=10cm,求CB的长度.2020知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长.21、如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.答案解析部分一、单选题1、【答案】C【考点】两点间的距离【解析】【解答】解:如图(一)所示,当点C在线段AB外时,AC=AB+BC=5+2=7cm;如图(二)所示,当点C在线段AB内时,AC=AB﹣BC=5﹣2=3cm.故选C【分析】根据题意画出图形,由于点C与线段AB的位置不能确定,所以应分点C在AB外和在AB之间两种情况进行讨论.2、【答案】D【考点】直线、射线、线段【解析】【解答】解:当另一条直线与两条相交直线交于同一点时,交点个数为1;当另一条直线与两条相交直线中的一条平行时,交点个数为2;当另一条直线分别与两条相交直线相交时,交点个数为3;故它们的交点个数为1或2或3.故选D.【分析】本题中直线的位置关系不明确,应分情况讨论,包括两条相交直线是否是另一条直线平行、相交或交于同一点.3、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图,最多可画6条直线.,故选D.【分析】画出图形即可确定最多能画的直线的条数.4、【答案】D【考点】直线、射线、线段【解析】【解答】解:AC=BC,AC= AB,AC=2CB都不能说明点A、B、C三点共线,由AB=2AC=2CB可知A、B、C三点共线,且AC=BC,所以,点C是AB中点.故选D.【分析】根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.5、【答案】A【考点】直线、射线、线段【解析】【解答】解:交点个数最多时, = =6,最少有0个.所以b=6,a=0,所以a+b=6.故选:A.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.6、【答案】D【考点】直线、射线、线段【解析】【解答】解:以O为端点的射线有2条,以A为端点的射线有3条,以B为端点的射线有3条,共有2+3+3=8条.故选D.【分析】根据射线的定义,分别数出以O、A、B为端点的射线的条数,再相加即可解得.7、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图所示:平面上有四个点最少画1条直线,最多画6条直线.故a=1,b=6.则a+b=1+6=7.故选:D.【分析】当四点在一条直线上时,可画1条,当任意三点不在同一条直线上时可画出6条直线,1+6=7.8、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.9、【答案】B【考点】直线、射线、线段,角的概念,角平分线的定义【解析】【解答】解:①平角就是一条直线,错误;②直线比射线线长,错误;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个,正确;④连接两点的线段叫两点之间的距离,错误;⑤两条射线组成的图形叫做角,错误;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,错误;其中正确的有1个.故选:B.【分析】分别利用直线、射线、线段的定义以及角的概念和角平分线的定义分析得出即可.10、【答案】C【考点】直线、射线、线段,点到直线的距离,三角形三边关系【解析】【解答】解:A. 射线AB和射线BA表示不同的射线,故A不符合题意;B. PQ⊥AB时,线段PQ的长度就是点P到直线m的距离,故B不符合题意;C. 连接AP,BP,则AP+BP>AB,故C符合题意;D. Q在A的右边时,不满足AQ=AB-BQ或AQ=AB+BQ,故D不符合题意;故选:C.【分析】二、填空题11、【答案】2020【考点】直线、射线、线段【解析】【解答】解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;∴有10种不同的票价;∵有多少种车票是要考虑顺序的,∴需准备2020票,故答案为:2020【分析】先求出线段条数,一条线段就是一种票价,车票是要考虑顺序,求解即可.12、【答案】2;1;0【考点】直线、射线、线段【解析】【解答】解:根据线段、射线、直线的定义即可得出: 线段有2个端点,射线有1个端点,直线有0个端点.故答案为:2,1,0.【分析】根据线段、射线、直线的定义即可得出其顶点的个数,此题得解.13、【答案】6;5【考点】直线、射线、线段【解析】【解答】解:图中线段有:ED、EC、EB、DC、DB、CB共6条,射线有:ED、EB、CD、CB、BE共5条,故答案为:6,5.【分析】根据直线、射线、线段的概念进行判断即可.14、【答案】BC;CD;AD;BC【考点】直线、射线、线段【解析】【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC;CD;AD;BC【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.15、【答案】10【考点】直线、射线、线段【解析】【解答】解:根据题意得: =10,则共有10种不同票价,故答案为:10【分析】根据在一条直线上n个点连为条线段规律,计算即可得到结果.三、作图题16、【答案】解:如图所示: .【考点】直线、射线、线段【解析】【分析】根据直线、射线、线段的定义画出即可.四、解答题17、【答案】解:∵AB=10cm,BC=4cm,点C在直线AB上,∴点C在线段AB上或在线段AB的延长线上.①当点C在线段AB上时,如图①,则有AC=AB﹣BC=10﹣4=6.∵点D是线段AC的中点,∴DC= AC=3,∴DB=DC+BC=3+4=7;②当点C在线段AB的延长线上时,如图②,则有AC=AB+BC=10+4=14.∵点D是线段AC的中点,∴DC= AC=7,∴DB=DC﹣BC=7﹣4=3.综上所述:线段BD的长度为7cm或3cm.【考点】两点间的距离【解析】【分析】由于AB>BC,点C在直线AB上,因此可分点C在线段AB上、点C在线段AB的延长线上两种情况讨论,只需把BD转化为DC与BC的和或差,就可解决问题.18、【答案】解:设AB=2x,BC=3x,CD=4x,∵E、F分别是AB和CD的中点,∴BE= AB=x,CF= CD=2x,∵EF=15cm,∴BE+BC+CF=15cm,∴x+3x+2x=15,解得:x= ,∴AD=AB+BC+CD=2x+3x+4x=9x= cm【考点】两点间的距离【解析】【分析】根据题意可设AB=2x,然后根据图形列出方程即可求出AD的长度.19、【答案】解:由线段的和差,得DB=AB﹣AD=2cm,由线段中点的性质,得BC=2BD=4cm.【考点】两点间的距离【解析】【分析】根据线段的和差,可得DB的长,根据线段中点的性质,可得答案.2020答案】解:设AC=2x,CD=3x,DB=4x,∴AB=AC+CD+DB=9x,∵AB的中点为M,∴MB= AB=4.5x,∵N是DB的中点,∴NB= DB=2x,∴MB﹣NB=MN,∴4.5x﹣2x=5,∴2.5x=5,∴x=2,∴AB=9x=18cm【考点】两点间的距离【解析】【分析】根据AC:CD:DB=2:3:4,可设AC=2x,然后根据条件列出方程即可求出AB的长度.21、【答案】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=2+4=6cm,∵M是线段AC中点,∴AM= AC=3cm,∴BM=AM﹣AB=3﹣2=1cm.故BM长度是1cm.【考点】两点间的距离【解析】【分析】先根据AB=2cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC中点求出AM,再由BM=AM﹣AB即可得出结论.。

人教版七年级数学(上)第四章《几何图形初步》4.2直线、射线、线段同步练习题(含答案)

人教版七年级数学(上)第四章《几何图形初步》4.2直线、射线、线段同步练习题(含答案)

人教版七年级数学(上)第四章《几何图形初步》4.2直线、射线、线段同步练习题学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.有下列说法:①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③若点B是线段AC 的中点,则AB=BC;④若AB=BC,则点B是线段AC的中点.其中正确的结论有()。

A.1个B.2个C.3个D.4个2.如图,下列说法中错误的是()。

A.图中共有6条线段B.线段AB与线段AC是指同一条线段C.线段AB与线段BA是指同一条线段D.点B在直线AC上3.下列说法中,正确的是()。

A.延长直线ABB.已知线段AB,作线段CD=ABC.延长线段AB到点C,使AC=BCD.画直线AB=5cm4.点B在线段AC上,AB=5,BC=3,则A,C两点间的距离是 ( )。

A.8B.2C.4D.无法确定5.按下列长度,A,B,C不在同一直线上的是 ( )。

A.AB=4,BC=7,AC=11B.AB=7,BC=24,AC=17C.AB=4,BC=5,AC=8D.AB=17,BC=11,AC=66.如图,点A,B,C是直线l上的三个点,图中共有线段 ( )。

A.1条B.2条C.3条D.4条7.把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理正确的是()。

A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.两点之间,射线最短8.如图,AB=8cm,AD=BC=5cm,则CD等于()。

A.1cmB.2cmC.3cmD.4cm9.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是()。

A.射线BAB.射线ACC.射线BCD.射线CB10.已知线段AB,延长线段AB至点C,使BC=3AB,取BC中点D,则()。

A.AD=CDB.AD=BCC.DC=2ABD.AB︰BD=2︰3二、填空题(本大题共5小题,共15分)11.如图,点A,B,C,D在同一条直线上,则图中共有线段______条;直线有_____条;射线有______条。

人教版七年级上册数学同步精炼4.2 直线、射线、线段(word版,含答案解析)

人教版七年级上册数学同步精炼4.2 直线、射线、线段(word版,含答案解析)

4.2 直线、射线、线段一、选择题(共15小题;共75分)1. 如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是( )A. 点动成线B. 两点之间直线最短C. 两点之间线段最短D. 两点确定一条直线2. 如图,AC=BD,比较线段AB与线段CD的大小( )A. AB=CDB. AB>CDC. AB<CDD. 无法比较3. 下列说法正确的是( )A. 射线PA和射线AP是同一条射线B. 射线OA的长度是12cmC. 直线ab,cd相交于点MD. 两点确定一条直线4. 把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是( )A. 过一点有无数条直线B. 两点确定一条直线C. 两点之间线段最短D. 线段是直线的一部分5. 如图,工作流程线上A、B、C、D处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A. 线段BC的任意一点处B. 只能是A或D处C. 只能是线段BC的中点E处D. 线段AB或CD内的任意一点处6. 如图,下列说法错误的是( )A. 直线AC与射线BD相交于点AB. BC是线段C. 直线AC经过点AD. 点D在直线AB上7. 已知线段AB,CD,AB<CD,如果将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,那么点D的位置( )A. 点D与点B重合B. 点D在线段AB上C. 点D在线段AB的延长线上D. 无法判断8. 如图所示,C是线段AB的中点,D是线段BC的中点,下列等式不正确的是( )A. CD=BC−DBB. CD=AD−ACC. CD=12AB−BD D. CD=13AB9. 平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )A. 2条B. 3条C. 4条D. 1条或3条10. 如图,下列说法,正确说法的个数是( )①直线AB和直线BA是同一条直线;②射线AB与射线BA是同一条射线;③线段AB和线段BA是同一条线段;④图中有两条射线.A. 0B. 1C. 2D. 3。

人教版数学七年级上册:4.2 直线、射线、线段 同步练习(附答案)

人教版数学七年级上册:4.2 直线、射线、线段  同步练习(附答案)

4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。

人教版 七年级数学上册 4.2 直线、射线、线段 同步课时训练(含答案)

人教版 七年级数学上册 4.2 直线、射线、线段 同步课时训练(含答案)

人教版七年级数学上册 4.2 直线、射线、线段同步课时训练一、选择题1. 木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是()A.两点确定一条直线B.两点确定一条线段C.过一点有一条直线D.过一点有无数条直线2. 下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么M是线段AB的中点C.因为点A,M,B(互不重合)在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以M是线段AB的中点3. 下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不可能是同一条直线4. 如图所示的操作是()A.作直线外一点B.作一条线段等于已知线段C.作两条直线相交D.作一条线段与已知直线相交5. 如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B6. 下列说法错误的是()A.图①中直线l经过点AB.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点7. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b8. 已知线段AB=12 cm,C是直线AB上一点,BC=4 cm,若P是线段AB的中点,则线段PC的长度是()A.2 cmB.2 cm或10 cmC.10 cmD.2 cm或8 cm9. 如图,C,D是线段AB上的两点,E是线段AC的中点,F是线段BD的中点,若AB=10,CD=4,则EF的长为()A.6B.7C.5D.810. 如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点表示的数分别为-5和6,E为BD的中点,则下列选项中,离线段BD的中点E最近的整数是()A.-1B.0C.-2D.3二、填空题11. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.12. 如图,已知O是线段AB的中点,C是AB的三等分点,OC=2 cm,则AB=.13. 线段AB被依次分成2∶3∶4的三部分,第一部分和第三部分的中点的距离为4.2 cm,则最长的一部分的长为cm.14. 如图,已知三点A,B,C.(1)画出直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于点B,C),画线段AD;(3)数数看,此时图中共有条线段.命题点3点与直线、直线与直线的位置关系15. 如图所示,AF=.(用含a,b,c的式子表示)16. 图中可用字母表示出的射线有条.三、解答题17. 小明和小亮在讨论“射击时为什么枪管上要有准星?”这一问题.小明说:“过两点有且只有一条直线,所以枪管上要有准星.”小亮说:“若将人眼看成一点,准星看成一点,目标看成一点,这不就有三点了吗?不是三点确定一条直线吗?”你认为他们两个谁的说法正确?18. 如图9所示,A,B,C是一条笔直公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现要在A,B之间建一个车站P,设P,C 之间的路程为x km.(1)用含x的式子表示车站到三个村庄的路程之和;(2)若路程之和为102 km,则车站应设在何处?(3)若要使车站到三个村庄的路程之和最小,则车站应设在何处?最小值是多少?19. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).人教版七年级数学上册 4.2 直线、射线、线段同步课时训练-答案一、选择题1. 【答案】A2. 【答案】D3. 【答案】B4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.8. 【答案】B[解析] ∵线段AB=12 cm,P是线段AB的中点,∴BP=AB=6 cm.如图①,线段BC不在线段AB上时,PC=BP+BC=6+4=10(cm);如图②,线段BC在线段AB上时,PC=BP-BC=6-4=2(cm).综上所述,线段PC的长度是10 cm或2 cm.9. 【答案】B[解析] 由线段的和差,得AC+DB=AB-CD=10-4=6.∵E是线段AC的中点,∴AE=AC.∵F是线段BD的中点,∴BF=BD.∴AE+BF=(AC+DB)=3.由线段的和差,得EF=AB-(AE+BF)=10-3=7.故选B.10. 【答案】D[解析] 因为AD=|6-(-5)|=11,2AB=BC=3CD,所以AB=1.5CD.所以1.5CD+3CD+CD=11.所以CD=2,所以AB=3.所以BD=8.所以ED=BD=4.所以点E所表示的数是6-4=2.所以离线段BD的中点E最近的整数是选项D中的3.二、填空题11. 【答案】两点确定一条直线12. 【答案】12 cm[解析] 因为AO=AB,AC=AB,所以OC=AO-AC=AB=2 cm.所以AB=12 cm.13. 【答案】2.8[解析] 设第一部分的长为2x cm.由题意,得x+3x+2x=4.2,解得x=0.7,所以4x=2.8.14. 【答案】解:(1)(2)如图所示:(3)图中共有6条线段.故答案为6.15. 【答案】2a-2b-c16. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题17. 【答案】解:小明的说法正确,小亮的说法不正确.如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,目标必须在人眼与准星确定的直线上,换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.18. 【答案】解:(1)若车站P在B,C之间,则路程之和为P A+PC+PB=PC+AC+PC+PB=PC+AB=(100+x)km;若车站P在A,C之间,则路程之和为P A+PB+PC=P A+PC+CB+PC=AB+PC=(100+x)km.故车站到三个村庄的路程之和为(100+x)km.(2)由题意得100+x=102,故x=2,即车站应设在C村左侧或右侧2 km的地方.(3)当x=0时,x+100=100,即车站建在C处时到三个村庄的路程之和最小,最小值为100 km.19. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.。

人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案

人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案

人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列直线、射线、线段中,能相交的是()A.B.C.D.2.任意画三条不重合的直线,交点的个数是()A.1B.1或3C.0或1或2或3D.不能确定3.如图,用适当的语句表述图中点与直线的关系,错误..的是()A.点P在直线AB外B.点C在直线AB外C.直线AC不经过点M D.直线AC经过点B4.晚上,小明拿起手电筒射向远方,他发现电筒光线是一条()A.线段B.射线C.直线D.不能确定5.如图,下列不正确的说法是()A.直线AB与直线BA是同一条直线;B.射线OA与射线AB是同一条射线C.线段AB与线段BA是同一条线段;D.射线OA与射线OB是同一条射线6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.线段是直线的一部分7.已知:A、B、C是同一直线上的三点,点D为AB的中点,若12AB=,BC=7,则CD的长为()A.1B.13C.13或1D.9.531二、填空题三、解答题15.如图,点C在线段上,,AC=12,点M,N分别是,的中点,点P在线段上,点Q为的中点.(1)分别求出、的长度;(2)若,求的长度.16.如图,点A,C,N,B在同一条直线上.(1)图中共有______条线段;(2)AB=______+______+______;(3)若点N是线段BC的中点,35cm=求线段AN的长.AB=,3AC CN参考答案:1.A2.C3.B4.B5.B6.A7.C8.D9.C10.2 直线上直线外直线外直线上11.312.AB13.314.3或1315.(1)CN=9 MN=6(2)AP=616.(1)6 (2)AC,CN,NB (3)28cm。

人教版七年级上册数学 4.2直线、射线、线段 同步练习(含解析)

人教版七年级上册数学 4.2直线、射线、线段 同步练习(含解析)

4.2直线、射线、线段同步练习一.选择题1.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条2.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线3.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.84.已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB 与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上5.若线段AB=13cm,MA+MB=17cm,则下列说法正确的是()A.点M在线段AB上B.点M在直线AB上,也有可能在直线AB外C.点M在直线AB外D.点M在直线AB上6.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线7.已知线段AB=4cm,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,则线段CD的长为()A.12cm B.10cm C.8cm D.6cm8.如图,AB=18,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8B.10C.12D.159.图中共有线段()A.4条B.6条C.8条D.10条10.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=10,CD =4,则EF的长为()A.6B.7C.5D.8二.填空题11.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条.12.已知点C,D在直线AB上,且AC=BD=1.5,若AB=7,则CD的长为.13.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.14.把一段弯曲的河流改直,可以缩短航程,其理由是.15.如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=.三.解答题16.已知:点M是直线AB上的点,线段AB=12,AM=2,点N是线段MB的中点,画出图形并求线段MN的长.17.如图,C、D在线段AB上,AB=48mm,且D为BC的中点,CD=18mm.求线段BC和AD的长.18.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.参考答案1.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.2.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.3.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.4.解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD上(C、D之间),故选:A.5.解:当点M在线段AB上时,MA+MB=AB,∵AB=13cm,MA+MB=17cm,∴M点不在线段AB上;当点M在线段AB的延长线上时,AB=AM﹣BM=13cm,∵MA+MB=17cm,∴AM=15cm,BM=2cm;当点M在线段BA的延长线上时,AB=BM﹣AM=13cm,∵MA+MB=17cm,∴BM=15cm,AM=2cm;当点M不在直线AB上时,则构成△ABM,∵AM+BM>AB,∴17cm>13cm成立,∴点M不在直线AB上;综上所述,点M可能在直线AB上,也可能在直线AB外,故选:B.6.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.7.解:由线段的和差,得AC=AB+BC=4+4=6(cm),由线段中点的性质,得CD=AD+AC=2AC=2×6=12(cm),故选:A.8.解:∵AB=18,点C为AB的中点,∴BC=AB=×18=9,∵AD:CB=1:3,∴AD=×9=3,∴DB=AB﹣AD=18﹣3=15.故选:D.9.解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.10.解:由线段的和差,得AC+DB=AB﹣CD=10﹣4=6.∵点E是AC的中点,∴AE=AC,∵点F是BD的中点,∴BF=BD,∴AE+BF=(AC+DB)=3.由线段的和差,得EF=AB﹣(AE+BF)=10﹣3=7.故选:B.11.解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.12.解:如图1,∵AC=BD=1.5,AB=7,∴CD=AB﹣AC﹣BD=4;如图2,CD=AC+AB﹣BD=1.5+7﹣1.5=7;如图3,CD=AB﹣AC+BD=7,如图4,CD=AC+AB+BD=1.5+7+1.5=10,综上所述,CD的长为4或7或10,故答案为:4或7或10.13.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.14.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.15.解:对C点的位置分情况讨论如下:①C点在A点的左边,∵AC:CB=1:2,BD:AB=2:3,假设AC=3k,则AB=3k,BD=2k,∴CD=3k+3k+2k=8k,∵CD=12,∴k=1.5,∴AB=4.5;②C点在线段AB上,∵AC:CB=1:2,BD:AB=2:3,假设AC=k,则CB=2k,BD=2k,∴CD=CB+BD=4k,∵CD=12,∴k=3,∴AB=AC+CB=3k=9;③C点在B点后,不符合题意,舍去;∴综上所述,AB=4.5或9.16.解:由于点M的位置不确定,所以需要分类讨论:①点M在点A左侧,如图1:∵AB=12,AM=2,∴MB=AB+AM=12+2=14,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=14,∴MN=×14=7;②点M在点A右侧,如图2:∵AB=12,AM=2,∴MB=AB﹣AM=12﹣2=10,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=10,∴MN=×10=5,综上所述,MN的长度为5或7.17.解:∵D为BC中点,∴BC=2CD,∵CD=18mm,∴BC=2×18=36(mm),∵AB=48mm,∴AC=AB﹣BC=48﹣36=12(mm),∴AD=AC+CD=12+18=30(mm).18.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.。

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》 含答案

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》  含答案

2020年人教版七年级上册同步练习:4.2《直线、射线、线段》一.选择题1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短3.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个8.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.109.如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.点A在线段OB上10.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC 的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题13.把一段弯曲的河流改直,可以缩短航程,其理由是.14.如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.15.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.16.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)18.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三.解答题20.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.21.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.22.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.25.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM ﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一.选择题1.解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.2.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.3.解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.4.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.5.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.6.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.7.解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.8.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.9.解:A、点O不在射线AB上,点O在射线BA上,故此选项错误;B、点B是线段AB的一个端点,故此选项错误;C、射线OB和射线AB不是同一条射线,故此选项错误;D、点A在线段OB上,故此选项正确.故选:D.10.解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.11.解:如图1,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB+BN=4+1=5cm;如图2,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB﹣BN=4﹣1=3cm;故选:B.12.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题13.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.14.解:由图可得,最短的路线为从甲经A到乙,因为两点之间,线段最短.故答案为:从甲经A到乙,两点之间,线段最短.15.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.16.解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.17.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.18.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=2(cm),综上所述,AC和BC中点间的距离为4cm或2cm.故答案为:4cm或2cm.19.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.三.解答题20.解:(1)如图所示:;(2)如图所示,(3)如图所示,.21.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.22.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.23.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.24.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.25.解:(1)根据C、D的运动速度知:BD=2PC ∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP =②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.。

人教版七年级数学上册4.2 直线、射线、线段同步测试(含试题答案和解析)

人教版七年级数学上册4.2 直线、射线、线段同步测试(含试题答案和解析)

人教版七年级数学上册4.2 直线、射线、线段同步测试一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定条直线.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=;(2)若BC=3,求AD的长.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案与试题解析一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN解:A、画直线MN,在直线MN上任取一点P,正确;B、以点M为端点画射线MA,正确;C、直线a,b相交于点M,故错误;D、延长线段MN到点P,使NP=MN,正确;故选:C.2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短解:把一根木条固定在墙面上,至少需要两枚钉子,是因为两点确定一条直线.故选:B.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB 解:由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=AB,选项A,AC=AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=AB,选项正确选项C,AE=3AC⇒AE=AB,选项正确选项D,因为AD=2AC,CB=3AC,所以AD=,选项错误故选:D.4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个解:①过两点只能画一条直线,故正确;②过两点可以画2条射线,故错误;③过两点只能画一条线段,故正确.综上所述,正确的结论有2个.故选:B.5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对解:当三点在同一直线上时经过此三点可以画一条直线,当三点不在同一直线上时经过此三点可以画三条直线,所以经过三点中的任两点可以画1或3条直线,故选:C.6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:C.7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5cm;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5cm.综合上述情况,线段MN的长度是5cm.故选:D.二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定1或4或6条直线.解:如图所示:(1)四点在一条直线上,1条,如图1;(2)三点在一条直线上,4条,如图2;(3)两点在一条直线上,6条,如图3;故答案为:1或4或6.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有①③④(只填写序号)解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为4cm或1cm.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=1(cm),综上所述,AC和BC中点间的距离为4cm或1cm.故答案为:4cm或1cm.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在E 处(填“C”“E”或“D”),理由是两点之间线段最短.解:公共自行车存放点应该建在E处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=5cm 或1cm.解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.解:(1)如图所示:(2)点A在直线l上,点P在直线l外.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)解:(1)当C在线段AB上时①∵点M、N分别是AC、BC的中点,AC=8,BC=6∴CM=AC=4,CN=BC=3∴MN=CM+CN=4+3=7;②∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=a;(2)当点C在线段AB上时,MN=m n,当点C在线段AB的延长线时,MN=m﹣n,当点C在线段BA的延长线时,MN=n﹣m.17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=BC;(2)若BC=3,求AD的长.解:(1)因为B为AD的中点,所以AB=BD=AD,所以AB﹣CD=BD﹣CD=BC,故答案为:,BC.(2)因为BC=3,CD=2BC,所以CD=2BC=6,所以BD=BC+CD=3+6=9因为B是AD中点,∴AB=BD=9,∴AD=AB+BD=9+9=18,即AD的长是18.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。

人教版七年级上册数学 4.2直线、射线、线段 同步测试(含解析)

人教版七年级上册数学 4.2直线、射线、线段 同步测试(含解析)

4.2直线、射线、线段同步测试一.选择题1.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线2.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 3.平面上有A、B、C三点,经过任意两点画一条直线,可以画出直线的数量为()A.1条B.3条C.1条或3条D.无数条4.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.315.已知点A、B、C、D在同一条直线上,线段AB=8,C是AB的中点,DB=1.5.则线段CD的长为()A.2.5B.3.5C.2.5或5.5D.3.5或5.56.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB的中点的是()A.AM=BM B.AB=2AM C.AM+BM=AB D.BM=AB7.如图,线段AB=18cm,点M为线段AB的中点,点C将线段MB分成MC:CB=1:2,则线段AC的长度为()A.6cm B.12cm C.9cm D.15cm8.如图,已知线段AB=8,点C是线段AB是一动点,点D是线段AC的中点,点E是线段BD的中点,在点C从点A向点B运动的过程中,当点C刚好为线段DE的中点时,线段AC的长为()A.3.2B.4C.4.2D.9.如图,D、E顺次为线段AB上的两点,AB=19,BE﹣DE=7,C为AD的中点,则AE ﹣AC的值为()A.5B.6C.7D.810.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=CB﹣EB;③CE=CD+DB﹣AC;④CE=AE+CB﹣AB.其中,正确的是()A.①②B.①②③C.①②④D.①②③④二.填空题11.数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为.12.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=.13.如图,点C在线段AB上,且AC=AB,点D在线段BC上,AD=5,BD=3,则线段CD的长度为.14.如图,点C、D在线段AB上,AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是cm.15.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.三.解答题16.如图,已知点A、B、C.D,根据下列语句画图.(不写作图过程)作射线AB、直线AC,连接AD并延长线段AD.17.如图,A,B,C三棵树在同一直线上,若小明正好站在线段的AC中点Q处,BC=2BQ.(1)填空:AQ==AC,AQ﹣BC=.(2)若BQ=3米,求AC的长.18.如图,线段AB上顺次有三个点C,D,E,把线段AB分为了2:3:4:5四部分,且AB=28.(1)求线段AE的长;(2)若M,N分别是DE,EB的中点,求线段MN的长度.参考答案一.选择题1.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.2.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.3.解:①如果三点共线,过其中两点画直线,共可以画1条;②如果任意三点不共线,过其中两点画直线,共可以画3条.故选:C.4.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.5.解:∵AB=8,C是AB的中点,∴AC=BC=4,∵DB=1.5.当点D在点B左侧时,CD=BC﹣BD=4﹣1.5=2.5,当点D在点B右侧时,CD=BC+BD=4+1.5=5.5,则线段CD的长为2.5或5.5.故选:C.6.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;C、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确,故这个选项符合题意;D、由BM=AB可以判定点M是线段AB中点,所以此结论不正确,故这个选项不符合题意;故选:C.7.解:∵线段AB=18cm,点M为线段AB的中点,∴AM=BM=AB=9,∵点C将线段MB分成MC:CB=1:2,设MC=x,CB=2x,∴BM=MC+CB=3x,∴3x=9,解得x=3,∴AC=AM+MC=9+3=12.则线段AC的长度为12.故选:B.8.解:∵点D是线段AC的中点,∴AD=CD,∵点E是线段BD的中点,∴BE=DE,∵点C为线段DE的中点,∴CD=CE,∴AD=CD=CE,∵AB=AD+DC+CE+BE=3AD+BE=3AD+DE=3AD+2CD=5AD,∴AD=1.6,∴AC=2AD=3.2,故选:A.9.解:∵AB=19,设AE=m,∴BE=AB﹣AE=19﹣m,∵BE﹣DE=7,∴19﹣m﹣DE=7,∴DE=12﹣m,∴AD=AB﹣BE﹣DE=19﹣(19﹣m)﹣(12﹣m)=19﹣19+m﹣12+m=2m﹣12,∵C为AD中点,∴AC=AD=×(2m﹣12)=m﹣6.∴AE﹣AC=6,故选:B.10.解:由图可知:①CE=CD+DE,正确;②CE=CB﹣EB,正确;③CE=CD+DB﹣EB,错误;④CE=AE+CB﹣AB,正确;故选:C.二.填空题11.解:两端两个树坑的位置,可看做两个点,根据两点确定一条直线,即可确定一行树所在的位置.故答案为:两点确定一条直线.12.解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.13.解:∵AD=5,BD=3,∴AB=AD+BD=8,∵AC=AB=,∴CD=AD﹣AC=5﹣=,故答案为:.14.解:由线段的和差,得AC+DB=AB﹣CD=12﹣4=8(cm).图中所有线段的和AC+AD+AB+CD+CB+DB=AC+(AC+CD)+AB+CD+(CD+DB)+DB=2(AC+DB)+3CD+AB=2×8+3×4+12=40(cm).答:图中所有线段的和是40cm,故答案为:40.15.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.三.解答题16.解:作射线AB、直线AC,连接AD并延长线段AD,如图所示:17.解:(1)∵O是线段AC的中点,∴AQ=CQ=AC,AQ﹣BC=CQ﹣BC=QB,故答案为;(2)∵BQ=3米,BC=2BQ,∴BC=2BQ=6米,∴CQ=BC+BQ=6+3=9(米),∵Q是AC中点,∴AQ=QC=9(米),∴AC=AQ+QC=9+9=18(米),∴AC的长是18米.18.解:(1)设AC=2x,则CD、DE、EB分别为3x、4x、5x,由题意得,2x+3x+4x+5x=28,解得,x=2,则AC、CD、DE、EB分别为4、6、8、10,则AE=AC+CD+DE=4+6+8=18;(2)如图:∵M是DE的中点,∴ME=DE=4,∵N是EB的中点∴EN=EB=5,∴MN=ME+EN=4+5=9.。

【最新】人教版七年级数学上册同步练习4.2 直线、射线、线段(含答案).doc

【最新】人教版七年级数学上册同步练习4.2 直线、射线、线段(含答案).doc

4.2 直线、射线、线段基础检测1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.2.如图1,图中共有______条线段,它们是_________.1()2()3()3.如图2,图中共有_______条射线,指出其中的两条________.4.线段AB=8cm,C 是AB 的中点,D 是BC 的中点,A 、D 两点间的距离是_____cm.5.如图3,在直线上顺次取A 、B 、C 、D 四点,则A C=______+BC=AD-_____,AC+BD- BC=________.6.下列语句准确规范的是( )A.直线a 、b 相交于一点mB.延长直线ABC.反向延长射线AO(O 是端点)D.延长线段AB 到C,使BC=AB 7.下列四个图中的线段(或直线、射线)能相交的是( )1()2()3()4()A.(1)B.(2)C.(3)D.(4) 8.如果点C 在AB 上,下列表达式①AC=12AB;②AB=2BC;③C 是AB 中点的有( )A.1个B.2个C.3个D.4个9.如上图,从A 到B 有3条路径,最短的路径是③,理由是( ) A.因为③是直的 B.两点确定一条直线 C.两点间距离的定义 D.两点之间,线段最短 10.如图,平面上有四个点A 、B 、C 、D,根据下列语句画图 (1)画直线AB 、CD 交于E 点; (2)画线段AC 、BD 交于点F; (3)连接E 、F 交BC 于点G;B AA(4)连接AD,并将其反向延长; (5)作射线BC;(6)取一点P,使P 在直线AB 上又在直线CD 上. 拓展提高11.观察图中的3组图形,分别比较线段a 、b 的长短,再用刻度尺量一下, 看看你的结果是否正确.12.如图,要在一个长方体的木块上打四个小孔,这四个小孔要在一条直线上,且每两个相邻孔之间的距离相等,画出图形,并说明其中道理.13.如图,一个三角形纸片,不用任何工具,你能准确比较线段AB 与线段AC 的大小吗试用你的方法分别确定线段AB 、AC 的中点.BA14.在一条直线上取两上点A 、B,共得几条线段在一条直线上取三个点A 、B 、 C,共得几条线段在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段 在一条直线上取n 个点时,共可得多少条线段CB A C4.2 直线、射线、线段答案1.无数;一,只有一2.3条,线段AC,AB,CB3.4,射线BA,射线A B4.65. AB,CD,AD6.D7.A8.C9.D12.道理:经过两点,有且只有一条直线13.提示: 折叠14.2个点时1条线段,3个点时有2+1=3条线段;4个点时有3+2+1=6条线段;[n 个点时有(n-1)+(n-2)+……+3+2+1=(1)2n n条线段.。

人教版初中数学七年级上册《4.2 直线、射线、线段》同步练习卷(含答案解析

人教版初中数学七年级上册《4.2 直线、射线、线段》同步练习卷(含答案解析

人教新版七年级上学期《4.2 直线、射线、线段》同步练习卷一.选择题(共19小题)1.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm2.下列说法正确的是()A.直线AB长5cmB.射线AB和射线BA是同一条射线C.延长线段AB到CD.直线长度是射线长度的2倍3.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171B.190C.210D.3805.如图,点A、B、C是直线l上的三个点,图中共有线段和射线条数分别是()A.一条,二条B.二条,三条C.三条,六条D.四条,三条6.建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.连接两点之间的线段叫做两点之间的距离7.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是()A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线8.下面现象中,能反映“两点之间,线段最短”这一基本事实的是()A.用两根钉子将细木条固定在墙上B.木锯木料先在木板上画出两个点,再用墨盒过这两个点弹出一条墨线C.测量两棵树之间的距离时,要拉直尺子D.砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线9.如图,从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路.能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有一条且只有一条直线垂直于已知直线10.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短11.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.612.如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,AB=9.8cm,那么线段MN的长等于()A.5.4cm B.6.4cm C.6.8cm D.7cm13.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm14.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 15.点A,B,C在同一条直线上,AB=3cm,BC=1cm,则AC的长度为()A.2cm B.4cm C.2cm或4cm D.不能确定16.如果A,B,C在同一条直线上,线段AB=10cm,BC=2cm,则A,C两点间的距离是()A.12cm B.8cm C.12cm或8cm D.14cm17.已知线段AB,延长AB到点C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为()A.3 cm B.6 cm C.1 cm D.12 cm18.已知线段AB=10cm,在直线AB上有一点C,且线段BC=4cm,点M是线段AC的中点,则AM的长为()A.3cm B.7cm C.6cm D.3cm和7cm 19.如图,点A、B在线段EF上,点M、N分别是线段EA、BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长是()A.10 cm B.11 cm C.12 cm D.13 cm二.解答题(共7小题)20.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?21.如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.22.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm (如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q 从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.23.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B、C左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.24.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s 的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.25.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.26.(应用题)如图所示,A,B,C是一条公路上的三个村庄,A,B间路程为100km,A,C间路程为40km,现在A,B之间建一个车站P,设P,C之间的路程为xkm.(1)用含x的代数式表示车站到三个村庄的路程之和;(2)若路程之和为102km,则车站应设在何处?(3)若要使车站到三个村庄的路程总和最小,问车站应设在何处?最小值是多少?人教新版七年级上学期《4.2 直线、射线、线段》同步练习卷参考答案与试题解析一.选择题(共19小题)1.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm【分析】依据直线的概念、线段的概念以及射线的概念进行判断即可.【解答】解:A.直线BA与直线AB是同一条直线,故本选项正确;B.延长线段AB,故本选项错误;C.射线BA与射线AB不是同一条射线,故本选项错误;D.线段AB的长为2cm,故本选项错误;故选:A.【点评】本题主要考查了直线、射线和线段的概念,射线是直线的一部分,注意:用两个字母表示时,端点的字母放在前边.2.下列说法正确的是()A.直线AB长5cmB.射线AB和射线BA是同一条射线C.延长线段AB到CD.直线长度是射线长度的2倍【分析】直接利用直线、射线、线段的定义分析得出答案.【解答】解:A、直线AB长5cm,错误,因为直线没有长度;B、射线AB和射线BA是同一条射线,错误,因为射线有方向;C、延长线段AB到C,正确;D、直线长度是射线长度的2倍,错误,因为直线、射线没有长度;故选:C.【点评】此题主要考查了直线、射线、线段的定义,正确把握相关性质是解题关键.3.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③【分析】根据直线、射线、线段的定义对各小题分析判断即可得解.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.【点评】本题考查了直线、射线、线段,熟记概念以及表示方法是解题的关键.4.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171B.190C.210D.380【分析】由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.【解答】解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选:B.【点评】此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.5.如图,点A、B、C是直线l上的三个点,图中共有线段和射线条数分别是()A.一条,二条B.二条,三条C.三条,六条D.四条,三条【分析】直接利用线段以及射线的定义得出答案.【解答】解:如图所示:线段有:AB,BC,AC共3条;射线分别是以A,B,C,以及以C,B,A为端点,共6条.故选:C.【点评】此题主要考查了直线、射线、线段,正确把握相关定义是解题关键.6.建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.连接两点之间的线段叫做两点之间的距离【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是:两点确定一条直线.故选:A.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.7.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是()A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线【分析】直接利用直线的性质分析得出答案.【解答】解:工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是:两点确定一条直线.故选:D.【点评】此题主要考查了直线的性质,正确把握直线的性质是解题关键.8.下面现象中,能反映“两点之间,线段最短”这一基本事实的是()A.用两根钉子将细木条固定在墙上B.木锯木料先在木板上画出两个点,再用墨盒过这两个点弹出一条墨线C.测量两棵树之间的距离时,要拉直尺子D.砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线【分析】根据线段的性质:两点之间线段最短进行解答即可.【解答】解:A、用两根钉子将细木条固定在墙上,是两点确定一条直线,故此选项错误;B、木锯木料先在木板上画出两个点,再用墨盒过这两个点弹出一条墨线,是两点确定一条直线,故此选项错误;C、测量两棵树之间的距离时,要拉直尺子,可用基本事实“两点之间,线段最短”来解释,正确;D、砌墙时,经常在两个墙角的位置分别插一根木桩,然后拉一条直的参照线,是两点确定一条直线,故此选项错误;故选:C.【点评】此题主要考查了线段的性质,正确把握直线、射线的性质是解题关键.9.如图,从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路.能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有一条且只有一条直线垂直于已知直线【分析】根据线段的性质,可得答案.【解答】解:从A地到B地有三条路可走,为了尽快到达,人们通常选择其中的直路,理由是两点之间线段最短,故选:A.【点评】本题考查了线段的性质,熟记线段的性质并应用是解题关键.10.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短【分析】两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短,根据线段的性质解答即可.【解答】解:用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间,线段最短.故选:D.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.11.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.6【分析】先根据AB=20,AD=14求出BD的长,再由D为线段BC的中点求出BC 的长,进而可得出结论.【解答】解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D为线段BC的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.故选:B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.12.如图,C、D是线段AB上的两个点,CD=3cm,M是AC的中点,N是DB的中点,AB=9.8cm,那么线段MN的长等于()A.5.4cm B.6.4cm C.6.8cm D.7cm【分析】由已知根据线段的和差和中点的性质可求得MC+DN的长度,再根据MN=MC+CD+DN不难求解.【解答】解:∵M是AC的中点,N是DB的中点,CD=3cm,AB=9.8cm,∴MC+DN=(AB﹣CD)=3.4cm,∴MN=MC+DN+CD=3.4+3=6.4cm.故选:B.【点评】此题主要考查两点间的距离,关键是学生对比较线段的长短的理解及运用.13.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm【分析】根据绳子对折以后用线段AB表示,可得绳长是AB的2倍,分类讨论,PB的2倍最长,可得PB,AP的2倍最长,可得AP的长,再根据线段间的比例关系,可得答案.【解答】解:当PB的2倍最长时,得PB=30cm,AP=PB=20cm,AB=AP+PB=50cm,这条绳子的原长为2AB=100cm;当AP的2倍最长时,得AP=30cm,AP=PB,PB=AP=45cm,AB=AP+PB=75cm,这条绳子的原长为2AB=150cm.故选:C.【点评】本题考查了两点间的距离,分类讨论是解题关键.14.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 【分析】设较长的木条为AB,较短的木条为BC,根据中点定义求出BM、BN的长度,然后分①BC不在AB上时,MN=BM+BN,②BC在AB上时,MN=BM﹣BN,分别代入数据进行计算即可得解.【解答】解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.【点评】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.15.点A,B,C在同一条直线上,AB=3cm,BC=1cm,则AC的长度为()A.2cm B.4cm C.2cm或4cm D.不能确定【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意画出的图形进行解答.【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:C.【点评】考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.如果A,B,C在同一条直线上,线段AB=10cm,BC=2cm,则A,C两点间的距离是()A.12cm B.8cm C.12cm或8cm D.14cm【分析】分点B在A、C之间和点C在A、B之间两种情况讨论.【解答】解:(1)点B在A、C之间时,AC=AB+BC=10+2=12cm;(2)点C在A、B之间时,AC=AB﹣BC=10﹣2=8cm.则A、C两点间的距离是12cm或8cm.故选:C.【点评】本题考查的是两点间的距离,分两种情况讨论是解本题的难点也是解本题的关键.17.已知线段AB,延长AB到点C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为()A.3 cm B.6 cm C.1 cm D.12 cm【分析】因为BC=AB,AB=9cm,可求出BC的长,从而求出AC的长,又因为D 为AC的中点,继而求出答案.【解答】解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又∵D为AC的中点,∴DC=AC=6cm.故选:B.【点评】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.18.已知线段AB=10cm,在直线AB上有一点C,且线段BC=4cm,点M是线段AC的中点,则AM的长为()A.3cm B.7cm C.6cm D.3cm和7cm 【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B 之间或点C在点B的右侧两种情况进行分类讨论.【解答】解:①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M是线段AC的中点,∴AM=AC=3cm,②当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=AC=7cm.综上所述,线段AM的长为3cm或7cm.故选:D.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.如图,点A、B在线段EF上,点M、N分别是线段EA、BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长是()A.10 cm B.11 cm C.12 cm D.13 cm【分析】由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.【解答】解:∵EA:AB:BF=1:2:3,设EA=x,AB=2x,BF=3x,∵M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x,∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm.故选:C.【点评】本题考查了两点间的距离.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二.解答题(共7小题)20.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC 的差的一半,也就是说MN是AC﹣BC即AB的一半.有AC﹣BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=7cm;(2)MN=,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,又∵MN=MC+CN,AB=AC+BC,∴MN=(AC+BC)=;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,又∵AB=AC﹣BC,NM=MC﹣NC,∴MN=(AC﹣BC)=;(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.21.如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.【分析】(1)由已知可求得CN的长,从而不难求得MN的长度;(2)由已知可得AB的长是NM的2倍,已知AB的长则不难求得MN的长度.【解答】解:(1)∵N是BC的中点,M是AC的中点,AM=1,BC=4∴CN=2,AM=CM=1∴MN=MC+CN=3;(2)∵M是AC的中点,N是BC的中点,AB=6∴NM=MC+CN=AB=3.【点评】此题主要考查学生对比较线段长短的掌握情况.22.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm (如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q 从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.【分析】此题较为复杂,但仔细阅读,读懂题意根据速度公式就可求解.(1)从题中我们可以看出点P及Q是运动的,不是静止的,当PA=2PB时实际上是P正好到了AB的三等分点上,而且PA=40,PB=20.由速度公式就可求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB 的三等分点,这里的三等分点是二个点,因此此题就有二种情况,分别是AQ=时,BQ=时,由此就可求出它的速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm,这也有两种情况即当它们相向而行时,和它们直背而行时,此题可设运动时间为t秒,按速度公式就可解了.(3)此题就可把它当成一个静止的线段问题来解决了,但必须借助图形.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.【点评】做这类题时学生一定要认真仔细地阅读,利用已知条件求出未知值.学生平时就要培养自己的思维能力.而且要图形结合,与生活实际联系起来,也可以把此题当成一道路程题来对待.23.已知线段AB=12,CD=6,线段CD在直线AB上运动(A在B、C左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①是定值;②是定值,请作出正确的选择,并求出其定值.【分析】(1)需要分类讨论:①如图1,当点C在点B的右侧时,根据“M、N分别为线段AC、BD的中点”,先计算出AM、DN的长度,然后计算MN=AD﹣AM﹣DN;②如图2,当点C位于点B的左侧时,利用线段间的和差关系求得MN的长度;(2)计算①或②的值是一个常数的,就是符合题意的结论.【解答】解:(1)如图1,∵M、N分别为线段AC、BD的中点,∴AM=AC=(AB+BC)=8,DN=BD=(CD+BC)=5,∴MN=AD﹣AM﹣DN=9;如图2,∵M、N分别为线段AC、BD的中点,∴AM=AC=(AB﹣BC)=4,DN=BD=(CD﹣BC)=1,∴MN=AD﹣AM﹣DN=12+6﹣4﹣4﹣1=9;(2)①正确.证明:=2.∵===2,∴①是定值2.【点评】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.24.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,【分析】所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.【解答】解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.【点评】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.25.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以。

【含答案与解析】新人教数学7年级上同步训练:第4章第2节直线、射线、线段

【含答案与解析】新人教数学7年级上同步训练:第4章第2节直线、射线、线段

七年级数学(人教版上)同步练习第四章第二节直线、射线、线段一. 教学内容:平面图形(一)二. 学习目的:1. 通过实例了解点线面体的几何特征,感受它们之间的关系2. 了解直线、射线、线段的概念、表示方法及画法;3. 掌握点与直线的位置关系;掌握直线公理;4. 了解直线、射线、线段之间的关系;5. 理解线段的和、差及线段的中点等概念,会比较线段的大小;6. 理解两点间的距离的概念,会度量两点间的距离。

三. 技能要求:1. 会比较线段的大小,理解线段的和差与线段中点等概念。

2. 会用直尺、圆规、刻度尺等工具画线段,画线段的和差、线段的中点。

3.逐步掌握学过的几何图形的表示方法,懂得学过的几何语言,能用这些语言准确,整洁地画出图形。

认识学过的图形,会用语言描述这些简单的几何图形。

【教学过程】一. 重要数学思想1.数形结合的思想。

建立位置关系与数量关系的联系,即由形的背景建立数量关系,和由数量关系研究位置关系的思想。

2.方程的思想。

本章中一些角与线段的计算问题要通过设元,列方程解出未知数来解决。

通过这种训练初步形成方程的思想。

3.分类及分类讨论的思想。

通过本章中一些命题确定的题设条件产生的不唯一结论的讨论,初步形成分类讨论的思想。

二. 重要数学能力1.培养几何术语的表达能力。

本章是平面几何的第一章,要学习许多几何术语的表达,如“有且只有”、“经过”、“无限延长”等,掌握它们需要有一个过程。

因此,要了解它们的含义,逐步培养表达能力。

2.图形的观察记忆等能力,观察图形的特征。

并在一些稍复杂的图形中分辨出几何概念定义的基本图形。

三. 知识点讲解1. 体、面、线、点(1)只考虑物体的形状,大小和位置的物体叫做几何体。

体是由面围成的,面与面相交于线,线与线相交于点。

对于面、线、点应认识到它们是不定义的原始概念,只给一个形象上的、描述性的认识。

(2)面有平面和曲面。

如桌面可以想象为一个平面。

皮球的表面可以想象为一个曲面。

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C 是AB 的中点,D 是BC 的中点,则下列等式不成立的是( )A . CD =AD-ACB . CD =21AB -BD C . CD =41AB D . CD=31AB 8.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个 11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB和射线BA是同一条射线;⑤若AC=BC,则点C是线段AB的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A.2个B.3个C.4个D.5个二、填空题12.点C在线段AB上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。

【含答案与解析】新人教数学7年级上同步训练:(42直线、射线、线段).doc

【含答案与解析】新人教数学7年级上同步训练:(42直线、射线、线段).doc

4.2直线、射线、线段5分钟训练(预习类训练,可用于课前)1•下列图形能比较大小的是()A.直线与线段B.直线与射线C.两条线段D.射线与线段思路解析:直线、射线都可以无限延伸,无法比较大小,只有线段可以比较大小. 答案:C2.___________________ 射线、线段都是 ______ 的一部分,射线有____ 个端点,线段有______________________ 个端点.答案:直线1 23._______________________________________________________ 如图4-2-1所示,线段AB 上有两点C和D,则图屮共有____________________________________ 条线段.11 11A C D B图4-2-1思路解析:图中的线段有AC、AD、AB、CD、CB、DB,共6条线段.答案:64.____________________ 把一条线段分成的点,叫做这条线段的中点.如图4-2-2,若AD二7 cm, BD=4 cm,且C为BD的中点,那么AO ___________ cm.A BCD• • • •图4-2-2思路解析:要求AC,关键是求出CD,由中点定义可知CD二2 cm,所以AC二5 cm.答案:两条相等线段510分钟训练(巩固类训练,可用于课后)1.图4-2-3中是四个图形,则下面对图形的叙述正确的个数是()图4-2-3①线段AB与射线MN不相交②点M在线段AB上③直线a与直线b不相交④延t线射线AB,则会通过点CA. 0B. 1C. 2D. 3思路解析:“射线驭”不仅告诉我们MN是一条射线,还表示点M是射线的端点.既然如此,图①中的射线MN就是向右无限伸展的,确定与线段AB不相交•“点M在线段AB上”与“点M在线段AB的上方”含义是不同的,语句②不正确.直线是向两个方向无限伸展的,图中③ 的a、b 是相交的.射线AB是从点A出发且由A至B的方向无限延伸的图形,不存在延长的问题,所以语句④不对.答案:B2.图4-2-4中的直线表示方法中正确的个数是()a b 直线血a B直线肋 4 B直线M 图4-2-4A b直线肋A 直线MA.都正确B.都错误C.只有一个错误D.只有一个正确思路解析:直线的表示方法:①用这条直线上两个不同的大写字母表示;②用一个小写字母 表示.所以第三个图形表示直线的方法是正确的.答案:D3. ______________________________________ 如图4-2-5,能用字母表示的直线有 条,它们是 _______________________________________ ;能用字母表示的线段有____ 条,它们是 ______ ;在直线EF 上的射线有 ________ 条,它们是 ___________ .图 4-2-5思路解析:本题中直线不难确定,再确定线段和射线吋,要注意先确定端点,而确定端点时 要注意顺序,才不会遗漏.答案:3直线AD 、直线AB 、直线BD 6线段AB 、线段AC 、线段AD 、线段BC 、线段CD 、 线段BD 6射线BE 、射线BF 、射线CE 、射线CF 、射线DE 、射线DF4. 直线、射线、线段的区别与联系各是什么?思路解析:主要从端点和延伸性去寻找.答案:直线、射线、线段的区别是:直线没有端点;射线只有一个端点;线段有两个端点. 直线、射线、线段的内在联系是:线段是直线上两点间的部分,射线是直线上一点向一侧无 限延伸的部分.它们都是直线的一部分.若射线向反向延长,或线段向两方延长,都可以得到 直线,若线段向一方延长可得射线,在直线上取两点可以得到一条线段,取一点可以得到两 条射线.直线的基本性质有两条:一是两点确定一条直线.二是两条直线相交,只有一个交点.线段的 基本性质有一条:两点之间,线段最短.5. 如图4-2-6, C 是AB 的中点,D 是BE 的中点.A CB D EI 1 11]怎么老是你英语老师问一个学生:“'How are you?'是什么意思? ” 学生想how 是怎么,you 是你,于是回答:“怎么是你? ” 老师生气了。

【最新】新人教版七年级数学上册同步试题《4.2直线、射线、线段》测试题含答案.doc

【最新】新人教版七年级数学上册同步试题《4.2直线、射线、线段》测试题含答案.doc

《4.2直线、射线、线段》测试题一、选择题1.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④考查说明:本题主要考查两点之间线段最短和两点确定一条直线的性质.答案与解析:D。

①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.2.下列语句正确的是()A.画直线AB=10厘米B.画直线l的垂直平分线C.画射线OB=3厘米D.延长线段AB到点C,使得BC=AB考查说明:本题主要考查的概念以及几何语言与图形语言的相互转化.答案与解析:选D.A、直线无限长;B、直线没有中点,无法画垂直平分线;C、射线无限长;D、延长线段AB到点C,使得BC=AB,正确.3.长度为12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为()A.2cm B.8cm C.6cm D.4cm考查说明:本题主要考查.根据图形弄清线段之间的和、差、倍、分关系是解题的关键.答案与解析:选B.∵长度为12cm的线段AB的中点为M,∴AM=BM=6,∵C点将线段MB分成MC:CB=1:2∴MC=2,CB=4∴AC=6+2=8.二、填空题4.往返于甲、乙两地的火车中途要停靠三个站,则有_______种不同的票价(来回票价一样),需准备_________种车票.考查说明:本题主要考查运用数学知识解决生活中的问题,需要掌握正确数线段的方法.答案与解析:10,20.此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;有多少种车票是要考虑顺序的,则有10×2=20.5.在同一平面内的3个点,过任意2个点作一条直线,则可作直线的条数为______。

人教版七年级数学上册课后同步练习4.2 直线、射线、线段(含答案)

人教版七年级数学上册课后同步练习4.2 直线、射线、线段(含答案)

课后训练基础巩固1.如图所示,下列说法正确的是().A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.射线OM与射线MN是同一条射线D.射线NO与射线MO是同一条射线2.下列说法正确的是().A.两点确定两条直线B.三点确定一条直线C.过一点只能作一条直线D.过一点可以作无数条直线3.M是线段AB上的一点,其中不能判定点M是线段AB中点的是().A.AM+BM=AB B.AM=BMC.AB=2BM D.AM=12 AB4.A,B两点的距离是().A.连接A,B两点的线段B.连接A,B两点的线段的长度C.过A,B两点的直线D.过A,B两点的线段5.若点B在线段AC上,AB=10 cm,BC=6 cm,则A,C两点的距离是().A.4 cm B.16 cmC.4 cm或16 cm D.不能确定6.如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是().A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短能力提升7.如图所示,AB=CD,则AC与BD的大小关系是().A.AC>BD B.AC<BDC.AC=BD D.无法确定8.C是线段AB的中点,D是线段BC上一点,则下列说法不正确的是().A.CD=AC-BD B.CD=12AB-BDC.CD=AD-BC D.CD=12 BC9.点C是线段AB延长线上的一点,点D是线段AB的中点,如果点B恰好是DC的中点,设AB=2 cm,则AC=__________cm.10.如图,AC=CD=DE=EB,图中和线段AD长度相等的线段是__________.以D 为中点的线段是__________.11.已知线段AB=7 cm,在直线AB上画线段BC=1 cm,那么线段AC=________.12.有条小河l,点A,B表示在河两岸的两个村庄,现在要建造一座小桥,请你找出造桥的位置,使得到A,B两村的路程最短,并说明理由.且NB=14厘米,求PM的长.参考答案1答案:A点拨:射线只有端点相同,在同一条线上才相同,因此B、C、D都不正确.故选A.2答案:D点拨:过一点可以作无数条直线正确,故选D.3答案:A点拨:A不能判定,并且A中点M的位置都不确定.4答案:B点拨:距离是线段的长度,不是线段,所以B正确,故选B.5答案:B点拨:因为点B在线段AC上,所以只有一点,AC=AB+BC=16(cm).故选B.6答案:D7答案:C点拨:因为AB=CD,所以AB+BC=CD+BC,即AC=BD.8答案:D点拨:如图所示:CD=BC-BD=AC-BD=12AB-BD,CD=AD-AC=AD-BC,所以A、B、C都正确,因为D不是BC的中点,所以CD≠12BC,故选D.9答案:3点拨:B恰好是DC的中点,D是AB的中点,所以AD=DB,DB=BC,所以AD=DB=BC=12AB=1(cm),所以AC=3 cm.10答案:DB,CE AB,CE点拨:AD=2AC,只要是2段基本线段的和的线段都与AD的长度相等.11答案:6 cm或8 cm点拨:两种情况如图:AC=AB-BC=7-1=6(cm);AC=AB +BC=7+1=8(cm).12解:如图:过点A,B作线段AB,与直线l的交点P为所求的点,因为两点之间,线段最短.点拨:由“两点之间,线段最短”可知,到A,B两村的路程最短的点在AB上任一点都可,这点还要在直线l上,所以就是AB与l的交点.13解:∵N是BP中点,M是AB中点,∴PB=2NB=2×14=28(厘米),∵AM=MB=12AB=12×80=40(厘米),∴MP=MB-PB=40-28=12(厘米).答:PM的长为12厘米.点拨:根据NB=14厘米,N为PB的中点,求出PB,再根据AB=80厘米,M为AB 的中点,求出MB,由MP=MB-PB,求出PM.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(人教版上)同步练习第四章
第二节直线、射线、线段
一. 教学内容:
平面图形(一)
二. 学习目的:
1. 通过实例了解点线面体的几何特征,感受它们之间的关系
2. 了解直线、射线、线段的概念、表示方法及画法;
3. 掌握点与直线的位置关系;掌握直线公理;
4. 了解直线、射线、线段之间的关系;
5. 理解线段的和、差及线段的中点等概念,会比较线段的大小;
6. 理解两点间的距离的概念,会度量两点间的距离。

三. 技能要求:
1. 会比较线段的大小,理解线段的和差与线段中点等概念。

2. 会用直尺、圆规、刻度尺等工具画线段,画线段的和差、线段的中点。

3. 逐步掌握学过的几何图形的表示方法,懂得学过的几何语言,能用这些语言准确,整洁地画出图形。

认识学过的图形,会用语言描述这些简单的几何图形。

【教学过程】
一. 重要数学思想
1. 数形结合的思想。

建立位置关系与数量关系的联系,即由形的背景建立数量关系,和由数量关系研究位置关系的思想。

2. 方程的思想。

本章中一些角与线段的计算问题要通过设元,列方程解出未知数来解决。

通过这种训练初步形成方程的思想。

3. 分类及分类讨论的思想。

通过本章中一些命题确定的题设条件产生的不唯一结论的讨论,初步形成分类讨论的思想。

二. 重要数学能力
1. 培养几何术语的表达能力。

本章是平面几何的第一章,要学习许多几何术语的表达,如“有且只有”、“经过”、“无限延长”等,掌握它们需要有一个过程。

因此,要了解它们的含义,逐步培养表达能力。

2. 图形的观察记忆等能力,观察图形的特征。

并在一些稍复杂的图形中分辨出几何概念定义的基本图形。

三. 知识点讲解
1. 体、面、线、点
(1)只考虑物体的形状,大小和位置的物体叫做几何体。

体是由面围成的,面与面相交于线,线与线相交于点。

对于面、线、点应认识到它们是不定义的原始概念,只给一个形象上的、描述性的认识。

(2)面有平面和曲面。

如桌面可以想象为一个平面。

皮球的表面可以想象为一个曲面。

现实的世界中是找不到几何中的面的。

它是从实际物体中抽象出来的图形。

几何重点研究平面,把它看成是一个到处平直,没有厚度,向各个方向无限延展的面。

(3)线有直线和曲线之分。

如一束光线,可以想象成直线。

一个圆桌的边可想象成曲线。

同样几何中说的线,也只能从实物中想象。

要把线看成没有宽窄,其中直线又是可以向两个方向无限延伸的。

(4)对于点,有时我们在纸上画一个红点就代表一个点,在地图上把一个城市看成一个点,这些都想象为点。

几何中的点在现实中也是找不到的。

几何中的点看成是没有形状和大小,只有位置的元素。

(5)一条线上有无数多点,一个面内有无数多点。

2. 直线、射线、线段
(1)直线是不给定义的,但射线和线段是有定义的。

例:数轴,数轴的作用是:所有的实数都可以用数轴上的点表示(到代数开方一章后把数从有理数扩充到实数),由于实数是无穷多的,而实数与数轴上点又是一一对应的,且数轴本身是一条直线,因此我们很容易想到它是如何地向两方无限延伸的,同时可知直线是由无穷多点集合而成。

如图:
(3)这样一条数轴上包含着直线、射线、线段。

也可以说射线,线段均为直线上一部分。

小结为:a:直线向两方无限延伸,无端点,不可说延长直线。

b:射线向一方无限延伸,有一个端点,向一方不可说延长射线,而可由端点处作反向延长线:线段有确定的长度,有二个端点,可向两方作延长线。

注意:延长线段是指按从A到B或者从B到A的方向延长;延长用虚线;有时也说反向延长。

如延长线段EF,反向延长线段BC等;连结AC,就是要画出以A、C为端点的线段,因此连结这个词是线段专用的;
(3)直线、射线、线段的联系和区别:
a.三者的联系是:射线和线段都是直线的一部分,在直线上取一点,可以分成两条射线,取两点可以得到一条线段和四条射线,把射线反向延长线或把线段两方延长就可得到直线。

b.三者的区别:除前面讲到的端点个数和可无延伸外,再从表示方法上区别。

在表示方法上射线AB和射线BA是两条不同的射线,而直线AB和直线BA却表示同一条直线。

线段AB和线段BA表示同一条线段,但A和B是线段的端点。

直线AB和直线BA中的A、B两点是直线上的任意两点。

之间关系线段向两个方向
线段向一个方向延长
延长形成直线
3. 线段的中点:
因为点M是线段AB中点,所以AM=MB=AB;AB=2AM=2MB;
反之,因为点M在线段AB上,且有AM=MB=AB或AB=2AM=2MB,所以M是线段AB的中点。

4. 关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。

即使不知线段具体的长度也可以作计算。

(1)线段的和差
例:如图:AB+BC=AC,或说:AC-AB=BC
(2)线段的倍分
例:AC=CD=DB,即AB=3AC=3CD=3BD
或AC=AB,AD=AB,AB=AD
5. 线段n等分点
如果(n-1)个点把线段分成n条相等的线段,这(n-1)个点叫做线段的n等分点.
6. 线段公理:
两点之间的所有连线中,线段最短。

简单说成:两点之间,线段最短
直线公理:经过两点有一条直线,并且只有一条直线.
简单说成:过两点有且只有一条直线
注意:经过一点有无数条直线
7. 线段比较大小
一种是度量的方法;另一种是叠合的方法;第三种是对线段大小的估计和观察的方法。

【典型例题】
例1. 过三点A、B、C可以画几条直线?
解:分两种情况:
(1)A、B、C在一条直线上,此时可画一条直线,如图所示:
(2)A、B、C不在一条直线上,此时,无法画直线。

例2. 过A、B、C三点中的任意两点画直线,共可画几条?
解:分两种情况:
(1)A、B、C三点在一条直线上,此时,可画一条直线,如图所示:。

相关文档
最新文档