高一数学数列解题方法

合集下载

高一数学-数列基础知识归纳

高一数学-数列基础知识归纳
数列基础知识
一、等差数列与等比数列
等差数列
等比数列
文字定义
一般地,如果一个数列从第二项起,每一项与它的前一项的差是一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差。
一般地,如果一个数列从第二项起,每一项与它的前一项的比是一个常数,那么这个数列就叫等比数列,这个常数叫等比数列的公比。
符号定义
如: (下标成等差数列)
3. 等比,则
也等比。
4.等比数列的通项公式类似于 的指数函数,
即:
等比数列的前 项和公式是一个平移加振幅的 的指数函数,即:
5.等比数列中连续相同项数的积组成的新数列是等比数列。
证明方法
证明一个数列为等差数列的方法:
1.定义法
2.中项法
证明一个数列为等比数列的方法:
1.定义法
即把每一项都乘以 的公比 ,向后错一项,再对应同次项相减,转化为等比数列求和。
3.裂项相消法 即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列 和 (其中 等差)可Βιβλιοθήκη 项为:分类递增数列:
递减数列:
摆动数列:
常数数列:
通项
前n项和
中项
主要性质
等和性:
若 则
推论:若 则
即:首尾颠倒相加,则和相等
等积性:
若 则
推论:若 则
即:首尾颠倒相乘,则积相等




1.等差数列中连续 项的和,组成的新数列是等差数列。即:
等差,则有
2.从等差数列中抽取等距离的项组成的数列是一个等差数列。
2.中项法
设元技巧
三数等差:
四数等差:
三数等比:

高考数学数列的题型及解题方法

高考数学数列的题型及解题方法

高考数学数列的题型及解题方法高考数学数列的题型及解题方法数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都可不能遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探干脆问题是高考的热点,常在数列解答题中显现。

本章中还包蕴着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等差不多数学方法。

近几年来,高考关于数列方面的命题要紧有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中要紧是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地点用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

知识整合死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

1。

在把握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统把握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

高一数学数列求和的七大方法和技巧

高一数学数列求和的七大方法和技巧

数列求和的七大方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:2、等比数列求和公式:3、4、5、[例1]已知,求的前n项和.解:由由等比数列求和公式得(利用常用公式)===1-[例2]设S n=1+2+3+…+n,n∈N*,求的最大值.解:由等差数列求和公式得,(利用常用公式)∴===∴当,即n=8时,二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:………………………①解:由题可知,{}的通项是等差数列{2n-1}的通项与等比数列{}的通项之积设………………………. ②(设制错位)①-②得(错位相减)再利用等比数列的求和公式得:∴[例4]求数列前n项的和.解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{的通项之积设…………………………………①………………………………②(设制错位)①-②得(错位相减)∴三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.[例5]求证:证明:设………………………….. ①把①式右边倒转过来得(反序)又由可得…………..…….. ②①+②得(反序相加)∴[例6]求的值解:设…………. ①将①式右边反序得…………..②(反序)又因为①+②得(反序相加)=89∴ S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,=(分组求和)当时,=[例8]求数列{n(n+1)(2n+1)}的前n项和.解:设∴=将其每一项拆开再重新组合得S n=(分组)==(分组求和)=五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)(2)(3)(4)(5)(6)[例9] 求数列的前n项和.解:设(裂项)则(裂项求和)==[例10]在数列{a n}中,,又,求数列{b n}的前n项的和.解:∵∴(裂项)∴数列{b n}的前n项和(裂项求和)==[例11] 求证:解:设∵(裂项)∴(裂项求和)===∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n.[例12]求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n= cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵(找特殊性质项)∴S n=(cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90°(合并求和)= 0[例13] 数列{a n}:,求S2002.解:设S2002=由可得……∵(找特殊性质项)∴S2002=(合并求和)====5[例14]在各项均为正数的等比数列中,若的值.解:设由等比数列的性质(找特殊性质项)和对数的运算性质得(合并求和)===10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15]求之和.解:由于(找通项及特征)∴=(分组求和)===[例16] 已知数列{a n}:的值.解:∵(找通项及特征)=(设制分组)=(裂项)∴项求和)==。

高一数学解题技巧有哪些

高一数学解题技巧有哪些

高一数学解题技巧有哪些高一数学解题技巧有哪些11、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

2、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的`心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

3、寻求中间环节,挖掘隐含条件:在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

高一数学解题技巧有哪些2代入法这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。

b大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。

但是如果是选择题,你可以取a=0.5,b=1.5试一试。

还有就是可以把选项里的答案带到题目中的式子来计算。

倒推法!区间法这类方法也称为排除法,在答高考考数学选择题是,靠着大概计算出的数据或者猜一些数据。

比如一个题目里给了几个角度,30°,90°。

很明显,答案里就肯定是90±30度,120加减30度。

或者一些与30,60,90度有关的答案。

坐标法如果做的一些高考数学图形题完全找不到思路,第一可以用比例法,第二可以用坐标法,不用管什么三角函数,直接找到两点坐标,直接带入高中函数求角度(cos公式)求垂直,求长度,相切相离公式。

高一数学数列与数学归纳法的初步认识

高一数学数列与数学归纳法的初步认识

高一数学数列与数学归纳法的初步认识数列与数学归纳法是高中数学中的基础知识,对于数学学科的深入理解和应用起着重要的作用。

本文将对高一数学中数列与数学归纳法的初步认识进行探讨,并从定义、性质、应用等方面进行论述。

一、数列的定义与性质数列是由一系列按照一定顺序排列的数所组成的有序集合。

通常用字母$a_n$表示数列中的第$n$个数。

例如,数列$1, 2, 3, 4, 5, ...$可以表示为$a_n = n$。

数列有许多不同的类型,比如等差数列、等比数列等。

等差数列是指数列中相邻两个数之差保持不变的数列。

设首项为$a_1$,公差为$d$,则等差数列可以表示为$a_n = a_1 + (n-1)d$。

等差数列的一个重要性质是,相邻两项之差恒等于公差。

这个性质在解决数学问题时经常被用到。

等比数列是指数列中相邻两个数之比保持不变的数列。

设首项为$a_1$,公比为$q$,则等比数列可以表示为$a_n = a_1 \cdot q^{(n-1)}$。

等比数列的一个重要性质是,相邻两项之比恒等于公比。

这个性质在复利、指数函数等问题中有着重要应用。

二、数学归纳法的基本思想与步骤数学归纳法是一种证明方法,通过证明两个基本命题:1)第一个命题成立;2)若第$k$个命题成立,则第$k+1$个命题也成立。

从而可以得出对于任意正整数$n$,命题均成立。

数学归纳法的基本步骤如下:1. 证明基本命题成立。

通常是通过给定$n=1$时命题成立的证明,作为数学归纳法的起点。

2. 假设对于任意正整数$k$,第$k$个命题成立。

这是数学归纳法的归纳假设。

3. 证明根据归纳假设,对于第$k+1$个命题成立。

通过利用归纳假设的前提条件,进一步推导出第$k+1$个命题成立。

通过这三个步骤反复迭代,可以证明对于任意正整数$n$,命题均成立。

三、数学归纳法的应用数学归纳法在高中数学中有着广泛的应用。

以下列举几个典型的例子。

1. 数学归纳法在等差数列求和中的应用。

高一数学必修一 - 数列知识点总结

高一数学必修一 - 数列知识点总结

高一数学必修一 - 数列知识点总结1. 数列的概念数列是由一组按照一定规律排列的数所组成的序列。

数列可以分为等差数列和等比数列两种。

a. 等差数列等差数列是指数列中相邻两项之间的差值都相等的数列。

如果数列的公差为d,则数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$为第n项,$a_1$为首项,n为项数。

b. 等比数列等比数列是指数列中相邻两项之间的比值都相等的数列。

如果数列的公比为r,则数列的通项公式为:$a_n = a_1 \cdot r^{n-1}$,其中$a_n$为第n项,$a_1$为首项,n为项数。

2. 数列的性质a. 通项公式通项公式是数列中任意一项与项数之间的关系式。

根据数列的类型,可以通过公式求解任意项。

b. 公差和公比对于等差数列,公差是指相邻两项之间的差值。

公差可以用于确定数列的特征和性质。

对于等比数列,公比是指相邻两项之间的比值。

公比可以用于确定数列的特征和性质。

c. 首项和末项首项是数列中的第一项,通常用$a_1$表示。

末项是数列中的最后一项,通常用$a_n$表示。

d. 项数项数是数列中项的个数,通常用n表示。

e. 等差数列的和等差数列的前n项和可以通过公式求解:$S_n =\frac{n}{2}(2a_1 + (n-1)d)$,其中$S_n$表示前n项和。

f. 等比数列的和等比数列的前n项和可以通过公式求解:$S_n = \frac{a_1(1-r^n)}{1-r}$,其中$S_n$表示前n项和。

3. 数列的应用数列在数学中有着广泛的应用,其中一些常见的应用包括:a. 金融计算数列可以应用于金融中的利息计算、贷款计算等,帮助人们进行财务规划和计算。

b. 物理学数列可以应用于物理学中的运动学问题,如运动物体所经过的位置、速度等的计算。

c. 统计学数列可以应用于统计学中的数据分析和预测,帮助人们了解和预测事物的发展趋势。

总结数列是数学中非常重要的概念,常见的数列包括等差数列和等比数列。

高一数学数列求通项公式的几类方法课件

高一数学数列求通项公式的几类方法课件

②叠加法,如 an1 an f (n)
③叠乘法:如
an1 f (n) an
④构造新数列:如 an1 kan b
an1 r k (an r)
(5)取倒数:如
a1
3, an
3an1 3 an1
(n
2)
类型二:在数列中已知 Sn 求an :
设数列an 前 n 项的和 Sn 2n2 3n 1,
为等差数列
2),a1
1,
(2) 求 {an}的通项公式
变题2:已知an
2Sn2 2Sn 1
(n 2),a1 1,
1
求证: S1n
为等差数列
(2) 求 {an}的通项公式
2
解:∵an
Sn2 2Sn2
1
2Sn2 2Sn 1
且an
Sn
Sn1
(n
2Sn Sn1 Sn Sn1 Sn
2)
方法一:直接利用an Sn Sn1求出an
方法二:利用an Sn Sn1消去an,得出Sn与Sn1的 递推关系式,求出Sn,再求an
题型1.等比数列的判断
例1 已知数列bn是等差数列, a 0, 求证:数列 abn 是等比数列.
例2 已知数列an 的前n项和 Sn 满足条件
已知递推关系式求通项
从二只兔子起,每只兔子的体重是它的前 一只 兔子的二分之一加一斤,第一只的 体重为十六斤,其它兔子的体重呢?
你能根据提议写出它的递推关系式吗? 你能求出通项吗?
一、公式法
已知数列ana1 1,an1 an 3,求an
已知数列an a1
1,an1 an
3,求an
二、叠加法
2Sn1 1
整理得:1

高一数学数列知识点总结

高一数学数列知识点总结

高一数学数列知识点总结在高一数学课程中,数列是一个重要的概念。

数列是一种按照一定规律排列的一系列数,通过研究数列的规律和特性,我们可以掌握很多解题技巧和方法。

本文将对高一数学数列相关的知识点进行总结和归纳,帮助同学们更好地理解和掌握这一部分内容。

一、等差数列等差数列是指数列中任意两个相邻的数之差都相等的数列。

常用的表示方式为a1,a2,a3,...,an,其中a1为首项,d为公差。

以下是等差数列的一些重要性质和公式:1. 第n项公式:an = a1 + (n-1)d,其中n为项数;2. 前n项和公式:Sn = (n/2)(a1 + an) =n(a1 + an)/2,其中Sn为前n项和;3. 通项求和:Sn = (n/2)(2a1 + (n-1)d) = (n/2)(a1 + an) ,其中Sn为前n项和;4. 等差数列的性质:任意三个连续项中,第二项是这三个数的中值;5. 若m项等于n项差相等,则m至n项也是等差数列。

二、等比数列等比数列是指数列中任意两个相邻的数之比都相等的数列。

常用的表示方式为a1,a2,a3,...,an,其中a1为首项,q为公比。

以下是等比数列的一些重要性质和公式:1. 第n项公式:an = a1 * q^(n-1),其中n为项数;2. 前n项和公式:Sn = a1 * (1 - q^n)/(1 - q),其中Sn为前n项和;3. 通项求和:Sn = a1 * (1 - q^n)/(1 - q),其中Sn为前n项和;4. 等比数列的性质:任意三个连续项中,第二项是这三个数的几何平均数;5. 如果q的绝对值小于1,那么等比数列的前n项和存在极限,即Sn = a1 / (1 - q)。

三、斐波那契数列斐波那契数列是指数列中每一项都等于前两项之和的数列。

通常用F(n)表示第n项,其中F(1) = 1,F(2) = 1。

斐波那契数列的性质有:1. F(n) = F(n-1) + F(n-2);2. 斐波那契数列的前n项和可以通过递推公式进行求解。

高一数学数列题型总结

高一数学数列题型总结

一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 3、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn4、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式)∴ 1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ² b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n n S ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nm n C C -=可得 n nn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得n nn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴ n n n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n=k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n(裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S(裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+²²²+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+²²²+ cos178°+ cos179°∵ )180cos(cos n n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+²²²+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k个个 (找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n(设制分组)=)4131(8)4121(4+-+++-+⋅n n n n(裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313 一、选择题1、若数列{a n }的通项公式是a n =2(n +1)+3,则此数列 ( )(A)是公差为2的等差数列 (B)是公差为3的等差数列 (C) 是公差为5的等差数列 (D)不是等差数列 2、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98等于 ( )(A)36 (B)38 (C)39 (D)423、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为 ( ) (A)n n 12+ (B)n n 1+ (C)n n 1- (D)nn 21+ 4、设等差数列的首项为a,公差为d ,则它含负数项且只有有限个负数项的条件是 ( )(A)a >0,d >0 (B)a >0,d <0 (C)a <0,d >0 (D)a <0,d <0 5、在等差数列{a n }中,公差为d ,已知S 10=4S 5,则da 1是 ( ) (A)21 (B)2 (C)41(D)4 6、设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99= ( )(A)182 (B)-80 (C)-82 (D)-84 7、等差数列{a n } 中,S 15=90,则a 8= ( ) (A)3 (B)4 (C)6 (D)128、等差数列{a n }中,前三项依次为xx x 1,65,11+,则a 101= ( ) (A)3150 (B)3213 (C)24 (D)3289、数列{a n }的通项公式nn a n ++=11,已知它的前n 项和为S n =9,则项数n=( )(A)9 (B)10 (C)99 (D)100 10、等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( ) (A)45 (B)75 (C)180 (D)300 11、已知{a n }是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( )(A)12 (B)16 (C)20 (D)2412、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n 等于 ( )(A)9 (B)10 (C)11 (D)1213、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) (A)130 (B)170 (C)210 (D)160 14、等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+……+ a 99=( ) (A)60 (B)80 (C)72.5 (D)其它的值15、等差数列{a n }中,a 1+a 2+……a 10=15,a 11+a 12+……a 20=20,则a 21+a 22+……a 30=( ) (A)15 (B)25 (C)35 (D)4516、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98= ( ) (A)36 (B)39 (C)42 (D)4517、{a n }是公差为2的等差数列,a 1+a 4+a 7+……+a 97=50,则a 3+a 6+……+ a 99= ( ) (A)-50 (B)50 (C)16 (D)1.82 18、若等差数列{a n }中,S 17=102,则a 9= ( )(A)3 (B)4 (C)5 (D)6 19、夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是 ( ) (A)1500 (B)1600 (C)1700 (D)180020、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y xa( )(A)43 (B)34 (C)32(D)值不确定 21、一个等差数列共有2n 项,奇数项的和与偶数项的和分别为24和30,且末项比首项大10.5,则该数列的项数是 ( )(A)4 (B)8 (C)12 (D)2022、等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( )(A)3 (B)32 (C)916(D)4 23、设{a n }是等比数列,且a 1=32,S 3=916,则它的通项公式为a n = ( )(A)1216-⎪⎭⎫⎝⎛∙n (B)n ⎪⎭⎫ ⎝⎛-∙216 (C)1216-⎪⎭⎫⎝⎛-∙n (D)1216-⎪⎭⎫⎝⎛-∙n 或23 24、已知a 、b 、c 、d 是公比为2的等比数列,则dc ba ++22= ( )(A)1 (B)21 (C)41 (D)8125、已知等比数列{a n } 的公比为q ,若21+n a =m (n 为奇数),则213+n a = ( )(A)mq n -1(B) mq n(C) mq(D)8126、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )(A)60 (B)70 (C)90 (D)12627、若{a n }是等比数列,已知a 4 a 7=-512,a 2+a 9=254,且公比为整数,则数列的a 12是 ( )(A)-2048 (B)1024 (C)512 (D)-512 28、数列{a n }、{b n }都是等差数列,它们的前n 项的和为1213-+=n n T S n n ,则这两个数列的第5项的比为 ( )(A)2949 (B)1934 (C)1728 (D)以上结论都不对 29、已知cb b a ac lg lg 4lg2∙=,则a ,b ,c ( ) (A)成等差数列 (B)成等比数列(C)既成等差数列又成等比数列 (D)既不成等差数列又不成等比数列30、若a+b+c ,b+c -a ,c+a -b ,a+b -c 成等比数列,且公比为q ,则q 3+q 2+q 的值为 ( )(A)1 (B)-1 (C)0 (D)231、若一等差数列前四项的和为124,后四项的和为156,又各项的和为350,则此数列共有 ( ) (A)10项 (B)11项 (C)12项 (D)13项32、在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则二数之和为 ( ) (A)2113(B)04111或 (C)2110 (D)219 33、数列1,211+,3211++,……,n+⋅⋅⋅++211的前n 项和为 ( ) (A) n n 12+ (B)122+n n (C)12++n n (D)12+n n 34、设数列{a n }各项均为正值,且前n 项和S n =21(a n +na 1),则此数列的通项a n 应为 ( )(A) a n =n n -+1 (B) a n =1--n n(C) a n =12+-+n n (D) a n =12-n 35、数列{a n }为等比数列,若a 1+ a 8=387,a 4 a 5=1152,则此数列的通项a n 的表达式为( )(A) a n =3³2n -1 (B) a n =384³(21)n -1 (C) a n =3³2n -1或a n =384³(21)n -1 (D) a n =3³(21)n -1 36、已知等差数{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,则a 1+ a 9= ( )(A)45 (B)75 (C)180 (D)30037、已知等比数列{a n }中,a n >0,公比q ≠1,则 ( )(A)26242723a a a a +〉+ (B)26242723a a a a +〈+ (C)26242723a a a a +=+ (D)的大小不确定与26242723a a a a ++38、在等比数列中,首项89,末项31,公比32,求项数 ( ) (A)3 (B)4 (C)5 (D)639、等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( )(A)15 (B)17 (C)19 (D)2140、某厂产量第二年增长率为p ,第三年增长率为q ,第四年增长率为r ,设这三年增长率为x ,则有 ( ) (A)3r q p x ++=(B)3r q p x ++< (C)3r q p x ++≤ (D)3r q p x ++≥ 二、填空题1、已知等差数列公差d >0,a 3a 7=-12,a 4+a 6=-4,则S 20=_______2、数列{a n }中,若a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数又成等差数列,则a 1,a 3,a 5成_______数列3、已知{a n }为等差数列,a 1=1,S 10=100,a n =_______.令a n =log 2b n ,则的前五项之和S 5′=_______4、已知数列 )2)(1(1,,201,121,61++n n 则其前n 项和S n =________. 5、数列前n 项和为S n =n 2+3n,则其通项a n 等于____________.6、等差数列{a n }中, 前4项和为26, 后4项之和为110, 且n 项和为187, 则n 的值为____________.7、已知等差数列{a n }的公差d ≠0, 且a 1,a 3,a 9成等比数列, 1042931a a a a a a ++++的值是________. 8、等差数列{a n }中, S 6=28, S 10=36(S n 为前n 项和), 则S 15等于________.9、等比数列{a n }中, 公比为2, 前99项之和为56, 则a 3+a 6+a 9+…a 99等于________.10、等差数列{a n }中, a 1=1,a 10=100,若存在数列{b n }, 且a n =log 2b n ,则b 1+b 2+b 3+b 4+b 5等于____________.11、已知数列1, ,3,2,1nn n n n n --- , 前n 项的和为____________. 12、已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=____________.13、等比数列{a n }中, a 1+a 2+a 3+a 4=80, a 5+a 6a 7+a 8=6480, 则a 1必为________.14、三个数a 1、1、c 1成等差数列,而三个数a 2、1、c 2成等比数列, 则22c a c a ++等于____________.15、已知1lg 2, lgy 成等比数列, 且x >1,y >1, 则x 、y 的最小值为________. 16、在数列{a n }中, 5221-=+n n n a a a , 已知{a n }既是等差数列, 又是等比数列,则{a n }的前20项的和为________.17、若数列{a n }, )1)(2(1,3211+++==+n n a a a n n 且 (n ∈N), 则通项a n =________. 18、已知数列{a n }中, n n a a a )12(,22314-=-=+(n ≥1), 则这个数列的通项公式a n =________.19、正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a c x y +的值为________.20、等比数列{a n }中, 已知a 1²a 2²a 3=1,a 2+a 3+a 4=47, 则a 1为________. 三、解答题1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和,(1)70≤n ≤200;(2)n 能被7整除.2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围;(Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由.3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值.4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式na 及前n 项和n S .5、已知数列{n a }的前n 项和31=n S n(n +1)(n +2),试求数列{na 1}的前n 项和.6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根;(2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 11+n m ,…也成等差数列.7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值.8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比数列,试求这两个数列的通项公式.10、若等差数列{log 2x n }的第m 项等于n ,第n 项等于m(其中m ≠n),求数列{x n }的前m +n项的和。

高一数学数列知识点总结

高一数学数列知识点总结

高一数学数列知识点总结一、数列的概念与表示数列是由按照一定顺序排列的一列数构成的数学对象。

通常用大写字母或数字来表示数列,如数列{a_n}表示数列的第n项为a_n。

数列可以是有限的,也可以是无限的,根据数列的项是否有规律,数列可以分为等差数列、等比数列、递推数列等。

二、等差数列等差数列是最常见的数列类型之一,它的每一项与前一项的差是一个常数,这个常数称为公差。

等差数列的通项公式为a_n = a_1 + (n - 1)d,其中a_1是首项,d是公差。

等差数列的前n项和公式为S_n = n/2 * (2a_1 + (n - 1)d)。

等差数列的性质包括:1. 等差数列中,任意两项的差是相同的。

2. 如果一个等差数列的首项不为零,那么它的所有项的符号相同。

3. 等差数列的前n项和是关于n的二次函数。

三、等比数列等比数列是每一项与前一项的比值是一个常数的数列,这个常数称为公比。

等比数列的通项公式为a_n = a_1 * q^(n - 1),其中a_1是首项,q是公比。

等比数列的前n项和公式为S_n = a_1(1 - q^n) / (1 - q),当q的绝对值小于1时,S_n趋向于a_1/(1 - q)。

等比数列的性质包括:1. 等比数列中,任意两项的比值是相同的。

2. 如果公比q的绝对值小于1,那么等比数列的项会逐渐趋近于零。

3. 当公比q大于1时,等比数列的项会无限增大。

四、递推数列递推数列是指通过数列中前一项或前几项的关系来确定下一项的数列。

递推数列没有简单的通项公式,但可以通过递推公式来计算任意一项。

递推数列的例子包括斐波那契数列,其递推公式为a_n = a_(n-1) +a_(n-2),其中a_1 = a_2 = 1。

递推数列的性质和特点:1. 递推数列的计算依赖于前面的项。

2. 递推关系可以复杂多变,需要通过具体的递推公式来分析。

3. 递推数列可能具有周期性或者无界性等特点。

五、数列的应用数列在数学和其他科学领域都有广泛的应用。

高一数学数列全章知识点

高一数学数列全章知识点

高一数学数列全章知识点数列是数学中比较重要的一个概念,它是由一系列按照特定规律排列的数所组成的序列。

在高一数学课程中,数列是一个重要的章节,它是以高中数学的理论与实践紧密结合的一门学科。

下面将介绍高一数学数列全章的知识点。

一、等差数列等差数列是指数列中相邻两项之差都相等的数列。

我们用a表示首项,d表示公差。

等差数列的通项公式为an=a1+(n-1)d,其中an表示第n项。

等差数列有以下几个重要的性质:1. 等差数列的前n项和公式为Sn=(a1+an)n/2。

通过将首项和末项相加,再乘以项数的一半可以得到数列的前n项和。

2. 相邻两项之和等于常数项,即an+an+1=常数。

这是等差数列的一个重要性质,它说明了等差数列中相邻两项的和是一个常数。

3. 若数列的首项、末项和公差已知,则可通过等差数列的前n项和公式求出项数n。

二、等比数列等比数列是指数列中相邻两项的比值都相等的数列。

我们用a 表示首项,q表示公比。

等比数列的通项公式为an=a1q^(n-1),其中an表示第n项。

等比数列有以下几个重要的性质:1. 等比数列的前n项和公式为Sn=a1(1-q^n)/(1-q)。

通过将首项乘以1与公比的n次方之差再除以1与公比之差可以得到数列的前n项和。

2. 相邻两项之比等于常数项,即an/an+1=常数。

这是等比数列的一个重要性质,它说明了等比数列中相邻两项的比值是一个常数。

3. 若数列的首项、末项和公比已知,则可通过等比数列的前n 项和公式求出项数n。

三、求和公式的推导除了等差数列和等比数列的求和公式外,我们还可以通过数学推导得到其他类型数列的求和公式。

如一个比较常见的例子是求和公式Sn=1^k+2^k+...+n^k,其中k为常数,n为项数。

我们可以通过写出Sn与Sn-1的差值来进行推导。

假设Sn-Sn-1=an,则Sn=an+Sn-1。

我们可以观察到,当n增加时,an的值具有一定的规律性。

通过观察可以得到以下结论:1. 若k=1,则an=n,所以Sn=n(n+1)/2。

专题一:数列通项公式的求法详解(八种方法)041019210228

专题一:数列通项公式的求法详解(八种方法)041019210228

其通项分为奇数项和偶数项来讨论. (2)形如 an1 an f (n) 型①若 an1 an p (p 为常数),则数列{ an }为“等
积数列”,它是一个周期数列,周期为 2,其通项分奇数项和偶数项来讨论;②若 f(n)为 n 的函数(非常数)时,可
通过逐差法得 an an1 f (n 1) ,两式相除后,分奇偶项来分求通项.
[例 2]
设 Sn=1+2+3+…+n,n∈N*,求
f (n)
Sn (n 32)Sn1
的最大值.
答案
n=8
时,
f
(n)max

1 50
二、错位相减法 方法简介:此法是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前 n 项 和,其中{ an }、{ bn }分别是等差数列和等比数列.
只需求首项及公差公比.
公式法 2: 知 sn 利用公式
an

s1 , Sn
n
S
1
n1
,
n

.
2
例 5:已知下列两数列{an}的前 n 项和 sn 的公式,求{an}的通项公式.(1) Sn n3 n 1. (2) sn n2 1
答案:(1) an =3 n 2
3n
.答 案 :
an n2 5 (n N)
例 6. 若在数列 an 中, a1 3 , an1 an 2n ,求通项 an
.答案: an = 2n 1
思想启发:尝试推导特殊数列有关的公式,性质,结论是掌握并灵活应用它们的最好方法.
1
总结方法,领悟思想,感受成功.

高一数学应试技巧掌握常见题型的解题技巧

高一数学应试技巧掌握常见题型的解题技巧

高一数学应试技巧掌握常见题型的解题技巧高一数学应试技巧:掌握常见题型的解题技巧对于刚刚踏入高中阶段的同学们来说,高一数学可能会带来一些挑战。

但别担心,只要我们掌握了正确的应试技巧和常见题型的解题方法,就能在数学考试中取得更好的成绩。

一、函数题型函数是高一数学中的重点和难点,包括一次函数、二次函数、幂函数、指数函数、对数函数等。

1、一次函数一次函数的表达式为 y = kx + b(k ≠ 0)。

在解题时,关键要明确斜率 k 和截距 b 的意义。

例如,给定两个点的坐标,要求出函数表达式,就可以利用两点式来确定 k 和 b 的值。

2、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0)。

对于二次函数,要熟练掌握其图像的对称轴、顶点坐标、开口方向等性质。

在求解最值问题时,通常需要将函数配方化为顶点式。

3、幂函数幂函数的一般形式为 y =x^α。

要理解幂函数的单调性和奇偶性与指数α的关系。

4、指数函数与对数函数指数函数 y = a^x(a > 0 且a ≠ 1)和对数函数 y =logₐ x(a > 0且a ≠ 1)是相互反函数。

在解题时,要注意底数 a 的取值范围对函数性质的影响。

二、三角函数题型三角函数包括正弦函数、余弦函数、正切函数等。

1、特殊角的三角函数值一定要牢记 0°、30°、45°、60°、90°等特殊角的正弦、余弦、正切值,这是解题的基础。

2、三角函数的图像和性质了解正弦函数、余弦函数的周期性、单调性、奇偶性和值域等性质,通过图像来辅助理解和记忆。

3、三角函数的诱导公式熟练运用诱导公式将不同角度的三角函数进行转化。

三、数列题型数列有等差数列和等比数列两种常见类型。

1、等差数列通项公式为 aₙ = a₁+(n 1)d,前 n 项和公式为 Sₙ = n(a₁+aₙ) / 2 。

要注意公差 d 的计算和运用。

2、等比数列通项公式为 aₙ = a₁q^(n 1),前 n 项和公式为 Sₙ = a₁(1 q^n) /(1 q)(q ≠ 1)。

高一数学知识点带例题大全

高一数学知识点带例题大全

高一数学知识点带例题大全一、数列与数列求和1. 等差数列等差数列是指数列中相邻两项之间的差值相等的数列。

记作:an=a1+(n-1)d。

例题:已知等差数列{an}的通项公式为an=2n+1,求该数列的首项和公差,并计算第10项的值。

2. 等比数列等比数列是指数列中相邻两项之间的比值相等的数列。

记作:an=a1*q^(n-1)。

例题:已知等比数列{an}的首项为3,公比为2,求该数列的通项公式,并计算第5项的值。

3. 数列求和数列求和是指对数列中一定范围内的项进行求和。

常用的求和公式有等差数列求和公式、等比数列求和公式以及部分和公式。

例题:已知等差数列{an}的首项为2,公差为3,求该数列的前10项和。

二、函数与方程1. 函数表示与性质函数是一种具有确定性的映射关系。

常见的函数类型有一次函数、二次函数、指数函数、对数函数等。

函数的性质包括定义域、值域、奇偶性、单调性等。

例题:已知一次函数y=2x+1,求该函数的定义域、值域以及它的奇偶性和单调性。

2. 方程的解与解法方程是指两个代数式之间相等的关系。

常见的方程类型有一次方程、二次方程、指数方程、对数方程等。

解方程的方法有代入法、因式分解法、配方法、公式法等。

例题:求解方程2x^2-5x+2=0,并判断解的个数和属性。

三、几何与三角形1. 向量与平面几何向量是具有大小和方向的量,可以表示位移、速度、力等。

平面几何研究的是平面内点、线、面的关系及性质。

例题:已知两个向量a=3i-2j和b=i+4j,求它们的数量积和夹角,并判断是否垂直。

2. 三角形的性质与定理三角形是由三条线段组成的闭合图形。

常见的三角形类型有等边三角形、等腰三角形、直角三角形等。

三角形的性质包括角度关系、边长关系、面积公式等。

例题:已知三角形ABC,AB=AC,∠BAC=60°,求证:BC=AB。

四、概率与统计1. 概率计算与事件关系概率是指某个事件发生的可能性大小。

常见的事件关系有互斥事件、独立事件、事件的并、交与差等。

高一数列归纳知识点总结

高一数列归纳知识点总结

高一数列归纳知识点总结数列是高中数学中一个非常重要的概念,也是数学研究中的一个基本对象。

在高一阶段,数列的学习是数学学习的一个重要内容。

本文将从数列的定义、常见数列的特点以及数列的求和公式等方面进行归纳总结。

一、数列的定义与表示方法1. 数列的定义:数列是按照一定的顺序排列起来的数的集合,其中每个数称为数列的项。

2. 数列的表示方法:(1)通项公式表示法:数列可以通过一个解析式来表示,该解析式可以计算出数列中各项的具体数值。

(2)递推公式表示法:数列可以通过一个递推公式来表示,该递推公式利用前一项或前几项来递推求得后一项。

二、常见数列的特点与分类1. 等差数列:等差数列是指数列中相邻两项之差都相等的数列。

常用通项公式为:an = a1 + (n-1)d,其中a1为首项,d为公差。

2. 等比数列:等比数列是指数列中相邻两项之比都相等的数列。

常用通项公式为:an = a1 * r^(n-1),其中a1为首项,r为公比。

3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项之和的数列。

通常用F(n)表示第n项,前两项分别为F(1) = 1,F(2) = 1。

4. 平方数列:平方数列是指数列中每一项都是某个整数的平方的数列。

例如1,4,9,16,25,...5. 等差-等比混合数列:等差-等比混合数列是指数列中同时满足等差和等比条件的数列。

通常用an表示第n项,其通项公式为:an = a1 * r^(n-1) + (n-1)d。

三、数列的性质与求和公式1. 数列的有界性:数列可以是有界的,即存在一个上界或下界,也可以是无界的。

2. 数列的递增性与递减性:数列可以是递增的,即每一项都大于前一项,也可以是递减的,即每一项都小于前一项。

3. 奇数数列与偶数数列:数列中的奇数项或偶数项构成了两个新的数列,分别称为奇数数列和偶数数列。

4. 数列的求和公式:对于某些特殊的数列,可以通过递推或另外的方法得出它们的求和公式。

高一年级数学数列知识点

高一年级数学数列知识点

高一年级数学数列知识点数学是一门既让人望而却步又充满挑战的学科。

而在高一的数学课程中,数列是一个非常重要的知识点。

所以,我们有必要系统地学习和理解数列的相关概念和应用。

本文将介绍高一年级数学中与数列相关的知识点。

一、数列的定义与分类数列是由一列按顺序排列的数字组成的列表。

它为我们研究和描述数字之间的规律提供了一个有效的工具。

根据构成数列的数字的特点,数列可以分为等差数列和等比数列。

等差数列是一个常见的数列类型。

它的特点是每个相邻的数字之间的差是相同的。

我们用公式an = a1 + (n-1)d来表示等差数列的通项公式,其中an表示第n个数字,a1表示第一个数字,d表示公差。

例如,1,3,5,7,9就是一个公差为2的等差数列。

相比之下,等比数列的特点是每个相邻的数字之间的比值是常数。

我们用公式an = a1 * r^(n-1)来表示等比数列的通项公式,其中an表示第n个数字,a1表示第一个数字,r表示公比。

例如,1,4,16,64,256就是一个公比为4的等比数列。

二、数列的求和公式在数列的研究中,我们经常需要求出数列的前n个数字的和。

根据数列的类型不同,我们可以使用不同的求和公式。

对于等差数列,求和公式是Sn = n/2(2a1 + (n-1)d),其中Sn表示前n项和。

而对于等比数列,求和公式是Sn = a1(1 - r^n)/(1 - r)。

在应用求和公式时,我们需要注意数列的边界条件。

特别是在使用等差数列求和公式时,我们必须确认数列的首项、公差和终项。

三、数列的应用数列作为一种有序的数字排列方式,可以在各种实际问题中发挥重要的作用。

首先,数列可以用于描述一些规律或模式。

通过观察和推理数列的数字,我们可以发现其中的规律,并利用这些规律解决问题。

例如,一个数列的通项公式可以帮助我们预测和计算数列中的任意一个数字。

其次,数列可以应用于计算和统计。

例如,我们可以使用数列的求和公式计算某个连续数列的总和。

高一数学知识点如何灵活运用解题

高一数学知识点如何灵活运用解题

高一数学知识点如何灵活运用解题对于刚刚踏入高中阶段的同学们来说,高一数学无疑是一个新的挑战。

数学知识点繁多,如何将这些知识点灵活运用到解题中去,是提高数学成绩、培养数学思维的关键。

首先,我们要对高一数学的主要知识点有清晰的认识。

集合、函数、数列、三角函数等,都是高一数学的重要内容。

以函数为例,函数的定义、性质(单调性、奇偶性、周期性等)、图像都是解题时需要重点关注的。

那么,如何实现灵活运用这些知识点解题呢?第一步,要扎实掌握基础知识。

这就好比建造高楼大厦,坚实的地基是关键。

对于每个知识点的定义、定理、公式,不仅要熟记于心,更要理解其推导过程和适用条件。

比如说,在学习等差数列的通项公式时,要明白是如何通过首项和公差推导出来的,这样在解题时才能灵活运用。

在掌握基础知识后,要多做练习题。

但这里的“多做”并非盲目地搞题海战术,而是有针对性地练习。

可以根据知识点的不同类型和难度,选择相应的题目进行训练。

通过练习,能够熟悉知识点在不同情境下的应用,提高解题的熟练度和速度。

比如,在学习函数的单调性时,可以做一些判断函数单调性、求函数单调区间的题目,通过实际操作来加深对知识点的理解。

同时,要善于总结归纳。

做完一道题后,不要只是满足于得出答案,而是要思考这道题考查了哪些知识点,用到了什么方法和技巧,还有没有其他的解法。

将同一类型的题目放在一起进行比较,找出它们的共性和规律,形成自己的解题思路和方法。

例如,对于求函数最值的问题,可以总结出通过求导、利用函数单调性、利用均值不等式等多种方法,并明确在什么情况下使用哪种方法更为简便。

在解题过程中,要注重思维的转化。

有些题目可能看起来比较复杂,但通过适当的转化,就可以将其变为熟悉的问题。

比如,将几何问题转化为代数问题,或者将实际问题转化为数学模型。

以三角函数为例,求一个角的三角函数值,可以通过构造直角三角形将其转化为边的比值来计算。

学会分析题目中的条件也是至关重要的。

很多同学在解题时,往往没有充分利用题目所给的条件,导致解题思路受阻。

高一数学数列知识点

高一数学数列知识点

高一数学数列知识点数列作为数学中的重要概念,贯穿着高中数学的整个学习过程。

它虽然看似简单,但其中蕴含着丰富的知识和应用。

在高一的数学学习过程中,数列是一个非常重要的章节,本文将对高一数学数列知识点进行总结和探讨。

首先,数列的定义是我们学习数列的基础。

数列是一组有序的数按照一定规律排列而成的序列。

其中,每个数被称为数列的项,而规律被称为数列的通项公式。

例如,{1,3,5,7,9,…}就是一个常数项数列,其中的通项公式可以表示为an = 2n-1。

数列的定义不仅帮助我们从宏观上把握数列的概念,而且为我们后续的学习提供了基础。

接下来,我们来讨论数列的类型。

根据数列的规律性质,我们可以将数列分为等差数列、等比数列和通项公式类型数列。

等差数列是指数列中的相邻两项之差是一个常数,我们常用的等差数列通项公式是an = a1 + (n-1)d,其中a1为首项,d为公差。

等比数列则是指数列中的相邻两项之比是一个常数,我们常用的等比数列通项公式是an = a1 * r^(n-1),其中a1为首项,r为公比。

通项公式类型数列则是指数列的通项公式表达较为复杂,但可以通过一定的规律或者递推关系式来得到。

在应用方面,数列有着广泛的运用。

例如,在数学中,我们常常使用数列来解决实际问题,如求和、求项数等。

这些问题涉及到数列的性质和规律的运用,锻炼了我们数学思维的能力。

此外,在其他学科中,数列也有被使用的机会。

比如在物理学中,数列可以用来描述运动的轨迹和速度;在经济学中,数列可以用来描述人口增长和经济增长的规律。

因此,掌握数列知识对于我们将来的学习和发展有着重要意义。

数列还有一个重要的性质是递推关系式。

递推关系式是数列中项与项之间的关系表达式。

通过递推关系式,我们可以根据前一项或前几项的值来推导后一项的值。

这种递推的思维方式培养了我们的逻辑思维和推理能力。

在解题时,我们可以通过观察数列的规律,找到递推关系式,并利用这一关系求解问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学高考总复习:数列的应用知识网络:目标认知考试大纲要求:1.等差数列、等比数列公式、性质的综合及实际应用;2.掌握常见的求数列通项的一般方法;3.能综合应用等差、等比数列的公式和性质,并能解决简单的实际问题.4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题.重点:1.掌握常见的求数列通项的一般方法;3.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题难点:用数列知识解决带有实际意义的或生活、工作中遇到的数学问题.知识要点梳理知识点一:通项与前n项和的关系任意数列的前n项和;注意:由前n项和求数列通项时,要分三步进行:(1)求,(2)求出当n≥2时的,(3)如果令n≥2时得出的中的n=1时有成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式.知识点二:常见的由递推关系求数列通项的方法1.迭加累加法:,则,,…,2.迭乘累乘法:,则,,…,知识点三:数列应用问题1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.2.建立数学模型的一般方法步骤.①认真审题,准确理解题意,达到如下要求:⑴明确问题属于哪类应用问题;⑵弄清题目中的主要已知事项;⑶明确所求的结论是什么.②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).规律方法指导1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想;2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意:(1)通过知识间的相互转化,更好地掌握数学中的转化思想;(2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力.精析类型一:迭加法求数列通项公式1.在数列中,,,求.解析:∵,当时,,,,将上面个式子相加得到:∴(),当时,符合上式故.总结升华:1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子不是等差数列.2.当数列的递推公式是形如的解析式,而的和是可求的,则可用多式累(迭)加法举一反三:【变式1】已知数列,,,求.【答案】【变式2】数列中,,求通项公式.【答案】.类型二:迭乘法求数列通项公式2.设是首项为1的正项数列,且,求它的通项公式.解析:由题意∴∵,∴,∴,∴,又,∴当时,,当时,符合上式∴.总结升华:1. 在数列中,,若为常数且,则数列是等比数列;若不是一个常数,而是关数列不是等比数列.2.若数列有形如的解析关系,而的积是可求的,则可用多式累(迭)乘法求得.举一反三:【变式1】在数列中,,,求.【答案】【变式2】已知数列中,,,求通项公式.【答案】由得,∴,∴,∴当时,当时,符合上式∴类型三:倒数法求通项公式3.数列中,,,求.思路点拨:对两边同除以得即可.解析:∵,∴两边同除以得,∴成等差数列,公差为d=5,首项,∴,∴.总结升华:1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都构成一个新的数列,而恰是等差数列.其通项易求,先求的通项,再求的通项.2.若数列有形如的关系,则可在等式两边同乘以,先求出,再求得.举一反三:【变式1】数列中,,,求.【答案】【变式2】数列中,,,求.【答案】.类型四:待定系数法求通项公式4.已知数列中,,,求.法一:设,解得即原式化为设,则数列为等比数列,且∴法二:∵①②由①-②得:设,则数列为等比数列∴∴∴法三:,,,……,,∴总结升华:1.一般地,对已知数列的项满足,(为常数,),则可设得利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造这两种方法均是常用的方法.2.若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得.举一反三:【变式1】已知数列中,,求【答案】令,则,∴,即∴,∴为等比数列,且首项为,公比,∴,故.【变式2】已知数列满足,而且,求这个数列的通项公式.【答案】∵,∴设,则,即,∴数列是以为首项,3为公比的等比数列,∴,∴.∴.类型五:和的递推关系的应用5.已知数列中,是它的前n项和,并且, .(1)设,求证:数列是等比数列;(2)设,求证:数列是等差数列;(3)求数列的通项公式及前n项和.解析:(1)因为,所以以上两式等号两边分别相减,得即,变形得因为,所以由此可知,数列是公比为2的等比数列.由,,所以, 所以,所以.(2),所以将代入得由此可知,数列是公差为的等差数列,它的首项,故.(3),所以当n≥2时,∴由于也适合此公式,故所求的前n项和公式是.总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这的常见策略.举一反三:【变式1】设数列首项为1,前n项和满足.(1)求证:数列是等比数列;(2)设数列的公比为,作数列,使,,求的通项公式.【答案】(1),∴∴,又①-②∴,∴是一个首项为1公比为的等比数列;(2)∴∴是一个首项为1公比为的等差比数列∴【变式2】若, (),求. 【答案】当n≥2时,将代入, ∴,整理得两边同除以得(常数)∴是以为首项,公差d=2的等差数列,∴,∴.【变式3】等差数列中,前n项和,若.求数列的前n项和. 【答案】∵为等差数列,公差设为,∴,∴,∴,若,则, ∴.∵,∴,∴,∴,∴①②①-②得∴类型六:数列的应用题6.在一直线上共插13面小旗,相邻两面间距离为10m,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少?思路点拨:本题求走的总路程最短,是一个数列求和问题,而如何求和是关键,应先画一草图,研究他从第一面旗到另一程,然后求和.解析:设将旗集中到第x面小旗处,则从第一面旗到第面旗处,共走路程为了,回到第二面处再到第面处是,回到第三面处再到第面处是,,从第面处到第面处取旗再回到第面处的路程为,从第面处到第面处取旗再回到第面处,路程为20×2,总的路程为:∵,∴时,有最小值答:将旗集中到第7面小旗处,所走路程最短.总结升华:本题属等差数列应用问题,应用等差数列前项和公式,在求和后,利用二次函数求最短路程.举一反三:【变式1】某企业 12月份的产值是这年1月份产值的倍,则该企业年度产值的月平均增长率为()A. B. C. D.【答案】D;解析:从2月份到12月份共有11个月份比基数(1月份)有产值增长,设为,则【变式2】某人 1月31日存入若干万元人民币,年利率为,到 1月31日取款时被银行扣除利息税(税率为)则该人存款的本金为()A.1.5万元 B.2万元 C.3万元 D.2.5万元【答案】B;解析:本金利息/利率,利息利息税/税率利息(元),本金(元)【变式3】根据市场调查结果,预测某种家用商品从年初开始的个月内累积的需求量(万件)近似地满足.按比例预测,在本年度内,需求量超过万件的月份是( ) A.5月、6月 B.6月、7月 C.7月、8月 D.9月、10月【答案】C;解析:第个月份的需求量超过万件,则解不等式,得,即.【变式4】某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算?(即年平均费用最少)【答案】设汽车使用年限为年,为使用该汽车平均费用.当且仅当,即(年)时等到号成立.因此该汽车使用10年报废最合算.【变式5】某市底有住房面积1200万平方米,计划从起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上积的5%.(1)分别求底和底的住房面积;(2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)【答案】(1)底的住房面积为1200(1+5%)-20=1240(万平方米),底的住房面积为1200(1+5%)2-20(1+5%)-20=1282(万平方米),∴底的住房面积为1240万平方米;底的住房面积为1282万平方米.(2)底的住房面积为[1200(1+5%)-20]万平方米,底的住房面积为[1200(1+5%)2-20(1+5%)-20]万平方米,底的住房面积为[1200(1+5%)3-20(1+5%)2-20(1+5%)-20]万平方米,…………2026年底的住房面积为[1200(1+5%)20―20(1+5%)19―……―20(1+5%)―20] 万平方米即1200(1+5%)20―20(1+5%)19―20(1+5%)18―……―20(1+5%)―20≈2522.64(万平方米),∴2026年底的住房面积约为2522.64万平方米.高考题萃1.(2008四川)设数列的前项和为.(Ⅰ)求;(Ⅱ)证明:是等比数列;(Ⅲ)求的通项公式.解析:(Ⅰ)因为,∴由知,得①所以,,∴(Ⅱ)由题设和①式知所以是首项为2,公比为2的等比数列.(Ⅲ)2.(2008全国II)设数列的前项和为.已知,,.(Ⅰ)设,求数列的通项公式;(Ⅱ)若,,求的取值范围.解析:(Ⅰ)依题意,,即,由此得.因此,所求通项公式为,.①(Ⅱ)由①知,,于是,当时,,,当时,.又.综上,所求的的取值范围是.3.(2008天津)已知数列中,,,且.(Ⅰ)设,证明是等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项.解析:(Ⅰ)由题设,得,即.又,,所以是首项为1,公比为的等比数列.(Ⅱ)由(Ⅰ),,,……,.将以上各式相加,得.所以当时,上式对显然成立.(Ⅲ)由(Ⅱ),当时,显然不是与的等差中项,故.由可得,由得①整理得,解得或(舍去),于是.另一方面,,.由①可得.所以对任意的,是与的等差中项.4.(2008陕西)已知数列的首项,,.(Ⅰ)求的通项公式;(Ⅱ)证明:对任意的,,;(Ⅲ)证明:.解析:(Ⅰ),,,又,是以为首项,为公比的等比数列.,.(Ⅱ)由(Ⅰ)知,,原不等式成立.另解:设,则,当时,;当时,,当时,取得最大值.原不等式成立.(Ⅲ)由(Ⅱ)知,对任意的,有.令,则,.原不等式成立.学习成果测评基础达标:1.若数列中,且(n是正整数),则数列的通项=____. 2.对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是________3. 设是等比数列,是等差数列,且,数列的前三项依次是,且,则数列的前10项和为____________.4. 如果函数满足:对于任意的实数,都有,且,则____________5.已知数列中,,(),求通项公式. 6.已知数列中,,,,求的通项公式. 7.已知各项均为正数的数列的前项和满足,且,,求的通项公式. 8.设数列满足,.(Ⅰ)求数列的通项;(Ⅱ)设,求数列的前项和.能力提升:9.数列的前项和为,,.(Ⅰ)求数列的通项;(Ⅱ)求数列的前项和.10.数列的前n项和为, 已知是各项为正数的等比数列,试比较与的大小关系.11.某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为,以后每年交纳的数目均比上一年增加年所交纳的储备金数目是一个公差为的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复如果固定年利率为,那么,在第年末,第一年所交纳的储备金就变为,第二年所交纳的储备金就变为示到第年末所累计的储备金总额.(Ⅰ)写出与的递推关系式;(Ⅱ)求证:,其中是一个等比数列,是一个等差数列.12.底某县的绿化面积占全县总面积的40%,从开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化绿化.(1)设该县的总面积为1,底绿化面积为,经过n年后绿化的面积为,试用表示;(2)求数列的第n+1项;(3)至少需要多少年的努力,才能使绿化率超过60%.(参考数据:lg2=0.3010,lg3=0.4771)综合探究:13.已知函数,设曲线在点处的切线与x轴的交点为,其中为正实数(Ⅰ)用表示;(Ⅱ)若,记,证明数列成等比数列,并求数列的通项公式;(Ⅲ)若,,是数列的前n项和,证明.参考答案:基础达标:1.答案:解析:由题设的递推公式可得∴即,2.答案:2n+1-2解析:,曲线在x=2处的切线的斜率为,切点为(2,-2n), 所以切线方程为y+2n=k(x-2),令x=0得,令.数列的前n项和为2+22+23+…+2n=2n+1-23. 答案:9784. 答案:5.解析:将递推关系整理为两边同除以得当时,,,……,将上面个式子相加得到:,即,∴().当时,符合上式故.6.解析:由题设∴.所以数列是首项为,公比为的等比数列,∴,即的通项公式为,.7.解析:由,解得或,由假设,因此,又由,得,即或,因,故不成立,舍去.因此,从而是公差为,首项为的等差数列,故的通项为.8.解析:(Ⅰ),①∴当时,②①-②得,.在①中,令,得符合上式∴.(Ⅱ),∴.,③.④④-③得.即,.能力提升:9.解析:(Ⅰ),,又,数列是首项为,公比为的等比数列,∴.当时,,(Ⅱ),当时,;当时,,…………①,…………②得:..又也满足上式,.10.解析:∵为各项为正数的等比数列,设其首项为,公比为, 则有,,(),∴,即(1)当时,,,而,∴∴时,.(2)当时,,,∴①当时,,∴②当时,,∴③当时,,∴综上,(1)在时恒有(2)在时,①若则;②若则;③若则.11.解析:(Ⅰ).(Ⅱ),对反复使用上述关系式,得,①在①式两端同乘,得②②①,得.即.如果记,,则.其中是以为首项,以为公比的等比数列;是以为首项,为公差的等差数列.12.解析:(1)设底非绿化面积为b1,经过n年后非绿化面积为.于是a1+b1=1,依题意,是由两部分组成:一部分是原有的绿化面积减去被非绿化部分后剩余面积,另一部分是新绿化的面积,∴.(2),.数列是公比为,首项的等比数列.∴.(3)由,得,,,∴至少需要7年的努力,才能使绿化率超过60%.综合探究:13.解析:(Ⅰ)由题可得.所以曲线在点处的切线方程是:.即.令,得,即.显然,∴.(Ⅱ)由,知,同理.故.从而,即.所以,数列成等比数列.故,即.从而,所以(Ⅲ)由(Ⅱ)知,∴∴当时,显然.当时,∴.综上,.。

相关文档
最新文档