高中数学学业水平测试必背知识点
高中数学学业水平考试复习必背知识点
高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n个元素得集合得所有子集有个 第二章 函数 1、求得反函数:解出,互换,写出得定义域;2、对数:①:负数与零没有对数,②、1得对数等于0:,③、底得对数等于1:, ④、积得对数:, 商得对数:,幂得对数:;, 第三章 数列1、数列得前n 项与:; 数列前n项与与通项得关系: 2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它得前一项得差等于同一个常数; (2)、通项公式: (其中首项就是,公差就是;)(3)、前n项与:1、(整理后就是关于n 得没有常数项得二次函数)(4)、等差中项: 就是与得等差中项:或,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它得前一项得比等于同一个常数,()、(2)、通项公式:(其中:首项就是,公比就是) (3)、前n项与:(4)、等比中项: 就是与得等比中项:,即(或,等比中项有两个) 第四章 三角函数1、弧度制:(1)、弧度,1弧度;弧长公式: (就是角得弧度数)2、三角函数 (1)、定义:y rx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 4、同角三角函数基本关系式:5、诱导公式:(奇变偶不变,符号瞧象限) 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:6、两角与与差得正弦、余弦、正切 : : : :: :7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222)sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1):::(2)、降次公式:(多用于研究性质)10、解三角形:(1)、三角形得面积公式: (2)正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)余弦定理:求角:abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:(1)设,则 数与向量得积:λ,数量积:(2)、设A 、B两点得坐标分别为(x 1,y 1),(x 2,y 2),则。
高中数学学业水平考知识点总结
高中数学学业水平考知识点总结
高中数学学业水平考试涵盖了广泛的数学知识点,以下是一些需要重点复习的知识点总结:
1. 函数与方程:
- 一次函数、二次函数、指数函数、对数函数、三角函数等的性质和图像
- 方程与不等式的解法:一元一次方程、一元二次方程、一元高次方程等的解法
- 常见函数的运算与复合
2. 空间几何:
- 点、直线、平面的性质与相互关系
- 三角形、四边形、圆的性质与相互关系
- 空间立体图形的性质与计算
3. 概率与统计:
- 事件的概率与计算
- 随机变量与概率分布
- 统计分析与推断:样本调查、参数估计、假设检验等
4. 导数与微分:
- 函数的导数与求导法则
- 函数的极值与最值
- 函数的微分与近似计算
5. 积分与微分方程:
- 不定积分与定积分
- 积分的性质与计算方法
- 常微分方程的解法和应用
6. 数列与数学归纳法:
- 等差数列、等比数列、递推数列的性质与求和公式
- 数列极限与收敛性
这些只是其中的一部分重要知识点,考试还可能涉及其他知识,建议整体复习并进行大量的练习,以提高自己的数学水平。
高中数学学业水平考试知识点
高中数学学业水平考试知识点(必修一)第一章集合与函数概念1. 集合的含义(1)元素:。
(2)集合:。
2. 集合的表示方法a.列举法: 。
b.描述法: 。
3. 集合之间的包含与相等的含义(1)子集:。
(2)A=B:。
4. 全集与空集的含义(1)空集:,记为:。
(2)全集:,记为:。
5. 两个集合的并集与交集的含义及计算(1)并集:,记为:。
(2)交集:,记为:。
6. 补集的含义及求法补集:,记为:。
7.用Venn图表示集合的关系及运算8. 函数的概念函数:。
9.映射的概念映射:。
10. 求简单函数的定义域和值域(1)求函数的定义域时列不等式组的主要依据是:a.分式: ;b.偶次方根: ;c.对数式的真数: ;d.指数、对数式的底: .e.如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.f.零指数的底:;g.实际问题中的函数的定义域还要保证实际问题有意义.(2)求函数值域的方法:a.观察法; b.配凑法;c.分离常数法;d.判别法;e.换元法等。
11. 函数的表示法(1)解析法:;(2)图象法:;(3) 列表法:.12. 简单的分段函数(1) 定义:;(2) 定义域:;(3) 值域:;13. 分段函数的简单应用(略)14. 函数的单调性、最大(小)值及其几何意义(1)单调性设函数y=f(x)的定义域为I,a.如果对于定义域I内的某个区间D内的任意两个自变量x1、x2,当时,都有,那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间;b.如果对于区间D上的任意两个自变量的值x1、x2,当,都有,那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质!(2)单调性的几何意义如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,在单调区间上增函数的图象从左到右是的,减函数的图象从左到右是的.(3). 函数最大(小)值a. 最大值:。
会考数学必背知识点高中2023
会考数学必背知识点高中2023高中数学是一门重要的学科,无论是高考还是会考,数学都是必考科目之一。
为了取得好成绩,高中学生需要掌握一些必备的数学知识点。
以下是高中数学必背知识点,供高中学生备考使用。
一、函数与方程1.函数的概念与性质2.函数的表示方法和求解问题3.函数的运算与复合函数4.方程与不等式的概念与性质5.一次函数与二次函数6.指数函数与对数函数7.三角函数与其应用8.幂函数与反比例函数9.根与幂值函数二、平面几何1.平面几何的基本概念2.平面上的点与图形3.平面图形及其特征性质4.线段、角、多边形等的性质5.平面图形的相似与全等6.圆与圆的关系7.正多边形的性质8.平面向量与坐标系9.平面几何的证明与解题方法三、立体几何和解析几何1.三维几何的基本概念与性质2.放射线、角、平行线、垂线等的性质3.立体图形的特征性质4.棱台、棱锥、圆柱、圆锥的特征性质5.球体的特征性质6.解析几何的基本概念与性质7.直线方程与点、线、面的位置关系8.两点之间的距离、线段的长度9.平面与直线的位置关系四、概率与统计1.基本概率的计算与应用2.排列、组合与二项式定理3.离散型随机变量与分布律4.连续型随机变量与密度函数5.概率分布函数与分布图6.统计数据的收集与整理7.频数分布表与频率分布图8.统计量的计算与应用9.相关系数与回归分析五、数列与数学归纳法1.数列与等差数列2.等差中项与公差的计算3.等差数列的求和公式4.等比数列与指数函数5.等比中项与公比的计算6.等比数列的求和公式7.数学归纳法的基本概念与应用8.用数学归纳法证明数学结论以上是高中数学必背知识点的简要介绍,每个知识点都非常重要,需要高中学生进行深入的学习和理解。
在备考过程中,学生可以通过刷题、做习题、做模拟试卷等方式来巩固这些知识点,提高自己的解题能力和应试水平。
同时,还需要注重平时的课堂学习,及时复习和总结所学知识,提高自己的数学素养和解题思维能力。
高中数学学业水平考知识点总结(8篇)
高中数学学业水平考知识点总结(8篇)高中数学学业水平考知识点总结(8篇)高中数学学业水平考知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(某+某',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减”a=(某,y)b=(某',y')则a-b=(某-某',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;当λ当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ当∣λ∣0)或反方向(λ数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。
若a、b 不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
高三数学学业水平知识点
高三数学学业水平知识点一、数与代数高三数学学业水平考察的第一个知识点是数与代数。
这一部分主要包括实数的性质与运算、数的性质与运算、代数式的等式与不等式、函数概念与性质等内容。
实数的性质与运算部分涉及有理数与无理数的性质、实数之间的大小关系、实数的运算规律等;数的性质与运算部分包括整式、分式的性质与运算、实数的根式化简等;代数式的等式与不等式部分主要考察代数式的等式与不等式的性质与解法;函数概念与性质部分则关注函数的定义、性质、图像与应用等方面。
二、平面与立体几何平面与立体几何是高三数学学业水平考试中的第二个重要知识点。
主要内容包括平面几何、向量与平面、空间几何等。
其中,平面几何部分包括平面上的点、直线与角的性质与判定,平面图形的性质与应用等;向量与平面部分考察向量的定义、运算与应用,以及向量与平面的位置关系等内容;空间几何部分则关注空间中的点、直线与面的性质与判定,空间图形的性质与应用。
三、函数与方程函数与方程是高三数学学业水平考试中的第三个知识点。
这一部分主要包括函数与方程的性质与解法、二次函数、指数与对数函数等内容。
函数与方程的性质与解法考察函数的奇偶性、周期性、单调性等性质,以及方程的解法与应用;二次函数部分主要关注二次函数的性质与图像,二次函数的最值与应用等;指数与对数函数部分考察指数函数与对数函数的基本性质,指数方程与对数方程的解法与应用等内容。
四、概率与统计概率与统计是高三数学学业水平考试的第四个重要考点。
这部分主要包括概率的基本概念与计算、统计的基本概念与分析等内容。
其中,概率的基本概念与计算包括样本空间、事件、概率的计算等;统计的基本概念与分析部分主要考察统计数据的收集与整理、统计图表的应用与分析等。
五、数学思想方法与解决问题能力数学思想方法与解决问题能力是高三数学学业水平考试的最后一个考察点。
这部分考察学生的数学思维能力、创新能力与解决问题的方法与策略。
题目种类多样,涉及证明、计算、应用等不同领域的数学问题,要求学生运用所学的数学知识与方法,独立思考并给出合理解答。
高中数学学业水平测试复习必背知识点
高中数学学业水平测试复习必背知识点必修一 集合与函数概念1.含n 个元素的集合的所有子集有 个2.奇函数:()f x ,图象关于 对称;偶函数: ()f x ,图象关于 对称。
3.幂运算①a r a s = ②a r /a s = ③(a r )s = ④(ab )r = ⑤a 0= (a ≠ )⑥a -n =对数a x =N ⇔x = .① 没有对数;②log 1=a ;③log =a a ,④log =b a a ,⑤log =a ba ,⑥积的对数:log ()=a MN ; ⑦换底公式log a b = 商的对数: log a M N= ; 推论:log log ⋅=a b b a 幂的对数:log =n a M ;4. ①指数函数: ② 对数函数:③ 幂函数: 叫做幂函数,过定点当 时,函数在(0,+∞)上是增函数;当 时,函数在(0,+∞)上是减函数. 在同一直角坐标系中做出幂函数(y =x ,y =x 2,y =x 3,12=y x ,y =x -1)的图象: 5.函数的零点(1)定义:把使 成立的 叫做函数y =f (x )的零点. (2)等价关系:函数y =f (x )有零点⇔ ⇔函数y =f (x )的图象与x 轴有交点 (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线, 并且有 ,那么函数y =f (x )在区间(a ,b )内有零点,log =m n a b必修二 一、直线 平面 简单的几何体1.球的表面积S=体积V=2.长方体(长宽高分别为a,b,c)的对角线长2=l ;正方体(棱长为a)的对角线长l =3.空间线线,线面,面面的位置关系:(有且仅有一个公共点) 称为 直线 两条直线的位置关系 (在同一平面内,没有公共点)(不同在任何一个平面内,没有公共点)(无数个公共点)直线和平面的位置关系 (有且只有一个公共点) 称为直线在平面 (没有公共点)两个平面的位置关系有两种: (有一条公共直线), (没有公共点) 4.空间平行垂直的判定与性质:(线面转换法)判定定理:如果 , 线面平行 那么这条直线和这个平面平行。
高中数学学业水平测试必背知识点(精选.)
高中数学学业水平测试必背知识点(精选.)高中数学学业水平测试必背知识点 必修一一、 集合与函数概念并集:由集合A 和集合B 的元素合并在一起组成的集合,如果遇到重复的只取一次。
记作:A ∪B 交集:由集合A 和集合B 的公共元素所组成的集合,如果遇到重复的只取一次记作:A ∩B 补集:就是作差。
1、集合{}n a a a ,...,,21的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子有2n –2个.2、求)(x f y =的反函数:解出)(1y fx -=,y x ,互换,写出)(1x fy -=的定义域;函数图象关于y=x 对称。
3、(1)函数定义域:①分母不为0;②开偶次方被开方数0≥;③指数的真数属于R 、对数的真数0>.4、函数的单调性:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<(>)f(x 2),那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。
5、奇函数:是()()f x f x ,函数图象关于原点对称(若0x =在其定义域内,则(0)0f =); 偶函数:是()()f x f x ,函数图象关于y 轴对称。
6、指数幂的含义及其运算性质:(1)函数)10(≠>=a a a y x 且叫做指数函数。
(2)指数函数(0,1)x y a a a =>≠当01a <<为减函数,当 1a >为增函数;①r s r s a a a +⋅=;②()r s rs a a =;③()(0,0,,)r r r ab a b a b r s Q =>>∈。
(3)指数函数的图象和性质x a y =0 < a < 1 a > 1图 象性 质定义域 R 值域(0 , +∞)定点过定点(0,1),即x = 0时,y = 1(1)a > 1,当x > 0时,y > 1;当x < 0时,0 < y < 1。
高中数学学业水平考知识点大全
高中数学学业水平考知识点大全高中数学学业水平主要考察以下知识点:
1. 数与代数:
- 实数和有理数的性质与运算
- 数的次方与根式
- 四则运算与基本代数式的运算
- 一元一次方程和不等式
- 一元二次方程和不等式
- 二次根式和无理方程
- 平面直角坐标系与图形的性质
- 函数与方程
- 等差数列与等比数列
2. 几何与空间:
- 几何图形的性质与运动
- 三角形与三角函数
- 平面向量和空间向量
- 直线与平面的位置关系
- 空间中的几何体与轨迹
- 空间解析几何
3. 解析几何:
- 向量与坐标
- 直线的方程与性质
- 圆的方程与性质
- 圆锥曲线的方程与性质
4. 概率与统计:
- 随机试验与事件
- 概率及其性质
- 离散型随机变量
- 连续型随机变量
- 统计与统计图表
5. 数学思维与证明:
- 数学思维方法
- 证明与推理
- 逻辑与推理
- 数学问题的解答方法
以上是高中数学学业水平考试中需要掌握的主要知识点,希望对你有帮助。
高中数学学业水平测试知识点
高中数学学业水平测试知识点必修一一、 集合与函数概念并集:A B ⋂= 交集:A B =U 补集:就是作差。
U C A = 1、集合{}n a a a ,...,,21的子集个数共有 个;真子集有 个;非空子集有 个;非空的真子有 个. 2、求)(x f y =的反函数:解出 ,y x ,互换,写出)(1x fy -=的定义域;函数图象关于y=x 对称。
3、(1)函数定义域:①分母 ;②开偶次方被开方数 ;③指数的真数属于 、对数的真数 .4、函数的单调性:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,x ∆= 都有 ,那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。
(1) 函数的最值:函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =;函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥.(2)单调性的判定:①定义法:注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;②复合函数法“同增异减”;③图像法。
(注:证明单调性主要用定义法和导数法。
)5、奇函数:(1))(x f 是奇函数⇔ ;函数图象关于原点对称(若0x =在其定义域内,则(0)0f =);(2))(x f 是偶函数⇔ ;函数图象关于y 轴对称。
(3)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;6. 函数的周期性:周期性的定义:对定义域内的任意x ,若有 (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。
如没有特别说明,遇到的周期都指最小正周期。
7、指数幂的含义及其运算性质:(1)函数)10(≠>=a a a y x且叫做指数函数。
高中数学学业水平知识点整理
高中数学学业水平知识点整理引言高中数学学业水平考试是对学生数学知识掌握程度的重要检验。
为了帮助学生全面复习,本文将对高中数学的主要知识点进行详尽的总结。
第一部分:函数1.1 函数的基本概念函数的定义及表示方法定义域和值域的确定1.2 函数的性质单调性、奇偶性、周期性和有界性1.3 反函数反函数的概念和求法1.4 函数的运算函数的四则运算和复合运算第二部分:导数与微分2.1 导数的概念导数的定义和几何意义2.2 导数的计算基本初等函数的导数公式2.3 微分微分的概念和应用2.4 导数的应用利用导数研究函数的单调性、极值和最值第三部分:几何3.1 平面几何三角形、四边形和圆的性质3.2 解析几何点的坐标表示和距离公式直线、圆和圆锥曲线的方程3.3 空间几何空间图形的位置关系和距离问题第四部分:数列与极限4.1 数列的概念等差数列和等比数列的定义和性质4.2 数列的求和等差数列和等比数列的求和公式4.3 极限的概念数列极限和函数极限的定义第五部分:不等式5.1 不等式的解法一元一次不等式和一元二次不等式的解法5.2 绝对值不等式绝对值不等式的解法5.3 不等式的应用不等式在最值问题中的应用第六部分:方程6.1 一元方程一元一次方程和一元二次方程的解法6.2 多元方程多元一次方程组的解法6.3 无理方程和分式方程无理方程和分式方程的解法第七部分:统计与概率7.1 统计基础数据的收集、整理和描述7.2 概率论基础事件的概率,包括古典概型和几何概型7.3 条件概率和独立事件条件概率和独立事件的概念第八部分:综合问题8.1 函数与方程的综合应用函数与方程结合的问题8.2 几何与代数的综合应用几何与代数结合的问题8.3 数列与极限的综合应用数列与极限结合的问题结语高中数学学业水平考试覆盖了广泛的数学知识点。
通过系统地复习和理解每个知识点,学生可以为考试做好充分的准备。
希望本文档的总结能够帮助学生构建完整的知识体系,提高解题能力,并在考试中取得优异的成绩。
高三数学合格考必考知识点
高三数学合格考必考知识点一、函数与方程1. 一次函数1.1 定义与性质1.2 函数图象的性质1.3 线性关系的表示与解决问题的应用2. 二次函数2.1 定义与性质2.2 函数图象的性质2.3 二次函数的图象与一元二次方程的根的关系3. 指数函数与对数函数3.1 指数函数的定义与性质3.2 函数图象与指数方程的关系3.3 对数函数的定义与性质3.4 函数图象与对数方程的关系4. 三角函数4.1 正弦函数、余弦函数、正切函数的定义与性质 4.2 函数图象与三角方程的关系4.3 三角函数的和差化积、积化和差的公式二、几何与向量1. 平面几何1.1 基本概念与性质1.2 相交与平行线的性质1.3 三角形的性质与应用1.4 四边形的性质与应用2. 图形的性质与计算2.1 圆的性质与计算2.2 圆锥的性质与计算2.3 圆柱的性质与计算2.4 圆球的性质与计算3. 向量的运算与表示3.1 向量的定义与性质3.2 向量的加法、减法与数乘 3.3 向量的数量积与向量积4. 空间几何4.1 空间直线的性质与计算4.2 空间平面的性质与计算4.3 空间立体图形的性质与计算三、概率与统计1. 随机事件与概率1.1 随机事件的定义与性质1.2 概率的定义与计算1.3 加法定理与乘法定理2. 排列组合与二项式定理2.1 排列与组合的概念与计算 2.2 二项式定理的应用3. 统计与抽样3.1 统计图表的制作与分析 3.2 抽样调查的方法与应用 3.3 参数估计与假设检验四、数列与级数1. 等差数列与等比数列1.1 数列的定义与性质1.2 等差数列的通项与公式 1.3 等比数列的通项与公式2. 数列的求和与极限2.1 等差数列的求和与极限2.2 等比数列的求和与极限2.3 级数的收敛性与求和五、解析几何1. 坐标系与二元一次方程1.1 坐标系与平面直角坐标系方程1.2 二元一次方程的性质与表示2. 几何图形的性质研究2.1 直线与曲线的方程与性质2.2 圆的方程与性质2.3 抛物线、椭圆、双曲线的方程与性质3. 极坐标与参数方程3.1 极坐标与曲线的性质3.2 参数方程与曲线的性质以上是高三数学合格考必考的知识点,通过掌握和理解这些内容,学生们能够在考试中取得更好的成绩。
高中数学学业水平考试知识点总结
高中数学学业水平考试知识点总结一. 代数与函数1.1 一次函数- 基本概念:函数的一种,表达式为 $y = kx + b$- 相关概念:斜率、截距- 线性关系:关系图像是一条直线- 相关题型:求斜率、截距、函数值等1.2 二次函数- 基本概念:函数的一种,表达式为 $y = ax^2 + bx + c$ - 相关概念:抛物线、顶点、对称轴、判别式- 相关题型:求顶点、对称轴、判别式值、求解方程等1.3 指数与对数- 基本概念:指数和对数是互为逆运算的概念- 相关概念:指数函数、对数函数、指数规律、对数规律- 相关题型:变底数相同求值、指数与对数的运算等二. 几何与三角学2.1 平面几何- 基本概念:平面内的形状、位置等属性- 相关概念:直线、线段、角等- 相关题型:直线与角的性质、线段的相交关系等2.2 空间几何- 基本概念:三维空间内的形状、位置等属性- 相关概念:平面、直线、线段等- 相关题型:平面与直线的相交关系、线段的长度等2.3 三角学- 基本概念:研究三角形及其性质的学科- 相关概念:正弦、余弦、正切等三角函数- 相关题型:三角函数的计算、三角形的性质等三. 概率与统计3.1 概率- 基本概念:研究事物发生可能性的学科- 相关概念:随机事件、样本空间、概率等- 相关题型:概率的计算、事件的关系等3.2 统计- 基本概念:收集、整理、分析和解释数据的学科- 相关概念:样本、频数、频率等- 相关题型:收集数据、绘制统计图表等以上是高中数学学业水平考试的基本知识点总结,包括代数与函数、几何与三角学、概率与统计等内容。
通过了解这些知识点,你将更好地准备考试,并取得好成绩。
高中数学学业水平考知识点大全
高中数学学业水平考知识点大全高中数学学业水平考知识点1定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。
其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。
平时数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。
“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。
高中数学水平考知识点归纳
高中数学水平考知识点归纳高中数学学业水平考知识点11、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高中数学学业水平考知识点2函数的表示方法1.函数的三种表示方法列表法图象法解析法2.分段函数:定义域的不同部分,有不同的对应法则的函数。
注意两点:①分段函数是一个函数,不要误认为是几个函数。
②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
考点四、求定义域的几种情况①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是对数函数,真数应大于零。
⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。
⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题高中数学水平考知识点归纳高中数学学业水平考知识点31、圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
高中数学水平考复习知识点
高中数学水平考复习知识点高中数学学业水平考知识点1数学函数区间的概念(1)函数区间的分类:开区间.闭区间.半开半闭区间(2)无穷区间5.映射一般地,设A.B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素_,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射.记作〝f(对应关系):A(原象)B(象)〞对于映射f:A→B来说,则应满足:(1)函数A中的每一个元素,在函数B中都有象,并且象是的;(2)函数A中不同的元素,在函数B中对应的象可以是同一个;(3)不要求函数B中的每一个元素在函数A中都有原象.6.高中数学函数之分段函数(1)在定义域的不同部分上有不同的解析表达式的函数.(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(_)(_∈A),则y=f[g(_)]=F(_)(_∈A)称为f.g的复合函数.高中数学学业水平考知识点21.进行集合的交.并.补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道〝否命题〞与〝命题的否定形式〞的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:._.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法高中数学学业水平考知识点31.导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(_0)表示过曲线y=f(_)上P(_0,f(_0))切线斜率.V=s/(t)表示即时速度.a=v/(t)表示加速度.3.常见函数的导数公式:4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立.(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值.高中数学学业水平考知识点4等差数列对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn.那么,通项公式为,其求法很重要,利用了〝叠加原理〞的思想:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式.此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述.值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解.等比数列对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn.那么,通项公式为(即a1乘以q的(n-1)次方,其推导为〝连乘原理〞的思想: a2=a1_q,a3=a2_q,a4=a3_q,````````an=an-1_q,将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q 的乘积,也即得到了所述通项公式.此外,当q=1时该数列的前n项和Tn=a1_n当q≠1时该数列前n项的和Tn=a1_(1 如图,上面给出了k分别为正和负(2和-2)时的函数图像.当K 0时,反比例函数图像经过一,三象限,是减函数当K 0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交.知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|.2.对于双曲线y=k/_,若在分母上加减任意一个实数(即y=k/(_±m)m为常数),就相当于将双曲线图象向左或右平移一个单位.(加一个数时向左平移,减一个数时向右平移)高中数学学业水平考知识点考点总结数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学高中数学学业水平考知识点总结数学水平考是高中数学的一个重要组成部分.在考试之前,高中生需要做好数学知识点的复数学学业水平考高中知识点归纳数学是逻辑性很强的一门学科,学生想要学好数学,需要知道一些的学习方法以及学会总结高中数学学业水平考知识点大全高二是承上启下的一年,是成绩分化的分水岭,成绩往往形成两极分化:行则扶摇直上,不。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学业水平测试必背知识点必修一一、 集合与函数概念并集:由集合A 和集合B 的元素合并在一起组成的集合,如果遇到重复的只取一次。
记作:A ∪B交集:由集合A 和集合B 的公共元素所组成的集合,如果遇到重复的只取一次记作:A ∩B 补集:就是作差。
1、集合{}n a a a ,...,,21的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子有2n–2个.2、(1)函数定义域:①分母不为0;②开偶次方被开方数0≥;③指数的真数属于R 、对数的真数0>.3、函数的单调性:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<(>)f(x 2),那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。
4、奇函数:是()()f x f x -=-,函数图象关于原点对称(若0x =在其定义域内,则(0)0f =); 偶函数:是()()f x f x -=,函数图象关于y 轴对称。
5、指数幂的含义及其运算性质:(1)函数)10(≠>=a a a y x且叫做指数函数。
(2)指数函数(0,1)x y a a a =>≠当 01a <<为减函数,当 1a >为增函数; ①rsr sa a a+⋅=;②()r s rsa a =;③()(0,0,,)rr rab a b a b r s Q =>>∈。
(3)指数函数的图象和性质7、对数函数的含义及其运算性质:(1)函数log (0,1)a y x a a =>≠叫对数函数。
(2)对数函数log (0,1)a y x a a =>≠当 01a <<为减函数,当 1a >为增函数;①负数和零没有对数;②1的对数等于0 :01log =a ;③底真相同的对数等于1:1log =a a ,(3)对数的运算性质:如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么:①N M MN a a a log log log +=; ②N M NMa a alog log log -=; ③)(log log R n M n M a na ∈=。
(4)换底公式:)0,10,10(log log log >≠>≠>=b c c a a abb c c a 且且 (5)对数函数的图象和性质:8、幂函数:函数αx y =叫做幂函数(只考虑21,1,3,2,1-=α的图象)。
9、方程的根与函数的零点:如果函数)(x f y =在区间 [a , b ] 上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间 (a , b ) 内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程0)(=x f 的根。
必修二一、直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、球的体积公式: 334 R v π=; 球的表面积公式:24 RS π=3、柱体、锥体、台体的体积公式:柱体V =S h (S 为底面积,h 为柱体高); 锥体V =Sh 31(S 为底面积,h 为柱体高)台体V =31(S ’+S S'+S )h (S ’, S 分别为上、下底面积,h 为台体高)4、点、线、面的位置关系及相关公理及定理: (1)四公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内。
公理2:经过不在同一直线上的三点,有且只有一个平面。
公理3:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
推论一:经过一条直线和这条直线外的一点,有且只有一个平面。
推论二:经过两条相交直线,有且只有一个平面。
推论三:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线平行. (2)空间线线,线面,面面的位置关系:空间两条直线的位置关系: 相交直线——有且仅有一个公共点;平行直线——在同一平面内,没有公共点;异面直线——不同在任何一个平面内,没有公共点。
相交直线和平行直线也称为共面直线。
空间直线和平面的位置关系:(1)直线在平面内(无数个公共点); (2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)它们的图形分别可表示为如下,符号分别可表示为a α⊂,aA α=,//a α。
空间平面和平面的位置关系:(1)两个平面平行——没有公共点;(2)两个平面相交——有一条公共直线。
5、直线与平面平行的判定定理:如果平面外一条直线与平面内一条直线平行,那么该直线与这个平面平行。
符号表示:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭。
图形表示:6、两个平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行。
符号表示://////a b a b P a b βββααα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭。
图形表示:7、. 直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么交线与这条直线平行。
符号表示:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭。
图形表示:8、两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们交线的平行。
符号表示: 9、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
符号表示: 10、.两个平面垂直的判定定理:一个平面经过另一个平面的垂线,则这两个平面垂直。
符号表示: 11、直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线平行。
符号表示://a a b b αα⊥⎫⇒⎬⊥⎭。
12、平面与平面垂直的性质:如果两个平面互相垂直,那么在其中一个平面内垂直于交线的直线垂直于另一个平面。
符号表示: 13、异面直线所成角:平移到一起求平移后的夹角。
直线与平面所成角:直线和它在平面内的射影所成的角。
(如右图) 14、异面直线所成角的取值范围是(]︒︒90,0;//,,//a b a bαβαγβγ==⇒,,,,a b a b P l a l b l ααα⊂⊂=⊥⊥⇒⊥,l l αβαβ⊥⊂⇒⊥,,.l m l m l ααββ⊂=⊥⇒⊥θαPH l直线与平面所成角的取值范围是[]︒︒90,0; 二面角的取值范围是[)︒︒180,0; 两个向量所成角的取值范围是[]︒︒180,0 二、直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为2、直线的五种方程 :(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--( (111(,)P x y 、222(,)P x y ; (12x x ≠)、(12y y ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3、两条直线的平行、重合和垂直: (1)若111:l y k x b =+,222:l y k x b =+①1l ‖1212b k k l 且=⇔≠;2b ②22121b b k k l l ==⇔且重合时与; ③12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+= 4、两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式 │P 1P 2│=212212)()(y y x x -+- 5、两点P 1(x 1,y 1)、P 2(x 2,y 2)的中点坐标公式 M (221x x +,221y y +) 6、点P (x 0,y 0)到直线(直线方程必须化为一般式)Ax+By+C=0的距离公式d=2200BA CBy Ax +++7、平行直线Ax+By+C 1=0、Ax+By+C 2=0的距离公式d=2212BA C C +-8、圆的方程:标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;一般方程220x y Dx Ey F ++++=,(配方:44)2()2(2222F E D E y D x -+=+++)0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;9、点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种:2121y y k x x -=-ax 2+bx+c=0(a ≠0)若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.10、直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.11、弦长公式:若直线y=kx+b 与二次曲线(圆、椭圆、双曲线、抛物线)相交于A(x 1,y 1),B (x 2,y2)两点,则由二次曲线方程y=kx+m则知直线与二次曲线相交所截得弦长为:AB =212212)()(y y x x -+-=21k +21x x - =[]21221241x x x x k -++)()(=[]2122122124)()11(11y y y y ky y k -++=-+=aacb k4122-+ 13、 空间直角坐标系,两点之间的距离公式: ⑴ xoy 平面上的点的坐标的特征A (x ,y ,0):竖坐标z=0 xoz 平面上的点的坐标的特征B (x ,0,z ):纵坐标y=0 yoz 平面上的点的坐标的特征C (0,y ,z ):横坐标x=0 x 轴上的点的坐标的特征D (x ,0,0):纵、竖坐标y=z=0 y 轴上的点的坐标的特征E (0,y ,0):横、竖坐标x=z=0 z 轴上的点的坐标的特征E (0,0,z ):横、纵坐标x=y=0 ⑵│P 1P 2│=212212212-z z -y y -x x )()()(++ 必修三算法初步与统计:以下是几个基本的程序框流程和它们的功能一、算法的三种基本结构:(1)顺序结构(2)条件结构(3)循环结构二、算法基本语句:1、输入语句:输入语句的格式:INPUT “提示内容”; 变量。