北师大版七年级数学 第五章 一元一次方程分类专项复习:一元一次方程的应用之行程问题

合集下载

北师大版七年级上册(新版)-第五章《一元一次方程》各知识点复习导学

北师大版七年级上册(新版)-第五章《一元一次方程》各知识点复习导学

第五章《一元一次方程》期末复习基础知识梳理一、主要概念1.方程的概念:含有未知数的等式叫方程.2.一元一次方程的概念:只含有一个未知数,未知数的指数是1,这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.4.解方程:求方程的解的过程叫做解方程.5.同类项:如果两项所含字母相同,并且相同字母的指数也相同,那么这样的两项叫做同类项.二、主要性质1.等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并同类项法则同类项相加(减),把它们的系数相加(减)作为结果的系数,字母部分不变.3.去括号法则(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.三、解一元一次方程的注意事项1.分母是小数时,根据分数的基本性质,分子、分母都扩大相同的倍数,把分母转化成整数,此时和不含分母的项无关,不要和去分母相混淆.2.去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号.3.去括号时,不要漏乘括号内的项,要依据法则,不要弄错符号.4.移项时切记要变号,不要丢项,另外合并同类项和移项要灵活运用,如:有时去括号后等号的某一边或两边有同类项,可先合并,再移项,以免丢项.5.系数化为1时,不要弄错符号,分子、分母不要颠倒.6.不要生搬硬套解方程的步骤,要根据具体题目灵活运用,以便找到一个最简便的解法.四、列一元一次方程解决实际问题的步骤1.审:审题,多读几次,理清题中各量之间的关系.2.设:把题中某个未知数用字母代替,有时直接设元,有时间接设元.为了比较容易列方程或列出的方程比较简单易解,不直接把题目的问题设成未知数,而间接地把和题目中要求的问题有关的量设成未知数,即间接设元.3.找:把已知数和未知数放在一起找出一个相等的关系,有时可借助图形来找相等关系.4.列:根据等量关系列出方程.5.解:求出方程的解.6.验:检验方程的解是否符合问题的实际意义.7.答:写出答案(包括单位)巩固练习一、选择题:1. 下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB.由231312-+=-x x 去分母得)3(31)12(2-+=-x x C.由1)3(3)12(2=---x x 去括号得19324=---x xD.由7)1(2+=+x x 移项、合并同类项得x =52.方程2-2x 4x 7312--=-去分母得( )。

七年级上册数学北师大版 第五章 一元一次方程 阶段专题复习

七年级上册数学北师大版 第五章 一元一次方程 阶段专题复习

思路点拨:首先确定相等关系:该校七年级(1)(2)(3)三个班共 128 人参加了活动,由此列一元一次方程求解.
自主解答:解:设七(2)班有 x 人参加“光盘行动”,则七(1) 班有(x+10)人参加“光盘行动”,根据题意得(x+10)+x+48= 128,解得 x=35,则 x+10=45. 答:七(1)班有 45 人参加“光盘行动”,七(2)班有 35 人参加 “光盘行动”.
D
)
D. 2
x=-7
1 5.方程 x+5= (x+3)的解是 2
.
6.设 a,b,c,d
a 为实数,现规定一种新的运算 c
b =ad d
x x+1 3 =1 的 x 的值为 -bc,则满足等式2 1 2
-10
.
x x+1 x+1 x 2 3 解析:由题意 =1 可化为2×1- 3 ×2=1,去分 1 2 母,得 3x-4(x+1)=6,去括号,得 3x-4x-4=6,移项,得 3x -4x=4+6,合并同类项,得-x=10,系数化为 1,得 x=-10.
8. 某市出租车起步价是 5 元(3 公里及 3 公里以内为起步价), 以后每公里收费是 1.6 元,不足 1 公里按 1 公里收费,小明乘出 租车到达目的地时计价器显示为 11.4 元,则此出租车行驶的路程 可能为(
B
) B.6.9 公里 D.8.1 公里
A.5.5 公里 C.7.5 公里
9. 某商场购进一批服装, 每件进价为 200 元, 由于换季滞销, 商场决定将这种服装按标价的六折销售,若打折后每件服装仍能 获利 20%,则该服装标价是( A.350 元 C.450 元 B.400 元 D.500 元
【例 2】解方程:3(x+4)=x.

北师大版七年级上册第五章一元一次方程知识点总结

北师大版七年级上册第五章一元一次方程知识点总结

北师大版七年级上册第五章一元一次方程知识点总结一元一次方程是初中数学中的基础知识之一,它在我们的日常生活和解决问题中起到了重要的作用。

下面将对北师大版七年级上册第五章一元一次方程的相关知识点进行总结。

1. 什么是一元一次方程一元一次方程,顾名思义,是指方程中只含有一个未知量,并且未知量的最高次数为1。

一般形式为:ax + b = 0(其中a、b为已知数,a≠0)。

在方程中,字母x表示未知量,而系数a和常数b则是已知数。

2. 方程的解解是指能使方程等式成立的数值。

对于一元一次方程来说,它只有一个解或无解。

当方程有解时,这个解将满足方程的等式,当方程无解时,不存在满足方程等式的数。

3. 解方程的基本步骤解一元一次方程的基本步骤如下:a) 将方程中的项按照系数大小排列;b) 若方程中有常数项,则将常数项移到方程的另一边;c) 将方程两边的项合并,化简得到最简形式;d) 进行方程两边的运算,将未知量的系数化为1;e) 得出方程的解。

4. 方程的性质a) 方程等式两边可以交换位置,仍然保持等式成立;b) 方程等式两边可以同时乘以同一个数,等式仍然成立;c) 若方程两边乘以同一非零数的结果相等,那么方程有相同的解;d) 方程等式两边可以同时加上或减去同一数,等式仍然成立;e) 方程两边加上或减去一个数的结果相等,方程有相同的解;f) 方程等式两边可以同时乘以或除以同一个正数,等式仍然成立;g) 方程等式两边可以同时乘以或除以同一个负数,并且改变等号的方向,等式仍然成立。

5. 一元一次方程的应用一元一次方程在生活中有许多应用场景,例如:a) 解决购物问题:某商品原价x元,打折后降至80元,求原价;b) 解决分配问题:某汽车队规定每辆汽车运送16人,若共有128人,需要多少辆汽车;c) 解决工作时间问题:某人一天工作8小时,休息16小时,共工作多少天等。

总结:一元一次方程是初中数学的基础知识之一,通过对方程的解、解方程的步骤、方程的性质以及一元一次方程的应用进行总结,可以更好地理解和掌握一元一次方程的知识。

北师版初一数学第五章《一元一次方程》知识点总结

北师版初一数学第五章《一元一次方程》知识点总结

知识点总结第五章一元一次方程1、方程含有未知数的等式叫做方程。

2、方程的解能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.6、解一元一次方程的一般步骤:(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。

)(4)合并同类项(5)将未知数的系数化为11、什么是一元一次方程?相信同学们都能踊跃的说出,“满足两个1即可,1个未知数且未知数指数是1的等式”,其实,在这里还要有一个前提条件:未知数的系数要不为0。

如果是0x,那就没有未知数了,就不是方程的。

2、求解一元一次的方法步骤是什么?方法:利用两条等式的性质把方程同等变形求解。

等式性质1:等式两边可以同加或同减一个代数式。

等式性质2:等式两边可以同乘或同除(除0)一个数。

步骤:(1)去分母:两边同乘分母的最小公倍数。

不能忘记还要给么有分母的项也要乘以最小公倍数。

(2)去括号:利用乘法分配率。

(3)移项:注意从等号一边跑到另一边要变号,当然,没有动的项就不要变号了。

(4)合并同类项:把同类型的系数进行相加计算。

(5)系数化为1:两边同除以系数或同乘以系数的倒数。

3、应用一元一次方程,你都记得都学习了哪些类型?(1)水箱变高了——有些题是体积,周长没变。

(2)打折销售——这些题,先要熟记公式,来,复习下售价=_________________________, 利润=____________ ,利润率=_______________然后,要根据题意看看都能表示出哪些量,最后,观察你表示出的这些量,往往等量关系就出来,方程也就出来了。

北师大版七年级上册第五章《一元一次方程》复习资料:行程问题

北师大版七年级上册第五章《一元一次方程》复习资料:行程问题

行程问题
往返问题(去的路程=回的路程)变速重复行走(第一次走的路程=第二次走的路程)
两次不同方式表示同一个量
例1:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度.
例2:甲从A城去B城,第一天甲车每小时行驶35千米,感觉到的比较晚,第二天甲车每小时行驶40千米,结果发现比第一天提前半小时到达B城.则A,B两城间相距多少千米?
例3.甲、乙两车同时从A城去B城,甲车每小时行驶35千米,乙车每小时行驶40千米,结果乙车比甲车提前半小时到达B城.则A,B两城间相距多少千米?
1
例4:甲、乙两车同时、同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米。

途中甲车因故障修车用了3小时,结果甲车比乙车迟1小时到达目的地。

两地间的路程是多少千米?
例5:家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:
(1)他下山时的速度比上山时的速度每小时快1千米;
(2)他上山2小时到达的位置,离山顶还有1千米;
(3)抄近路下山,下山路程比上山路程近2千米;
(4)下山用1小时.
根据上面信息,他做出如下计划:
(1)在山顶游览1小时;
(2)中午12:00回到家吃中餐.
若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?
2。

北师大版七年级数学上册第五章《一元一次方程》 应用:行程类专项训练(含答案)

北师大版七年级数学上册第五章《一元一次方程》 应用:行程类专项训练(含答案)

北师大版七年级数学上册第五章《一元一次方程》应用:行程类专项训练(含答案)1.已知某铁路桥长1000米,现有一列火车匀速从桥上通过,火车从车头上桥到车尾离桥共用了1分钟,整列火车完全在桥上的时间为40秒,求火车的长度及其行驶速度.2.A、B两地相距1000千米,甲列车从A地开往B地;2小时后,乙列车从B地开往A地,经过4小时与甲列车相遇.已知甲列车比乙列车每小时多行50千米.甲列车每小时行多少千米?3.一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速度是3千米/时,求:(1)汽艇在静水中的速度;(2)A、B两地之间的距离.4.甲、乙两车从相距360千米的A、B两地匀速相向而行,甲车从A地出发,乙车从B地出发.(1)若甲车比乙车先出发1小时,则两车在乙车出发后经2小时相遇;若乙车比甲车先出发2.5小时,则两车在甲车出发后经1.5小时相遇.问甲、乙两车每小时各行驶多少千米?(2)若甲车先出发,3小时后乙车也出发.甲车到达B地后立即返回(忽略掉头等时间),结果与乙车同时到达A地.已知甲车速度是乙车速度的1.25倍,问乙车出发后多少时间两车第一次相遇?5.甲、乙两汽车从A市出发,丙汽车从B市出发,甲车每小时行驶40千米,乙车每小时行驶45千米,丙车每小时行驶50千米.如果三辆汽车同时相向而行,丙车遇到乙车后10分钟才能遇到甲车,问何时甲丙两车相距15千米?6.A、B两地相距360km,甲、乙两车分别沿同一条路线从A地出发驶往B地,已知甲车的速度为60km/h,乙车的速度为90km/h,甲车先出发1h后乙车再出发,乙车到达B地后在原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距50km?7.甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么他们在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么他们在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?8.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?9.列方程解应用题:甲列车从A地开往B地,每小时行驶60千米,乙列车同时从B地开往A地,每小时行驶90千米.已知A,B两地相距200km.(1)经过多长时间两车相遇;(2)两车相遇的地方离A地多远?10.列方程解应用题:某校全校学生从学校步行去烈士陵园扫墓,他们排成长为250米的队伍,以50米/分钟的平均速度行进,当排头出发20分钟后,学校有一份文件要送给带队领导,一名教师骑自行车以150米/分钟的平均速度按原路追赶学生队伍,学校离烈士陵园2千米.(1)教师能否在排头队伍到达烈士陵园前送到在排头前带队领导手里?(2)送信教师和带队领导停下来交谈了一分钟,交谈过程中队伍继续前进,然后领导要求送信老师马上赶到队尾,防止有意外情况发生,他按追赶时的平均速度需要多少时间就可以赶到队尾;(3)送信教师赶到队尾后,和最后的同学一起走,送信老师还需要多少时间可到达烈士陵园.11.钱塘江江面宽阔,水流速度也有很大不同.在江面的中间,水的速度是每小时45里,沿岸的地方水的速度是每小时25里.今有一汽船顺江的中间往下游行驶,4小时行驶了440里,问从沿岸返回原处需几小时?12.从甲地到乙地的长途汽车原行驶7小时可以到达,开通高速公路后,路程缩短10千米,车速平均每小时增加50千米,结果只需4小时即可到达.求汽车在高速公路上平均每小时可以行驶多少千米?13.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口,已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行多少小时?14.小刘开着小桥车,其平均速度为100km/h,小张开着大货车,都从A地去B地,小刘比小张晚出发1小时,最后两车同时到达B地,已知:小轿车的平均速度是大货车的平均速度的2倍.(1)A地到B地的路程是多少?(列方程解答)(2)当小刘出发时,求小张离B地还有多远?15.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?参考答案1.解:方法一:设火车行驶速度为x米/秒,由题意得:60x﹣1000=1000﹣40x,解得:x=20,火车的长为=200(米).方法二:设火车的速度为x米/秒,火车长为y米,则,解得:.答:火车的长度为200米,速度为20米/秒.2.解:设甲列车每小时行x千米,可得:4(x﹣50+x)+2x=1000.4x﹣200+4x+2x=1000,10x=1200,x=120.答:甲车每小时行120千米3.解:(1)设汽艇在静水中的速度为xkm/h.由题意,得2(x+3)=2.5(x﹣3)﹣0.5x=﹣13.5x=27.答:汽艇在静水中的平均速度是27千米/小时;(2)由题意,得2(x+3)=2(27+3)=60(千米)答:A、B两地之间的距离是60千米.4.解:(1)设甲车每小时行驶x千米,乙车每小时行驶y千米,由题意得:解得:答:甲车每小时行驶80千米,乙车每小时行驶60千米.(2)设乙车每小时行驶m千米,则甲车每小时行驶1.25m千米,由题意得:=∴720﹣3.75m=360×1.25解得:m=72经检验,m=72是原方程的解∴1.25m=1.25×72=90360﹣90×3=90(km)∴90÷(90+72)=(小时)答:乙车出发后小时两车第一次相遇.5.【解答】解:设t小时后乙、丙两汽车相遇,则(50+45)t=(40+50)(t+),解得t=3.故(50+45)t=95×3=285(千米).即:A、B两市的距离是285千米.设x小时甲、丙两车相距15千米.①当甲、丙两车相遇前相距15千米,由题意,得(40+50)x=285﹣15解得x=3.②当甲、丙两车相遇后相距15千米,由题意,得(40+50)x=285+15解得x=.综上所述,3或小时后,甲丙两车相距15千米.6.解:(1)设乙车出发x小时追上甲车,由题意得:60+60x=90x解得x=2故乙车出发2小时追上甲车.(2)乙车出发后t小时与甲车相距50km,存在以下三种情况:①乙车出发后在追上甲车之前,两车相距50km,则有:60+60t=90t+50 解得t=;②乙车超过甲车且未到B地之前,两车相拒50km,则有:60+60x+50=90t解得t=;③乙车到达B地而甲车未到B地,两车相距50km,则有:60+60t+50=360 解得t=.故乙车出发小时、小时或小时与甲车相距50km.7.解:设甲骑自行车每小时行x千米,乙骑自行车每小时行(x﹣12)千米,依题意得:5x﹣(5+1)(x﹣12)=36,解得:x=18,x﹣12=21﹣12=9.答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米.8.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.9.解:(1)设经过x小时两车相遇,根据题意得:(60+90)x=200,解得:x=,答:经过小时两车相遇;(2)根据题意得:60×=80(千米),答:两车相遇的地方离A地80千米.10.解:(1)2000÷50=40(分钟),2000÷150+20=(分钟),∵40>,∴教师能在排头队伍到达烈士陵园前送到在排头前带队领导手里.(2)设送信教师按追赶时的平均速度需要x分钟就可以赶到队尾,根据题意得:(150+50)x=250﹣50×1,解得:x=1.答:他按追赶时的平均速度需要1分钟就可以赶到队尾.(3)设送信教师需要y分钟可追上带队领导,根据题意得:(150﹣50)y=50×20,解得:y=10,∴(2000+250)÷50﹣20﹣y﹣2=13.答:送信老师还需要13分钟可到达烈士陵园.11.解:设从沿岸返回原处需x小时,由题意得:(440÷4﹣45﹣25)x=440∴(110﹣70)x=440∴40x=440∴x=11答:从沿岸返回原处需11小时.12.解:设汽车原来平均每小时可以行驶x千米.根据题意,有7x﹣10=4(x+50).解得,x=70.∴x+50=120.答:汽车在高速公路上平均每小时可以行驶120千米.13.解:船的速度为:60÷4﹣6=9(千米/时),设此船回到原地,还需再行x小时,60﹣4×(9﹣6)=(9+3)x,解得,x=4,答:此船回到原地,还需再行4小时.14.解:(1)设小张时间为xh,由题意得:100(x﹣1)=(100÷2)x,解得:x=2,100×(2﹣1)=100(km),答:娄A地到B地的路程是100km;(2)100﹣100÷2×1=50(km),答:当小刘出发时,小张离长沙还有50km.15.解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.。

北师大七年级上第五章 一元一次方程 复习

北师大七年级上第五章 一元一次方程 复习

第五章 一元一次方程【内容概括】1.一元一次方程、一元一次方程的解2.一元一次方程的解法(一般步骤、注意事项)3.列一元一次方程解实际问题【例题解析】例1下面是从小明同学作业本摘抄的内容,请你找出其中正确的是( )(A )方程16110312=+-+x x ,去分母,得2(2x +1)-(10x +1)=1. (B )方程8x -2x =-12,6x =-12=x =-2.(C )方程2(x +3)-5(1-x)=3(x -1),去括号,得2x +3-5-5x =3x -3.(D )方程9x =-4,系数化为1,得94-=x . 例2 解方程31652--=+-x x x .例3直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。

例4一艘轮船,航行于甲、乙两地之间,顺水用5小时,逆水比顺水多用2小时。

已知轮船在静水中的速度是每小时52千米,求水流的速度?【基础练习】一、填空题1.方程x +3=3x -1的解为______.2.关于x 的方程ax -6=2的解为x = -2,则a =_____.3.代数式21x +-的值等于3,则x =________. 4.写出以x = 1为根的一元一次方程是 .(写一个即可)二、选择题1.在下面方程中,变形正确的为( )(1)由3x +6=0变形,得x +2=0 (2)由5-3x = x +7变形,得-2x =2(3)由273=x 变形,得3x =14 (4)由4x =-2变形,得x =-2 A .(1)、(3) B .(1)、(2)、(3) C .(3)、(4) D .(1)、(2)、(4)2.若222+n yx 和12--n y x 是同类项,则n 的值为( ) A .23 B .6 C .32 D .2 3、某数x 的43%比它的一半还少7,则列出求x 的方程是( ) A .7)21%(43=-x B .721%43=-x C .721%43=-x x D .x x %43721=- 4、一家商店将一种自行车按进价提高45%后标价,又以七折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x 元,那么所列方程为( )A .45%×(1+80%)x -x =50B .80%×(1+45%)x -x =50C .x -80%×(1+45%)x =50D .80%×(1-45%)x -x =50三、解方程1、1023=--x 2、7233+=+x x3、17)5.0(4=++x x4、32)32(36=+-x5、)20(41)14(71+=+x x6、)7(3121)15(51--=+x x四、列方程解应用题1.甲、乙、丙三人共同出资筹建一个公司.甲投资额是投资总额的40%,乙投资额比投资总额的三分之一多20万元,丙投资额比甲的一半少8万元.这个公司投资总额是多少万元?2.出操时,初一、初二两个方队共有学生146人.如果让初一方队中的11人插到初二方队,那么两个方队的人数相等.初一初二方队原来各有多少人?3.用60米长的篱笆,围成一个长方形的花圃,若长比宽的2倍少3米,则长方形的面积是多少?4.将一个长、宽、高分别为15厘米、12厘米和8厘米的长方体钢块,锻造成一个底面边长为12厘米的正方形的长方体零件钢坯。

北师大版七年级数学上册第五章一元一次方程应用题行程问题专题讲解

北师大版七年级数学上册第五章一元一次方程应用题行程问题专题讲解

一元一次方程应用题行程问题专题讲解行程问题中最核心的数量关系就是:路程=速度×时间,当然由于所处的背景会发生变化,所以公式在不同情况下会进行延伸性的发展,那么在做这类题的时间首先要根据题目来确定是何种类型,数量关系具体如何表示的。

今天针对行程问题来进行分类讲解:题型一:相向而行(相遇问题)例1:A、B 两站相距300 千米,一列快车从A 站开出,行驶速度是每小时60 千米,一列慢车从B 站开出,行驶速度是每小时40 千米,快车先开15 分钟,两车相向而行,快车开出几小时后两车相遇?训练1.小李和小刚家距离900 米,两人同时从家出发相向行,小李每分走60 米,小刚每分走90 米,几分钟后两人相遇?2.小明和小刚家距离900 米,两人同时从家出发相向行,5 分钟后两人相遇,小刚每分走80 米,小明每分走多少米?3.王强和赵文从相距2280 米的两地出发相向而行,王强每分行60 米,赵文每分行 80 米,王强出发3 分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360 千米的两地出发相向而行,甲车先出发,每小时行60 千米,1 小时后乙车出发,每小时行40 千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。

7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。

8.AB两地相距900米。

甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?题型二:同向而行(追及问题)例2:A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?训练1.姐姐步行速度是75米分,妹妹步行速度是45米/分。

2024年北师大版七年级上册数学第五章一元一次方程培优提升专题3:一元一次方程的应用

2024年北师大版七年级上册数学第五章一元一次方程培优提升专题3:一元一次方程的应用
◆类型4 行程问题 7.一列火车正在匀速行驶,它先用26 s的时间通过了一条长 256 m的隧道(即从车头进入入口到车尾离开出口),又用16 s 的时间通过了一条长96 m的隧道,则这列火车长 160 米.
·数学
8.(2024上海月考)甲、乙两运动员在周长为400米的环形跑道 上分别练习跑步与竞走,已知甲、乙两人的速度之比为8∶3, 两人同时同地同向出发,2分钟后第一次相遇. (1)甲、乙两人的速度分别是多少?
·数学
解:设乙采冰队平均每天能采冰的体积是x立方米,则甲采 冰队平均每天能采冰的体积是1.5x立方米, 由题意,得(6+8)x+8×1.5x=1 300, 解得x=50, ∴1.5x=1.5×50=75. 答:甲采冰队平均每天能采冰的体积是75立方米,乙采冰队 平均每天能采冰的体积是50立方米.
·数学
·数学
◆类型6 新定义问题 11.(2023东莞期末)用符号※定义一种新运算,即a※b=ab+ 2(a-b),若3※x=0,则x的值为 -6 .
·数学
12.(创新题)定义:如果两个一元一次方程的解之和为2,我 们就称这两个方程互为“成双方程”.例如:方程2x-1=2 和2x-1=0互为“成双方程”. (1)判断方程4x-(x+5)=1与方程-2x-x=3 不是 互为 “成双方程”(填“是”或“不是”); (2)若关于x的方程x2+m1 =0与方程3x-2=x+4互为“成双方 程”,则m的值为 2 ;
解:设小明收集了x节废电池,则小华收集了(x+5)节废电池, 根据题意,得x+10=2(x+5-10), 解得x=20,则x+5=20+5=25. 答:小华收集了25节废电池,小明收集了20节废电池.
·数学
◆类型3 工程问题
5.(2024唐山一模)有一道条件缺失的问题:一项工程,甲队单独做需

北师大版初一上册第五章一元一次方程知识点总结和例题讲解

北师大版初一上册第五章一元一次方程知识点总结和例题讲解

(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3)(四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 一.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程的实际应用1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.例1:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x .由题意,得2×(9+x )=15+x18+2x=15+x ,移向得:2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)1.一个数的3倍比它的2倍多10,若设这个数为x ,可得到方程__________.2. 用一根长80厘米的绳子围成一个长方形,且这个长方形的长比宽多10厘米,则这个长方形的长和宽各是_______、________.面积是_______.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =h r 2π②长方体的体积 V =长×宽×高=abc例2 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14). 解:设圆柱形水桶的高为x 毫米,依题意,得 π ·(2002)2x=300×300×801. 一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.3. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1例3. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x 12=1 1. 甲、乙工程队从相距100m 的马路两端开始挖沟,甲工程队每天挖沟的进度是乙工程队的2倍少1m ,若5天完工,两队每天各挖几米?4.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例4. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

北师大版-数学-七年级上册-七上 第五章一元一次方程 单元复习

北师大版-数学-七年级上册-七上 第五章一元一次方程 单元复习

第五章一元一次方程知识总结与检测知识总结●知识框架考点课标要求知识与技能目标了解理解掌握灵活应用一元一次方程了解方程、一元一次方程以及方程有解的概念∨会解一元一次方程,并能灵活应用∨∨∨会列一元一次方程解应用题,并能根据问题的实际意义检验所得结果是否合理。

∨∨∨●定义回忆1.含有______________的等式是方程,使方程的等式两边的相等的值教方程的解,方程中含有____个未知数,未知数的_________________的方程称为一元一次方程。

2.等式的性质1 等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____。

3.等式的性质2 等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____。

4.解方程的步骤:①如果有分母,先去____, (注意去分母时等式两边每一项都乘以最小公倍数)②后去_____,(去括号时,注意括号前面的符合)③再_____、(移项要变号)④______得到标准形式ax=b(a≠0),最后两边同除以______的系数。

(合并同类型)5.看到下图,你能总结出什么?答:在日历中,一个日历数的上下横竖的数量关系,同一竖列相邻两数之差为7,横列相邻两数相差1。

6.知识延伸:特殊图形的表面积与体积长方体的体积:________________________;圆柱体的体积:________________________; 长方形的周长_______________和面积____________________。

7.一个有规格的物体,如果体积形状发生变化时,表面积发生变化了,但是体积没有发生变化。

此类问题体积相等是等量关系。

8.在“打折销售”中我们应该了解什么?①进价:购进商品时的价格(有时也叫成本价)。

②售价:在销售商品时的售出价(有时称成交价,卖出价) ③标价:在销售时标出的价(有时称原价,定价)④利润:在销售商品的过程中的纯收入, 利润 = 售价 – 进价 ⑤利润率:利润占进价的百分率,即利润率 = 利润 ÷进价×100%利润率进价进价)(折数标价=⨯⨯-%10⑥打折:卖货时,按照标价乘以十分之几或百分之几十,则称将标价进行了几折。

北师大版七上第五章《一元一次方程》 应用:行程类专项训练(含答案)

北师大版七上第五章《一元一次方程》 应用:行程类专项训练(含答案)

《一元一次方程》应用:行程类专项训练1.已知某铁路桥长1000米,现有一列火车匀速从桥上通过,火车从车头上桥到车尾离桥共用了1分钟,整列火车完全在桥上的时间为40秒,求火车的长度及其行驶速度.2.A、B两地相距1000千米,甲列车从A地开往B地;2小时后,乙列车从B地开往A地,经过4小时与甲列车相遇.已知甲列车比乙列车每小时多行50千米.甲列车每小时行多少千米?3.一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速度是3千米/时,求:(1)汽艇在静水中的速度;(2)A、B两地之间的距离.4.甲、乙两车从相距360千米的A、B两地匀速相向而行,甲车从A地出发,乙车从B地出发.(1)若甲车比乙车先出发1小时,则两车在乙车出发后经2小时相遇;若乙车比甲车先出发2.5小时,则两车在甲车出发后经1.5小时相遇.问甲、乙两车每小时各行驶多少千米?(2)若甲车先出发,3小时后乙车也出发.甲车到达B地后立即返回(忽略掉头等时间),结果与乙车同时到达A地.已知甲车速度是乙车速度的1.25倍,问乙车出发后多少时间两车第一次相遇?5.甲、乙两汽车从A市出发,丙汽车从B市出发,甲车每小时行驶40千米,乙车每小时行驶45千米,丙车每小时行驶50千米.如果三辆汽车同时相向而行,丙车遇到乙车后10分钟才能遇到甲车,问何时甲丙两车相距15千米?6.A、B两地相距360km,甲、乙两车分别沿同一条路线从A地出发驶往B地,已知甲车的速度为60km/h,乙车的速度为90km/h,甲车先出发1h后乙车再出发,乙车到达B地后在原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距50km?7.甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么他们在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么他们在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?8.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?9.列方程解应用题:甲列车从A地开往B地,每小时行驶60千米,乙列车同时从B地开往A地,每小时行驶90千米.已知A,B两地相距200km.(1)经过多长时间两车相遇;(2)两车相遇的地方离A地多远?10.列方程解应用题:某校全校学生从学校步行去烈士陵园扫墓,他们排成长为250米的队伍,以50米/分钟的平均速度行进,当排头出发20分钟后,学校有一份文件要送给带队领导,一名教师骑自行车以150米/分钟的平均速度按原路追赶学生队伍,学校离烈士陵园2千米.(1)教师能否在排头队伍到达烈士陵园前送到在排头前带队领导手里?(2)送信教师和带队领导停下来交谈了一分钟,交谈过程中队伍继续前进,然后领导要求送信老师马上赶到队尾,防止有意外情况发生,他按追赶时的平均速度需要多少时间就可以赶到队尾;(3)送信教师赶到队尾后,和最后的同学一起走,送信老师还需要多少时间可到达烈士陵园.11.钱塘江江面宽阔,水流速度也有很大不同.在江面的中间,水的速度是每小时45里,沿岸的地方水的速度是每小时25里.今有一汽船顺江的中间往下游行驶,4小时行驶了440里,问从沿岸返回原处需几小时?12.从甲地到乙地的长途汽车原行驶7小时可以到达,开通高速公路后,路程缩短10千米,车速平均每小时增加50千米,结果只需4小时即可到达.求汽车在高速公路上平均每小时可以行驶多少千米?13.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口,已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行多少小时?14.小刘开着小桥车,其平均速度为100km/h,小张开着大货车,都从A地去B地,小刘比小张晚出发1小时,最后两车同时到达B地,已知:小轿车的平均速度是大货车的平均速度的2倍.(1)A地到B地的路程是多少?(列方程解答)(2)当小刘出发时,求小张离B地还有多远?15.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?参考答案1.解:方法一:设火车行驶速度为x米/秒,由题意得:60x﹣1000=1000﹣40x,解得:x=20,火车的长为=200(米).方法二:设火车的速度为x米/秒,火车长为y米,则,解得:.答:火车的长度为200米,速度为20米/秒.2.解:设甲列车每小时行x千米,可得:4(x﹣50+x)+2x=1000.4x﹣200+4x+2x=1000,10x=1200,x=120.答:甲车每小时行120千米3.解:(1)设汽艇在静水中的速度为xkm/h.由题意,得2(x+3)=2.5(x﹣3)﹣0.5x=﹣13.5x=27.答:汽艇在静水中的平均速度是27千米/小时;(2)由题意,得2(x+3)=2(27+3)=60(千米)答:A、B两地之间的距离是60千米.4.解:(1)设甲车每小时行驶x千米,乙车每小时行驶y千米,由题意得:解得:答:甲车每小时行驶80千米,乙车每小时行驶60千米.(2)设乙车每小时行驶m千米,则甲车每小时行驶1.25m千米,由题意得:=∴720﹣3.75m=360×1.25解得:m=72经检验,m=72是原方程的解∴1.25m=1.25×72=90360﹣90×3=90(km)∴90÷(90+72)=(小时)答:乙车出发后小时两车第一次相遇.5.【解答】解:设t小时后乙、丙两汽车相遇,则(50+45)t=(40+50)(t+),解得t=3.故(50+45)t=95×3=285(千米).即:A、B两市的距离是285千米.设x小时甲、丙两车相距15千米.①当甲、丙两车相遇前相距15千米,由题意,得(40+50)x=285﹣15解得x=3.②当甲、丙两车相遇后相距15千米,由题意,得(40+50)x=285+15解得x=.综上所述,3或小时后,甲丙两车相距15千米.6.解:(1)设乙车出发x小时追上甲车,由题意得:60+60x=90x解得x=2故乙车出发2小时追上甲车.(2)乙车出发后t小时与甲车相距50km,存在以下三种情况:①乙车出发后在追上甲车之前,两车相距50km,则有:60+60t=90t+50 解得t=;②乙车超过甲车且未到B地之前,两车相拒50km,则有:60+60x+50=90t解得t=;③乙车到达B地而甲车未到B地,两车相距50km,则有:60+60t+50=360 解得t=.故乙车出发小时、小时或小时与甲车相距50km.7.解:设甲骑自行车每小时行x千米,乙骑自行车每小时行(x﹣12)千米,依题意得:5x﹣(5+1)(x﹣12)=36,解得:x=18,x﹣12=21﹣12=9.答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米.8.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.9.解:(1)设经过x小时两车相遇,根据题意得:(60+90)x=200,解得:x=,答:经过小时两车相遇;(2)根据题意得:60×=80(千米),答:两车相遇的地方离A地80千米.10.解:(1)2000÷50=40(分钟),2000÷150+20=(分钟),∵40>,∴教师能在排头队伍到达烈士陵园前送到在排头前带队领导手里.(2)设送信教师按追赶时的平均速度需要x分钟就可以赶到队尾,根据题意得:(150+50)x=250﹣50×1,解得:x=1.答:他按追赶时的平均速度需要1分钟就可以赶到队尾.(3)设送信教师需要y分钟可追上带队领导,根据题意得:(150﹣50)y=50×20,解得:y=10,∴(2000+250)÷50﹣20﹣y﹣2=13.答:送信老师还需要13分钟可到达烈士陵园.11.解:设从沿岸返回原处需x小时,由题意得:(440÷4﹣45﹣25)x=440∴(110﹣70)x=440∴40x=440∴x=11答:从沿岸返回原处需11小时.12.解:设汽车原来平均每小时可以行驶x千米.根据题意,有7x﹣10=4(x+50).解得,x=70.∴x+50=120.答:汽车在高速公路上平均每小时可以行驶120千米.13.解:船的速度为:60÷4﹣6=9(千米/时),设此船回到原地,还需再行x小时,60﹣4×(9﹣6)=(9+3)x,解得,x=4,答:此船回到原地,还需再行4小时.14.解:(1)设小张时间为xh,由题意得:100(x﹣1)=(100÷2)x,解得:x=2,100×(2﹣1)=100(km),答:娄A地到B地的路程是100km;(2)100﹣100÷2×1=50(km),答:当小刘出发时,小张离长沙还有50km.15.解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.。

北师大版七年级数学课件:第五章一元一次方程复习

北师大版七年级数学课件:第五章一元一次方程复习

250x
A
B
2000
小聪 500 小明
200x
250x=2000+500+200x
在一条笔直的公路上,小聪和小明骑自行车同时从相距 500米的A.B两地出发,小聪每分钟行200米,小明每分行 250米,问多少时间后,两人相距2000米?
☺ 当两人相背向行时,需x分钟相距2000米
A
B
小聪
小明
500
☺ 当小明在前,同向而行时,需x分钟相距2000米
A 500 B
小聪
小明
200x
250x
2000
250x+500=2000+200x
在一条笔直的公路上,小聪和小明骑自行车同时从相距 500米的A.B两地出发,小聪每分钟行200米,小明每分行 250米,问多少时间后,两人相距2000米?
☺ 当小聪在前,同向而行时,需x分钟相距2000米
一元一次方程复习
回顾与思考 本章内容框架图:
一 解一元一次方程
元 一 次

程 一元一次方程的应用
下列各方程中,哪些是一元一次方程?
(1) 2x+1=3
(3) x 3 2
(2) 2 3 x
(4)x2 2x 1 0
(5)x y 10
(1)(3)
若关于x的方程(m-1)x2+x=2是一元
A. 1 , B. -1 , C. 5 , D. -5 ;
3、方程 x 3 1 2x
去分母后可得-----(,B. 3 x-9 =1+2 x ,
C. 3 x-3 =2+2 x ,D. 3 x-12=2+4 x ;
解下列方程
(1) 4 3x 3 2x

北师大版七年级数学 第五章 一元一次方程分类专项复习:一元一次方程的应用之数轴类动点问题

北师大版七年级数学 第五章 一元一次方程分类专项复习:一元一次方程的应用之数轴类动点问题

一元一次方程的应用之数轴类动点问题典型题型1.已知:如图,A,B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请直接写出AB的中点M对应的数;(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C 点对应的数是多少;(3)若电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,请求出D点对应的数是多少.2.如图,点A在数轴上所对应的数为-2.(1)点B在点A右边距A点6个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒1个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到-4所在的点处时,求A,B两点间的距离;(3)在(2)的条件下,现A点静止不动,B点沿数轴向左以原速运动时,经过多长时间A,B 两点相距4个单位长度?(直接写出答案)3.已知数轴上有A,B,C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点C的距离:PC=______.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C 点后停止运动.在点Q开始运动后,P,Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.4.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A,B的距离之和为6,则C叫做A,B的“幸福中心”.(1)如图1,点A表示的数为-1,则A的幸福点C所表示的数应该是_____;(2)如图2,M,N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C就是M,N的幸福中心,则C所表示的数可以是_______(填一个即可);(3)如图3,A,B,P为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?图1图2图3。

北师大版七年级数学上册第五章一元一次方程的应用复习课教学设计

北师大版七年级数学上册第五章一元一次方程的应用复习课教学设计
2.教学方法:采用师生互动的方式,让学生回顾所学内容,总结解题方法和技巧。
3.学生活动:学生积极参与总结,分享自己的学习心得和体会,提高自己的表达能力。
4.教师总结:教师对本节课的教学内容进行梳理,强调重点和难点,布置课后作业,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的一元一次方程应用知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
2.教学方法:采用小组合作学习,促进学生之间的交流与互动,提高解决问题的能力。
3.学生活动:小组成员共同分析问题,列出方程,讨论解题方法,分工合作,共同解决问题。
4.教师指导:教师巡回指导,关注各小组的讨论情况,给予适当的提示和指导,确保学生掌握解题方法。
(四)课堂练习,500字
1.教学内容:布置适量的课堂练习题,涵盖一元一次方程的不同类型,让学生独立完成。
4.掌握一元一次方程在科学、社会、经济等方面的应用,提高解决问题的能力。
(二)过程与方法
1.在解决实际问题的过程中,培养观察、分析、抽象、概括的能力。
2.通过小组合作、讨论、交流等方式,提高解决问题的策略和方法。
3.学会对一元一次方程的解进行检验,培养反思、调整、优化的思维品质。
4.能够运用画图、列表等方法辅助解题,提高解决问题的直观性和形象性。
2.新课导入:呈现不同类型的实际问题,引导学生运用一元一次方程解决问题。
3.例题讲解:选取具有代表性的例题,详细讲解解题思路和方法。
4.小组合作:分组讨论,共同解决实际问题,培养学生的合作能力和解决问题的能力。
5.总结:对本章所学知识进行总结,提炼关键点,形成知识体系。
6.作业布置:布置适量的练习题,巩固所学知识,提高解题能力。
1.请同学们从生活中选取一个实际问题,运用一元一次方程的知识解决问题,并将解题过程和答案写在作业本上。

第五章一元一次方程章末复习课件北师大版七年级数学上册

第五章一元一次方程章末复习课件北师大版七年级数学上册

知识技能
1.解方程
5 (1)12
x

x 4
1 3

解:去分母,得 5x – 3x = 4
合并同类项,得
2x = 4
方程两边都除以2,得
x=2
复习题
(2)2 – 8x 3 – 1 x ;
3
2
(3)0.5x – 0.7 = 6.5 – 1.3x;
解:移项,合并同类项,得 1.8x = 7.2
方程两边都除以1.8,得 x=4
答:人数为9人,鸡价为70
今有共买鸡,人出九,盈一十一;人出六,不足十六. 问:人数、鸡价各几何?
方程方法: 设人数为x,由题意,得
9x-11=6x+16
解得
x=9
9x-11=70
答:人数为9人,鸡价为70.
问题解决 5.把100 写成两个数的和,使第一个数加3与第二个数减3
的结果相等. 这两个数分别是多少?
14.某文艺团体为公益募捐组织了一场义演,成人票每张 80元,学生票每张50元,共售出1000张票,所得票款可能是 69300元吗?为什么?可能是69320元吗?如果可能,那么成人 票比学生票多售出多少张?
15.把99写成四个数的和,使第一个数加2,第二个数减2, 第三个数乘2,第四个数除以2,得到的结果都相等. 这四个数分 别是多少?
用字母可以表示 如果a=b,那么 a+c=b+c , a-c=b-c; 如果a=b,那么 ac=bc ,
等式的基本性质 下列等式变形正确的是( B ).
解一元一次方程
步骤
解一元一次方程的步骤 根据
注意事项
去分母
等式的基本性质2
①不漏乘不含分母的项; ②注意给分子添括号、去括号

北师大数学七年级上册第五章《一元一次方程》全章复习与巩固(基础)

北师大数学七年级上册第五章《一元一次方程》全章复习与巩固(基础)

《一元一次方程》全章复习与巩固(基础)知识讲解【学习目标】1.经历建立方程模型、解方程和运用方程解决实际问题的过程,体会模型思想;2.了解一元一次方程、方程的解等基本概念,会解数字系数的一元一次方程,感受转化思想;3.能运用一元一次方程解决实际问题,能根据实际意义检验方程的合理性.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式. 等式的性质2:等式两边乘同一个数,(或除以同一个不为0的数),所得结果仍是等式. 2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变. 3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法 解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b(a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.等积变形:①形状面积变了,周长没变;②原体积=变化后体积.2.利润问题:商品利润=商品售价-商品进价3.行程问题:路程=速度×时间4.和差倍分问题:增长量=原有量×增长率5.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量6.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数7.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.8.方案问题:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、一元一次方程的概念1.(2014•郸城县校级模拟)如果方程(k ﹣1)x |k|+3=0是关于x 的一元一次方程,那么k 的值是 .【思路点拨】根据一元一次方程的定义知|k|=1且未知数是系数k ﹣1≠0,据此可以求得k 的值.【答案】 ﹣1. 【解析】解:∵方程(k ﹣1)x |k|+3=0是关于x 的一元一次方程, ∴|k|=1,且k ﹣1≠0, 解得,k=﹣1; 故答案是:﹣1.【总结升华】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,且未知数的系数不为零.举一反三:【变式】下列说法中正确的是( ).A.2a-a=a不是等式 B.x2-2x-3是方程 C.方程是等式 D.等式是方程【答案】C2. 若方程3(x-1)+8=2x+3与方程253x k x+-=的解相同,求k的值.【答案与解析】解:解方程3(x-1)+8=2x+3,得x=-2.将x=-2代入方程253x k x+-=中,得22253k-++=.解这个关于k的方程,得263k=.所以,263k=.【总结升华】由于两个方程的解相同,所以可以将其中一个方程的解代入另一个方程中,从而求得问题的答案.举一反三:【变式】(2015春•泉州期中)当x= 时,代数式2x+1与5x﹣8的值相等.【答案】3.解:根据题意得:2x+1=5x﹣8,∴2x﹣5x=﹣8﹣1,∴﹣3x=﹣9,∴x=3.类型二、一元一次方程的解法3.解方程2351 46y y+--=【思路点拨】通过方程的同解原理(去分母,去括号,合并同类项,系数化为1),一步一步将一个复杂的方程转化成与它同解的最简的方程,从而达到求解的目的.【答案与解析】解:去分母,得3(y+2)-2(3-5y)=12去括号,得3y+6-6+10y=12合并同类项,得13y=12未知数的系数化为1,得1213 y=【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式】解方程:解方程:0.10.050.20.0550.20.54x x+--+=【答案】解:把方程可化为:0.520.550 254x x+--+=再去分母得:232x=-解得:16x=-4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+【思路点拨】本题按常规方法求解,比较繁锁,如能根据题目的特点,巧用“整体思维”,就能算得又快又对,起到事半功倍的效果.【答案与解析】解:113(1)(1)2(1)(1)22x x x x+++=-+-75(1)(1)22x x+=-7(1)5(1)x x+=-7755x x+=-212x=-x=-6【总结升华】直接去括号太繁琐,若将(x+1)及(x-1)看作一个整体,并移项合并同类项,解答十分巧妙,可免去去分母的步骤及简化去括号的过程.类型三、一元一次方程的应用5.甲车从A地出发以60 km/h的速度沿公路匀速行驶, h后,乙车也从A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.【答案与解析】解:设乙车出发后x小时追上甲车,依题意得60×+60x=80x,解得 x=.答:乙车出发后小时追上甲车.【总结升华】此题的等量关系为:甲前 h的行程+甲后来的行程=乙的行程.6.如图,一个盛有水的圆柱形玻璃容器的内底面半径为10cm,原容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中后,问容器内的水将升高多少cm(圆柱的体积=底面积×高)【思路点拨】根据题意,得等量关系为:容器的底面积×容器中水的原来高度+玻璃棒的截面积×(容器中水的高度+水增加的高度)=容器的底面积×(容器中水原来的高度+水增加的高度).【答案与解析】解:解:设容器内的水将升高xcm,据题意得:π•102×12+π•22(12+x)=π•102(12+x),1200+4(12+x)=100(12+x),1200+48+4x=1200+100x,96x=48,x=.答:容器内的水将升高.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题也可以根据水面上升部分的体积等于插入水中玻璃棒的体积来列等量关系进行求解.7.某商品的进价为1500元,提高40%后标价,若打折销售,使其利润为20%,则此商品是按几折销售的(结果精确到)【答案与解析】解:设按x折销售,根据题意得出:1500×(1+40%)×x10=1500×(1+20%),解得x≈,答:此商品是按折销售的.【总结升华】本题考查了一元一次方程的应用,解此题的关键是弄清“售价=进价+利润”和打几折即现价就是原价的百分之几十.举一反三:【变式】“五一”期间,某商场搞优惠促销活动,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按原销售价70%销售)和九折,共付款386元,这两种商品原销售价之和为500元,问两种商品原销售价分别为多少元?【答案】解:设甲种商品原价x元,则乙种商品原价为(500-x)元,则:70%x+90%(500-x)=386, +=386, =64,x=320;乙种商品原价为500-320=180(元);答:甲种商品原价为320元,乙种商品原价为180元.【巩固练习】一、选择题 1.(2015春•宜阳县期中)下列方程中,是一元一次方程的为( ) A .3x+2y=6 B .x 2+2x ﹣1=0C .=xD .﹣3=2. 下列变形错误的是( ).A.由x + 7= 5得x+7-7 = 5-7B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 3. 某书中一道方程题:213xx ++=,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是 2.5x =-,那么□处应该是数字( ).A .B .C .5D .74. 将(3x +2)-2(2x -1)去括号正确的是( ).A 3x +2-2x +1B 3x +2-4x +1C 3x +2-4x -2D 3x +2-4x +2 5. 当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( ). A.-8 B.-4 C.-2 6.解方程121153x x +-=-时,去分母正确的是( ). A .3(x+1)=1-5(2x-1) B .3x+3=15-10x-5C .3(x+1)=15-5(2x-1)D .3x+1=15-10x+57.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( ). A .4 B .5 C .6 D .78.某超市选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克混合成杂拌糖后出售,在总销售额不变的情况下,这种杂拌糖平均每千克售价应是( ).A .18元B .元C .元D .20元 二、填空题9.在0,-1,3中, 是方程3x -9=0的解. 10.如果3x52a -=-6是关于x 的一元一次方程,那么a = ,方程的解=x .11.若x =-2是关于x 的方程324=-a x 的解,则a = . 12.由3x =2x +1变为3x -2x =1,是方程两边同时加上 .13.“代数式9-x 的值比代数式x 32-1的值小6”用方程表示为 . 14.当x = 时,代数式223x -与32x-互为相反数.15.(2015•哈尔滨模拟)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班的学生有 人.16.某商场把彩电按标价的8折出售,仍可获利20%,若该彩电的进价为2000元,则标价是 . 三、解答题17.(1)310.10.3542x x -=+; (2)122(1)(3)23x x x --=+.18.已知代数式11213y y ---+的值为0,求代数式312143y y ---的值. 19.(2015•南丹县一模)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示: 进价(元/千克) 售价(元/千克) 甲种 5 8 乙种 9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?20.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配?【答案与解析】 一、选择题1.【答案】C .2.【答案】D【解析】由23x -=,得32x =-3.【答案】C【解析】把x =代入方程,再把□当作未知数解方程即可. 4.【答案】D【解析】(32)2(21)32222(1)3242x x x x x x +--=+-⋅-⋅-=+-+5.【答案】B 【解析】将2x =代入得:244a -=,得28a =;将2x =-代入得:24844a -+=-+=- 6.【答案】C【解析】去分母时避免漏乘常数项,当分子是多项式时,去分母后给分子加上括号. 7.【答案】C【解析】设该队获胜x 场,则平的场数为(11-x),则3x+(11-x)=23.解得x =6.故选C . 8.【答案】B 【解析】可设这种杂拌糖平均每千克的售价是x 元.依题意,得(3+2+5)x =28×3+20×2+12×5,解得x =,故选B . 二、填空题 9. 【答案】3;【解析】代入验证即可. 10. 【答案】35,-2;【解析】35215a a -=⇒=,362x x =-⇒=- 11. 【答案】112-; 【解析】将2x =-代入得:118232a a --=⇒=- 12. 【答案】-2x ; 13. 【答案】29)613x x -+=-(; 14. 【答案】138; 【解析】322023x x --+=,解得:138x =15.【答案】45.【解析】设有x 名学生,根据书的总量相等可得:3x+20=4x ﹣25,解得:x=45.答:这个班有45名学生. 16. 【答案】3000.【解析】设标价为x 元,则0.82000(120%)x =+,解得:3000x = 三、解答题 17.【解析】解:(1)去分母,得=2x+.移项,得3x-2x =+. 合并同类项,得x =.(2)去分母,得12x-3(x-1)=4(x+3).去括号,得12x-3x+3=4x+12. 移项,得12x-3x-4x =12-3. 合并同类项.得5x =9.系数化为1,得95x =. 18.【解析】 解:由题意,得112103y y ---+=.去分母,得61130y y --++=. 移项合并同类项,得714y -=-.系数化为1,得y =2.当y =2时,3121321221143434y y --⨯-⨯--=-=, 即若代数式11213y y ---+的值为0,则代数式312143y y ---的值为14. 19.【解析】解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000, 解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元) 答:利润为495元. 20.【解析】解:设两人一起做x 天,据题意,得:11(1)164x x ++=,解得x =2. 师傅应得报酬为14×2×450=225(元).徒弟应得报酬为450-225=225(元).答:师傅应得报酬为225元,徒弟应得报酬为225元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的应用之行程问题
典型题型
1.如图,A,B两地相距450千米,一辆轿车从A地出发以每小时90千米的速度开往B地,一辆客
车从B地出发以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.
(1)经过几小时两车相遇?
(2)经过几小时,两车相距50千米?
2.甲、乙两城之间的铁路长240千米,快车从甲城、慢车从乙城同时相向开出,3小时相遇,如果
两车分别从两城向同一方向开出,慢车在前、快车在后,15小时快车就可以追上慢车,求快车与慢车每小时各行驶多少千米.
3.小明骑自行车以240m/min的速度从家出发,沿一条直路到相距2400m的邮局办事,小明出发
的同时,他的爸爸以
96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,请问:小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
4.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交
界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米时,A,B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少.
5.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:
(1)他下山时的速度比上山时的速度每小时快1千米;
(2)他上山2小时到达的位置,离山顶还有1千米;
(3)抄近路下山,下山路程比上山路程近2千米;
(4)下山用1个小时.
根据上面信息,他作出如下计划:
(1)在山顶游览1个小时;
(2)中午12:00回到家吃中餐.
若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?
6.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.货车以60km/h的速度
从甲地出发,一小时后轿车以80km/h的速度出发,轿车出发1小时后到达服务区并在服务区休息了半小时,请问轿车从服务区出发后速度提高多少才能比货车提前半小时到达乙地?。

相关文档
最新文档