二次函数y=a(x-h)2的图象与性质(第4 课时)

合集下载

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)

初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)一元复始,万象更新。

查字典数学网初中频道小编预备了九年级下册数学教学打算:第6章第2节二次函数的图象和性质(4课时)的相关内容,期望能够对大伙儿有关心。

教学目标【知识与技能】使学生明白得并把握函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系;会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.【过程与方法】让学生经历函数y=a(x-h)2+k性质的探究过程,明白得并把握函数y=a(x -h)2+k的性质,培养学生观看、分析、推测、归纳并解决问题的能力.【情感、态度与价值观】渗透数形结合的数学思想,培养学生良好的学习适应.重点难点【重点】确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,明白得函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,明白得函数y=a(x-h) 2+k的性质.【难点】正确明白得函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质.教学过程一、问题引入1.函数y=x2+1的图象与函数y=x2的图象有什么关系?(函数y=x2+1的图象能够看成是将函数y=x2的图象向上平移一个单位得到的.)2.函数y=-(x+1)2的图象与函数y=-x2的图象有什么关系?(函数y=-(x+1)2的图象能够看成是将函数y=-x2的图象向左平移一个单位得到的.)3.函数y=-(x+1)2-1的图象与函数y=-x2的图象有什么关系?函数y=-(x+ 1)2-1有哪些性质?(函数y=-(x+1)2-1的图象能够看作是将函数y=-x2的图象向左平移一个单位,再向下平移一个单位得到的,开口向下,对称轴为直线x=-1,顶点坐标是(-1,-1).)二、新课教授问题1:你能画出函数y=-x2,y=-(x+1)2,y=-(x+1)2-1的图象吗?师生活动:教师引导学生作图,巡视,指导.学生在直角坐标系中画出图形.教师对学生的作图情形作出评判,指正其错误,出示正确图形.解:(1)列表:xy=-x2y=-(x+1)2y=-(x+1)2-1-3--2-3-2-2---1-0-100--1--2-32-2--3--8-9(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点;(3)连线:用光滑曲线顺次连接各点,得到函数y=-x2,y=-(x+1)2,y=-(x+1)2-1的图象.问题2:观看图象,回答下列问题.函数开口方向对称轴顶点坐标y=-x2向下x=0(0,0)y=-(x+1)2向下x=-1(-1,0)y=-(x+1)2-1向下x=-1(-1,-1)问题3:从上表中,你能分别找到函数y=-(x+1)2-1,y=-(x+1)2与函数y=-x 2的图象之间的关系吗?师生活动:教师引导学生认真观看上述图象.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.函数y=-(x+1)2-1的图象能够看成是将函数y=-(x+1)2的图象向下平移1个单位得到的.函数y=-(x+1)2的图象能够看成是将函数y=-x2的图象向左平移1个单位得到的.故抛物线y=-(x+1)2-1是由抛物线y=-x2沿x轴向左平移1个单位长度得到抛物线y=-(x+1)2,再将抛物线y=-(x+1)2向下平移1个单位得到的.除了上述平移方法外,你还有其他的平移方法吗?师生活动:教师引导学生积极摸索,并适当提示.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.抛物线y=-(x+1)2-1是由抛物线y=-x2向下平移1个单位长度得到抛物线y=-x2-1,再将抛物线y=-x2-1向左平移1个单位得到的.问题4:你能发觉函数y=-(x+1)2-1有哪些性质吗?师生活动:教师组织学生讨论,互相交流.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.当x-1时,函数值y随x的增大而增大;当x-1时,函数值y随x的增大而减小;当x=-1时,函数取得最大值,最大值y=-1.三、典型例题【例】要修建一个圆形喷水池,在水池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?师生活动:教师组织学生讨论、交流,如何将文字语言转化为数学语言.学生积极摸索、解答.指名板演,教师讲评.解:如图(2)建立的直角坐标系中,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数关系式是y=a(x-1)2+3(0≤x≤3).由这段抛物线通过点(3,0)可得0=a(3-1)2+3,解得a=-,因此y=-(x-1)2+3(0≤x≤3),当x=0时,y=2.25,也确实是说,水管的长应为2.25 m.四、巩固练习1.画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较.【答案】函数y=2(x-1)2的图象能够看成是将函数y=2x2的图象向右平移一个单位得到的,再将y=2(x-1)2的图象向下平移两个单位长度即得函数y =2(x-1)2-2的图象.2.说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出那个函数图象的开口方向、对称轴和顶点坐标.【答案】函数y=-(x-1)2+2的图象能够看成是将函数y=-x2的图象向右平移一个单位,再向上平移两个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2).五、课堂小结本节知识点如下:一样地,抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同,把抛物线y= ax2向上(或下)向左(或右)平移,能够得到抛物线y=a(x-h)2+k.平移的方向和距离要依照h、k的值来确定.抛物线y=a(x-h)2+k有如下特点:(1)当a0时,开口向上;当a0时,开口向下;(2)对称轴是x=h;(3)顶点坐标是(h,k).教学反思本节内容要紧研究二次函数y=a(x-h)2+k的图象及其性质.在前两节课的基础上我们清晰地认识到y=a(x-h)2+k与y=ax2有紧密的联系,我们只需对y=ax2的图象做适当的平移就能够得到y=a(x-h)2+k的图象.由y=ax2得到y =a(x-h)2+k有两种平移方法:方法一:y=ax2y=a(x-h)2y=a(x-h)2+k方法二:y=ax2y=ax2+k单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

2021年人教版数学九年级上册第四课时 二次函数y=a(x-h)2的图象和性质课件

2021年人教版数学九年级上册第四课时 二次函数y=a(x-h)2的图象和性质课件
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.3 二次函数y=a(x-h)2+k的图象和性质 第四课时 二次函数y=a(x-h)2的图象和性质
以练助学 名师点睛 基础过关 能力提升 思维训练
3
以练助学
名师点睛
• 知识点1 二次函数y=a(x-h)2的图象和性质
• 二次函数y=a(x-h)2(a≠0)的图象是一条抛物线,对称轴是直线x=h, 顶点坐标是(h,0).
• (2)当x<2时,y随x的增大而增大;当x>2时,y随x的增大而减小.
11
能力提升
• 8.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,
与其对应的函数值y的最大值为-1,则h的值为( )
• A.3或6 B.1或6
B
• C.1或3 D.4或6
• 9.若抛物线y=2(x-m)m2-4m-3的顶点在x轴正半轴上,则m的值为
4
【典例】在平面直角坐标系中,二次函数 y=a(x-h)2(a≠0)的图象可能是( )
A
B
C
D
5
• 分析:二次函数y=a(x-h)2(a≠0)的顶点坐标为(h,0),则顶点在x轴上, 只有D符合题意.
• 答案:D • 点评:二次函数y=a(x-h)2(a≠0)的顶点在x轴上. • 知识点2 抛物线y=a(x-h)2与y=ax2的关系 • 抛物线y=a(x-h)2可以看成是由抛物线y=ax2(a≠0)向左(h<0)或向右(h
• (1)当a>0时,抛物线y=a(x-h)2(a≠0)开口向上,当x<h时,函数值y随 x的增大而减小;当x>h时,函数值y随x的增大而增大;当x=h时,函 数y=a(x-h)2取得最小值y=0;

二次函数y=a(x-h)^2的图像和性质

二次函数y=a(x-h)^2的图像和性质

y=-2x2 y=-2(x+1)2 y=-2(x-1)2
画出二次函数 考虑它们的开口方向、对称轴和顶点.: 解:先列表 描点
x x
1 y ( x 1) 2 2 1 y ( x 1) 2 2
1 1 2 y ( x 1) 、 y ( x 1) 2 的图象,并 2 2
点坐标 (x-h)2的形
式,并说出开口方向,顶点坐标和对称轴。
(1) y x 6x 9
2
1 2 (2) y x 2 x 2 2
2
2
在同一坐标系中作出下列二次函数:
1 2 y x 2
1 y ( x 2) 2 2
1 2 y x 2 2
1 y ( x 2) 2 2
6 5 4
观察三条抛物线的 相互关系,并分别指 出它们的开口方向, 对称轴及顶点.
-8
y
1 2 x 2
y
1 x 2 2 2
y= 2(x-3)2 y= −2(x+3)² y= −2(x-2)2
y= 3(x+1)2
二次函数y=a(x-h)2的性质
y=a(x-h)2
a>0
a<0
图象
h>0
开口
h<0
h>0
h<0
对称性
顶点 增减性
开口向下 开口向上 a的绝对值越大,开口越小 直线x=h
(h,0)
顶点是最高点 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减 顶点是最低点
二次函数y=ax2+c的性质
y=ax2+c
图象
a>0
a<0

二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)

二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)
(0,1),当x≥0时,y随x的增大而增大,
∴a-1>0,
解得a>1.
故选:A.
3.点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,当x1
>x2>1时,y1与y2的大小是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
【答案】D
【详解】解:∵抛物线y=(x-1)2-3,a=1>0开口向上,
(3)将抛物线C先向左平移2个单位长度、再向上平移
1个单位长度后,所得抛物线为` .请直接写出抛物
线` 的函数解析式.
【答案】(1)抛物线C的开口向下,对称轴为直线
x=1,顶点坐标为(1,2);
(2)y的取值范围为-2≤y≤2;
(3)y=-(x+1)2+3
(1)
解:∵y=-x2+2x+1=-(x-1)2+2,
典例精析
例1.已知二次函数y=a(x-1)2-c的图象如图所示,
则一次函数y=ax+c的大致图象可能是( A )
解析:根据二次函数开口向上则a>0,根据-c是
二次函数顶点坐标的纵坐标,得出c>0,故一次函数
y=ax+c的大致图象经过第一、二、三象限.故选A.
知识点二 二次函数y=a(x-h)2+k与y=ax2的关系
对称轴为直线x=1,当x>1时,y随x的增大而增大,
点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,
∴x1>x2>1,
∴y1>y2.
故选:D.
4.如图,在平面直角坐标系中,O为坐标原点,正
方形OABC的顶点A在y轴的负半轴上,点C在x轴的
正半轴上,经过点A、B的抛物线y=a(x-2)2+c(a>0)

二次函数y=a(x-h)2的图象和性质 课件

二次函数y=a(x-h)2的图象和性质 课件


识 点
二次函数 y a(x h)2 的图象;

三、研读课文
探究 在同一直角坐标系中,画出函
数,y


1x
2
12
,y


1 2
x
12
的图象,并分别指出他们的开口方向、
对称轴和顶点.
三、研读课文 解:(1)列表
-3 -2 -1 1 2 3
-2

1 2
0
1 2
-2
9 2
-8
开口向上、对称轴x=2、顶点坐标(2,0)
知识点二 二次函数 y a(x h)2 的性质;
思考 抛物线 y 1 x2 与抛物线
y 1 x 1,2 y 1 x 212 有什么关系?
2
2
分y 析:1请x2在也知画识上点去一。图上把抛物线 2
知 识
y归( 1纳)1:抛x 物12 线的形y 状为12 开x 口12向、y
二次函数 y a(x h)2 的图像和性质
一、学习目标 引导学生读懂数学书课题研究成果配套课件 课件制作:苏志朝
1、会画二次函数 y a(x h)2的图象; 2、掌握二次函数 y a(x h)2的性质;
3、比较函数 y ax2 与 y a(x h)2
的联系.
二、新课引入 1、填表:
(2)对称轴是直线 x = h

(3)顶点坐标是 ( h , 0 )
.
2、抛物线 y a(x h)2 与 y ax2 形状相同,位置不同,y a(x h)2 是由 y ax2 ____左__右____平移得到的. (填“上下”或“左右”)
1、抛物线 y 2(x 3)2 的开口_向__上__;

22.1.2第4节二次函数y=a(x-h)2的图象与性质(教案)

22.1.2第4节二次函数y=a(x-h)2的图象与性质(教案)
22.1.2第4节二次函数y=a(x-h) 2的图象与性质(教案)
一、教学内容
22.1.2第4节二次函数y=a(x-h)^2的图象与性质
1.二次函数y=a(x-h)^2的图象特点
- a>0时,抛物线开口向上;a<0时,抛物线开口向下
- h为抛物线的对称轴,即x=h
-抛物线顶点为(h, 0)
2.二次函数y=a(x-h)^2的性质
(2)强调对称轴(x=h)和顶点((h, k))的概念,解释它们与函数最值、单调性的关系,并通过具体例子进行说明。
(3)详细讲解图象的平移变换,使学生掌握左加右减、上加下减的变换规律,并能运用到具体问题中。
(4)结合实际情境,如物体抛掷、经济模型等,展示二次函数的应用,强调数学知识在实际问题中的运用。
1.提供更多具有代表性的案例,让学生在实际问题中运用所学知识。
2.加强对学生的引导和启发,提高他们在解决问题时的独立思考能力。
3.优化问题设计,使学生在讨论过程中能够更加聚焦主题。
4.针对不同学生的掌握程度,进行有针对性的辅导和答疑。
2.掌握二次函数图象变换方法,提高学生数学建模、数学运算的能力。
-通过图象变换,培养学生建立数学模型,解决实际问题的能力。
-在变换过程中,锻炼学生准确进行数学运算,提高解题效率。
3.培养学生运用二次函数知识解决实际问题的意识,提升数学应用、数据分析的核心素养。
-结合实例分析,引导学生运用所学知识解决生活中与二次函数相关的问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

4 二次函数y=a(x-h)^2的图像与性质

4  二次函数y=a(x-h)^2的图像与性质

观察图象,回答问题
(3) 函 数 y=3(x-1)2 2的 2 的 图 象 与 y=3x y = 3 ( x - 1) y = 3x 2 图象有什么关系? 它是轴对称图形吗 ?它的对称轴和顶 点坐标分别是什么 ? (4)x取哪些值时,函数y=3(x-1)2的值随x值 的增大而增大?x取哪些值时,函数y=3(x-1)2 的值随x的增大而减少?
二次函数y=a(x-h)2的性质
1.顶点坐标与对称轴
y = a ( x + h)
2
2.位置与开口方向
3.增减性与最值 根据图形填表: 抛物线 顶点坐标 对称轴 y=a(x-h)2 (a>0) (h,0) 直线x=h 在x轴的上方(除顶点外) 向上
(3)函数 y=3(x-1)2的图象 与 y=3x2 的图象有什么关 系?它是轴对称图形吗?它 的对称轴和顶点坐标分别 是什么?
二次函数y=3(x-1)2 与y=3x2的图象形状 相同,可以看作是抛 物线y=3x2整体沿x轴 向右平移了1 个单位
y = 3x
2
y = 3 ( x - 1)
2
图象是轴对称图形 对称轴是平行于 y轴的直线:x=1.
的图象
⑴完成下表,并比较3x2和3(x-1)2的值,它们 之间有什么关系?
x -3 27
2
-2 12 27
-1 3 12
0 0 3
1 3 0
2 12 3
3 27 12
4 48 27
y = 3x 2
y = 3( x - 1)
48
(2)在同一坐标系中作出二次函数y=3x2和 y=3(x-1)2的图象.
函数
开口方向
在对称轴右 侧
y=ax2
a>0

二次函数y=a(x-h)2的图象和性质

二次函数y=a(x-h)2的图象和性质
22
(2)画出(1)中平移后的图象;
23
(3)设两条抛物线相交于点B,点A关 于新抛物线对称轴的对称点为C, 试在新抛物线的对称轴上找出一 点P,使BP+CP的值最小,并求 出点P的坐标.
24
如图,连接BC.由(1)可知平移后抛
物线对应的函数解析式为:
y= 1 (x-3)2,
3
易知点B的坐标为(
相同点是( A )
A.形状与开口方向相同 B.对称轴相同 C.顶点相同 D.都有最低点
返回
14
14.(中考•丽水)将函数y=x2的图象用下列方法平移后,
所得的图象不经过点A(1,4)的方法是( D )
A.向左平移1个单位长度 B.向右平移3个单位长度 C.向上平移3个单位长度 D.向下平移1个单位长度
返回
15
题型 1 二次函数y=a(x-h)2的图
象和性质在求解析式中应用
15.已知抛物线y=a(x-h)2的对称轴为直线x=-2,且 过点(1,-3).
(1)求此抛物线对应的函数解析式.
由题意知h=-2,故y=a(x+2)2.因为此抛物线过点(1,-3),
所以-3=a•32.解得a=- 1 .
3
1
3 2

3 4
),
点C的坐标为(6,3),
25
所以此抛物线对应的函数解析式为y=- 3 (x+2)2.
16
(2)画出此抛物线. (3)从图象上观察,当x取何值时,y随x的增大而增大?
当x取何值时,函数有最大值(或最小值)?
(2)图略.
(3)当x<-2时,y随x的增大而增大;
当x=-2时,函数有最大值.
返回
17
题型
3
二次函数y=a(x-h)2的图象 和性质在求图形面积中应用

二次函数y=a(x-h)2_的图象和性质

二次函数y=a(x-h)2_的图象和性质

在同一坐标系中作出下列二次函数:
y 1 x 2 y 1 (x 2)2
2
2
y
1
6
(x
2)2
25
观察三条抛物线的 y 1 x 22
4
相互关系,并分别指 2
3
出它们的开口方向,
2
对称轴及顶点.
1
y 1 x2 2
y 1 x 22
2
-8
-6
-4
-2 B
2
4
6
y 1 (x 2)2 向左平移
2
2个单位
y 1 x2 2
向右-1 平移 y 1 (x 2)2
2个-2 单位
2
顶点(-2,0)
向左平移 2个单位
顶点(0,0)
向右-3 平移 2个-4 单位
顶点(2,0)
直线x=-2
向左平移对称轴:y轴 向右平移 2个单位即直线: x=0 2个单位
直线x=2
y=a(x-h)2(a≠0)
a>0
(A)直线x=2 (B)直线x=-2
(C)y轴
(D)x轴
4、将抛物线 y 3x 2 向左平移3个单位所得的抛
物线的函数关系式为( D )
A、 y 3x2 3 B、5、抛物线 y (x 1)2 是由抛物线 y=-X2 向 右 平
顶点 坐标
最值
增减性
在对称 在对称 轴右侧 轴左侧
y=ax2
y=ax2+k
a>0 a<0 a>0 a<0
向上 y轴
向下 y轴 向上 y轴 向下 y轴
(0,0) (0,0)
(0,k) (0,k)
当x=0时, Y随x的增 Y随x的增 y最小值=0 大而减小 大而增大

第4课时_二次函数y=a(x-h)2的图象与性质_导学案

第4课时_二次函数y=a(x-h)2的图象与性质_导学案

5.6 二次函数y=ax2+bx+c的图象与性质(1)学习目标:1.会画二次函数y=ax2+k,y=a(x-h)2的图象;2.掌握二次函数y=ax2+k,y=a(x-h)2的性质,并要会灵活应用;学习重点:二次函数y=ax2+k,y=a(x-h)2的性质学习难点:二次函数y=ax2+k,y=a(x-h)2的性质教学过程:一.自主探究探究点一:二次函数y=ax2+k的图象与性质自主探究:在同一直角坐标系画出二次函数y=-12x2,y=-12x2+1,y=-12x2-1的图象,并通过观察图象探究以下问题:(1)它们的开口方向与开口大小相同吗?(2)它们的顶点坐标和对称轴分别是什么?(3)它们之间能通过平移得到吗?有什么平移规律吗?(1)列表:x …-4-3-2-10 1 2 34…y=-12x2……y=-12x2+1y=—12x2-1 ……根据它们的图象,填写下表:小结:(1)抛物线y=ax 2+k 与y=ax2有什么位置关系?与同学交流。

(22探究点二:二次函数y =a (x-h )2的图象性质自主探究:请你在同一直角坐标系中画出函数y =x 2, y = (x +1)2 ,y = (x -1)2,通过图象探究以下问题:(1) 三个函数图象的开口方向与大小相同吗?(2) 三个函数图象的顶点坐标,对称轴分别是什么? (3) 函数y = (x +1)2 与y = (x -1)2的图象能否通过y =x 2的图象平移得到?如果能,该怎样平移?你能总结出从函数y =x 2的图象到函数y = (x-h)2的图象的平移规律吗?描点并画图.1.观察图象,填表:函数开口方向顶点对称轴最值增减性y=x2y= (x+1)2y= (x-1)2适时小结:二次函数y=a(x-h)2有哪些性质?二、整理知识点1.函数图象开口方向顶点对称轴最值增减性y=ax2+ka﹥0a﹤0 y=a(x-h)2a﹥0a﹤02.对于二次函数的图象,只要|a|相等,则它们的形状_________,只是________不同.三、巩固训练1.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.2.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为______________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为_______________.3.将抛物线y=-13(x-1)2向右平移2个单位后,得到的抛物线解析式为____________.4.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.昌乐外国语学校九年级数学导学案设计人:张玉进审核人:杜荣国审批人:四、达标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则 m=__________,n=___________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.。

二次函数y=a(x-h)2的图象与性质.

二次函数y=a(x-h)2的图象与性质.

(即x<-1时),函数y=3(x+1)2
的值随x的增大而减少,. 顶点是最低点,函数
有最小值.当x=-1时,
二次函数y=3(x+1)2
最小值是0..
与y=3x2的增减性类似.
在对称轴(直线:x=-1)右侧 (即x>-1时),函数y=3(x+1)2 的值随x的增大而增大,.
在同一坐标系中作出下列二次函数:
(4)x取哪些值时,函数y=3(x-1)2的值随x值的 增大而增大?x取哪些值时,函数y=3(x-1)2的 值随x的增大而减少?
3.抛物线y=ax2+k有如下特点:
(1)当a>0时, 开口向上,当a<0时,开口向下;
(2)对称轴是y轴;
(3)顶点是(0,k).
抛物线y=a(x-h)2有如下特点:
(1)当a>0时, 开口向上,当a<0时,开口向上;
(2)对称轴是x=h; (3)顶点是(h,0).
二次函数y=a(x-h)2的性质
﹙x+1﹚2
-2
-4
y 1 x2 2
-6
24
y=-
1 2
﹙x-1﹚2
-4 -2 -2
y=-
1 2
﹙x+1﹚2
-4
-6
24
y=- 21﹙x-1﹚2
可以看出,抛物线 y 1x12的开口向下,对称轴
2
是经过点(-1,0)且与x轴垂直的直线,我们把它记住
x=-1,顶点是(-1,0);抛物线 y 1x12
(3)函数y=3(x-1)2的图象 与y=3x2的图象有什么关 系?它是轴对称图形吗?它 的对称轴和顶点坐标分别 是什么?
y 3x2

第2课时 二次函数y=a(x-h)2的图象和性质

第2课时 二次函数y=a(x-h)2的图象和性质

活动 四: 课堂 总结 反思【教学反思】 ①[授课流程反思]新课导入环节中, 引导学生在观察函数图象上下功夫, 同时给学生设置有悬念的问题, 使学生积极思考问题;在探究新知过程中, 让学生经历类比联想、归纳总结的过程, 应用由特殊到一般的思想, 增强学生的观察、分析、归纳和表达能力. ②[讲授效果反思] 引导学生注意三点: (1)明确记忆函数图象的开口方向、对称轴、顶点坐标;(2)函数图象的平移规律;(3)掌握函数的性质. ③[师生互动反思] 教学过程中, 教师对学生进行引导, 使他们能够积极投入到对数学知识的探索过程中来, 养成探索的好习惯. ④[习题反思]好题题号__________________________________________ 错题题号__________________________________________反思教学过程和教师表现, 进一步提升操作流程和自身素质. 一、知识回顾: 画出二次函数y =- (x +1)2, y =- (x -1)2的图象, 并考虑它们的开口方向、对称轴、顶点以及最值、函数值的变化情况.先列表:x … -4 -3 -2 -1 0 1 2 3 4 …y =-12(x +1)2… … y =-12(x -1)2……在坐标纸上描点并画图:(1)观察图象, 填开口方向顶点对称轴最值对称轴右侧的增(2)请在图上把抛物线y=-x2也画上去(草图).①抛物线y=- (x+1)2, y=- x2, y=- (x-1)2的形状大小________.②把抛物线y=- x2向______平移________个单位, 就得到抛物线y=- (x+1)2;把抛物线y=- x2向______平移________个单位, 就得到抛物线y=- (x-1)2.(2)对于抛物线y=a(x-h)2与y=ax2的图象, 形状________, 位置__________.当h>0时, 抛物线y=a(x-h)2的图象可由y=ax2的图象向________平移________个单位得到;当h<0时, 抛物线y=a(x-h)2的图象可由y=ax2的图象向________平移________个单位得到.小试牛刀:2.抛物线y =4(x -2)2与y 轴的交点坐标是________, 与x 轴的交点坐标为________.3. (1)把抛物线y =3x2向右平移4个单位后, 得到的抛物线的表达式为________. (2)把抛物线y =3x2向左平移6个单位后, 得到的抛物线的表达式为________.4.(1)将抛物线y =- (x -1)2向右平移2个单位后, 得到的抛物线表达式为__________. (2)将抛物线y =-13(x -4)2向________平移________个单位得到y =-13x 2.5. 写出一个顶点是(5, 0), 形状、开口方向与抛物线y =-2x2都相同的二次函数表达式__________.当堂巩固检测(1)二次函数y =2(x +5)2的图象是________, 开口________, 对称轴是________, 当x =____________时, y 有最________值, 是________.(2)二次函数y =-3(x -4)2的图象是由抛物线y =-3x2向________平移________个单位得到的;开口________, 对称轴是________, 当x =________时, y 有最__________值, 是__________.(3)将二次函数y =2x2的图象向右平移3个单位后得到函数________的图象, 其对称轴是________, 顶点是________, 当x________时, y 随x 的增大而增大;当x________时, y 随x 的增大而减小.(4)将二次函数y =-3(x -2)2的图象向左平移3个单位后得到函数____________的图象, 其顶点坐标是________, 对称轴是__________, 当x =________时, y 有最________值, 是________.(5)抛物线y =4(x -3)2的开口方向__________, 对称轴是__________, 顶点坐标是__________, 抛物线有最________点, 当x =__________时, y 有最________值, 其值为__________, 抛物线与x 轴的交点坐标为________, 与y 轴的交点坐标为________.三、课时小结1. 抛物线y =2(x +3)2的开口__________;顶点坐标为________;对称轴是________; 当x >-3时, y 随x 的增大而__________;当x =-3时, y 有最________值是________. 2.抛物线y =m(x +n)2向左平移2个单位后, 得到的函数表达式是y =-4(x -4)2, 则m =________, n =________.3.二次函数y =a(x +h)2(a ≠0)的图象由y = x2向右平移得到的, 且过点(1, 2), 试说明向右平移了几个单位?。

人教初中数学 《二次函数的图象和性质(第4课时)》教案 (公开课获奖)

人教初中数学 《二次函数的图象和性质(第4课时)》教案 (公开课获奖)

22.1 二次函数的图象和性质教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.D CA BD CABDC A BⅢ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

5.6(2)二次函数y=a(x-h)2 的图象和性质

5.6(2)二次函数y=a(x-h)2 的图象和性质

向上
向下 向下
直线x=-3
直线x=1 直线x=3Fra bibliotek( -3 , 0 )
(1,0) ( 3, 0)
1.抛物线y=ax2+k、抛物线y=a(x-h)2和抛物线y=ax2 的形状完全相同,开口方向一致; 当a>0时, 开口向上; 当a<0时,开口向上. 2.抛物线y=ax2+k可以由抛物线y=ax2向上或向下平移 |k|得到. (k>0,向上平移;k<0向下平移.) 抛物线y=a(x-h)2可以由抛物线y=ax2向左或向右平 移|h|得到. (h>0,向右平移;h<0向左平移.) 3.抛物线y=ax2+k有如下特点: (1)当a>0时, 开口向上,当a<0时,开口向下; (2)对称轴是y轴; (3)顶点是(0,k). 抛物线y=a(x-h)2有如下特点: (1)当a>0时, 开口向上,当a<0时,开口向上; (2)对称轴是x=h; (3)顶点是(h,0).
y 2( x 3)
2
y 2( x 3)
2
如何平移:
3 2 y x 4
3 2 y ( x 1) 4
3 2 y ( x 1) 4
3 y ( x 5) 2 4
抛物线 y = 2(x+3)2 y = -3(x-1)2 y = -4(x-3)2
开口方向
对称轴
顶点坐标
y
x
3、抛物线y=4(x-3)2的开口方向 向上 ,
对称轴是 直线x=3,顶点坐标 是 (3,0) ,抛物线是最 低 点, 当x= 抛物线与x轴交点坐标 (3,0) ,与y轴交
3 时,y有最 小 值,其值为 0 。

二次函数y=a(x-h)2的图象和性质

二次函数y=a(x-h)2的图象和性质

椭圆特殊Biblioteka 二次函数图象是椭圆。它的方程是二次函 数的一种变体。
二次函数的性质和应用
1
最值
二次函数的最值是顶点的纵坐标。最
焦点和准线
2
大值或最小值取决于抛物线的开口方 向。
椭圆的焦点和准线是二次函数图象的
重要特征。
3
优化问题
二次函数在优化问题中有广泛应用, 例如寻找最佳投影距离、最小化成本 等。
垂直平移
当在函数中加减一个常数k时,抛物线会在垂直 方向上平移。正的k值向上平移,负的k值向下平 移。
参数a对二次函数的图象的影响
扩展或压缩
当a的绝对值大于1时,抛物线会扩展;当a的绝对值小于1时,抛物线会压缩。
开口方向
当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。
对称轴
当a大于零时,对称轴是抛物线上方的水平直线;当a小于零时,对称轴是抛物线下方的水平 直线。
二次函数y=a(x-h)2的图象 和性质
二次函数是数学中的重要概念,它可以用来描述曲线的特征。在本节中,我 们将探讨二次函数的定义、图象和性质。
二次函数的定义和表示
二次函数是形如y=a(x-h)2的函数,其中a、h为常数,a不等于零。 它表示了一个开口向上或向下的抛物线,其中a决定了抛物线的开口方向和弧 度,h决定了抛物线的位置。
参数h对二次函数的图象的影响
1 水平平移
当h大于零时,抛物线 向左移动;当h小于零 时,抛物线向右移动。
2 对称轴
当h大于零时,对称轴 向左平移;当h小于零 时,对称轴向右平移。
3 顶点
顶点坐标的横坐标与h 的相反数相等。
典型二次函数的图象
抛物线
二次函数的典型图象是抛物线。它可以有不同的 开口方向和位置,取决于参数a和h的值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数y =a(x-h)2的图象与性质二次函数
年级:九年级 学科:数学 主备:龚汉平 审核:
班级: 姓名:
一、阅读课本:P10—11 二、学习目标:
1.会画二次函数y =a (x -h )2的图象;
2.掌握二次函数y =a (x -h )2的性质,并要会灵活应用; 三、探索新知:
画出二次函数y =-12 (x +1)2,y -1
2 (x -1)2的图象,并考虑它们的开口方向、对称轴、
顶点以及最值、增减性.
1
2.请在图上把抛物线y =-1
2
x 2也画上去(草图).
①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-1
2 (x -1)2的形状大小____________.
②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-1
2 (x +1)2 ;
把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-1
2
(x +1)2 .
四、整理知识点
2.对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.
五、课堂训练
2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为__________.
4.将抛物线y=-1
3(x-1)x
2向右平移2个单位后,得到的抛物线解析式为______.
5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式________.
六、目标检测
1.抛物线y=2 (x+3)2的开口_________;顶点坐标为__________;对称轴是_________;
当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则m=__________,n=___________.
3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.
4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.。

相关文档
最新文档