九年级数学上学期期中质量检测试题扫描版新人教版

合集下载

新人教版九年级数学上册期中考试试题及答案

新人教版九年级数学上册期中考试试题及答案

新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新人教版九年级数学上册期中考试试题(含答案)一.选择题(每小题3分,总分36分)1.下列方程中,关于x 的一元二次方程是( )A .(x +1)2=2(x +1)B .C .ax 2+bx +c =0D .x 2+2x =x 2﹣12.若关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实根,则m 的取值范围是( )A .m <3B .m ≤3C .m <3且m ≠2D .m ≤3且m ≠23.方程x (x ﹣1)=x 的根是( )A .x =2B .x =﹣2C .x 1=﹣2,x 2=0D .x 1=2,x 2=04.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D .5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+16.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =19.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( )A .B .C .D .11.不论x 为何值,函数y =ax 2+bx +c (a ≠0)的值恒大于0的条件是( )A .a >0,△>0B .a >0,△<0C .a <0,△<0D .a <0,△>012.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x +1)=1035B .x (x ﹣1)=1035×2C .x (x ﹣1)=1035D .2x (x +1)=1035二.填空题(每小题3分,总分18分)13.若关于x 的一元二次方程x 2﹣3x +m =0有实数根,则m 的取值范围是 .14.方程x 2﹣3x +1=0的解是 .15.如图所示,在同一坐标系中,作出①y =3x 2②y =x 2③y =x 2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) .16.抛物线y =﹣x 2+15有最 点,其坐标是 .17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 .18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为三.解答题(本大题共8个小题,)19.(6分)解方程x 2﹣4x +1=0x (x ﹣2)=4﹣2x ;20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.22.(8分)已知:抛物线y =﹣x 2+x ﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x 为何值时,y 随x 的增大而增大?23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参考答案一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 【分析】由于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.解:∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,∴m﹣2≠0,并且△=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3且m≠2.故选:D.【点评】本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=0【分析】先将原方程整理为一般形式,然后利用因式分解法解方程.解:由原方程,得x2﹣2x=0,∴x (x ﹣2)=0,∴x ﹣2=0或x =0,解得,x 1=2,x 2=0;故选:D .【点评】本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D . 【分析】根据因式分解法解方程对A 进行判断;根据方程解的定义对B 进行判断;根据直接开平方法对C 、D 进行判断.解:A 、x +1=0或x ﹣2=0,则x 1=﹣1,x 2=2,所以A 选项错误;B 、x =1或x =﹣2不满足(x ﹣1)(x +2)=1,所以B 选项错误;C 、x +2=±1,则x 1=﹣1,x 2=﹣3,所以C 选项错误;D 、x +=±,则x 1=1,x 2=﹣2,所以D 选项正确.故选:D .【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程,5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+1【分析】变化规律:左加右减,上加下减.解:按照“左加右减,上加下减”的规律,y =3x 2的图象向左平移2个单位,再向上平移1个单位得到y =3(x +2)2+1.故选D .【点评】考查了抛物线的平移以及抛物线解析式的性质.6.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)【分析】先把二次函数化为顶点式的形式,再得出其顶点坐标即可.解:∵原函数解析式可化为:y =﹣(x +2)2+7,∴函数图象的顶点坐标是(﹣2,7).故选:D .【点评】本题考查的是二次函数的性质,根据题意把二次函数的解析式化为顶点式的形式是解答此题的关键.7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标. 解:因为y =(x +2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选:B .【点评】考查顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .要掌握顶点式的性质.8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =1【分析】二次函数的一般形式中的顶点式是:y =a (x ﹣h )2+k (a ≠0,且a ,h ,k 是常数),它的对称轴是x =h ,顶点坐标是(h ,k ).解:y =(x ﹣1)2+2的对称轴是直线x =1.故选:B .【点评】本题主要考查二次函数顶点式中对称轴的求法.9.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .【分析】可以直接利用两根之和得到所求的代数式的值.解:如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2=2.故选:B .【点评】本题考查一元二次方程ax2+bx+c=0的根与系数的关系即韦达定理,两根之和是,两根之积是.10.当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是()A.B.C.D.【分析】根据二次函数的图象与系数的关系可知.解:∵a>0,∴抛物线开口向上;∵b<0,∴对称轴为x=>0,∴抛物线的对称轴位于y轴右侧;∵c>0,∴与y轴的交点为在y轴的正半轴上.故选:A.【点评】本题考查二次函数的图象与系数的关系.11.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△>0 【分析】根据二次函数的性质可知,只要抛物线开口向上,且与x轴无交点即可.解:欲保证x取一切实数时,函数值y恒为正,则必须保证抛物线开口向上,且与x轴无交点;则a>0且△<0.故选:B.【点评】当x取一切实数时,函数值y恒为正的条件:抛物线开口向上,且与x轴无交点;当x取一切实数时,函数值y恒为负的条件:抛物线开口向下,且与x轴无交点.12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C .x (x ﹣1)=1035D .2x (x +1)=1035【分析】如果全班有x 名同学,那么每名同学要送出(x ﹣1)张,共有x 名学生,那么总共送的张数应该是x (x ﹣1)张,即可列出方程. 解:∵全班有x 名同学, ∴每名同学要送出(x ﹣1)张; 又∵是互送照片,∴总共送的张数应该是x (x ﹣1)=1035. 故选:C .【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键. 二.填空题(每小题3分,总分18分)13.若关于x 的一元二次方程x 2﹣3x +m =0有实数根,则m 的取值范围是 m ≤ . 【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:在有实数根下必须满足△=b 2﹣4ac ≥0.解:一元二次方程x 2﹣3x +m =0有实数根, △=b 2﹣4ac =9﹣4m ≥0,解得m.【点评】总结:一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.14.方程x 2﹣3x +1=0的解是 x 1=,x 2=.【分析】观察原方程,可用公式法求解;首先确定a 、b 、c 的值,在b 2﹣4ac ≥0的前提条件下,代入求根公式进行计算. 解:a =1,b =﹣3,c =1,b 2﹣4ac =9﹣4=5>0,x =;∴x 1=,x 2=.故答案为:x 1=,x 2=.【点评】在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,用直接开平方法简便.因此,在遇到一道题时,应选择适当的方法去解.15.如图所示,在同一坐标系中,作出①y =3x 2②y =x 2③y =x 2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) ①③② .【分析】抛物线的形状与|a |有关,根据|a |的大小即可确定抛物线的开口的宽窄. 解:①y =3x 2,②y =x 2,③y =x 2中,二次项系数a 分别为3、、1,∵3>1>,∴抛物线②y =x 2的开口最宽,抛物线①y =3x 2的开口最窄. 故依次填:①③②.【点评】抛物线的开口大小由|a |决定,|a |越大,抛物线的开口越窄;|a |越小,抛物线的开口越宽.16.抛物线y =﹣x 2+15有最 高 点,其坐标是 (0,15) .【分析】根据抛物线的开口方向判断该抛物线的最值情况;根据顶点坐标公式求得顶点坐标. 解:∵抛物线y =﹣x 2+15的二次项系数a =﹣1<0, ∴抛物线y =﹣x 2+15的图象的开口方向是向下, ∴该抛物线有最大值;当x =0时,y 取最大值,即y 最大值=15; ∴顶点坐标是(0,15). 故答案是:高、(0,15).【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 a (1+x )2 .【分析】第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2.关键描述语是:以后每季度比上一季度增产的百分率为x . 解:依题意可知:第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2. 故答案为a (1+x )2.【点评】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系,需注意第三季度是在第二季度的基础上增加的.18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为 y 1<y 2<y 3【分析】先利用抛物线的对称轴方程得到抛物线的对称轴为直线x =﹣5,而﹣3<x 1<x 2<x 3,然后根据二次函数的性质得到y 1,y 2,y 3的大小关系.解:抛物线的对称轴为直线x =﹣=﹣5,抛物线开口向上,所以当x >﹣5时,y 随x 的增大而增大, 而﹣3<x 1<x 2<x 3, 所以y 1<y 2<y 3. 故答案为y 1<y 2<y 3.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质. 三.解答题(本大题共8个小题,) 19.(6分)解方程x 2﹣4x +1=0 x (x ﹣2)=4﹣2x ;【分析】先移项得x 2﹣4x =﹣1,再把方程两边加上4得到x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,然后利用直接开平方法求解;先移项,然后分解因式得出两个一元一次方程,解一元一次方程即可.解:x 2﹣4x +1=0x 2﹣4x =﹣1,x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,∴x ﹣2=±,∴x 1=2+,x 2=2﹣;x (x ﹣2)=4﹣2x x (x ﹣2)+2(x ﹣2)=0,(x ﹣2)(x +2)=0, ∴x ﹣2=0或x +2=0, ∴x 1=2,x 2=﹣2.【点评】本题考查了解一元二次方程﹣配方法:先把方程二次项系数化为1,再把常数项移到方程右边,然后把方程两边加上一次项系数的一半得平方,这样方程左边可写成完全平方式,再利用直接开平方法解方程.也考查了因式分解法解一元二次方程.20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式. 【分析】先设为顶点式,再把顶点坐标和经过的点(1,2)代入即可解决, 解:由抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点, 可设抛物线为:y =a (x ﹣2)2+4,把(1,2)代入得:2=a +4,解得:a =﹣2,所以抛物线为:y =﹣2(x ﹣2)2+4,即y =﹣2x 2+8x ﹣4,【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键. 21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2. (1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.【分析】(1)根据题意可得根的判别式△>0,再代入可得9﹣4m >0,再解即可;(2)根据根与系数的关系可得x 1+x 2=﹣,再代入可得答案. 解:(1)由题意得:△=(﹣3)2﹣4×1×m =9﹣4m >0,解得:m <;(2)∵x1+x2=﹣=3,x1=1,∴x2=2.【点评】此题主要考查了根与系数的关系,以及根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.22.(8分)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为何值时,y随x的增大而增大?【分析】(1)把二次函数的一般式配成顶点式,然后根据二次函数的性质解决问题;(2)计算自变量为0对应的函数值得到抛物线与y轴的交点坐标,通过判断方程﹣x2+x﹣=0没有实数得到抛物线与x轴没有交点;(3)利用二次函数的性质确定x的范围.解:(1)y=﹣x2+x﹣=﹣(x﹣1)2﹣2,所以抛物线的开口向下,对称轴为直线x=1,顶点坐标为(1,﹣2);(2)当x=0时,y=﹣x2+x﹣=﹣,则抛物线与y轴的交点坐标为(0,﹣);当y=0时,﹣x2+x﹣=0,△<0,方程没有实数解,则抛物线与x轴没有交点;即抛物线与坐标轴的交点坐标为(0,﹣);(3)当x<1时,y随x的增大而增大.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【分析】利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可;解:设每件童装应降价x 元,根据题意列方程得, (40﹣x )(20+2x )=1200,解得x 1=20,x 2=10(因为尽快减少库存,不合题意,舍去), 答:每件童装降价20元;【点评】本题是一道运用一元二次方程解答的运用题,考查了一元二次方程的解法和基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润的运用.24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?【分析】设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,列出面积与x 的二次函数关系式,求最值.解:设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,则其面积S =x •=x (6﹣x )=﹣x 2+6x .∵0<2x <12, ∴0<x <6.∵S =﹣x 2+6x =﹣(x ﹣3)2+9, ∴a =﹣1<0,S 有最大值, 当x =3时,S 最大值=9.∴设计费最多为9×1000=9000(元).【点评】本题主要考查二次函数的应用,由矩形面积等于长乘以宽列出函数关系式,利用函数关系式求最值,运用二次函数解决实际问题,比较简单.25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0) (1)求抛物线的解析式; (2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)。

人教版九年级上册数学期中考试试卷及答案-2022年最新修改

人教版九年级上册数学期中考试试卷及答案-2022年最新修改

人教版九年级上册数学期中考试试题一、单选题1.下列图形中,是轴对称图形但不是中心对称图形的是()A .B .C .D .2.抛物线22y x =的开口方向是()A .向下B .向上C .向左D .向右3.抛物线()221y x =--的顶点坐标是()A .()2,1-B .()2,1--C .()2,1D .()2,1-4.如图,ABC ∆是等边三角形,P 是ABC ∆内的一点,若将PBC ∆绕点B 逆时针旋转到P BA '∆,则PBP ∠的度数是()A .35°B .40°C .60°D .75°5.如图,AB 是O 的直径, =BCCD DE =,∠BOC=40°,则∠AOE 的度数为()A .30°B .40°C .50°D .60°6.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为()A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--7.如图所示,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y =﹣22531312x x ++,则此运动员把铅球推出多远()A .12mB .10mC .3mD .4m8.如图,,,A B C 是O 上的三点,,AB AC 在圆心О的两侧,若20,30ABO ACO ∠=︒∠= 则BOC ∠的度数为()A .100B .110C .125D .1309.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的解析式是()A .212y x=-B .212y x =C .22y x =-D .22y x =10.已知二次函数y =ax 2+bx+c 自变量x 的部分取值和对应函数值y 如表:x …﹣2﹣10123…y…83﹣103…则在实数范围内能使得y ﹣3>0成立的x 取值范围是()A .x >3B .x <﹣1C .﹣1<x <3D .x <﹣1或x >3二、填空题11.将二次函数y =x 2﹣4x+7化为y =(x ﹣h )2+k 的形式,结果为y =_____.12.若二次函数2y x 2x m =-+的图象与x 轴没有交点,则m 的取值范围是______.13.如图,四边形ABCD 是O 的内接四边形,对角线AC 是O 的直径,2AB =,45ADB ∠=︒,则O 的半径长为_______.14.点()112,P y ,()224,P y -,()335,P y -均在二次函数22y x x c =-+的图象上,则1y ,2y ,3y 的大小关系是______.(用“<”连接)15.如图,在正方形ABCD 中,3AB =,点E 在CD 边上,1DE =,把ADE 绕点A 顺时针旋转90°,得到ABE '△,连接EE ',则线段EE '的长为______.16.如图,在平面直角坐标系中,点A 的坐标为()0,2,点B 的坐标为()4,2.若抛物线23()2y x h k =--+(h 、k 为常数)与线段AB 交于C 、D 两点,且12CD AB =,则k 的值为_________.三、解答题17.解方程:22310x x +-=.18.如图,在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴,y 轴的交点分别为(10),和(03)-,.(1)求此二次函数的表达式;(2)结合函数图象,直接写出当3y >-时,x 的取值范围.19.如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H .求证:EDC HFE ≅ .20.在图中网格上按要求画出图形,并回答下列问题:(1)把△ABC 平移,使点A 平移到图中点D 的位置,点B 、C 的对应点分别是点E 、F ,请画出△DEF ;(2)画出△ABC 关于点D 成中心对称的△111A B C ;(3)△DEF 与△111A B C (填“是”或“否”)关于某个点成中心对称,如果是,请在图中画出对称中心,并记作点O .21.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?22.如图,AB 是O 的直径,C ,D 是O 上两点,且AD 平分CAB ∠,作DE AB ⊥于E .(1)求证://AC OD ;(2)求证:12OE AC =.23.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价-进价)24.如图,直线AB 分别与x 轴交于点A ,与y 轴交于点()0,2B ,30OAB ∠=︒,点C 是线段AB 上一点,过点C 作CD AB ⊥,垂足为C ,CD 与x 轴交于点D ,作点A 关于CD 的对称点A ',连接DA '.设AC 的长度为x ,A CD '△与BOA △的重叠面积为S .(1)求CD 的长(用含x 的式子表示);(2)求S 关于x 的函数关系式,并直接写出自变量x 的取值范围.25.在平面直角坐标系中,函数()()224040x x n x y x x n x ⎧-+>⎪=⎨---≤⎪⎩的图象记为G .(1)点(),4n 在图象G 上,求n 的值;(2)当()133n x n +≤≤>-时,函数的最大值与最小值的差为h ,求h 关于n 的函数关系,并直接写出n 的取值范围;(3)已知点()3,3A -,点()2,3B ,若图象G 与线段AB 只有一个公共点时,直接写出n 的取26.如图1,等腰ABC ,CA CB =,点D 、E 分别是AC 、BC 上的点,F 是BD 延长线上一点,AF AE =,AE BC ⊥,180FAE C ∠+∠=︒.(1)若EAB α∠=,则FAB ∠=______(用含α的式子表示);(2)探究线段BD 与FD 的数量关系,并证明;(3)当60C ∠=°时(如图2),求ADCE的值.参考答案1.D 【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【详解】解:A 、既是轴对称图形,也是中心对称图形,不合题意;B 、既是轴对称图形,也是中心对称图形,不合题意;C 、既是轴对称图形,也是中心对称图形,不符合题意;D 、是轴对称图形,但不是中心对称图形,符合题意.故选:D .此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B 【解析】抛物线的开口方向由抛物线的解析式y=ax2+bx+c (a≠0)的二次项系数a 的符号决定,据此进行判断即可.【详解】解:∵y=2x 2的二次项系数a=2>0,∴抛物线y=2x 2的开口方向是向上;故选:B .3.D 【解析】根据抛物线的解析式即可得.【详解】抛物线()221y x =--的顶点坐标是()2,1-,故选:D .【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的顶点坐标的求法是解题关键.4.C 【分析】根据旋转的性质可得∠PBC=∠P′BA ,再根据角的和差关系即可得出结果.【详解】解:根据旋转的性质可得:△PBC ≌△P′BA ,故∠PBC=∠P′BA ,∵ABC ∆是等边三角形,∴∠ABC=60°,∴∠PBP′=∠P′BA+∠PBA ,=∠PBC+∠PBA ,=60°.故选:C .5.D 【解析】由在同圆中等弧对的圆心角相等得,∠BOC=∠COD=∠EOD=40°从而求得∠AOE 的度数.【详解】解:∵ =BCCD DE =,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.6.B 【解析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B 【解析】令y =﹣22531312x x ++=0,解得符合题意的x 值,则该值为此运动员把铅球推出的距离,据此可解.【详解】解:令y =﹣22531312x x ++=0则:x 2﹣8x ﹣20=0∴(x+2)(x ﹣10)=0∴x 1=﹣2(舍),x 2=10由题意可知当x =10时,符合题意故选:B.【点睛】本题考查二次函数的实际应用,利用数形结合思想解题是本题的关键.8.A 【解析】【分析】过点A 作O 的直径可得两个等腰三角形即可利用三角形的外角解题【详解】如图,过点A 作O 的直径,交O 于点D .在OAB 中,OA OB = ,20OAB ABO ∴∠=∠=︒.40BOD ∴∠=︒,同理可得60COD ∠=︒.100BOC BOD COD ∴∠=∠+∠=︒.故选:A 【点睛】本题考查圆的半径相等,利用圆的半径相等构造等腰三角形是解题的关键.9.A 【解析】【分析】首先设抛物线解析式为y =ax 2,再得出抛物线上一点为(2,﹣2),进而求出a 的值.【详解】解:由图中可以看出,所求抛物线的顶点在原点,对称轴为y 轴,可设此函数解析式为:y=ax2,且抛物线过(2,﹣2)点,故﹣2=a×22,解得:a=﹣0.5,故选:A.【点睛】此题主要考查了二次函数的应用,正确设出抛物线的解析式是解题关键.10.D【解析】【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x取值范围.【详解】解:由表格可知,该二次函数的对称轴是直线1312x-+==,函数图象开口向上,故y-3>0成立的x的取值范围是x<-1或x>3,故选:D.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.11.(x﹣2)2+3.【解析】【分析】根据二次函数顶点式的表示方法表示即可.【详解】解:y=x2﹣4x+7=x2﹣4x+4+3=(x﹣2)2+3,故答案为:(x﹣2)2+3.【点睛】本题考查二次函数的顶点式,关键在于对顶点式的理解.12.m1>.【解析】【分析】由题意可得二次方程无实根,得出判别式小于0,解不等式即可得到所求范围.【详解】解: 二次函数2y x 2x m =-+的图象与x 轴没有交点,∴方程2x 2x m 0-+=没有实数根,∴判别式2(2)41m 0=--⨯⨯< ,解得:m 1>;故答案为m 1>.【点睛】本题考查的是二次函数图象与x 轴的交点,此类题目均是利用△=b 2-4ac 和零之间的关系来确定图象与x 轴交点的数目,即:当△>0时,函数与x 轴有2个交点,当△=0时,函数与x 轴有1个交点,当△<0时,函数与x 轴无交点.13【解析】【分析】先根据圆周角定理可得90,45ABC ACB ADB ∠=︒∠=∠=︒,再根据等腰直角三角形的判定与性质、勾股定理可得AC =【详解】AC 是O 的直径,90ABC ∴∠=︒,45ADB ∠=︒ ,45ACB ADB ∴∠=∠=︒,Rt ABC ∴ 是等腰直角三角形,2BC AB ==,AC ∴==则O 的半径长为12AC =.【点睛】本题考查了圆周角定理、等腰直角三角形的判定与性质、勾股定理,熟练掌握圆周角定理是解题关键.14.y 1<y 2<y 3【解析】【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=1,根据x <1时,y 随x 的增大而减小,即可得出答案.【详解】解:∵y=x 2-2x+c=(x-1)2-1+c ,∴图象的开口向上,对称轴是直线x=1,∴A (2,y 1)关于对称轴的对称点为(0,y 1),∵-5<-4<0,∴y 1<y 2<y 3,故答案为y 1<y 2<y 3.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.15.【解析】【分析】先根据正方形的性质可得90,3ABC D C CD BC AB ∠=∠=∠=︒===,再根据旋转的性质可得1,90BE DE ABE D ''==∠=∠=︒,从而可得点,,E B C '在同一条直线上,然后根据线段的和差可得4E C '=,最后在Rt ECE ' 中,利用勾股定理即可得.【详解】四边形ABCD 是正方形,90,3ABC D C CD BC AB ∴∠=∠=∠=︒===,1DE = ,312CE CD DE ∴=-=-=,由旋转的性质得:1,90BE DE ABE D ''==∠=∠=︒,180ABC ABE '∴∠+∠=︒,∴点,,E B C '在同一条直线上,134E C BE BC ''∴=+=+=,则在Rt ECE ' 中,EE '===,故答案为:【点睛】本题考查了正方形的性质、旋转的性质、勾股定理等知识点,熟练掌握正方形与旋转的性质是解题关键.16.72【解析】【分析】根据题意,可以得到点C 的坐标和h 的值,然后将点C 的坐标代入抛物线的解析式,即可得到k 的值,本题得以解决.【详解】解: 点A 的坐标为(0,2),点B 的坐标为(4,2),4AB ∴=,抛物线23()(2y x h k h =--+、k 为常数)与线段AB 交于C 、D 两点,且122CD AB ==,∴设点C 的坐标为(,2)c ,则点D 的坐标为(2,2)c +,2212c h c +==+,∴抛物线232(1)]2c c k =--++,解得,72k =.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.17.134x -+=,234x -=.【解析】【分析】利用公式法求解即可.∵a =2,b =3,c =−1,∴△=32−4×2×(−1)=17>0,则x 322-⨯=34-±,即x 1=34-+,x 2=34-.18.(1)223y x x =+-;(2)2x <-或0x >.【解析】(1)把已知的两点代入解析式即可求出二次函数的解析式;(2)由抛物线的对称性与图形即可得出3y >-时x 的取值范围.【详解】解:(1)∵抛物线2y x bx c =++与x 轴、y 轴的交点分别为()10,和()03-,,∴103b c c ++=⎧⎨=-⎩.解得:23b c =⎧⎨=-⎩.∴抛物线的表达式为:223y x x =+-.(2)二次函数图像如下,由图像可知,当3y >-时,x 的取值范围是2x <-或0x >.【点睛】此题主要考察二次函数的应用.19.证明见解析.【解析】先根据矩形的性质可得,90AB CD A B ADC =∠=∠=∠=︒,再根据旋转的性质可得,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,从而可得,90CD EF EDC F =∠=∠=︒,然后根据直角三角形的性质、角的和差可得DCE FEH ∠=∠,最后根据三角形全等的判定定理即可得证.【详解】四边形ABCD 是矩形,,90AB CD A B ADC ∴=∠=∠=∠=︒,由旋转的性质得:,90,90EF AB F A CEF B =∠=∠=︒∠=∠=︒,,90CD EF EDC F ∴=∠=∠=︒,又90,90EDC CEF ∠=︒∠=︒ ,90CED DCE CED FEH ∴∠+∠=∠+∠=︒,DCE FEH ∴∠=∠,在EDC △和HFE 中,EDC F CD EF DCE FEH ∠=∠⎧⎪=⎨⎪∠=∠⎩,()HFE E AS DC A ∴≅ .【点睛】本题考查了矩形的性质、旋转的性质、三角形全等的判定定理等知识点,熟练掌握矩形和旋转的性质是解题关键.20.(1)见解析;(2)见解析;(3)是,见解析【解析】【分析】(1)由题意得出,需将点B 与点C 先向左平移3个单位,再向下平移1个单位,据此可得;(2)分别作出三顶点分别关于点D 的对称点,再首尾顺次连接可得;(3)连接两组对应点即可得.【详解】(1)如图所示,△DEF 即为所求.(2)如图所示,△A 1B 1C 1即为所求;(3)如图所示,△DEF 与△A 1B 1C 1是关于点O 成中心对称,故答案为:是.21.(1)每月盈利的平均增长率为10%;(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.【解析】(1)设每月盈利的平均增长率为x ,根据该商店4月份及6月份的盈利额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2020年7月份的盈利额=2020年6月份的盈利额×(1+增长率),即可求出结论.【详解】解:(1)设每月盈利的平均增长率为x ,依题意,得:6000(1+x )2=7260,解得:x 1=0.1=10%,x 2=﹣2.1(不合题意,舍去).答:每月盈利的平均增长率为10%.(2)7260×(1+10%)=7986(元).答:按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.22.(1)证明见解析;(2)证明见解析.【解析】(1)先根据圆的性质、等腰三角形的性质可得OAD ODA ∠=∠,再根据角平分线的性质可得OAD CAD ∠=∠,从而可得ODA CAD ∠=∠,然后根据平行线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得90ACB ∠=︒,再根据垂直的定义可得90OED ∠=︒,然后根据平行线的性质可得DOE BAC ∠=∠,最后根据相似三角形的判定与性质即可得证.(1)12OA OD AB == ,OAD ODA ∠=∠∴,AD 平分CAB ∠,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,//AC OD ∴;(2)如图,连接BC ,由圆周角定理得:90ACB ∠=︒,DE AB ∵⊥,90OED ∴∠=︒,由(1)已证://AC OD ,DOE BAC ∴∠=∠,在DOE △和BAC 中,90OED ACB DOE BAC∠=∠=︒⎧⎨∠=∠⎩,DOE BAC ∴~ ,12OE OD AC AB ∴==,12OE AC ∴=.【点睛】本题考查了圆周角定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键.23.(1)函数的表达式为:y=-2x+220;(2)80元,1800元.【解析】(1)设y 与x 之间的函数表达式为y=kx+b ,,将点(60,100)、(70,80)代入一次函数表达式,即可求解;(2)由题意得w=(x-50)(-2x+220)=-2(x-80)2+1800,即可求解.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(60,100)、(70,80)代入一次函数表达式得:100608070k b k b ⎩+⎨+⎧==,解得:2220k b -⎧⎨⎩==,故函数的表达式为:y=-2x+220;(2)设药店每天获得的利润为W 元,由题意得:w=(x-50)(-2x+220)=-2(x-80)2+1800,∵-2<0,函数有最大值,∴当x=80时,w 有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.24.(1)3x ;(2)222(02)63)4)x x S x x x <≤⎪⎪⎪=+-<≤⎨-+<≤⎪⎩.【解析】(1)根据直角三角形的性质、勾股定理即可得;(2)先求出两个临界位置:点C 为AB 的中点、点D 与点O 重合时x 的值,再分三种情况,分别利用直角三角形的性质与面积公式、勾股定理、等腰三角形的性质求解即可得.【详解】(1),30CD AB OAB ∠=︒⊥ ,2∴=AD CD ,在Rt ACD △中,AC ==,33CD AC x ∴==,即CD ;(2)()0,2B ,2OB ∴=,30OAB ∠=︒ ,∴在Rt AOB 中,24,AB OB OA ===由题意,有两个临界位置:当点C 为AB 的中点时,122AC x AB ===,当点D 与点O 重合时,132CD OA x AC =====,因此,分以下三种情况:①当02x <≤时,A CD S S '= ,点A '为点A 关于CD 的对称点,,30A C AC x AA D OAB ''∴==∠=∠=︒,由(1)可知:3CD x =,则2126A CD S S A C CD x ''==⋅= ;②当23x <≤时,如图,设A D '与y 轴的交点为点E ,过点E 作EF AB ⊥于点F ,则BCDE S S =四边形,4,AB A C AC x '=== ,24A B A C AC AB x ''∴=+-=-,30,9060AA D OBA OAB '∠=︒∠=︒-∠=︒ ,30A EB OBA AA D ''∴∠=∠-∠=︒,9030BEF OBA ∠=︒-∠=︒,A EB AA D ''∴∠=∠,24BE A B x '∴==-,在Rt BEF △中,122BF BE x ==-,2)EF x =-,则A CD A BE BCDE S S S S ''==- 四边形,1122A C CD A B EF ''=⋅-⋅,11(24)2)22x x x =---,2=+-;③当34x <≤时,如图,设CD 与y 轴的交点为点E ,则BCE S S = ,4,AB AC x == ,4BC AB AC x ∴=-=-,60OBA ∠=︒ ,9030BEC OBA ∴∠=︒-∠=︒,在Rt BCE V中,22(4),)BE BC x CE x ==-=-,则221)22BCE S S BC CE x x x ==⋅-=-+;综上,222(02)63)64)x x S x x x x <≤⎪⎪⎪=-+-<≤⎨-+<≤⎪⎩.25.(1)1n =-或4n =;(2)22281(31)21(10){1(01)2(12)n n n n n n h n n n n ----<≤--+-<≤=<≤-+<≤;(3)30n -≤<或1n =或37n <≤.【解析】(1)将(),4n 代入解析式即可求出n 的值,要注意取值范围;(2)注意两段二次函数的对称轴,然后根据不同范围内函数的最大值与最小值即可得到h 关于n 的函数关系;(3)求出函数的几个特殊点的纵坐标,然后根据图象的增减性分段进行分析即可.【详解】解:(1)在()240y x x n x =-+>上,将(),4n 代入得:244n n n =-+,解得:4n =或1n =-(舍),在()240y x x n x =---≤上,将(),4n 代入得:244n n n =---,解得:4n =-(舍)或1n =-,综上所述,1n =-或4n =;(2)当112n ≤+<,即01n ≤<时,113n x ≤+≤≤,在()240y x x n x =-+>上,2x =时,22424y n n =-⨯+=-取最小值,3x =时,23433y n n =-⨯+=-取最大值,()341h n n =---=,当213n ≤+≤,即12n ≤≤时,213n x ≤+≤≤,在()240y x x n x =-+>上,1x n =+时,()()221413y n n n n n =+-++=--取最小值,3x =时,23433y n n =-⨯+=-取最大值,()22323n n n n h n =--=---+,当011n <+<,即10n -<<时,013n x <+≤≤,在()240y x x n x =-+>上,2x =时,22424y n n =-⨯+=-取最小值,1x n =+时,()()221413y n n n n n =+-++=--取最大值,()223421n n n n n h -----=+=,当210n -<+≤,即31n -<≤-时,213n x -<+≤≤,在()240y x x n x =-+>上,2x =时,22424y n n =-⨯+=-取最小值,在()240y x x n x =---≤上,1x n =+时,()()2214175y n n n n n =-+-+-=---取最大值,()2275481n n n n h n ----=----=,综上所述,22281(31)21(10){1(01)2(12)n n n n n n h n n n n ----<≤--+-<≤=<≤-+<≤(3)在()240y x x n x =-+>上,2x =时,22424y n n =-⨯+=-在()240y x x n x =---≤上,2x =-时,484y n n =-+-=-,若43n -=,即1n =时,在()2402y x x n x =-+<≤上,y 随x 增大而减小,此时最大值小于1,y 轴右侧图象G 与线段AB 没有公共点,图象G 与线段AB 只有一个公共点()2,3-;若43n ->,即7n >时,此时433n -<-<,图象G 与线段AB 没有公共点;若43n -≤,3n >,即37n <≤时,y 轴右侧图象G 与线段AB 一个有公共点,此时413n -<<,y 轴左侧图象G 与线段AB 没有公共点,满足图象G 与线段AB 只有一个公共点;在()240y x x n x =---≤上,0x =时,y n =-,在()240y x x n x =---≤上,3x =-时,3y n =-,若3n -≤,33n ->,即30n -≤<时,此时y 轴左侧图象G 与线段AB 有一个公共点,y 轴右侧图象G 与线段AB 没有公共点,满足图象G 与线段AB 只有一个公共点;综上所述,30n -≤<或1n =或37n <≤.26.(1)180α︒-;(2)BD FD =,证明见解析;(3)12.【解析】(1)先根据垂直的定义、角的和差可得90FAC ∠=︒,再根据等腰三角形的性质、直角三角形的性质可得90CAB CBA α∠=∠=︒-,然后根据角的和差即可得;(2)如图(见解析),先根据三角形全等的判定定理与性质可得BG AE =,从而可得BG FA =,再根据三角形全等的判定定理与性质即可得;(3)如图(见解析),先根据等边三角形的判定可得ABC 是等边三角形,再根据等边三角形的三线合一可得1122AG CA CB CE ===,然后根据三角形全等的性质可得12AD GD AG ==,由此即可得.【详解】(1)AE BC ⊥ ,90AEB AEC ∴∠=∠=︒,90CAE C ∴∠+∠=︒,180,FAE C FAE FAC CAE ∠+∠=︒∠=∠+∠ ,180FAC CAE C ∴∠+∠+∠=︒,即90180FAC ∠+︒=︒,90FAC ∴∠=︒,,A A E CB B C α∠== ,9090CAB CBA EAB α∴∠=∠=︒-∠=︒-,9090180FAB FAC CAB αα∴∠=∠+∠=︒+︒-=︒-,故答案为:180α︒-;(2)BD FD =,证明如下:如图,过点B 作BG AC ⊥于点G ,在ABE △和BAG 中,90ABE BAGAEB BGA AB BA∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABE BAG AAS ∴≅ ,BG AE ∴=,AF AE = ,BG AF ∴=,在BDG 和FDA △中,90BDG FDABGD FAD BG FA∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()BDG FDA AAS ∴≅ ,BD FD ∴=;(3)如图,过点B 作BG AC ⊥于点G ,,60CA CB C =∠=︒ ,ABC ∴ 是等边三角形,,BG AC AE BC ⊥⊥ ,1122AG CA CB CE ∴===(等边三角形的三线合一),由(2)已证:BDG FDA ≅ ,12AD GD AG ∴==,1122AG AD CE AG ==∴.。

新人教版数学九年级上册期中考试试题(含答案)

新人教版数学九年级上册期中考试试题(含答案)

新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.7.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12【分析】根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选:C.8.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 【分析】先求出方程(x﹣1)2﹣4=0的解,得出函数与x轴的交点坐标,根据函数的性质得出答案即可.【解答】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3,故选:C.9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.10.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2【分析】本题考查二次函数最小(大)值的求法.【解答】解:设矩形的长为x,则宽为,矩形的面积=()x=﹣x2+4x,S最大===4,故矩形的最大面积是4cm2.故选:A.二.填空题(共6小题)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程x2+(x+3)2=65 ,化成一般形式为x2+3x﹣28=0 .【分析】首先表示出两个数字进而利用勾股定理列出方程再整理即可.【解答】解:设较小的数为x,则另一个数字为x+3,根据题意得出:x2+(x+3)2=65,整理得出:x2+3x﹣28=0.故答案为:x2+(x+3)2=65,x2+3x﹣28=0.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=﹣3 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得ab=﹣3.故答案为:﹣3.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有①.【分析】根据a的值可以判定开口方向和开口大小,利用顶点式直接找出对称轴和顶点坐标,利用对称轴和开口方向确定y随着x的增大而增大对应x的取值范围.【解答】解:①因为a=3>0,它们的图象都是开口向上,大小是相同的,故此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是(0,1),y=3(x﹣1)2的对称轴是x=1,顶点坐标是(1,0),故此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3(x﹣1)2当x>1时,y随着x的增大而增大,故此选项错误;④它们与x轴都有一个交点,故此选项错误;综上所知,正确的有①.故答案是:①.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是x =2 .【分析】因为点(﹣2,0),(6,0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=求解即可.【解答】解:∵抛物线与x轴的交点为(﹣2,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==2,即x=2.故答案是:x=2.15.函数y=x2﹣2x+2的图象顶点坐标是(1,1).【分析】根据二次函数解析式,进行配方得出顶点式形式,即可得出顶点坐标.【解答】解:y=x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,∵抛物线开口向上,当x=1时,y最小=1,∴顶点坐标是(1,1).故答案为:(1,1).16.点P(﹣2,3)关于x轴对称点的坐标是(﹣2,﹣3),关于原点对称点的坐标是(2,﹣3),关于y轴的对称点的坐标是(2,3);【分析】利用关于原点对称点的坐标性质以及关于x轴、y轴对称的点的坐标性质分别得出答案.【解答】解:点P(﹣2,3)关于原点的对称点的坐标为:(2,﹣3),关于x轴的对称点的坐标为(﹣2,﹣3),关于y轴的对称点的坐标为(2,3).故答案为:(﹣2,﹣3);(2,﹣3);(2,3).三.解答题(共9小题)17.解方程:x2﹣6x+5=0(配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣5,等式两边同时加上一次项系数一半的平方32.得x2﹣6x+32=﹣5+32,即(x﹣3)2=4,∴x=3±2,∴原方程的解是:x1=5,x2=1.18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.【分析】直接利用交点式写出抛物线的解析式.【解答】解:抛物线的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?【分析】设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据共要比赛28场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据题意得:=21,整理得:x2﹣x﹣42=0,解得:x1=7,x2=﹣6(不合题意,舍去).答:共有7个队参加足球联赛.20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.【分析】(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.【解答】解:(1)设这两年该企业投入科研经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2.答:这两年该企业投入科研经费的年平均增长率为20%.(2)7200×(1+20%)=8640(万元).答:2019年该企业投入科研经费8640万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?【分析】(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式,求出其解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由题意,得1=a(0﹣4)2+2.6,解得:a=﹣0.1.故y=﹣0.1(x﹣4)2+2.6.答:抛物线的解析式为:y=﹣0.1(x﹣4)2+2.6;(2)由题意,得当y=0时,﹣0.1(x﹣4)2+2.6=0,解得:x1=+4,x2=﹣+4<0(舍去),故x=+4.答:这个同学推出的铅球有(+4)米远.22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.【分析】(1)计算判别式的中得到△=24,然后根据判别式的意义得到结论;(2)把x=2代入方程k2+4k=2,再把2k2+8k+2018表示为2(k2+4k)+2018,然后利用整体代入的方法计算.【解答】(1)证明:△=(2k)2﹣4(k2﹣6)=24>0,所以方程有两个不相等的实数根;(2)把x=2代入方程得4+4k+k2﹣6=0,所以k2+4k=2,所以2k2+8k+2018=2(k2+4k)+2018=2×2+2018=2022.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为6000 元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(40﹣x)元,平均每月可售出[(40﹣x)×200+600] 个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.【分析】(1)根据总盈利=单件获利乘以销量列出代数式;(2)根据“当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个”列出代数式(3)设每个台灯的售价为x元.根据每个台灯的利润×销售数量=总利润列出方程并解答;【解答】解:(1)依题意得:未降价之前,该店每月台灯总盈利为600×(40﹣30)=6000元.故答案是:6000.(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(x﹣30)元,平均每月可售出[(40﹣x)×200+600]个故答案为:(x﹣30),[(40﹣x)×200+600].(2)设每个台灯的售价为x元.根据题意,得(x﹣30)[(40﹣x)×200+600]=8400,解得x1=36(舍),x2=37.当x=36时,(40﹣36)×200+600=1400>1210;当x=37时,(40﹣37)×200+600=1200<1210;答:每个台灯的售价为37元.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.【分析】(1)根据运动时间求出PA,BQ,利用分割法求△DPQ的面积即可.(2)分别求出表示出DP2,PQ2,DQ2,进而得到PQ2+DQ2=DP2,得出答案;(3)假设运动开始后第x秒时,满足条件,则有QP=QD,表示出QP2,QD2,列出等式,构建方程方程,求出方程的解,根据时间大于0秒小于6秒,即可解答.【解答】解:(1)经过1秒时,AP=1,BQ=2,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,AB=CD=6cm,BC=AD=12cm,∴PB=6﹣1=5(cm),CQ=BC﹣BQ=12﹣2=10(cm),∴S△DPQ=S矩形ABCD﹣S△ADP﹣S△PBQ﹣S△DCQ=72﹣×1×12﹣×6×2﹣×6×10=30(cm2).(2)当t=秒时,AP=,BP=6﹣=,BQ=×2=3,CQ=12﹣3=9,∴在Rt△DAP中,DP2=DA2+AP2=122+()2=,在Rt△DCQ中,DQ2=DC2+CQ2=62+92=117,在Rt△QBP中,QP2=QB2+BP2=32+()2=,∴DQ2+QP2=117+=,∴DQ2+QP2=DP2,∴△DPQ为直角三角形;(3)假设运动开始后第x秒时,满足条件,则:QP=QD,∵OP2=PB2+BQ2=(6﹣x)2+(2x)2,QD2=QC2+CD2=(12﹣2x)2+62,∴(12﹣2x)2+62=(6﹣x)2+(2x)2,整理,得:x2+36x﹣144=0,解得:x=﹣18±6,∵0<6﹣18<6,∴运动开始后第6﹣18秒时,△DPQ是以PD为底的等腰三角形.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为(2,0),B点坐标为(5,0);(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.【分析】(1)y=,令y=0,解得:x=2或5,即可求解;(2)证明△OAC≌△DBC(SAS),则BD=OA=2,∠OBD=60°,即可求解;(3)分OD是平行四边形的边、OD是平行四边形的对角线两种情况,分别求解.【解答】解:(1)y=,令y=0,解得:x=2或5,故答案为:(2,0)、(5,0);(2)连接CD、BD,由(1)知:OA=2,AB=3,等边三角形ABC的边长为3,∵△ABC为等边三角形,∴AC=BC,∠ACB=60°=∠CAB,∴∠CAO=120°,∵∠COD=60°,且OD=OC,则△OCD为等边三角形,∴OD=CD=CO,则∠OCD=60°=∠OCA+∠ACD,而∠ACB=60°=∠ACD+∠DCB,∴∠OCA=∠DCB,而CO=CD,CA=CB,∴△OAC≌△DBC(SAS),∴BD=OA=2,∠CBD=∠CAO=120°,而∠CBO=60°,∴∠OBD=60°,则y D=﹣BD sin∠OBD=﹣2×=﹣,故点D的坐标为(4,﹣),当x=4时,y==﹣,故点D在抛物线上;(3)抛物线的对称轴为:x=,设点M(,s),点N(m,n),n=m2﹣m+5,①当OD是平行四边形的边时,当点N在对称轴右侧时,点O向右平移4个单位,向下平移个单位得到D,同样点M向右平移4个单位,向下平移个单位得到N,即:+4=m,s﹣=n,而n=m2﹣m+5,解得:s=则点M(,);当点N在对称轴左侧时,同理可得:点M(,);②当OD是平行四边形的对角线时,则4=+m,﹣=n+s,而n=m2﹣m+5,解得:s=,故点M的坐标为:(,)或(,)或(,).新九年级上学期期中考试数学试题(含答案)一、选择题(每小题3分,共36分)1.下列说法错误的是()A.直径是弦B.最长的弦是直径C.垂直弦的直径平分弦D.经过三点可以确定一个圆2.已知⊙O的半径为1,且圆心O到直线l的距离是2,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定3.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=7,则PA的长是()A.5 B.6 C.7 D.85.如图,已知⊙O的半径为13,弦AB的长为24,则圆心O到AB的距离为()A.3 B.4 C.5 D.66.如图,⊙O中,OC⊥AB,∠BOC=50°,则∠ADC的度数是()A.24°B.25°C.29°D.30°7.在△ABC中,已知AB=AC=5cm,BC=8cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定8.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°9.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解为x的取值范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.2610.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)11.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C′处,那么AC边扫过的图形图中阴影部分)的面积是()A.20πcm2B.(20π+8)cm2C.16πcm2D.(16π+8)cm2 12.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)13.150°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是cm.14.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为.15.点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2的大小关系为y1y2(填“>”、“<”、“=”).16.一个直角三角形的两边长分别为3,4,则此三角形的外接圆半径是.17.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为.18.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.19.⊙O的半径为5cm,AB、CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm.那么求得AB和CD之间的距离为.20.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.三、解答题(本大题共6小题,21--22每小题6分、23--26每小题6分,共40分)21.(6分)如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)22.(6分)已知:二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(1,0)、B(5,0),抛物线的最小值为﹣4.求:(1)二次函数的解析式.(2)直接回答:当x取什么值时,y的值小于0.23.(7分)如图,已知CD是⊙O的直径,弦AB⊥CD,垂足为点M,点P是上一点,且∠BPC=60°.试判断△ABC的形状,并说明你的理由.24.(7分)如图所示,AB是⊙O的直径,C为的中点,CD⊥AB于点D,交AE于点F,连接AC,求证:AF=CF.25.(7分)如图,O是∠MAN的边AN上一点,以OA为半径作⊙O,交∠MAN的平分线于点D,DE⊥AM于E.(1)求证:DE是⊙O的切线;(2)连接OE,若∠EDA=30°,AE=1,求OE的长.26.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.参考答案一、选择题1.下列说法错误的是()A.直径是弦B.最长的弦是直径C.垂直弦的直径平分弦D.经过三点可以确定一个圆【分析】根据弦的定义,以及经过不在同一直线上的三点可以作一个圆可判断和垂径定理分别得出即可.【解答】解:A.直径是弦,根据弦的定义是连接圆上两点的线段,∴故此选项正确,但不符合题意,B.最长的弦是直径,根据直径是圆中最长的弦,∴故此选项正确,但不符合题意,C.垂直弦的直径平分弦,利用垂径定理即可得出,故此选项正确,但不符合题意,D.经过三点可以确定一个圆,利用经过不在同一直线上的三点可以作一个圆,故此选项错误,符合题意,故选:D.【点评】此题考查了弦的定义、确定圆的条件、垂径定理等知识点的应用,关键是能根据这些定理进行说理和判断.2.已知⊙O的半径为1,且圆心O到直线l的距离是2,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定【分析】判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.【解答】解:∵⊙O的半径为1,圆心O到直线L的距离为2,∴r=1,d=2,∴d>r,∴直线与圆相离,故选:C.【点评】本题考查直线由圆位置关系,记住.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r是解题的关键.3.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=7,则PA的长是()A.5 B.6 C.7 D.8【分析】根据切线长定理得到PA=PB,则判断△PAB为等边三角形,从而得到PA=AB=7.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB为等边三角形,∴PA=AB=7.故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等边三角形的判定与性质.5.如图,已知⊙O 的半径为13,弦AB 的长为24,则圆心O 到AB 的距离为( )A .3B .4C .5D .6【分析】过O 作OC ⊥AB 于C ,连接OA ,根据垂径定理求出AC ,根据勾股定理求出OC 即可.【解答】解:过O 作OC ⊥AB 于C ,连接AC ,∴AC =BC =AB =12,在Rt △AOC 中,由勾股定理得:OC ===5.故选:C .【点评】本题考查了垂径定理和勾股定理的应用,作辅助线构造直角三角形是解题的关键.6.如图,⊙O 中,OC ⊥AB ,∠BOC =50°,则∠ADC 的度数是( )A .24°B .25°C .29°D .30°【分析】由OC ⊥AB ,推出=,可得∠ADC =∠COB =25°.【解答】解:∵OC ⊥AB ,∴=,∴∠ADC =∠COB =25°,故选:B .【点评】本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.在△ABC中,已知AB=AC=5cm,BC=8cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定【分析】连结AD,根据等腰三角形的性质得到AD⊥BC,在Rt△ABD中,AB=5cm,BD=BC=4cm,根据勾股定理可计算出AD=3cm,然后根据点与圆的位置关系的判定方法可判断点A在⊙D上.【解答】解:连结AD,如图,∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=4cm在Rt△ABD中,AB=5cm,BD=4cm,∴AD==3cm,∵⊙D的半径为3cm,∴点A在⊙D上.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.也考查了等腰三角形的性质和勾股定理.8.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【分析】利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.【解答】解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.9.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解为x的取值范围是()A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.26【分析】根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.【解答】解:函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.03与y=0.09之间,对应的x的值在3.25与3.26之间,即3.25<x<3.26.故选:D.【点评】本题考查了用函数图象法求一元二次方程的近似根,是中考的热点问题之一.掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关。

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置()A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为()A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是()A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是()A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过()A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是()A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a=.14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn=.15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c=.16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是.17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为,其中自变量的取值范围是,水管AB的长为m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+1向左平移3个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2)解:∵方程有两个不相等的实数根,∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y =x 上,则此时抛物线的解析式为:y =﹣(x ﹣4)2+4或y =﹣(x ﹣1)2+1.22.解:(1)由抛物线的顶点A (﹣4,﹣1)设二次函数为y =a (x +4)2﹣1,将B (﹣2,3)代入得,3=a (﹣2+4)2﹣1,解得a =1,∴二次函数为y =(x +4)2﹣1(或y =x 2+8x +15),设一次函数的解析式为y =kx +b ,将A (﹣4,﹣1)和B (﹣2,3)代入得,解得,∴一次函数的解析式为y =2x +7;(2)由直线y =2x +7可知C (0,7),设P (0,n ),∴PC =|n ﹣7|,∴S △PAB =S △PAC ﹣S △BPC =(4﹣2)•|n ﹣7|=9,∴|n ﹣7|=9,∴n =﹣2或16,∴P (0,﹣2)或P (0,16).23.解:令y =0,则﹣(x ﹣3)2+=0,解得:x 1=8,x 2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm ,则折成的长方体盒子的底面的长为(32﹣2x )cm ,宽为=(16﹣x )(cm ),由题意得:2x (16﹣x )+2(16﹣x )(32﹣2x )+2x (32﹣2x )=864,整理得:x 2+16x ﹣80=0,解得:x =4或x =﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t •t=﹣t 2+2t=﹣(t ﹣3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0).。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
A.0个B.1个C.2个D.1个或2个
6.在二次函数yx22x3中,当 时,y的最大值和最小值分别是()
A.0,4B.0,3C.3,4D.0,0
7.若二次函数 的x与y的部分对应值如下表:
x
-2
-1
0
1
2
3
y
14
7
2
-1
-2
-1
则当 时,y的值为()
A.-1B.2C.7D.14
8.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()
【分析】由给出的x和y的值可得,抛物线的对称轴为x=2,由抛物线的对称性可知,x=5时y的值与x=﹣1时y的值相等,由此即可求解.
【详解】解:由表格可知,当x=1时,y=﹣1,当x=3时,y=﹣1,
∴由抛物线的对称性可知,抛物线的对称轴为直线x=2,
∴x=5时y的值与x=﹣1时y的值相等,
由表格可知,当x=﹣1时,y=7,
23.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是 上的一点.
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,求∠AQB的度数;
(3)在(2)的条件下,若OA=18,求 的长.
五、解答题(三)(每小题10分,共20分)
24.如图,已知在矩形ABCD中,AD=10cm,AB=4cm,动点P从点A出发,以2cm/s的速度沿AD向终点D移动,设移动时间为 (s).连接PC,以PC为一边作正方形PCEF,连接DE、DF.
人教版2022--2023学年度第一学期期中测试卷
九年级 数学
(满分:120分 时间:100分钟)

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
(2)若点P为⊙O的"等直顶点",且点P在直线yx上,求点P的横坐标的取值范围;
(3)设⊙C的圆心C在x轴上,半径为2,若直线yx上存在点D,使得半径为1的⊙D上存在点P是⊙C的等直顶点,求圆心C的横坐标的取值范围;
(4)直线y4x4分别和两坐标轴交于E,F两点,若线段EF上的所有点均为⊙O的等直顶点,求⊙O的半径的最大值与最小值.
(1)在如图所示的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?
23.(5分)第二十四届冬季奥林匹克运动会于2022年2月4日至2月20日在北京举行,赛后,越来越多的青少年走向冰场、走进雪场、了解冰雪运动知识.某校开展了一次冬奥知识答题竞赛,七、八年级各有200名学生参加了本次活动,为了解两个年级的答题情况,从两个年级各随机抽取了20名学生的成绩进行调查分析,过程如下(数据不完整).
【解析】
【分析】圆周角定理:在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半,根据圆周角定理即可得出答案.
【详解】解:∵∠ACB=43°,
∴∠AOB=2∠ACB=86°,
故选:C.
【点睛】本题考查的是圆周角定理,掌握圆周角定理求解圆心角或圆周角是解题的关键.
3. C
【解析】
【详解】已知⊙O的半径为5,圆心O到直线l的距离为6,因6>5,即d<r,所以直线l与⊙O的位置关系是相离.
【详解】解:A. 化为一般形式为 , ,该方程有两个不相等的实数根,不符合题意;
B. 化为一般形式为 , ,该方程没有实数根,符合题意;
C. , ,该方程有两个不相等的实数根,不符合题意;
D. ,化为一般形式为 , ,该方程有两个不相等的实数根,不符合题意.

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
【详解】由图像可得,当x<-1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,
∴不等式mx+n>ax2+bx+c的解集是:x<-1或x>4.
故答案为:x<-1或x>4.
【点睛】本题主要考查二次函数、一次函数与不等式的关系,数形结合思想的运用是解题关键.
16.24或25##25或24
【解析】
A.2B.3C.-2D.-1
7.a是方程 的一个根,则代数式 的值是()
A. B. C. D.
8.已知抛物线 的对称轴是直线 ,则实数 的值是()
A.2B. C.4D.
9.把二次函数 的图象先向右平移3个单位,再向上平移1个单位后得到一个新图象,则新图象所表示的二次函数的解析式是()
A. B.
C D.
(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;
(2)当矩形场地面积为160平方米时,求AD的长.
22.某商品交易会上,某商场销售一批纪念品,进价时每件为38元,按照每件78元销售,平均每天可售出20件,为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每个纪念品降价2元,则平均每天多销售4件.
∴方程ax2+bx+c﹣m=0没有实数根时,
∴抛物线 -m顶点在x轴下方

故④正确,
⑤∵对称轴x=﹣1=﹣ ,
∴b=2a,
∵a+b+c<0,
∴3a+c<0,
故⑤正确,
所以正确的选项有②③④⑤,
故选:C.
【点睛】本题考查二次函数图象与系数的关系,一元二次方程根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.一元二次方程2250x x ++=的根的情况是()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .只有一个实数根3.抛物线2(3)y x =+的顶点是()A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-4.一元二次方程2810x x -+=配方后可变形为()A .()2415x -=B .()2415x +=C .()2417x -=D .()2417x +=5.已知二次函数21(2)54y x =--+,y 随x 的增大而减小,则x 的取值范围是()A .2x >B .2x <C .2x >-D .2x <-6.如图,AOB ∆绕点O 逆时针旋转65︒得到COD ∆,若30AOB ∠=︒,则BOC ∠的度数是()A .30°B .35︒C .40︒D .65︒7.在一次足球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛21场,设共有x 个队参赛,根据题意,可列方程为()A .(1)21x x +=B .(1)21x x -=C .(1)212x x +=D .(1)212x x -=8.已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是()A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x 9.已知2x =关于x 的方程23520x mx m -+-=的一个根,且这个方程的两个根恰好是等腰ABC ∆的两条边长,则ABC ∆的周长为()A .8B .10C .8或10D .6或1010.二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,下列结论正确的是()A .0abc >B .20a b +<C .320b c -<D .30a c +<二、填空题11.方程2250x -=的解是_____.12.将抛物线24y x =向下平移1个单位长度,则平移后的抛物线的解析式是_______.13.如图,已知点A 的坐标是(-2),点B 的坐标是(1-,,菱形ABCD 的对角线交于坐标原点O ,则点D 的坐标是______.14.小王想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.则S 与x 之间的函数关系式是_____.(不用写自变量的取值范围)15.若抛物线2(2)21y m x x =-+-与x 轴有两个公共点,则m 的取值范围是______.16.如图,ABC 中,90ACB ∠=︒,AC BC a ==,点D 为AB 边上一点(不与点A ,B 重合),连接CD ,将线段CD 绕点C 逆时针旋转90︒得到CE ,连接AE .下列结论:①BDC ∆≌AEC ∆;②四边形AECD 的面积是2a ;③若105BDC ∠=︒,则AD =;④2222AD BD CD +=.其中正确的结论是_____.(填写所有正确结论的序号)三、解答题17.解方程:22150x x --=.18.如图,平面直角坐标系xOy 中,画出ABC 关于原点O 对称的111A B C ∆,并.写出1A 、1B 、1C 的坐标.19.已知二次函数243y x x =++.(1)求二次函数的最小值;(2)若点11(,)x y 、22(,)x y 在二次函数243y x x =++的图象上,且122x x -<<,试比较12,y y 的大小.20.随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,广东省2019年公共充电桩的数量约为4万个,2021年公共充电桩的数量多达11.56万个,位居全国首位.(1)求广东省2019年至2021年公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计广东省2022年公共充电桩数量能否超过20万个?为什么?21.如图,平面直角坐标系xOy 中,直线2y x =+与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)根据图象,写出不等式22x bx c x -++>+的解集.22.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.23.如图,边长为6的正方形ABCD 中,E 是CD 的中点,将ADE ∆绕点A 顺时针旋转90︒得到ABF ∆,G 是BC 上一点,且45EAG ∠=︒,连接EG .(1)求证:AEG ∆≌AFG ∆;(2)求点C 到EG 的距离.24.平面直角坐标系xOy 中,抛物线231y ax ax =-+与y 轴交于点A .(1)求点A 的坐标及抛物线的对称轴;(2)当12x -≤≤时,y 的最大值为3,求a 的值;(3)已知点(0,2)P ,(1,1)Q a +.若线段PQ 与抛物线只有一个公共点,结合函数图象,求a 的取值范围.25.在△ABC 中AB=AC ,点P 在平面内,连接AP 并将线段AP 绕点A 顺时针方向旋转与∠BAC 相等的角度,得到线段AQ ,连接BQ ;【发现问题】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究猜想】如图2,如果点P为平面内任意一点,前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);【拓展应用】如图3,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是线段BC上的任意一点连接AP,将线段AP绕点A顺时针方向旋转60°,得到线段AQ,连接CQ,请直接写出线段CQ长度的最小值.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.2.A 【解析】【分析】根据一元二次方程根的判别式24b ac ∆=-,∆<0时,方程没有实数根;0∆>时,方程有两个不相等的实数根;0∆=时,方程有两个相等的实数根,将相应的系数代入判别式便可判断.【详解】∵224245420160b ac =-=-⨯1⨯=-=-<Δ根据一元二次方程根的判别式24b ac ∆=-,当∆<0时,原方程没有实数根.故选A 【点睛】本题旨在考查一元二次方程根的判别式,熟练掌握该知识点是解此类题目的关键.3.D 【解析】【分析】根据二次函数2()y a x h k =-+的顶点坐标是(h ,k )即可解答.【详解】解:抛物线2(3)y x =+的顶点是(﹣3,0),故选:D .【点睛】本题考查二次函数2()y a x h k =-+的性质,熟知二次函数2()y a x h k =-+的顶点坐标是(h ,k )解答的关键.4.A 【解析】【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【详解】解:∵x 2-8x+1=0,∴x 2-8x=-1,∴x 2-8x+16=15,∴(x-4)2=15.故选A .【点睛】本题考查了解一元二次方程-配方法,当二次项系数为1时,配一次项系数一半的平方是关键.5.A 【解析】【分析】根据y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a <0时,在对称轴右侧y 随x 的增大而减小,可得答案.【详解】解:∵21(2)54y x =--+,∴a 14=-<0,∴当x >2时y 随x 的增大而减小.故选:A .【点睛】本题考查了二次函数的性质,二次函数y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小.6.B 【解析】【分析】根据旋转的性质得出旋转角∠AOC=65°即可.【详解】解:∵AOB ∆绕点O 逆时针旋转65︒得到COD ∆,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC ﹣∠AOB=65°﹣30°=35°,故选:B .【点睛】本题考查旋转的性质,熟练掌握旋转的性质,准确找到旋转角是解答的关键.7.D 【解析】【分析】类似的场次比赛相互问题可看做“握手问题”,由于赛制是单循环(每两队都赛一场),设有x 队参赛,因此比赛总的场次为()112x x -场,剧题意总场次为21场,依此等量关系列出方程.【详解】设共有x 队参赛,此次比赛总场次为()112x x -已知共比赛21场.根据题意列方程为()11212x x -=故答案选D.【点睛】本题考查一元二次方程的实际应用,找到等量关系为解题的关键.8.C 【解析】【分析】利用待定系数法确定函数解析式即可;【详解】解:设该抛物线解析式是:y =a (x-1)2﹣2(a≠0).把点(0,-5)代入,得a (0-1)2﹣2=-5,解得a=-3.故该抛物线解析式是23(1)2y x =---.故答案选:C 【点睛】本题主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式.9.B 【解析】【分析】先求得方程的两个根,再根据等腰三角形的条件判断即可.【详解】∵2x =关于x 的方程23520x mx m -+-=的一个根,∴46520m m -+-=,∴2m =,∴方程23520x mx m -+-=变形为2680x x -+=,解得122,4x x ==,∵方程的两个根恰好是等腰ABC ∆的两条边长,∴其三边可能是2,2,4或4,4,2,∵2+2=4,故三角形不存在,故三角形的周长为10,故选B .【点睛】本题考查了一元二次方程的根,一元二次方程的解法,等腰三角形的分类,熟练解一元二次方程是解题的关键.10.D 【解析】【分析】根据抛物线的性质,对称轴,图形的信息,逐一计算判断即可.【详解】∵102ba-=>,∴0ab <,∵抛物线与y 轴交于正半轴,∴0c >,∴0abc <,故A 不符合题意;∵12ba-=,∴20a b +=,故B 不符合题意;∵1x =-时,y=a-b+c 0<,∴2a-2b+2c 0<,∵12ba-=,∴2a b =-,∴-b-2b+2c 0<,∴3b-2c 0>,故C 不符合题意;∵1x =-时,y=a-b+c 0<,∵12ba-=,∴2a b =-,∴3a+c 0<,故D 符合题意;故选D .【点睛】本题考查了二次函数图像,抛物线的性质,灵活运用图像及其性质是解题的关键.11.x=±5【解析】【分析】移项得x 2=25,然后采用直接开平方法即可得到方程的解.【详解】解:∵x 2-25=0,移项,得x 2=25,∴x=±5.故答案为:x=±5.【点睛】本题考查了利用直接开平方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.12.241y x =-##214y x =-+【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:24y x =向下平移1个单位长度所得抛物线解析式为:241y x =-.故答案为:241y x =-.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.(1【解析】【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称,因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∵四边形ABCD 是菱形,对角线相交于坐标原点O∴根据平行四边形对角线互相平分的性质,A 和C ;B 和D 均关于原点O 对称根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B 的坐标是(-1,,则点D 的坐标是(.故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.14.230S x x=-+【解析】【分析】根据矩形的周长及其一边长表示出另一边为(30-x )米,再根据矩形的面积公式求函数关系式即可.【详解】∵矩形周长为60米,一边长x 米,∴另一边长为(30-x )米,∴矩形的面积()23030S x x x x =-=-+.故答案为:230S x x =-+.【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意,正确找出等量关系是解题的关键.15.1m >且2m ≠【解析】【分析】根据抛物线的定义,得2m ≠;结合题意,根据抛物线和一元二次方程判别式的性质分析,即可得到答案.【详解】∵抛物线2(2)21y m x x =-+-∴20m -≠∴2m ≠∵抛物线2(2)21y m x x =-+-与x 轴有两个公共点,即2(2)210m x x -+-=有两个不同的实数根∴()()22421440m m ---=->∴1m >故答案为:1m >且2m ≠.【点睛】本题考查了二次函数、一元二次方程的知识;解题的关键是熟练掌握二次函数、一元二次方程判别式的性质,从而完成求解.16.①③④【解析】【分析】根据旋转性质可得CD=CE ,∠ECD=90°由90ACB ∠=︒,可得∠ACE=∠DCB ,可证△ACE ≌△BCD (SAS ),可判断①正确;由四边形AECD 面积=三角形ABC 面积,可判断②不正确;由全等三角形性质可得∠AEC=∠BDC=105°,AE=BD ,由90ACB ∠=︒,AC BC =,可得∠CAB=∠EAC=∠B=45°,∠EAB=90°,∠ADE==30°,利用30度直角三角形性质可得ED=2AE=2BD ,再由勾股定理可判断③正确;利用勾股定理可得2222AD BD CD +=,可判断④正确.【详解】解:∵线段CD 绕点C 逆时针旋转90︒得到CE ,∴CD=CE ,∠ECD=90°,∵90ACB ∠=︒∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB ,在△ACE 和△BCD 中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;S 四边形AECD=S △ACE+S △ACD=S △BCD+S △ACD=S △ABC=2111222AC BC a a a ⋅=⋅=,故②不正确;连结ED ,∵△ACE ≌△BCD ,∴∠AEC=∠BDC=105°,AE=BD ,∵90ACB ∠=︒,AC BC =,∴∠CAB=∠B=45°,∴∠EAC=∠B=45°,∴∠EAB=∠EAC+∠CAB=45°+45°=90°,∵CE=CD ,∠ECD=90°,∴∠CED=∠CDE=180452ECD︒-∠=︒,∴∠AED=∠AEC-∠CED=105°-45°=60°,∴∠ADE=90°-∠AED=90°-60°=30°,∴ED=2AE=2BD ,在Rt △AED 中,==,故③正确;在Rt △CED 中,DE 2=2222CF CD CD +=,在Rt △AED 中,∴AE 2+AD 2=BD2+AD 2=ED 2=2CD 2,∴2222AD BD CD +=,故④正确,正确的结论是①③④.故答案为①③④.17.13x =-,25x =.【分析】利用因式分解法解方程.【详解】解:22150x x --= ,(3)(5)0x x ∴+-=,则30x +=或50x -=,解得13x =-,25x =.18.图见解析,1(3,4)A -,1(5,1)B -、1(1,2)C -【分析】根据关于原点对称的点的坐标都是互为相反数计算即可.【详解】解:∵A (-3,4),B (-5,1),C (-1,2)∴它们关于原点O 对称的点分别为1(3,4)A -,1(5,1)B -、1(1,2)C -,画图如下:111A B C ∆为所求作的图形.19.(1)﹣1;(2)12y y <【分析】(1)将二次函数的解析式化为顶点式,进而求得最值即可;(2)求出该二次函数的对称轴,进而根据开口方向和增减性求解即可.【详解】解:(1)二次函数243y x x =++=()221x +-,∵a=1>0,∴该二次函数有最小值,最小值是1-;(2)∵该二次函数图象的对称轴为直线x=﹣2,且开口向上,∴当122x x -<<时,y 随x 的增大而增大,∴12y y <.【点睛】本题考查二次函数的图象与性质、求二次函数的最值,熟练掌握二次函数的图象与性质是解答的关键.20.(1)70%;(2)预计广东省2022年公共充电桩数量不能超过20万个,理由见解析.【解析】【分析】(1)设2019年至2021年广东省公共充电桩数量的年平均增长率为x ,根据广东省2019年及2021年公共充电桩,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据广东省2022年公共充电桩数量=广东省2021年公共充电桩数量×(1+增长率),即可求出结论.【详解】解:(1)设广东省2019年至2021年公共充电桩数量的年平均增长率为x24(1)11.56x +=解得:10.7x =,2 2.7x =-(不合题意,舍去)答:年平均增长率为70%.(2)该省2022年公共充电桩数量11.56(10.7)19.65220=⨯+=<答:预计广东省2022年公共充电桩数量不能超过20万个.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)22y x x =--+;(2)20x -<<【解析】【分析】(1)求出A ,B 点代入进而求出函数解析式;(2)直接利用A ,B 点坐标进而利用函数图象得出答案;【详解】解:(1)∵直线2y x =+与坐标轴交于A ,B 两点∴点A 的坐标是(2-,0),点B 的坐标是(0,2).把(2-,0),(0,2)代入2y x bx c =-++得:2420c b c =⎧⎨--+=⎩解得12b c =-⎧⎨=⎩∴抛物线的解析式是22y x x =--+.(2)∵点A 的坐标是(2-,0),点B 的坐标是(0,2).∴根据图像可得:不等式22x bx c x -++>+的解集是:20x -<<;【点睛】此题主要考查了利用待定系数法求函数解析式以及二次函数与不等式的关系,解题的关键是利用待定系数法得到关于b 、c 的方程,解方程即可解决问题.22.(1)54m ≥-;(2)3x =-或1x =【解析】【分析】(1)根据有两个实数根,得到不等式△≥0,计算即可;(2)确定m 的值,得到符合题意的一元二次方程,解得即可.【详解】解:(1)∵关于x 的方程22(21)10x m x m +++-=有两个实数根,∴△22(21)41(1)450m m m =+-⨯⨯-=+≥,解得:54m ≥-.(2) 0x =是方程的一个根,∴210m -=,∴1m =±,此时原方程为230x x +=或20x x -=.解得:10x =,23x =-或10x =,21x =.∴方程的另一个根为3x =-或1x =.23.(1)见解析;(2)125【解析】(1)根据正方形和旋转的性质得到AF AE =,EAG FAG ∠=∠,即可求解;(2)设CG x =,则6BG x =-,9EG FG BG BF x ==+=-,由勾股定理求得CG ,等面积法求解即可.【详解】(1)证明:正方形ABCD 中,90BAD ∠=︒由旋转的性质得,AE AF =,90D ABF ∠=∠=︒∴180ABC ABF ∠+∠=︒,∴点F ,点B ,点C 三点共线.∵90DAB ∠=︒,45EAG ∠=︒∴45DAE GAB ∠+∠=︒,∴45BAF GAB ∠+∠=︒,即45FAG ∠=︒∴EAG FAG∠=∠在AEG △和AFG 中AE AFEAG FAG AG AG=⎧⎪∠=∠⎨⎪=⎩∴()AF AEG G SAS △≌△(2)解:由(1)得:EG FG=∵正方形ABCD 的边长为6,E 是CD 的中点∴3DE CE BF ===设CG x =,则6BG x =-,9EG FG BG BF x==+=-在Rt ECG 中,2223(9)x x +=-解得4x =,即CG 4=由勾股定理得:5EG ==设点C 到EG 的距离为h 则1122ECG S CE CG GE h =⨯=⨯△,即125CE CG h GE ⨯==∴点C 到EG 的距离是125.24.(1)(0,1)A ,32x =;(2)12a =或89a =-;(3)10a -< 或2a .【分析】(1)把0x =代入抛物线的解析式求解抛物线与y 轴的交点坐标即可,再利用抛物线的对称轴方程2b x a=-求解抛物线的对称轴即可;(2)分两种情况讨论,①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值;②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=此时32x =,y 取最大值,再分别列方程求解a 即可;(3)分两种情况分别画出符合题意的图形,①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点;②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点,再根据点的位置列不等式即可得到答案.【详解】解:(1)令0x =,则1y =.(0,1)A .抛物线的对称轴为3322a x a -=-=.(2)2234931(24a y ax ax a x -=-+=-+,抛物线的对称轴为32x =.①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值.∴()213(1)13a a --⨯-+=∴12a =.②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=∴此时32x =,y 取最大值.∴233()31322a a -⨯+=∴89a =-.综上所述,12a =或89a =-.(3)∵抛物线231y ax ax =-+的对称轴为32x =.设点A 关于对称轴的对称点为点B ,(3,1)B ∴.(1,1)Q a + ,∴点,,Q A B 都在直线1y =上.①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点.10a ∴+ 或13a +.1a ∴- (不合题意,舍去)或2a ∴2a.②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点.013a ∴+< .12a ∴-< .又0a < ,10a ∴-<综上所述,a 的取值范围为10a -<或2a .【点睛】本题考查的是抛物线与坐标轴的交点问题,求解抛物线的对称轴方程,抛物线的最值问题,抛物线与线段的交点问题,掌握数形结合的方法,清晰的分类讨论是解题的关键.25.[发现问题]:BQ=PC ;[探究猜想]:BQ=PC 仍然成立,理由见解析;[拓展应用]:线段CQ 长度最小值是1【解析】【分析】[发现问题]:由旋转知,AQ=AP ,∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),BQ=CP 即可;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,由∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),可得BQ=CP ;[拓展应用]:在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,可求∠CAQ=∠EAP ,可证△CAQ ≌△EAP (SAS ),CQ=EP ,当EF ⊥BC (点P 和点F 重合)时,EP 最小,在Rt △ACB 中,∠ACB=30°,AC=2可求AB=4,由AE=AC=2,可求BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,可得EF=12BE=1即可【详解】[发现问题]:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ AP BAQ CAP AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ,故答案为:BQ=PC ;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ APBAQ CAP AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ;[拓展应用]:如图,在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,∵∠ABC=30°,∴∠EAC=60°,∴∠PAQ=∠EAC ,∴∠CAQ=∠EAP ,在△CAQ 和△EAP 中,AQ APCAQ EAP AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAQ ≌△EAP (SAS ),∴CQ=EP ,要使CQ 最小,则有EP 最小,而点E 是定点,点P 是AB 上的动点,∴当EF ⊥BC (点P 和点F 重合)时,EP 最小,即:点P 与点F 重合,CQ 最小,最小值为EP ,在Rt △ACB 中,∠ACB=30°,AC=2,∴AB=4,∵AE=AC=2,∴BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,∴EF=12BE=1.故线段CQ 长度最小值是1.。

人教版九年级上册数学期中考试试卷含答案-2022年最新修改

人教版九年级上册数学期中考试试卷含答案-2022年最新修改

人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.关于x 一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为()A .1或1-B .1C .1-D .03.设A (2-,1y ),B (1-,2y ),C (3,3y )是抛物线21y x =-+上的三点,则1y ,2y ,3y 的大小关系为()A .213y y y >>B .132y y y >>C .321y y y >>D .312y y y >>4.方程2320x x -+=的根的情况是()A .只有一个实数根B .没有实数根C .有两个相等的实数根D .有两个不相等的实数根5.二次函数22(1)5y x =--的图象的开口方向,对称轴和顶点坐标为()A .开口向上,对称轴为直线1x =-,顶点(1,5)--B .开口向上,对称轴为直线1x =,顶点(1,5)C .开口向下,对称轴为直线1x =,顶点(1,5-)D .开口向上,对称轴为直线1x =,顶点(1,5-)6.如图,Rt ABC ∆中,90ABC ∠=︒,6AB =cm ,8BC =cm ,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 移动,点Q 从点B 出发,沿BC 边以2cm /秒的速度向点C 移动,如果点P ,Q 分别从点A ,B 同时出发,在运动过程中,设点P 的运动时间为t ,则当BPQ ∆的面积为8cm 2时,t 的值()A .2或3B .2或4C .1或3D .1或47.如图,抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-,其对称轴为直线12x =-,结合图象分析下列结论:①0abc >;②30a c +>;③当0x <时,y 随x 的增大而增大;④一元二次方程20cx bx a ++=的两根分别为113x =-,212x =;⑤若(),m n m n <为方程()()3230a x x +-+=的两个根,则3m <-且2n >,其中正确的结论有()个.A .2B .3C .4D .58.二次函数()20y ax bx c a =++≠的大致图象如图所示,关于该二次函数,下列说法错误的是A .函数有最小值B .对称轴是直线12x =C .当12x <时,y 随x 的增大而减小D .当12x -<<时,0y >9.在同一平面直角坐标系中,函数y =ax 2+bx 与y =﹣bx+a 的图象可能是()A .B .C .D .10.如图,将Rt ABC 绕点A 按顺时针旋转一定角度得到Rt ADE △,点B 的对应点D 恰好落在BC 边上,若1AB =,60B ∠= ,则CD 的长为()A .0.5B .1.5C 2D .1二、填空题11.在平面直角坐标系中,点P (﹣3,1)关于坐标原点中心对称的点P′的坐标是____.12.一元二次方程x 2﹣x=0的根是_____.13.若()2120m x x +-+=是关于x 的一元二次方程,则m 的取值范围是______.14.将抛物线22(1)y x =-先向左平移1个单位后所得到的新抛物线的解析式为__________.15.如图,已知线段AB 的长为a ,以AB 为边在AB 的下方作正方形ACDB .取AB 边上一点E ,以AE 为边在AB 的上方作正方形AENM .过E 作EF 丄CD ,垂足为F 点.若正方形AENM 与四边形EFDB 的面积相等,则AE 的长为________.16.退休的李老师借助自家15米的院墙和总长度为30米的围栏,在院墙外设计一个矩形花圃种植花草.为方便进出,他在如图所示的位置安装了一个1米宽的门,如果设和墙相邻的一边长为x 米,花圃面积为y 平方米,则y 与x 之间的函数关系式为__________.三、解答题17.解方程:2250x x +-=.18.如图,矩形绿地的长、宽各增加m x ,写出扩充后的绿地的面积y 与x 的关系式.19.在如图所示的网格中按要求画出图形,并回答问题:(1)画出ABC 以点O 为旋转中心顺时针旋转90︒后的111A B C △;(2)画出ABC 关于点O 的中心对称图形222A B C △.20.对于实数u 、v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程()14x a x **=-有两个相等的实数根,求满足条件的实数a 的值.21.已知二次函数y =(m 2﹣2)x 2﹣4mx+n 的图象的对称轴是直线x =2,且最高点在直线y =12x+1上,求这个二次函数的表达式.22.某宾馆有50间相同的客房,当房间的定价为每天180元时,房间会全部住满.统计表明:当房价每上调10元时,就会有一个房间空闲,宾馆需对有客人居住的房间每天支出20元的各种费用.设该宾馆房价上调x 元(x 为10的正整数倍)时,相应的住房数为y 间.(1)求y 与x 的函数关系式.(2)房价为多少时,宾馆的利润最大?最大利润是多少?(3)若老板决定每住进去一间房就捐出a 元(0<a≤40)给当地福利院,同时要保证房间定价在180元至360元之间波动时(包括两端点),利润随x 的增大而增大,求a 的取值范围.23.ABC 中,90B ∠=︒,5cm AB =,6cm BC =,点P 从点A 开始沿边AB 向终点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ =________,PB =________(用含t 的代数式表示);(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得PBQ △的面积等于24cm ?若存在,请求出此时t 的值;若不存在,请说明理由.24.如图,已知二次函数2y x mx n =++的图象经过点()0,3A ,且对称轴是直线2x =.该函数图象和x 轴交于B ,C 两点(点B 在点C 的左侧).(1)求该函数解析式;(2)求B ,C 两点的坐标;(3)点P是直线AC下方抛物线上的一个动点,过点P作PQ AC,垂足为Q,求PQ的最大值.25.如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0),与y轴交于点C.点D是抛物线上的一个动点,点D的横坐标为m(1<m<4),连接AC,BC,DB,DC.(1)求抛物线的解析式.(2)当△BCD的面积等于△AOC的面积的34时,求m的值.(3)在抛物线的对称轴上是否存在一点Q,使得△QAC的周长最小,若存在,求出点Q的坐标.参考答案1.B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B.2.C【解析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a 的方程,从而求得a 的值.【详解】把x=0代入方程得到:a 2-1=0,解得:a=±1.∵10a -≠∴1a ≠∴1a =-故选:C .3.A 【解析】分别计算自变量为2,1,3--对应的函数值,然后比较函数值的大小即可.【详解】解:当2x =-时,2211(2)13y x =-+=--+=-,当1x =-时,2221(1)10y x =-+=--+=,当3x =时,2231318y x =-+=-+=-,所以213y y y >>.故选:A .【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上点的坐标满足其解析式.4.D 【解析】【分析】根据一元二次方程根的判别式,可以判断该方程根的情况,从而可以解答本题.【详解】解:∵x 2-3x+2=0,∴Δ=(-3)2-4×1×2=1>0,∴方程x 2-3x+2=0有两个不相等的实数根,【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.5.D 【解析】【分析】根据二次函数y =a (x−h )2+k 的图象的开口方向由a 决定,a >0时开口向上;a <0时开口向下;对称轴为直线x =h 和顶点坐标(h ,k ),选择即可.【详解】解:∵a =2>0,∴抛物线开口向上,∵对称轴为直线x =h ,∴对称轴为直线x =1,∵顶点坐标(h ,k ),∴顶点坐标(1,−5),故选:D .【点睛】本题考查了二次函数y =a (x−h )2+k 的性质,关键是熟记抛物线顶点坐标(h ,k ),对称轴直线x=h .6.B 【解析】【分析】设经过x 秒钟,使△PBQ 的面积为8cm 2,得到BP =6−t ,BQ =2t ,根据三角形的面积公式得出方程12×(6−t )×2t =8,求出即可.【详解】设经过t 秒钟,使BPQ ∆的面积为28cm ,6BP t =- ,2BQ t =,12×(6−t )×2t =8,解得:1224,==x x ,【点睛】本题主要考查了一元二次方程的应用,用未知数表示出△PBQ 的面积是解此题的关键.7.A 【解析】【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由函数图象可得,0a <,0b <,0c >,则0abc >,故①正确;122b a -=-,得a b =,3x =- 时,930y a b c =-+=,60a c ∴+=,6c a ∴=-,33630a c a a a ∴+=-=->,故②正确;由图象可知,当12x <-时,y 随x 的增大而增大,当102x -<<时,y 随x 的增大而减小,故③错误;抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-,其对称轴为直线12x =-,∴该抛物线与x 轴的另一个交点的坐标为(2,0),20ax bx c ∴++=的两个根为13x =-,22x =,211()0a b c x x∴+⋅+=的两个根为13x =-,22x =,∴一元二次方程20cx bx a ++=的两根分别为113x =-,212x =,故④正确;该函数与x 轴的两个交点为(3,0)-,(2,0),∴该函数的解析式可以为(3)(2)y a x x =+-,当3y =-时,3(3)(2)a x x -=+-∴当3y =-对应的x 的值一个小于3-,一个大于2,∴若m ,()n m n <为方程(3)(2)30a x x +-+=的两个根,则3m <-且2n >,故⑤正确;故选:C .【点睛】本题考查二次函数图象与系数的关系、根与系数的关系、抛物线与x 轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.8.D 【解析】【分析】根据抛物线的开口方向,利用二次函数的性质判断A ;根据图形直接判断B ;根据对称轴结合开口方向得出函数的增减性,从而判断C .根据图象,当−1<x <2时,抛物线落在x 轴的下方,则y <0,进而判断D .【详解】解:A 、由抛物线的开口向上,可知a >0,函数有最小值,正确,故A 选项不符合题意;B 、由图象可知,对称轴为直线12x =,正确,故B 选项不符合题意;C 、因为a >0,抛物线开口向上,对称轴为12x =,所以当12x <时,y 随x 的增大而减小,正确,故C 选项不符合题意;D 、由图象可知,当−1<x <2时,y <0,错误,故D 选项符合题意.故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.9.A 【解析】【分析】首先根据图形中给出的一次函数图象确定a 、b 的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【详解】A 、对于直线y =−bx +a 来说,由图象可以判断,a >0,b <0;而对于抛物线y =ax 2+bx 来说,对称轴x =−2b a>0,在y 轴的右侧,符合题意,图形正确.B 、对于直线y =−bx +a 来说,由图象可以判断,a <0,b >0;而对于抛物线y =ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y =−bx +a 来说,由图象可以判断,a <0,b <0;而对于抛物线y =ax 2+bx 来说,对称轴=−2b a<0,应位于y 轴的左侧,故不合题意,图形错误,D 、对于直线y =−bx +a 来说,由图象可以判断,a >0,b <0;而对于抛物线y =ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.故选:A .【点睛】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a 、b 的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.10.D【解析】【分析】根据直角三角形两锐角互余可得∠C=30°,根据含30°角的直角三角形的性质可求出BC 的长,然后根据旋转的性质可得AB=AD ,然后判断出△ABD 是等边三角形,根据等边三角形的三条边都相等可得BD=AB ,然后根据CD=BC-BD 计算即可得解.【详解】解:∵∠B=60°,∴∠C=90°-60°=30°,∵AB=1,∴BC=2AB=2,由旋转的性质得,AB=AD ,∴△ABD 是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选:D .【点睛】本题考查了旋转的性质,含30°角的直角三角形的性质,等边三角形的判定与性质,熟记性质并判断出△ABD是等边三角形是解题的关键.11.(3,-1)【解析】【分析】根据关于原点对称的点的坐标特点解答即可.【详解】解:∵点P的坐标为(−3,1),∴和点P关于原点中心对称的点P′的坐标是(3,−1),故填:(3,-1).【点睛】本题考查的是关于原点对称的点的坐标特点,掌握两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y)是解题的关键.12.x1=0,x2=1【解析】【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.m≠-13.1【解析】【分析】根据一元二次方程的定义建立不等式求解即可.【详解】解:∵()2120m x x +-+=是关于x 的一元二次方程,∴10m +≠,解得:1m ≠-,故答案为:1m ≠-.【点睛】本题考查一元二次方程的定义,理解基本定义是解题关键.14.22y x =【解析】【分析】根据二次函数左加右减,上加下减的平移规律进行解答,即可求解.【详解】解:将抛物线22(1)y x =-先向左平移1个单位后所得到的新抛物线的解析式为222(11)2y x x =-+=.故答案为:22y x =.【点睛】本题主要考查了二次函数图象的平移,熟练掌握二次函数左加右减,上加下减的平移规律是解题的关键.15.12a 【解析】【分析】设AE 的长为(0)x x >,从而得出BE 的长,再根据“正方形AENM 与四边形EFDB 的面积相等,”列出方程,求出x 的值,即可得出AE 的长.【详解】解:设AE 的长为(0)x x >,则BE 的长为a x -,∵若正方形AENM 与四边形EFDB 的面积相等,∴()2x a x a =-⋅,∴220x ax a +-=.∵222450a a a ∆=+=>,∴1x a =,1x =(舍去)∴AE ..16.()2231815.5y x x x =-+<≤【解析】由总长度为30米的围栏围成矩形的三边,据此写出矩形的长,用含x 的代数式表示,再根据矩形的面积公式解题.【详解】解:根据题意得,矩形的宽为x 米,则长为:3021(312)x x -+=-米,且0<31215x -≤16246x ∴<-<815.5x <∴≤花圃面积为y=2(312)231x x x x -=-+()815.5x <≤,故答案为:()2231815.5y x x x =-+<≤.17.1211x x =-=-【解析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-∴1211x x =-=-18.250600y x x =++【解析】根据题意可知,增加后的矩形的长和宽分别为(20+x )m ,(30+x )m ,再由矩形面积公式求解即可.【详解】解:∵矩形原来的长和宽分别为30m 、20m ,矩形绿地的长、宽各增加xm ,∴增加后的矩形的长和宽分别为(20+x )m ,(30+x )m ,∴2(30)(20)50600y x x x x =++=++.19.(1)见详解;(2)见详解【解析】(1)画出ABC 绕点O 顺时针旋转90°后的对应顶点,再顺次连接起来即可;(2)画出ABC 关于点O 的中心对称后的对应顶点,再顺次连接起来即可.【详解】解:(1)如题所示:(2)如图所示:【点睛】本题主要考查旋转变换以及中心对称变换,根据题意先画出对应顶点是解题的关键.20.0a =【解析】【分析】由于定义一种运算定“*”为:u v uv v *=+,所以关于x 的方程()14x a x **=-变为()()211104a x a x ++++=,而此方程有两个不同的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的不等式组,解不等式组即可解决问题.【详解】解:由()14x a x **=-,得()14x ax x ax x +++=-即()()211104a x a x ++++=,∵关于x 的方程()14x a x **=-有两个相等的实数根,∴()()211410410a a a ⎧=+-+⨯=⎪⎨⎪+≠⎩ ,∴()()11101a a a ⎧+-+=⎨≠-⎩,解得0a =.【点睛】此题主要考查了一元二次方程的判别式,解题时首先正确理解定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到不等式组解决问题.21.y =﹣x 2+4x ﹣2.【解析】【分析】根据函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =12x+1上,可求得y =(m 2﹣2)x 2﹣4mx+n 的图象顶点坐标为(2,2).从而求得m =﹣1或m =2,利用最高点在直线上可得a <0,所以m =﹣1,n =﹣2,从而求得二次函数的表达式.【详解】解:∵二次函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =12x+1上,∴y =12×2+1=2,∴y =(m 2﹣2)x 2﹣4mx+n 的图象顶点坐标为(2,2),∴﹣2b a =2,∴﹣2422()m m --=2,解得:m =﹣1或m =2,∵最高点在直线y =12x+1上,∴a =m 2﹣2<0,∴m =﹣1,∴y =﹣x 2+4x+n ,又∵顶点为(2,2),∴2=﹣4+8+n ,∴n =﹣2,则二次函数的表达式为y =﹣x 2+4x ﹣2.【点睛】主要考查了用待定系数法求二次函数解析式的方法,要掌握对称轴公式的运用以及最值与函数之间的关系.22.(1)5010x y =-;(2)当定价为350元时,利润最大为10890元;(3)20≤a≤40.【解析】【分析】(1)根据“房间数量=50−相对于180元增加了几个10”可得;(2)根据宾馆所得利润=(每个房间的定价−支出费用)×(50−相对于180元增加了几个10),得到二次函数关系式,进而计算相应的房价和最大利润即可;(3)设宾馆每天的利润为w ',得到二次函数关系式,进而利用对称轴的范围进行作答.【详解】解:(1)由题意知:5010x y =-(0≤x≤500,且x 是10的整数倍);(2)设宾馆每天的利润为w ,由题意知:()180205010x w x ⎛⎫=+-- ⎪⎝⎭,2134800010x x =-++()211701089010x =--+∴当x =170时,w 最大为10890.∴当定价为:x +180=350(元)时,利润最大为10890元;(3)设宾馆每天的利润为w ',由题意知:()180205010x w x a ⎛⎫'=+--- ⎪⎝⎭,21=348000501010a x x a ⎛⎫-+++- ⎪⎝⎭对称轴为:3402a x +=,∵要保证房间定价在180元至360元之间波动时(包括两端点),利润随x 的增大而增大,∴要保证房间上调价格在0元至180元之间波动时(包括两端点),利润随x 的增大而增大,∴3402a +≥180,解得:a ≥20,∴20≤a≤40.【点睛】本题考查了一次函数、二次函数的应用、二次函数的性质以及解一元一次不等式,解题的关键是:根据二次函数的性质解决最值问题;(2)根据二次函数的性质找出关于a 的一元一次不等式.本题属于中档题.23.(1)2t ,5-t .(2)t 1=0,t 2=2.(3)存在,t=1【解析】【分析】(1)根据路程=速度×时间就可以表示出BQ ,AP .再用AB-AP 就可以求出PB 的值.(2)在Rt △PBQ 中由(1)结论根据勾股定理就可以求出其值.(3)利用(1)的结论,根据三角形的面积公式建立方程就可以求出t 的值.【详解】解:(1)由题意,得BQ=2t ,PB=5-t .故答案为:2t ,5-t .(2)在Rt △PBQ 中,由勾股定理,得4t 2+(5-t )2=25,解得:t 1=0,t 2=2.(3)由题意,得2(5)42t t -=,解得:t 1=1,t 2=4(不符合题意,舍去),∴当t=1时,△PBQ 的面积等于4cm 2.【点睛】本题考查了行程问题的运用,一元二次方程的解法,勾股定理的运用,三角形面积公式的运用.在解答时要注意所求的解使实际问题有意义.24.(1)243y x x =-+;(2)()10B ,,()3,0C ;(3)8【解析】【分析】(1)根据二次函数2y x mx n =++的图象经过点()0,3A ,且对称轴是直线2x =,即可得到322n m =⎧⎪⎨-=⎪⎩,由此即可求解;(2)令0y =,得到2430x x -+=,解方程即可;(3)连接CP ,连接AP 交x 轴于H ,先利用勾股定理求出AC 的长,则1==2APC AHC PHC S AC PQ S S ⋅+△△△,设()2,43P a a a -+,直线AP 的解析式为y kx b =+,从而求出3,04H a ⎛⎫- ⎪-⎝⎭,则339344a CH a a -⎛⎫=--= --⎝⎭,则可得到()2113327=3922228APC S AC PQ a a a ⎛⎫⋅=--=--+ ⎪⎝⎭△,要想PQ 最大,则APC S 要最大,由此即可求解.【详解】解:(1)∵二次函数2y x mx n =++的图象经过点()0,3A ,且对称轴是直线2x =,∴322n m =⎧⎪⎨-=⎪⎩解得4m =-,3n =,∴这个二次函数解析式为243y x x =-+;(2)当0y =时,2430x x -+=,解得11x =,23x =,所以点B ,C 的坐标分别为()10B ,,()3,0C ;(3)如图所示,连接CP ,连接AP 交x 轴于H ,∵A (0,3),C (3,0),∴OA=OC=3,∴AC ==,∵PQ ⊥AC ,∴1==2APC AHC PHC S AC PQ S S ⋅+△△△,设()2,43P a a a -+,直线AP 的解析式为y kx b =+,∴2343b ak b a a =⎧⎨+=-+⎩,解得43k a b =-⎧⎨=⎩,∴直线AP 的解析式为()43y a x =-+,∵H 是直线AP 与x 轴的交点,∴3,04H a ⎛⎫- ⎪-⎝⎭,∴339344a CH a a -⎛⎫=--= --⎝⎭,∴()()211139==3432224APC AHC PHC A P a S AC PQ S S CH y y a a a -⋅+=⋅-=⋅⋅-+--△△△∴()2113327=3922228APC S AC PQ a a a ⎛⎫⋅=--=--+ ⎪⎝⎭△,∵要想PQ 最大,则APC S 要最大,∴当32a =,APC S 有最大值278,∴此时272784182PQ AC ==.【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数与x 轴的交点问题,一次函数与二次函数综合等等,解题的关键在于能够熟练掌握相关知识进行求解.25.(1)233642y x x =-++;(2)m =3;(3)点Q 的坐标为(1,92).【解析】【分析】(1)由A 、B 两点坐标可得抛物线两点式解析式,进而可求出a 值,即可得答案;(2)设直线BC 的表达式为y=kx+b ,根据抛物线的解析式可得C 点坐标,利用待定系数法可得直线BC 的解析式,设点D (m ,233642m m -++),过点D 作y 轴的平行线交直线BC 与点H ,可得点H (m ,362x -+),根据三角形面积公式列方程求出m 的值即可;(3)根据二次函数的对称性可得抛物线233642y x x =-++的轴对称与BC 的交点即为点Q ,根据二次函数解析式可得对称轴方程,把对称轴方程代入BC 解析式即可求出Q 点纵坐标,即可得答案.【详解】(1)∵抛物线y =ax 2+bx+6经过点A (﹣2,0),B (4,0),∴抛物线解析式为:y =a (x+2)(x ﹣4)=a (x 2﹣2x ﹣8)=ax 2﹣2ax ﹣8a ,∴﹣8a =6,解得:34a =-,故抛物线的表达式为:233642y x x =-++;(2)设直线BC 的表达式为y=kx+b ,∵抛物线与y 轴交于点C ,∴点C (0,6),将点B 、C 的坐标代入一次函数表达式得:406k b b +=⎧⎨=⎩,解得:326k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的表达式为:362y x =-+,如图1,过点D 作y 轴的平行线交直线BC 与点H ,设点D (m ,233642m m -++),则点H (m ,362x -+)S △BDC =12HD×OB =2(233366422m m m -+++-)=2(2334m m -+),34S △ACO =34×12×6×2=92,∴2(﹣34m 2+3m )=92,解得:m =3或m=1(舍去),∴m =3;(3)如图2,在抛物线的对称轴上存在一点Q ,使得△QAC 的周长最小,连接BC ,∵A 、B 两点关于对称轴对称,∴QA=QB ,∴QA+QC=QC+QB ,∴BC 为QA+QC 的最小值,即△QAC 的周长最小.∴抛物线233642y x x =-++的轴对称与BC 的交点即为点Q ,∵抛物线233642y x x =-++的轴对称为x =1,∴把x =1代入直线BC 的表达式362y x =-+得92y =,∴点Q 的坐标为(1,92).。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
13.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为_______.
14.如图,已知 、 是⊙O的直径, , ,则 的度数为______度.
15.如图,抛物线 与直线 的两个交点坐标分别为 , ,则关于 的方程 的解为______.
16.如图,AB是半圆O的直径,点C在半圆上,AB=5,AC=4,D是 上的一个动点,连接AD.过点C作CE⊥AD于E,连接BE,则BE的最小值是_____.
【点睛】本题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
7. B
【解析】
【分析】首先求出点(-1,0)关于对称轴x=1的对称点,进而结合图象可得当y<0时x的取值范围.
【详解】解:根据图象可知,抛物线的对称轴为x=1,抛物线与x轴的一个交点为(-1,0),
则(-1,0)关于x=1对称的点为(3,0),
.是轴对称图形,不是中心对称图形,故此选项不合图形,不是中心对称图形,故此选项不合题意.故选:C.
【点睛】本题考查中心对称图形和轴对称图形的知识,解题的关键是掌握好中心对称图形与轴对称图形的概念.
2. C
【解析】
【分析】根据旋转的性质求出 和 的度数,计算出 的度数.
【详解】如图所示, 是等腰直角三角形, 是它的外接圆, 是它的内切圆,连接AE、BE,
∵等腰直角三角形的外接圆半径的长为2,
∴AB=4,
∴在 中, ,
∵ 是内切圆,
∴EF=EG=ED,


∵ ,
∴ ,
即 ,
∴ .故选:B.
【点睛】本题考查了三角形的外接圆和内切圆,等腰直角三角形的性质,勾股定理等知识,熟练掌握圆基本的性质定理是解题的关键.

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
【详解】解:A、是轴对称图形,不是中心对称图形,故A选项错误;
B、既是轴对称图形,又是中心对称图形,故B选项错误;
C、是中心对称图形,不是轴对称图形,故C选项正确;
D、是轴对称图形,不是中心对称图形,故D选项错误;故选C.
【点睛】本题主要考查了中心对称与轴对称图形的概念,解题的关键在于能够熟练掌握中心对称图形与轴对称图形的相关知识.
14.从一块直径是 的圆中剪出一个圆心角为90°的扇形,将减下来的扇形围成一个圆锥,圆锥底面圆的半径是___________.
15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为_______.
A. B.
C. D.
8.如图, 是 的内接三角形, , 是直径, ,则 的长为( )
A.4B. C. D.
9.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点D(x2,y2)是抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②若y2>y1,则x2>4;③若0≤x2≤4,则0≤y2≤5a;④若方程a(x+1)(x﹣3)=﹣1有两个实数根x1和x2,且x1<x2,则﹣1<x1<x2<3.其中正确结论的个数是( )
【详解】如图,连接 ,
分别与 相切于 两点,
,



.故选B.
【点睛】本题考查了圆的切线的性质,圆周角定理,求得 是解题的关键.
7. B
【解析】
【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.

最新人教版九年级数学上册期中考试试题(含答案)

最新人教版九年级数学上册期中考试试题(含答案)

最新人教版九年级数学上册期中考试试题(含答案)一、选择题(每小题4分,共80分)1. 题目1a. A选项b. B选项c. C选项d. D选项答案:B2. 题目2a. A选项b. B选项c. C选项d. D选项答案:C...二、填空题(每小题4分,共40分)1. 题目1:_______是一个素数。

答案:132. 题目2:32的约数有_______个。

答案:6...三、计算题(每小题10分,共50分)1. 题目1:已知两个角的度数为45°和120°,这两个角的补角之和为多少度?答案:60°2. 题目2:某商店原价100元的商品打8折出售,实际售价为多少元?答案:80元...四、应用题(每小题12分,共60分)1. 题目1:甲、乙两个人同时从相距800千米的地点出发,甲每小时行40千米,乙每小时行50千米。

请问他们多长时间后会相遇?答案:8小时2. 题目2:一个矩形的长是宽的3倍,如果宽为6米,求该矩形的面积。

答案:108平方米...五、解答题(每小题15分,共75分)1. 题目1:如图所示,已知AB是⊙O的直径,CD是弧AB的弦,∠ACD=90°,AB=8,AD=6,请计算弧CD的长度。

![题目1图片](image1.jpg)答案:42. 题目2:根据下列计算过程,填写下表中的数据:计算过程:2*(-5) - 3*(-4) + 6*(-10) = ?...以上是最新人教版九年级数学上册期中考试试题及答案,希望对你有帮助!。

人教版中学九年级上学期期中数学考查试卷及参考答案

人教版中学九年级上学期期中数学考查试卷及参考答案

人教版中学九年级上学期期中考试数学试题满分:150分 考试时间:120分钟第I 卷(选择题)一、单选题(每小题5分,共45分)1.下列方程中,①2x 2+1=0,②ax 2+bx +c =0,③(x +2)(x ﹣2)=x 2﹣3,④2x ﹣1x=0,是一元二次方程的有( )A .1个B .2个C .3个D .4个2.下列图形中是中心对称图形的是 ( )A .B .C .D . 3.若()2319x m x +-+是一个完全平方式,则m 的值等于( )A .-1B .3C .-1或3D .6或6-4.下列关于二次函数图象的性质,说法正确的是( )A .抛物线2y ax =的开口向下B .抛物线y =2x 2+3的对称轴为直线x =2C .抛物线y =3(x -1)2在对称轴左侧,即x <1时,y 随x 的增大而减小D .抛物线y =2(x -1)2+3的顶点坐标为(-1,3)5.若方程2x -4x +m =0没有实数根,则m 的取值范围是( )A .4m >-B .4m >C .4m <-D .4m < 6.一次函数y 1=mx +n (m ≠0)与二次函数y 2=ax 2+bx +c (a ≠0)的图象如图所示,则不等式ax 2+bx +c <mx +n 的解集为( )A .1<x <-4B .x <-4C .-4<x <1D .x >1或x <-47.受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格六月底是7.5元/升,八月底是8.4元/升.设该地92号汽油价格这两个月平均每月的增长率为x ,根据题意列出方程,正确的是( ) A .()27.518.4x =+B .()27.518.4x =+C .()28.417.5x =-D .()()27.517.518.4x x =+++8.直线123l x =+关于直线x a =对称后,所得的直线2l 过点()3,1,则直线2l 的表达式为( ) A .27y x =-+ B .25y x =- C .25y x =-+ D .1522y x =-+ 9.如图,Rt △ABC 中,90ABC ∠=︒,8AB =,3BC =,P 是△ABC 内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为( )A .2B .3C .6D .4第II 卷(非选择题)二、填空题(每小题5分,共30分)10.点(1,–2)关于坐标原点 O 的对称点再向上平移1个单位后坐标是_____.11.将抛物线y =2x 2向上平移1个单位,再向左平移2个单位,那么得到的抛物线的解析式为___________________.12.某中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm ,则可列方程为_____.13.如图,已知△ABC 中,∠C =90°,AC =BC =将△ABC 绕点A 逆时针反向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为_____.14.某涵洞的截面是抛物线型,如图所示,在图中建立的直角坐标系中,抛物线的解析式为214y x =-,当涵洞水面宽AB 为12米时,水面到桥拱顶点O 的距离为________米.15.如图,在菱形ABCD 中,160AB DAB =∠=︒,,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ''',其中点C 的运动路径为'CC ,则图中阴影部分的面积为________.三、解答题(共75分)16.(8分)解下列方程:(1)﹣12x 2﹣3x +6=0;(2)7x (3﹣x )=3(x ﹣3)(因式分解法).17.(8分)关于x 的方程22210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 取最大整数值时,求方程的两个根.18.(8分)如图,在矩形ABCD 中,AB =12cm ,BC =6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动,如果P 、Q 同时出发,用t 表示移动的时间(0≤t ≤6).那么:(1)求四边形QAPC 的面积;(2)当t 为何值时,PCQ 的面积是31cm 2?19.(8分)一块长5米、宽4米的地毯如图所示,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的17 80.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.20.(8分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约5米高,球落地后又一次弹起,根据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员多少米?(3)运动员乙要抢到足球第二个落点D,他应从B处再向前跑多少米?21.(10分)运城菖蒲酒产于山西垣曲.莒蒲洒远在汉代就已名噪酒坛,为历代帝王将相所喜爱,并被列为历代御膳香醪.菖蒲酒在市场的销售量会根据价格的变化而变化.菖蒲酒每瓶的成本价是35元,某超市将售价定为55元时,每天可以销售60瓶,若售价每降低2元,每天即可多销售10瓶(售价不能高于55元),若设每瓶降价x元()1用含x的代数式表示菖蒲酒每天的销售量.()2每瓶菖蒲酒的售价定为多少元时每天获取的利润最大?最大利润是多少?22.(12分)如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,OC ⊥OB ,连接AB 交OC 于点D .(1)证明:AC=CD(2)若AC=2,OD 的长度.23.(13分)已知抛物线223y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求点A ,点B 的坐标;(2)如图,过点A 的直线:1l y x =--与抛物线的另一个交点为C ,点P 为抛物线对称轴上的一点,连接PA PC 、,设点P 的纵坐标为m ,当PA PC =时,求m 的值;(3)将线段AB 先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN ,若抛物线2(23)(0)y a x x a ++≠=-与线段MN 只有一个交点,请直接写出....a 的取值范围.参考答案:1.A2.C3.C4.C5.B6.D7.B8.A9.B10.(-1,3)11.y =32(+2)x +112.(30﹣2x )(20﹣x )=34×20×3013.114.915.342π16.(1)13x =-23x =-(2)137x =-,x 2=3 17.(1)1k <(2)11x =-21x =-18.(1)36(cm 2);(2)当t =1或5时,△PCQ 的面积是31cm 2.19.(1)配色条纹宽度是14米 (2)地毯的总造价为2425元.20.(1)y =-19(x -6)2+5(2)足球第一次落地点C 距守门员(6+米(3)运动员乙要抢到足球第二个落点D ,他应再向前跑(米 21.(1)605x +;(2)售价定为51元时,有最大利润,最大利润为1280元.22.(1)证明:(2)OD=123.(1)A(-1,0),B(3,0)(2)-3(3)54a=或53a>或1a≤-。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
A. B. C. D.
2.如图所示的正三棱柱的主视图是()
A. B. C. D.
3.疫情期间进入学校都要进入测温通道,体温正常才可进入学校,昌平某校有2个测温通道,分别记为A、B通道,学生可随机选取其中 一个通道测温进校园.某日早晨该校所有学生体温正常.小王和小李两同学该日早晨进校园时,选择同一通道测温进校园的概率是( )
A.11.5米B.11.75米C.11.8米D.12.25米
13.已知(x2+y2)2﹣y2=x2+6,则x2+y2的值是( )
A.﹣2B.3C.﹣2或3D.﹣3或2
14.如图,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有()
【详解】解:列表格如下:
A
B
A
A,A
B,A
B
A,B
B,B
由表可知,共有4种等可能的结果,其中小王和小李从同一个测温通道通过的有2种可能,
所以小王和小李从同一个测温通道通过的概率为 .故选:C
【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
22.(8分)解方程:
(1)(2x﹣5)2﹣9=0;
(2)4x2+2x﹣1=0;
(3)(x+3)(x﹣1)=5;
(4)2(x﹣3)2=x2﹣9.
23.(4分)如图,△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.以点C为位似中心,在网格中画出△A2B2C,使△A2B2C与△ABC位似,且位似比为2:1,并直接写出△A2B2C的面积.

人教版九年级上册数学期中考试试卷及答案

人教版九年级上册数学期中考试试卷及答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.方程24581x x +=化成一般形式后,它的二次项系数和常数项分别是()A .4,5B .4,5-C .4,81D .4,81-2.下列汉字或字母中,不是中心对称图形的是()A .B .C .D .3.抛物线2288y x x =-+-的对称轴是()A .2x =B .2x =-C .4x =D .4x =-4.不解方程,判断方程23620x x --=的根的情况是()A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确5.抛物线()2526y x =-+-可由25y x =-如何平移得到()A .先向右平移2个单位,再向下平移6个单位B .先向右平移2个单位,再向上平移6个单位C .先向左平移2个单位,再向下平移6个单位D .先向左平移2个单位,再向上平移6个单位6.已知点(),1A a 与()5,B b 关于原点对称,则,a b 的值分别为()A .5a =,1b =B .5a =,1b =-C .5a =-,1b =D .5a =-,1b =-7.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)19802x x -=B .x (x +1)=1980C .2x (x +1)=1980D .x (x -1)=19808.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为()A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<9.如图,AD 是圆O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是()A .2AP OP =B .2CD OP =C .OB AC ⊥D .AC 平分OB10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有()A .2个B .3个C .4个D .5个二、填空题11.已知4是方程x 2﹣c =0的一个根,则方程的另一个根是________.12.抛物线()2322y x =---的顶点坐标为_______.13.要为一幅长29cm ,宽22cm 的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,设相框边的宽度为x ,则可列出关于x 的一元二次方程_______.14.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:x 1-03yn33当0n <时,下列结论中一定正确的是_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a <;④对于任意实数t ,总有()2496at bt a b +≤+.15.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD 中,AB BC =,AD =,5CD =,60ABC ∠=︒,则线段BD =______.16.如图,在正方形ABCD 中,E 是BC 上一点,将EA 绕点E 顺时针旋转60°,点A 的对应点F 恰好落在CD 上,则DAE =∠_______°.三、解答题17.解方程2470x x --=18.,a b 是关于x 的一元二次方程26150x x --=的两个实数根,求代数式11a b+,22a b ab +的值.19.如图,△ABD 、△ACE 都是等边三角形.求证:BE=DC .20.如图,在97⨯网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,,,,,A B C E F 均为格点,请按要求仅用一把无刻度的直尺作图.(1)将ABC ∆绕点O 旋转180︒得到BAD ∆,请画出点O 和BAD ∆;(2)将格点线段EF 平移至格点线段MN (点,E F 的对应点分别为,M N ),使得MN 平分四边形ABCD 的面积,请画出线段MN ;(3)在线段AD 上找一点P ,使得AOP BOD ∠=∠,请画出点P .21.如图,O 的直径AB 为10,弦BC 为6,D 是 AC 的中点,弦BD 和CE 交于点F ,且DF DC =.(1)求证:EB EF =;(2)求CE 的长.22.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg ,每日销售量()y kg 与销售单价x (元/kg )满足一次函数关系,下表记录的是有关数据.经销售发现,销售单价不低于成本价且不高于30元/kg .设公司销售板栗的日获利为w (元).x (元/kg )789()y kg 430042004100(1)请求出日销售量y 与销售单价x 之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w 最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w 不低于42000元?23.如图1,ABC ∆中,CA CB =,ACB α∠=,D 为ABC ∆内一点,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆,点,A D 的对应点分别为点,B E ,且,,A D E 三点在同一直线上.(1)填空:CDE ∠=______(用含α的代数式表示);(2)如图2,若60α=︒,请补全图形,再过点C 作CF AE ⊥于点F ,然后探究线段CF ,AE ,BE 之间的数量关系,并证明你的结论;(3)如图3,若90α=︒,AC =ABEC 面积的最大值______.24.如图,AB 为O 的直径,C 为O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为D ,35CAD ∠=︒,连接BC .(1)求∠B 的度数;(2)若2AB =,求 EC的长.25.如图1,抛物线G :214y x bx c =-++经过点()6,0B ,顶点为A ,对称轴为直线2x =.(1)求抛物线G 的解析式;(2)若点C 为直线AB 上方的抛物线上的动点,当ABC ∆面积最大时,求C 点的坐标;(3)如图2,将抛物线G 向左平移至顶点在y 轴上,平移后的抛物线G '与x 轴交于点E 、F ,平行于x 轴的直线l 经过点()0,8,若点P 为x 轴上方的抛物线G '上的动点,分别连接EP 、FP ,并延长交直线l 于M 、N 两点,若M 、N 两点的横坐标分别为m 、n ,试探究m 、n 之间的数量关系.参考答案1.D 【分析】一元二次方程的一般形式是:20(ax bx c a ++=,b ,c 是常数且0)a ≠,其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.【详解】解:24581x x +=化成一元二次方程一般形式是245810x x +-=,它的二次项系数是4,常数项是-81.故选:D .【点睛】本题主要考查了一元二次方程的一般形式,要确定一次项系数和常数项,首先要把方程化成一般形式.2.A 【分析】根据中心对称图形的概念求解即可.【详解】解:A 、不是中心对称图形,故符合题意;B 、是中心对称图形,故不符合题意;C 、是中心对称图形,故不符合题意;D 、是中心对称图形,故不符合题意;故选:A 【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.A 【分析】利用抛物线对称轴公式求解即可.【详解】解:∵2288y x x =-+-,∴对称轴为直线x=-822(2)=⨯-,故选:A .【点睛】本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键.4.C 【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选:C 【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.5.C 【分析】按照“左加右减,上加下减”的规律求则可.【详解】解:因为()2526y x =-+-.所以将抛物线25y x =-先向左平移2个单位,再向下平移6个单位即可得到抛物线()2526y x =-+-.故选:C .【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.6.D 【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数进行解答即可.【详解】解:∵点(),1A a 与()5,B b 关于原点对称,∴a =−5,b =−1.故选:D .【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.7.D 【分析】根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,∴全班共送:(x ﹣1)x=1980,故选D .【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x ﹣1)张相片,有x 个人是解决问题的关键.8.B 【分析】把三点横坐标代入函数解析式,求出函数值,再进行比较大小即可.【详解】解:当x=-1时,y=-2a-a-4=-3a-4;当x=1时,y=-2a+a-4=-a-4;当x=2时,y=-8a+2a-4=-6a-4;∵a >0∴-6a-4<-3a-4<-a-4∴312y y y <<故选B 【点睛】本题考查抛物线上点的坐标特征,解答本题的关键是明确题意,可以判断y 1,y 2,y 3的大小.9.A 【分析】利用圆周角定理得到∠ACD =90°,再根据平行四边形的性质得到CD ∥OB ,CD =0B ,则可求出∠A =30°,在Rt △AOP 中利用含30度的直角三角形三边的关系,可对A 选项进行判断;利用OP ∥CD ,CD ⊥AC 可对C 选项进行判断;利用垂径可判断OP 为△ACD 的中位线,则CD =20P ,原式可対B 选项进行判断;同时得到OB =2OP ,则可对D 选项进行判断.【详解】解:∵AD 为直径,∴90ACD ∠= ,∵四边形OBCD 为平行四边形,∴//CD OB ,CD OB =,在Rt ACD ∆中,1sin 2CD A AD ==,∴30A ∠= ,在Rt AOP ∆中,AP =,所以A 选项的结论错误;∵//OP CD ,CD AC ⊥,∴OP AC ⊥,所以C 选项的结论正确;∴AP CP =,∴OP 为ACD ∆的中位线,∴2CD OP =,所以B 选项的结论正确;∴2OB OP =,∴AC 平分OB ,所以D 选项的结论正确.故选A .【点睛】此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和平行四边形的性质.10.B 【分析】根据题意可知一元二次方程ax 2+bx +c =p (p >0)的根应为整数,通过抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).可以画出大致图象判断出直线y =p (0<p ≤-9a ),观察图象当0<y ≤-9a 时,抛物线始终与x 轴相交于(-4,0)于(2,0).故自变量x 的取值范围为-4<x <2.所以x 可以取得整数-3,-2,-1,0,1,共5个.由于x =-3与x =1,x =-2与x =0关于对称轴直线x =-1对称,所以x =-3与x =1时对应一条平行于x 轴的直线,x =-2与x =0时对应一条平行于x 轴的直线,x =-1时对应一条平行于x 轴且过抛物线顶点的直线,从而确定y =p 时,p 的值应有3个.【详解】解:∵抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,∴2ba -=-1,解得b =2a .又∵抛物线y =ax 2+bx +c (a <0)与x 轴的一个交点为(2,0).把(2,0)代入y =ax 2+bx +c 得,0=4a +4a +c ,解得,c =-8a .∴y =ax 2+2ax -8a (a <0),对称轴h =-1,最大值k =24(8)44a a a a ⋅--=-9a .如图所示,顶点坐标为(-1,-9a ),令ax 2+2ax -8a =0,即x +2x -8=0,解得x =-4或x =2,∴当a <0时,抛物线始终与x 轴交于(-4,0)与(2,0).∴ax 2+bx +c =p即常函数直线y =p ,由p >0,∴0<y ≤-9a ,由图象得当0<y ≤-9a 时,-4<x <2,其中x 为整数时,x =-3,-2,-1,0,1,∴一元二次方程ax 2+bx +c =p (p >0)的整数解有5个.又∵x =-3与x =1,x =-2与x =0关于直线x =-1轴对称,当x =-1时,直线y =p 恰好过抛物线顶点.所以p 值可以有3个.故选B .【点睛】本题考查了二次函数图象与x 轴及常函数y =p (p >0)的交点横坐标与一元二次方程根的关系,根据题意画出图象,求出y 的最大值是解决此题的关键.11.-4【分析】可将该方程的已知根4代入两根之和公式列出方程,解方程即可求出方程的另一根.【详解】设方程的也另一根为x 1,又∵x=4,∴x 1+4=0,x 1=−4.故答案为:-4.【点睛】本题考查的知识点是根与系数的关系,解题的关键是熟练的掌握根与系数的关系.12.()2,2-【分析】因抛物线()2322y x =---的解析式为顶点式,则直接运用顶点式的性质可求得答案.【详解】解:∵()2322y x =---,∴抛物线顶点坐标为()2,2-.故答案为:()2,2-.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,顶点坐标为(h ,k ).13.(29-2x )(22-2x )=34×29×22.【分析】根据题意表示出去掉相框的面积进而得出等式即可.【详解】解:设相框边的宽度为xcm ,则可列方程为:(29-2x )(22-2x )=34×29×22.故选:B .【点睛】此题主要考查了由实际问题抽象出一元二次方程,正确表示出去掉相框的面积是解题关键.14.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解.【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3∴对称轴为0+33=222b x a =-=,且3c =,3b a =-∴23y ax bx =++①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确;②对称轴为32x =,且当1x =-时,.y n =将(1)n -,代入23y ax bx =++中得3a b n -+=,∴3a b n -=-又∵0n <∴-0a b <又∵a b ,异号,∴0a <,0.b >∴23y ax bx =++的图象开口向下,∵33|2|||22π-->-∴12y y <,故②正确;③∵3b a =-, 3.a b n -=-∴(3)3a a n --=-∴4 3.a n =-∴4.a n <,故③错误;④当32x =时,y 有最大值,∴最大值为3492a b c ++∴对任意实数t ,总有29342at bt c a b c ++≤++,∴24()96at bt a b +≤+,故④正确,故答案为:①②④.【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.15.【分析】对余四边形的定义得出30ADC ∠=︒,将BCD ∆绕点B 逆时针旋转60︒,得到BAF ∆,连接FD ,则BCD BAF D @D ,60FBD ∠=︒,得出BF BD =,AF CD =,BDC BFA ∠=∠,则BFD ∆是等边三角形,得出BF BD DF ==,易证30BFA ADB ∠+∠=︒,由180FBD BFA ADB AFD ADF ∠+∠+∠+∠+∠=︒,得出90AFD ADF ∠+∠=︒,则90FAD ∠=︒,由勾股定理即可得出结果.【详解】∵对余四边形ABCD 中,60ABC ∠=︒,∴30ADC ∠=︒,∵AB BC =,∴将BCD ∆绕点B 逆时针旋转60︒,得到BAF ∆,连接FD ,如图所示:∴BCD BAF ∆∆≌,60FBD ∠=︒∴BF BD =,AF CD =,BDC BFA ∠=∠,∴BFD ∆是等边三角形,∴BF BD DF ==,∵30ADC ∠=︒,∴30ADB BDC ∠+∠=︒,∴30BFA ADB ∠+∠=︒,∵180FBD BFA ADB AFD ADF ∠+∠+∠+∠+∠=︒,∴6030180AFD ADF ︒+︒+∠+∠=︒,∴90AFD ADF ∠+∠=︒,∴90FAD ∠=︒,∴222AD AF DF +=,∴222AD CD BD +=.∴22(25)(5)35BD =+=.故答案为:35【点睛】本题主要考查了对余四边形的定义、旋转的性质、等边三角形的判定与性质、三角形内角和定理、勾股定理等知识;熟练掌握对余四边形的定义和旋转的性质是解题的关键.16.75【分析】根据旋转的性质得出△AEF 是等边三角形,进而可证明Rt △ABE ≌Rt △ADF 得∠BAE =∠ADF ,再根据角的和差可得结论.【详解】解:由旋转得,AE =AF ,60EAF ∠=︒∴△AEF 是等边三角形,∴EF =AE =AF ,∠EAF =∠AEF =∠AFE =60°∵四边形ABCD 是正方形,∴∠BAD =∠B =∠D =90°,AB =AD在Rt △ABE 和Rt △ADF 中AB ADAE AF=⎧⎨=⎩∴Rt △ABE ≌Rt △ADF∴∠BAE =∠ADF又∠BAD =∠BAE +∠EAF +∠DAF =90°∴∠DAF =1(9060)152⨯︒-︒=︒∴∠DAE =∠DAF +∠EAF =15°+60°=75°故答案为75【点睛】本题主要考查了旋转的性质,直角三角形全等的判定与性质,正方形的性质等知识,求出∠DAF =15︒是解答此题的关键.17.12x =+,22x =-【分析】用配方法解一元二次方程.【详解】解:247=0x x --247x x -=24411x x -+=()2211x -=2x -=∴12x =+,22x =-【点睛】本题考查解一元二次方程,熟练掌握一元二次方程的解法是关键.18.25-;90-【分析】先由根与系数的关系得出a+b=6,ab=-15,再将所求式子变形后整体代入计算可得.【详解】解∵,a b 是关于x 的一元二次方程26150x x --=的两个实数根∴6a b +=,15ab =-∴1162155a b a b ab ++===--22()15690a b ab ab a b +=+=-⨯=-【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a -,x 1x 2=c a.19.证明见解析.【分析】将BE 、DC 放入△BAE 和△DAC ,利用等边三角形的性质证明△BAE 和△DAC 全等.【详解】证明:∵△ABD 、△AEC 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠CAE =60°,∴∠DAC =∠BAC +60°,∠BAE =∠BAC +60°,∴∠DAC =∠BAE ,在△DAC 和△BAE 中,AD AB DAC BAE AE AC ⎧⎪∠∠⎨⎪⎩===,∴△DAC ≌△BAE (SAS ),∴BE =DC .20.(1)如图所示,见解析;(2)如图所示,见解析;(3)如图所示,见解析.【分析】(1)依据旋转方向,旋转角度以及旋转中心,即可得到△BAD .(2)依据平移的方向和距离,即可得到MN ;(3)延长QO 与AD 的交点即为点P .【详解】解:(1)如图所示.(2)如图所示;(3)如图所示.【点睛】本题主要考查了利用平移变换以及旋转变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照几何变换确定对应点后,再顺次连接对应点即可得到几何变换后的图形.21.(1)见解析;(2)CE =【分析】(1)运用圆周角定理证明DBE EFB ∠=∠即可得到结论;(2)连接OE ,AE ,AC ,在CB 延长线上截取BG AC =,连EG ,可得A 、E 、B 、C 四点为共圆,可证明CAE GBE ∆∆≌,△CEG 为等腰直角三角形,运用勾股定理即可求得结论.【详解】(1)证明:∵DF DC =∴DCF DFC∠=∠又∵DCF DBE ∠=∠,DFC EFB ∠=∠∴DBE EFB∠=∠∴EB EF=(2)连接OE ,AE ,AC ,∵AB 为O 的直径∴90ACB ∠=︒,90AEB =︒∠在Rt ACB ∆中,AC 8===∵D 是弧AC 的中点∴ AD CD=∴DBA DBC∠=∠又∵DBE EFB∠=∠∴DBE DBA EFB DBC ∠-∠=∠-∠,即ABE ECB∠=∠∴AOE BOE∠=∠∴ AE BE=,AE BE =∴45ACE BCE ∠=∠=︒在CB 延长线上截取BG AC =,连EG在圆内接四边形ACBE 中,180CAE CBE ∠+∠=︒又∵180GBE CBE ∠+∠=︒∴CAE GBE∠=∠∴()CAE GBE SAS ∆∆≌∴EC EG=∴45BCE BGE ∠=∠=︒∴在等腰Rt CEG ∆中,222()()222CE CG CB BG CB AC ==+=+=【点睛】本题考查了圆周角定理,圆内接四边形的性质.解答此题的关键是作出辅助线,构造全等三角形.22.(1)1005000y x =-+;(2)当销售单价定为28时,销售这种板栗日获利最大,最大利润为48400元;(3)当2030x ≤≤时,日获利w 不低于42000元.【分析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,代入x=16求得m 的值即可;(2)根据销售利润=每个商品的利润×销售量,结合二次函数的关系式即可求得相应的最大利润.(3)根据题意列出方程()2420001002848400x =--+,求出方程的解,根据日获利w 不低于42000元即可确定销售单价的定价范围.【详解】(1)设y 与x 的函数关系式为:()0y kx b k =+≠,把7x =,4300y =和8x =,4200y =代入得,7430084200k b k b +=⎧⎨+=⎩,解得,1005000k b =-⎧⎨=⎩,∴1005000y x =-+(2)()()61005000w x x =--+2100560030000x x =-+-()21002848400x =--+∵1000a =-<,对称轴为28x =,∴当28x =时,w 有最大值为48400元,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为48400元;(3)当42000w =元时,()2420001002848400x =--+,∴120x =,236x =,∴当2036x ≤≤时,40000w ≥,又∵630x ≤≤∴当2030x ≤≤时,日获利w 不低于42000元【点睛】题考查了二次函数的应用,二次函数的性质,利用函数思想解决问题是本题的关键.23.(1)1802α-;(2)3AE BE =+;证明见解析;(3)1)2+.【分析】(1)由旋转的性质可得CD CE =,DCE α∠=,即可求解;(2)由旋转的性质可得AD BE =,CD CE =,60DCE ∠=︒,可证CDE ∆是等边三角形,由等边三角形的性质可得33DF EF CF ==,即可求解;(3)如图3中,过点C 作CF BE ⊥交BE 的延长线于F ,设AE 交BC 于J .证明90ACJ BEJ Ð=Ð=°,推出点E 在以AB 为直径的圆上运动,即图中 BC 上运动,当¶¶CEEB =时,四边形ABEC 的面积最大,此时EC EB =,分别求出ABC ∆,BCE ∆的面积即可解决问题.【详解】解:(1)如图1中,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE∆ACD BCE ∴∆≅∆,DCE α∠=CD CE∴=1802CDE α︒-∴∠=.故答案为:1802α︒-.(2)3AE BE CF =+理由如下:如图2中,将CAD ∆绕点C 按逆时针方向旋转角60︒得到CBE∆ACD BCE∴∆≅∆AD BE ∴=,CD CE =,60DCE ∠=︒CDE ∴∆是等边三角形,且CF DE ⊥33DF EF CF ∴==AE AD DF EF=++ 233AE BE CF ∴=+.(3)如图3中,过点C 作CW BE ^交BE 的延长线于W ,设AE 交BC 于J .CAD ∆ 绕点C 按逆时针方向旋转90︒得到CBE ∆,CAD CBE \D @D ,CAD CBE ∴∠=∠,AJC BJE Ð=ÐQ ,90ACJ BEJ \Ð=Ð=°,∴点E 在以AB 为直径的圆上运动,即图中 BC上运动,当»»CE EB =时,四边形ABEC 的面积最大,此时EC EB =,CD CE = ,90DCE ∠=︒,45CED ∴∠=︒,90AEW AEB Ð=Ð=°Q ,45CEW \Ð=°,CF EW ^Q ,45WCE CEW \Ð=Ð=°,CW EW \=,设CW EW x ==,则EC EB ==,在Rt BCW D 中,222BC CW BW =+,222()x x \++=,2x \=21225(21)222BCE S BE CW x D \===g ,))2512511222ABC BCE ABEC S S S D D \=+=创=四边形.【点睛】本题考查了圆的性质,等腰三角形的性质,全等三角形的判定和性质,解直角三角形等知识,熟悉相关性质,灵活运用所学知识解决问题是解题的关键.24.(1)55°;(2)718π.【分析】(1)连接OC ,如图,利用切线的性质得到OC ⊥CD ,则判断OC ∥AE ,所以∠DAC =∠OCA ,然后利用∠OCA =∠OAC 得到∠OAB 的度数,即可求解;(2)利用(1)的结论先求得∠AEO =∠EAO =70°,再平行线的性质求得∠COE =70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC ,如图,∵CD是⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)连接OE,OC,如图,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO=∠EAO=70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,则OC=OE=1,∴ EC 的长为70718018018n r πππ==.【点睛】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.25.(1)2134y x x =-++;(2)当4t =时,当ABC ∆面积最大,此时()4,3C ;(3)16mn =-.【分析】(1)根据点C 坐标和对称轴2x =求解即可;(2)过C 作//CD y 轴交AB 于D ,连AC ,BC ,将2134y x x =-++化成顶点式,得21(2)44y t =--+,得到顶点()2,4A ,设直线AB 的解析式为:y kx b =+,将A ,B 两点代入求得直线AB 的解析式为6y x =-+,设21,34C t t t 骣÷ç÷ç÷ç桫-++,26t <<,则(),6D t t -+,根据()ΔABC 1S 2B A x x CD =-化简求得2ΔABC 1(4)22S t =--+,当4t =时,当ABC ∆面积最大,此时()4,3C ;(3)由题意得,抛物线G ':2144y x =-+,()4,0E -,()4,0F ,直线l :8y =,设()2,1P p p -,已知PE l 过点()4,0E -、21,44P p p 骣÷ç-+÷ç÷ç桫,由待定系数法得E 1:(4)(4)4P l y p x =--+,令8y =,可得:()444p m p -+=-;同理1:(4)(4)4PF l y p x =-+-,令8y =,可得:()444p n p -=+,可以求得16mn =-.【详解】(1)∵点()6,0C 在抛物线上,∴103664b c =-⨯++,得到69b c +=,又∵对称轴2x =,∴22124b bx a =-=-=⎛⎫⨯- ⎪⎝⎭,解得1b =,∴3c =,∴二次函数的解析式为2134y x x =-++(2)过C 作//CD y 轴交AB 于D ,连AC ,BC∵22113(2)444y x x t =-++=--+∴顶点()2,4A 设直线AB 的解析式为:y kx b=+则2460k b k b ì+=ïïíï+=ïî,解得16k b =-⎧⎨=⎩∴直线AB 的解析式为:6y x =-+设21,34C t t t 骣÷ç÷ç÷ç桫-++,26t <<,则(),6D t t -+()ΔABC 12B A DS x x C =-21143(6)24t t t 轾犏=创-++--+犏臌212234t t 骣÷ç=-+-÷ç÷ç桫21(4)22t =--+∴当4t =时,当ABC ∆面积最大,此时()4,3C (3)由题意得,抛物线G ':2144y x =-+,()4,0E -,()4,0F ,直线l :8y =设()2,1P p p -已知PE l 过点()4,0E -、21,44P p p 骣÷ç-+÷ç÷ç桫,由待定系数法得E 1:(4)(4)4P l y p x =--+,令8y =,可得:()444p m p -+=-.同理1:(4)(4)4PF l y p x =-+-,令8y =,可得:()444p n p -=+∴16mn =-.【点睛】本题主要考查了二次函数的性质和一次函数的性质在综合,待定系数法求函数解析式,一次函数交点等知识点,熟悉相关性质是解题的关键.。

人教版九年级初三数学上册上学期期中教学质量检测试卷及答案(精选合集)

人教版九年级初三数学上册上学期期中教学质量检测试卷及答案(精选合集)

人教版九年级初三数学上册上学期期中教学质量检测试卷及答案(精选合集)第一篇:人教版九年级初三数学上册上学期期中教学质量检测试卷及答案九年级数学期中试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.)1.下列关于x的方程中,一定是一元二次方程的是(▲)A.x-1=0 B.x+x=3 C.x+3x-5=0 D.ax +bx+c=0 2.关于x的方程x+x-k=0有两个不相等的实数根,则k的取值范围为(▲)A.k>-B.k≥-C.k<-D.k>-且k≠0 3.45°的正弦值为(▲)A.1 B.C.D.4.已知△ABC∽△DEF,∠A =∠D,AB=2cm,AC=4cm,DE=3cm,且DE<DF,则DF的长为(▲)A.1cm B.1.5cm C.6cm D.6cm或1.5cm 5.在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小为原来的得到线段OC,则点C的坐标为(▲)A.(2,1)B.(2,0)C.(3,3)D.(3,1)6.已知⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(-2,4),则点P与⊙A的位置关系是(▲)A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.不能确定7.如图,在□ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=(▲)A D F C B O E(第7题)A C B P F E Q(第10题)A B C D P(第8题)A.1︰3 B.1︰4 C.2︰3 D.1︰2 8.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,点P是AB上一动点,若△PAD与△PBC相似,则满足条件的点P的个数有(▲)A. 1个 B.2个 C.3个 D.4个9.已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的等边三角形的面积为S1,以PB、AB为直角边的直角三角形的面积为S2,则S1与S2的关系是(▲)A.S1>S2 B.S1<S2 C.S1=S2 D.S1≥S2 10.如图,△ABC是等腰直角三角形,∠ACB=90°,点E、F分别是边BC、AC的中点,P是AB上一点,以PF为一直角边作等腰直角△PFQ,且∠FPQ=90°,若AB=10,PB=1,则QE的值为(▲)A. 3 B.3 C.4 D.4 二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.已知x:y=2:3,则(x+y):y=▲ . 12.在相同时刻的物高与影长成比例,如果高为1.5m的测杆的影长为2.5m,那么影长为30m的旗杆的高是▲ m.13.某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到1 210辆,则该厂四、五月份的月平均增长率为▲ .A B C D E F(第15题)14.在△ABC 中,∠A、∠B为锐角,且+(-cosB)=0,则∠C=▲ °.15.如图,在□ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF =2,则DF=▲ .(图2)A C B D E F A C B D E F A C B D E F(图1)(第18题)A B D C E F(第16题)…… 16.如图,在△ABC中,AB=BC,AC=8,点F是△ABC的重心(即点F是△ABC的两条中线AD、BE的交点),BF=6,则DF=▲ .17.关于x的一元二次方程mx+nx=0的一根为x=3,则关于x的方程m(x+2)+nx+2n=0的根为▲ . 18.如图,△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2);继续操作下去…;第2017次剪取后,余下的所有小三角形的面积之和是▲ .三、解答题(本大题共10小题,共84分.解答需写出必要的文字说明或演算步骤.)19.计算或解方程:(每小题4分,共16分)(1)计算:()-4sin60°-tan45°;(2)3x-2x-1=0;(3)x+3x+1=0(配方法);(4)(x+1)-6(x+1)+5=0.20.(本题满分6分)如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)在图中画出经过A、B、C三点的圆弧所在圆的圆心M的位置;O A B C x y(第20题)(2)点M的坐标为▲ ;(3)判断点D(5,-2)与⊙M的位置关系.21.(本题满分6分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点.(1)求证:AC=AB•AD;A D CB E F(第21题)(2)若AD=4,AB=6,求的值. 22.(本题满分6分)已知关于x的方程x+(m-3)x-m(2m-3)=0.(1)证明:无论m为何值方程都有两个实数根.(2)是否存在正数m,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m的值;若不存在,请说明理由.23.(本题满分6分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格10元/千克收购了2 000千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.)(1)若外商要将这批猴头菇存放x天后一次性出售,则x天后这批猴头菇的销售单价为▲ 元,销售量是▲ 千克(用含x的代数式表示);(2)如果这位外商想获得利润24 000元,需将这批猴头菇存放多少天后出售? 24.(本题满分8分)如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO长为50cm,与水平桌面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平桌面所形成的夹角∠OCA,∠OBA分别为90°和30°.(不考虑其他因素,结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,≈1.73)A O C F E D P B M(1)求该台灯照亮水平桌面的宽度BC.(2)人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书与水平桌面的夹角∠EFC为60°,书的长度EF为24cm,点P为眼睛所在位置,当点P在EF 的垂直平分线上,且到EF距离约为34cm(人的正确看书姿势是眼睛离书距离约1尺≈34cm)时,称点P为“最佳视点”.试问:最佳视点P在不在灯光照射范围内?并说明理由.25.(本题满分9分)如图,以点P(-1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;A C O PB D x y(第25题)(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于点G,连接MQ、QG.请问在旋转过程中,∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.26.(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)AB=▲ ;(2)当∠D=20°时,求∠BOD的度数.(3)若△ACD与△BCO 相似,求AC的长. A C B D O(第26题)27.(本题满分9分)定义:已知x为实数,[x]表示不超过x的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15时,求y=x-[x]的值.(2)当0<x<2时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2时,在平面直角坐标系中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围. x y O -1 -2 -3 -4 -1 -2 -3 -4 1 2 2 1 3 4 3 4(第27题)28.(本题满分10分)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ.已知点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)用含t的代数式表示:QB=▲,PD=▲ ;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变匀速运动的点Q的速度,使四边形PDBQ在某一时刻为菱形,求出此时点Q的速度.(3)如图2,在整个P、Q运动的过程中,点M为线段PQ的中点,求出点M经过的路径长. A B C P D Q(图1)M A B C P Q(图2)九年级数学期中试卷参考答案与评分标准2017.11 一.选择题(本大题共有10小题,每题3分,共30分)⒈C ⒉A ⒊C ⒋C ⒌A ⒍A ⒎D 8.B 9.B 10.D 二、填空题(本大题共8小题,每小题2分,共计16分)11、5:3 12、18 13、10%14、75° 15、16、2.5 17、1或-2 18、1/22016 三、解答题(10小题,共84分)19.(每小题4分)(1)1—2(2)x1=1,x2=-3(1)(3)x1=2(5),x2=2(5)(4)x1=0,x2=4 20.(本题6分)解:(1)略……2分(2)M的坐标:(2,0);……3分(3)∵,……4分∴……5分∴点D在⊙M内……6分21.解:(1)∵AC平分∠DAB,∴∠DAC=∠BAC 又∵∠ADC=∠ACB=90° ∴△ADC∽△ACB …………………………………………(1分)∴AC(AD)=A B(AC)∴AC2=AB•AD ………………………………………(2分)(2)∵∠ACB=90°,E为AB中点.∴CE=2(1)AB=AE=3 ∴∠EAC=∠ECA ………………………………………(3分)又∵AC平分∠DAB,∴∠DAC=∠EAC ∴∠DAC=∠ECA ………………………………………(4分)∴AD∥EC ∴△ADF∽△ECF ………………………………………(5分)∴FC(AF)=EC(AD)=3(4)∴AF(AC)=4(7).………………………………………(6分)22.(1)(2分)(2)(6分,不排除扣2分)23.(1)10+0.5x,(1分)2000―6x;(1分)(2)由题意得:(10+0.5x)(2000―6x)―10×2000―220x=24000.(2分)解得x1=40,x2=200(不合题意,舍去)(1分)答:存放40天后出售。

人教版九年级数学上学期(第一学期)期中质量检测试题1及答案解析.docx

人教版九年级数学上学期(第一学期)期中质量检测试题1及答案解析.docx

第一学期期中考试九年级数学试题(时间:110分钟 满分:100分)注意事项:1.本试题分第l 卷和第Ⅱ卷两部分,共8页.第1卷第l 页至第2页为选择题,30 分;第Ⅱ卷第3页至第8页为非选择题,70分;共100分.2.答卷前务必将自己的姓名、考号等填写在装订线内规定位置.第Ⅰ卷(选择题,共30分)一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.下列图形中,既是轴对称图形又是中心对称图形的是()2.下列方程是关于X 的一元二次方程的是( )A .2x 2+3=x(2x 一1)B .09212=-+x x C .x 2=O D .ax 2+bx+c=O 3.若关于x 的一元二次方程x 2+bx+c=O 的两个实数根分别为x 1=-2,x2=4,则b+c 的值是( )A .-l0B .10C .-6D .一l4.下列事件属于必然事件的是( )A.明天太阳从东方升起 B .购买2张彩票,其中1张中奖C .随机掷一枚骰子,朝上一面上的数字大于6D .投篮l0次,一次都没投中5.如图,PA 与圆D 相切于点A ,P0交⊙D 于点C ,点B 是优弧CBA上一点,若∠P=26°,则∠ABC 的度数为( )A .26°B .64°C .32°D .90°6.如图,从一块直径是2的圆形硬纸片上剪出一个圆心角为90°扇形.则这个扇形的面积为( )A .πB .π43c .π21 D .π427.已知3是关于x 的方程x 2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或ll8.如图,抛物线y=-x 2-2x+3与x 轴交于点A ,B ,把抛物线与线段AB 围城的图形记为C 1,将C l 绕点B 中心对称变换得C 2,C 2与x 轴交于另一点C ,将C 2绕点C 中心对称变换得C 3,连接C ,与C 3的顶点,则图中阴影部分的面积为( )A .32B .24C .36D .489.如图,AB 是⊙D 的直径,AD 切⊙D 于点A ,EC=CB .则下列结论:①BA ⊥DA ; ②OC ∥AE ;③∠COE=2∠CAE ;④0D ⊥AC .一定正确的个数有( )A .4个B .3个C .2个D .1个10.如图,抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为 (一1,O),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3;③3a+c >0④当y >0时,x 的取值范围是﹣1≤x <3⑤若⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-21,310,,23y y 是抛物线上两点,则y 1<y 2.其中结论正确的个数是( )A .4个B .3个C .2个D .1个一、选择题(答题栏)(每小题3分,共30分) 题号 l 2 3 4 5 6 7 8 9 lO 得分 评卷人 答案第Ⅱ卷(选择题共70分)二、填空题:本大题共5小题,每小题3分,共l5分.11.关于x 的一元二次方程群ax 2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值 .12.把抛物线y=x2+bx+c向右平移3个单位长度,再向上平移2个单位长度,所得函数图象的解析式是y= x2-2x+5,则b+c= .13.在1×3的正方形网格格点上放三枚棋子,按图所示的位置己放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为14.二次函数y=ax2+bx+c (a≠0) (a≠0,a,b,C为常数)的图象,若关于x的一元二次方程ax2+bx+c=m有实数根,则m的取值范围是.15.如图所示,⊙D内切△ABC,切点分别为M,G,N,DE切0D于F点,交AC,AB于点D,E,若△ABC的周长为l2,BC=2,则△ADE的周长是.三、解答题:本大题共7,J、题,共55分.16.(6分)解方程:3x(x-2)=2(2-x).17.(6分)如图,点D在等边△ABC的边BC上.(1)把△ACD绕点A顺时针旋转,使点C与点露重合,画出旋转后的△ABD′;(2)如果AC=4,CD=1,求(1)中点D旋转所走过的路程.18.(7分)一天,小明和小智一起玩卡片游戏,他们分别握有三张正面分别标有字母A,B,C,的不透明卡片.游戏约定:每人将各自的卡片背面朝工弄洗均匀,然后随机抽取一张,两张卡片中,如果同为元音或辅音字母,则为平局;如果一个元音字母一个辅音字母,则抽到元音字母者获胜.(1)请用列表或画树状图的方法列举出所有出现结果的可能性;(2)求小明获胜的概率.19.(8分)2016年9月5日,二十国集团领导人杭州峰会在杭州国际博览中心继续举行,这次峰会吸引了大批游客在“十一”假期间前往杭州旅游.为抓住商机,两个商家对同样一件售价为50元/个的产品进行促销活动.甲商家用如下方法促销:若购买该商品不超过l0个,按原价付款:若一次购买l0个以上.且购买的个数每增加一个,其价格减少l元,但该商品的售价不得低于35元/个;乙店一律按原价的80%销售.现购买该商品x个,如果全部在甲商家购买,则所需金额为y1元:如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y l,y2与x之间的函数关系式;(2)若一位游客花800元,最多能购买多少个该商品?20.(8分)已知直线,与⊙0,AB是⊙0的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E.F时,求证::∠DAE=∠BAF.21.(9分)阅读下面材料【材料一】按一定顺序排列的一列数称为数列,记作:{a n}(n属于正整数).数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第l项(通常也叫做首项),记作:a l;排在第二位的数称为这个数列的第2项,记作:a2;…;排在第打位的数称为这个数列的第n项,记作:a n.【材料二】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.例如:数列l0,l5,20,25是等差数列.如果数列a l,a2,a3,…,a n,…是等差数列,那么a2一a l=d,a3一a2=d,,…,a n-a n-l=d.即:a2=a l+d,a3=a2+d=a l+d+d=a l+2d,a4=a3+d=a l+3d,….根据上述材料,解答问题(1)下列数列属于等差数列的县(只填序号).①l,2,3,4,5.②2,4,6,8,10,11.③l,1,1,1,1.(2)已知数列{an}是等差数列,①a l=1,a2=4,a3=7,…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017——2018学年度第一学期期中教学质量检测
九年级数学试题参考答案
一、选择题(每小题3分,共24分)
1、B
2、D
3、B
4、D
5、C
6、C
7、A
8、B
二、填空题(每小题3分,共18分) 9.5 10.143
11.2 12.-6或1 13.12 14.3 三、解答题(共10个小题,共78分)
15.解:(1)(公式法)a =1,b =-1,c =-1,……………………………………………1分 所以b 2-4ac =(-1)2-4×1×(-1)=5.…………………………………………………2分
所以x =-b ±b 2-4ac 2a =1±52
, 即原方程的根为x 1=1+52,x 2=1-52
.…………………………………………………3分 (2)(配方法)原方程可化为x 2-4x =1,………………………………………………1分 配方,得x 2-4x +4=1+4,(x -2)2=5.……………………………………………2分 两边开平方,得x -2=±5,
所以x 1=2+5,x 2=2- 5.…………………………………………………………3分
(3)(公式法 )原方程可化为2x 2+2x -1=0,………………………………………1分 a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12.……………………………2分
所以x =-2±122×2=-1±32
, 即原方程的根为x 1=-1+32,x 2=-1-32
.………………………………………3分 (4)(因式分解法)移项,得(x +3)2-(1-2x)2=0,…………………………………1分 因式分解,得(3x +2)(-x +4)=0,…………………………………………………2分
解得x 1=-23
,x 2=4.……………………………………………………………………3分
16.解:在Rt △ABC 中,,…………2分
∵点E 、F
分别是AO
、AD
的中点,
∴EF 是△AOD 的中位线,
EF=
OD=BD=
AC=
cm ,
AF=AD=BC=4cm ,
AE=AO=AC=
cm ,…………………………………………………5分
∴△AEF的周长:AE+AF+EF=9cm.…………………………………………………6分
17.解:设年销售量的平均下降率为x,依题意得……………………………………1分
20(1-x)2=9.8.…………………………………………………………………………3分
解这个方程,得x1=0.3,x2=1.7.
∵x2=1.7不符合题意,
∴x=0.3=30%.……………………………………………………………………………5分
答:菏泽市2014年到2016年烟花爆竹年销售量的平均下降率为30%.………………6分
18.(1)∵四边形ABCD是菱形,
又∵BE=AB,
第18题图
∴BE=CD,BE∥CD,
∴四边形BECD是平行四边形,…………………………3分
∴BD=EC……………………………………………………4分
(2)由(1)知四边形BECD是平行四边形
∴BD//EC
∴∠E=∠ABD=50°……………………………………………………………………………5分
∵四边形ABCD是菱形
∴AB=AD,∠DAO=∠BAO
∴∠ADO=50°,∠ADO=50°……………………………………………………………………6分
∴∠DAO=∠BAO=40°…………………………………………………………………………7分
19.解:列表如下:
况,………………………………………………………………………………………6分
故其概率为:336=112
.……………………………………………………………………………8分 20.解:(1)画树状图如图:……………………………………………2分
可知,共有12种情况,积为奇数的情况有6种,所以欢欢胜的概率是612=12
…………4分 (2)由(1)得乐乐胜的概率为1-12=12
,两人获胜的概率相同,所以游戏公平……………7分
21.解:设蜡烛应放在距离纸筒xcm 的地方,根据题意得:………………………………1分 20:5=x:15……………………………………………………………………………4分 解之得:x=60…………………………………………………………………………6分 答:蜡烛应放在距离纸筒60cm 的地方.………………………………………………7分
22.(1)证明:∵CD 是边AB 上的高,
∴∠ADC=∠CDB=90°,………………………………………2分

=.
∴△ACD ∽△CBD ;……………………………………………4分
(2)∵△ACD ∽△CBD ,
∴∠A=∠BCD , ………………………………………………………………………………5分 在△ACD 中,∠ADC=90°,
∴∠A+∠ACD=90°,……………………………………………………………………………6分 ∴∠BCD+∠ACD=90°,
即∠ACB=90°.…………………………………………………………………………………8分
23.解:(1)4;2;-1;-7(最后两空可交换顺序);………………4分(每个空1分)
(2)(x -3)(x +1)=5,
第22题图
第21题图
原方程可变形,
得[(x -1)-2][(x -1)+2]=5,………………………………………………………5分 整理,得(x -1)2-22
=5, ………………………………………………………6分 (x -1)2=5+22,即(x -1)2=9,………………………………………………………7分 直接开平方并整理,得x 1=4,x 2=-2.………………………………………………8分
24.解:设矩形EFHG 的长为xcm ,…………………………………………………………1分 ∵四边形EFHG 是面积为15cm 2的矩形,
∴矩形EFHG 的宽为:
cm , 即EF=GH=xcm ,EG=FH=cm ,………………………2分 ∵AD 是△ABC 的高,四边形EF HG 是矩形,
∴EF ∥BC ,KD=EG=cm ,
∴AD ⊥EF ,AK=AD ﹣KD=(8﹣
)cm ………………4分
∴△AEF ∽△ABC , ∴, ∴,………………………………………………………………………………6分 即4x 2﹣40x+75=0,
∴(2x ﹣15)(2x ﹣5)=0,
解得:x=
或x=,…………………………………………………………………………8分 当x=时,=2;
当x=时,=6. ∴这个矩形的长和宽为:
,2或6,.………………………………………………9分
第24题图。

相关文档
最新文档