2018年中考数学试题分类汇编:考点(28)圆的有关概念(Word版,含解析)
2018-2020年上海市中考数学各地区模拟试题分类(一)——《圆》(含解析)
2018-2020年上海市中考数学各地区模拟试题分类(一)——《圆》一.选择题1.(2020•普陀区二模)如图,已知A、B、C、D四点都在⊙O上,OB⊥AC,BC=CD,在下列四个说法中,①=2;②AC=2CD;③OC⊥BD;④∠AOD=3∠BOC,正确的个数是()A.1个B.2个C.3个D.4个2.(2020•杨浦区二模)已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d 的取值范围是()A.0<d<3 B.0<d<7 C.3<d<7 D.0≤d<3 3.(2020•杨浦区二模)如果正十边形的边长为a,那么它的半径是()A.B.C.D.4.(2020•金山区二模)如图,∠MON=30°,OP是∠MON的角平分线,PQ∥ON交OM于点Q,以P为圆心半径为4的圆与ON相切,如果以Q为圆心半径为r的圆与⊙P相交,那么r的取值范围是()A.4<r<12 B.2<r<12 C.4<r<8 D.r>4 5.(2020•长宁区二模)如果两圆的半径长分别为5和3,圆心距为7,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切6.(2020•黄浦区二模)已知⊙O1与⊙O2的直径长4厘米与8厘米,圆心距为2厘米,那么这两圆的位置关系是()A.内含B.内切C.相交D.外切7.(2020•浦东新区二模)如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°8.(2020•浦东新区二模)矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆外切,且点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围是()A.5<r<12 B.18<r<25 C.1<r<8 D.5<r<8 9.(2020•崇明区二模)如果一个正多边形的外角是锐角,且它的余弦值是,那么它是()A.等边三角形B.正六边形C.正八边形D.正十二边形10.(2020•闵行区一模)如果两个圆的圆心距为3,其中一个圆的半径长为4,另一个圆的半径长大于1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外切D.相交.11.(2020•金山区一模)已知在矩形ABCD中,AB=5,对角线AC=13.⊙C的半径长为12,下列说法正确的是()A.⊙C与直线AB相交B.⊙C与直线AD相切C.点A在⊙C上D.点D在⊙C内12.(2020•嘉定区一模)下列四个选项中的表述,正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线13.(2020•奉贤区一模)在△ABC中,AB=9,BC=2AC=12,点D、E分别在边AB、AC上,且DE∥BC,AD=2BD,以AD为半径的⊙D和以CE为半径的⊙E的位置关系是()A.外离B.外切C.相交D.内含14.(2019•青浦区二模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,点O是边BC上一点,以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是()A.4<OC≤B.4≤OC≤C.4<OC D.4≤OC≤二.填空题15.(2020•普陀区二模)已知正方形的半径是4,那么这个正方形的边心距是.16.(2020•金山区二模)我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为.17.(2020•嘉定区二模)如图,在正六边形ABCDEF中,如果向量=,,那么向量用向量,表示为.18.(2020•黄浦区二模)已知⊙O的直径AB=4,⊙D与半径为1的⊙C外切,且⊙C与⊙D均与直径AB相切、与⊙O内切,那么⊙D的半径是.19.(2020•青浦区二模)已知点C在线段AB上,且0<AC<AB.如果⊙C经过点A,那么点B与⊙C的位置关系是.20.(2020•静安区二模)如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.21.(2020•长宁区二模)如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是.22.(2020•松江区二模)已知⊙O1和⊙O2相交,圆心距d=5,⊙O1的半径为3,那么⊙O2的半径r的取值范围是.23.(2020•徐汇区二模)如图,⊙O的弦AB和直径CD交于点E,且CD平分AB,已知AB=8,CE=2,那么⊙O的半径长是.24.(2020•静安区二模)已知矩形ABCD,对角线AC与BD相交于点O,AB=6,BC=8,分别以点O、D为圆心画圆,如果⊙O与直线AD相交、与直线CD相离,且⊙D与⊙O内切,那么⊙D的半径长r的取值范围是.三.解答题25.(2020•普陀区二模)如图,已知在四边形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O交边DC于E、F两点,AD=1,BC=5,设⊙O的半径长为r.(1)联结OF,当OF∥BC时,求⊙O的半径长;(2)过点O作OH⊥EF,垂足为点H,设OH=y,试用r的代数式表示y;(3)设点G为DC的中点,联结OG、OD,△ODG是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.26.(2020•杨浦区二模)如图,已知在△ABC中,∠ACB=90°,AC=4,BC=8,点P 是射线AC上一点(不与点A、C重合),过P作PM⊥AB,垂足为点M,以M为圆心,MA长为半径的⊙M与边AB相交的另一个交点为点N,点Q是边BC上一点,且CQ =2CP,联结NQ.(1)如果⊙M与直线BC相切,求⊙M的半径长;(2)如果点P在线段AC上,设线段AP=x,线段NQ=y,求y关于x的函数解析式及定义域;(3)如果以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,求线段AP的长.27.(2020•虹口区二模)如图1,在梯形ABCD中,AD∥BC,∠ABC=90°,cos C=,DC=5,BC=6,以点B为圆心,BD为半径作圆弧,分别交边CD、BC于点E、F.(1)求sin∠BDC的值;(2)联结BE,设点G为射线DB上一动点,如果△ADG相似于△BEC,求DG的长;(3)如图2,点P、Q分别为边AD、BC上动点,将扇形DBF沿着直线PQ折叠,折叠后的弧D'F'经过点B与AB上的一点H(点D、F分别对应点D',F'),设BH=x,BQ =y,求y关于x的函数关系式(不需要写定义域).28.(2020•杨浦区二模)如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα=3,求水面上升的高度.29.(2020•金山区二模)如图,在△ABC中,∠C=90°,AC=6,BC=8,P是线段BC 上任意一点,以点P为圆心PB为半径的圆与线段AB相交于点Q(点Q与点A、B不重合),∠CPQ的角平分线与AC相交于点D.(1)如果DQ=PB,求证:四边形BQDP是平行四边形;(2)设PB=x,△DPQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;(3)如果△ADQ是以DQ为腰的等腰三角形,求PB的长.30.(2020•奉贤区二模)如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.参考答案一.选择题1.解:∵OB⊥AC,BC=CD,∴,,∴=2,故①正确;AC<AB+BC=BC+CD=2CD,故②错误;OC⊥BD,故③正确;∠AOD=3∠BOC,故④正确;故选:C.2.解:由题意知,两圆内含,则0≤d<5﹣2,即如果这两圆内含,那么圆心距d的取值范围是0≤d<3,故选:D.3.解:设AB是圆内接正十边形的边长,连接OA、OB,过O作OC⊥AB于C,则∠AOB==36°,∴=18°,AC=AB=,∴OA==,故选:C.4.解:如图,过点P作PA⊥OM于点A.∵圆P与ON相切,设切点为B,连接PB.∴PB⊥ON.∵OP是∠MON的角平分线,∴PA=PB.∴PA是半径,∴OM是圆P的切线.∵∠MON=30°,OP是∠MON的角平分线,∴∠1=∠2=15°.∵PQ∥ON,∴∠3=∠2=15°.∴∠4=∠1+∠3=30°.∵PA=4,∴PQ=2PA=8.∴r最小值=8﹣4=4,r最大值=8+4=12.∴r的取值范围是4<r<12.故选:A.5.解:设圆心距为d,因为5﹣3=2,3+5=8,圆心距为7cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.6.解:由题意可知:r1=2,r2=4,圆心距d=2,∴d=r2﹣r1,∴两圆相内切,故选:B.7.解:这个多边形的边数是360÷72=5,所以内角和为(5﹣2)×180°=540°故选:B.8.解:∵在矩形ABCD中,AB=5,BC=12,∴AC==13,∵点D在⊙C内,点B在⊙C外,∴⊙C的半径R的取值范围为:5<R<12,当⊙A和⊙C外切时,圆心距等于两圆半径之和是13,设⊙C的半径是R c,即R c+r=13,又∵5<R c<12,则r的取值范围是1<r<8.故选:C.9.解:∵一个外角为锐角,且其余弦值为,∴这个一个外角=30°,∴360÷30=12.故它是正十二边形.故选:D.10.解:∵一个圆的半径R为4,另一个圆的半径r大于1,∴R﹣r<4﹣1,R+r>5即:R﹣r<3,∵圆心距为3,∴两圆不可能外切,故选:C.11.解:∵在△ABC中,∠ACB=90°,AC=13,AB=5,∴BC===12,∵⊙C的半径长为12,∴⊙C与直线AB相切,故A选项不正确,∵CD=AB=5<12,∴⊙C与直线AD相交,故B选项不正确,∵AC=13>12,∴点A在⊙C外,故C选项不正确,∵CD=5<12,∴点D在⊙C内,故D选项正确,故选:D.12.解:由切线的判定定理可知:经过半径外端点且与这条半径垂直的直线是圆的切线,故A,B,D选项不正确,C选项正确,故选:C.13.解:如图,∵DE∥BC,∴,∵BC=12,AD=2BD,∴,DE=8,∵⊙D的半径为AD=6,⊙E的半径CE=2,∴AD+CE=6+2=8=DE,∴以AD为半径的⊙D和以CE为半径的⊙E的位置关系是外切,故选:B.14.解:作DE⊥BC于E,如图所示:则DE=AB=4,BE=AD=2,∴CE=4=DE,当⊙O与边AD相切时,切点为D,圆心O与E重合,即OC=4;当OA=OC时,⊙O与AD交于点A,设OA=OC=x,则OB=6﹣x,在Rt△ABO中,由勾股定理得:42+(6﹣x)2=x2,解得:x=;∴以O为圆心,OC为半径的⊙O,与边AD只有一个公共点,则OC的取值范围是4≤x≤;故选:B.二.填空题(共10小题)15.解:如图,根据正方形的性质知:△BOC是等腰直角三角形,过O作OE⊥BC于E,∵正方形的半径是4,∴BO=4,∴OE=BE=BO=2,故答案为:2.16.解:设正多边形的边数为n,根据题意得,:=3,解得:n=8,答:内外比为3的正多边形的边数为8,故答案为:8.17.解:如图,连接BE交AD于O.∵ABCDEF是正六边形,∴△AOB是等边三角形,AO=OD,∴∠FAO=∠AOB=60°,OB=AB=AF,∴AF∥OB,∴==,∵=+=+,∵AD=2AO,∴=2+2,故答案为2+2.18.解:当⊙D与⊙C在直径AB的同侧时,作DH⊥OC于H,DN⊥OB于N,连接CD,连接OD并延长交⊙O于G,设⊙D的半径为r,则OD=2﹣r,CD=1+r,∵⊙O的直径AB=4,⊙C的半径为1,⊙C与⊙O内切,∴⊙C与⊙O内切于点O,∴CO⊥AB,∵CO⊥AB,DH⊥OC,DN⊥OB,∴四边形HOND为矩形,∴OH=DN=r,DH=ON=,∴CH=1﹣r,在Rt△CDH中,CH2+DH2=CD2,即(1﹣r)2+(2﹣r)2﹣r2=(1+r)2,解得,r=,当⊙D与⊙C在直径AB的两侧时,⊙C与⊙D的半径相等,都是1,故答案为:或1.19.解:如图,∵点C在线段AB上,且0<AC<AB,∴BC>AC,∴点B在⊙C外,故答案为:点B在⊙C外.20.解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.21.解:根据题意画图如下:连接BD,与AC交与点M,∵四边形ABCD是菱形,∴∠AMD=∠DMC=90°,∠ACD=∠ACB,CD=CD,AM=CM,∴DM2=AD2﹣AM2,设AM=x,则DM2=(2)2﹣x2,连接OD、OB,在△OCD和△OCB中,,∴△OCD≌OCB(SSS),∴∠OCD=∠OCB,∴∠ACD+∠OCD=∠ACB+∠OCB=180°,∴OC与AC在一条直线上,∴△OMD是一个直角三角形,OM=OA﹣AM=5﹣x,∴DM2=OD2﹣OM2,=52﹣(5﹣x)2,∴(2)2﹣x2=52﹣(5﹣x)2,x=2,∴AM=CM=2,∴OC=OA﹣AM﹣CM=5﹣2﹣2=1.故答案为:1.22.解:由题意可知:|3﹣r|<5<3+r,解得:2<r<8,故答案为:2<r<8.23.解:连接OA,∵,⊙O的弦AB和直径CD交于点E,且CD平分AB,∴AB⊥CD,∴AE=AB=4,又OE=OC﹣CE=r﹣2,OA=r,在Rt△AOE中,由勾股定理,得AE2+OE2=OA2,即42+(r﹣2)2=r2,解得:r=5,故答案为:5.24.解:设⊙O的半径为r1,⊙D半径为r,由⊙O与直线AD相交、与直线CD相离可知:3<r1<4,由题意可知:r>r1,否则⊙D与⊙O不能内切,∵OD=AC=5,∴圆心距d=5,∴d=r﹣r1,∴r=5+r1,∴8<r<9,故答案为:8<r<9.三.解答题(共6小题)25.解:(1)∵OF∥BC,OA=OB,∴OF为梯形ABCD的中位线,∴OF=(AD+BC)=(1+5)=3,即⊙O的半径长为3;(2)连接OD、OC,过点D作DM⊥BC于M,如图1所示:则BM=AD=1,∴CM=BC﹣BM=4,∴DC===2,∵四边形ABCD的面积=△DOC的面积+△AOD的面积+△BOC的面积,∴(1+5)×2r=×2×y+×r×1+×r×5,整理得:y=;(3)△ODG能成为等腰三角形,理由如下:∵点G为DC的中点,OA=OB,∴OG是梯形ABCD的中位线,∴OG∥AD,OG=(AD+BC)=(1+5)=3,DG=CD=,由勾股定理得:OD==,分三种情况:①DG=DO时,则=,无解;②OD=OG时,如图2所示:=3,解得:r=2;③GD=GO时,作OH⊥CD于H,如图3所示:∠GOD=∠GDO,∵OG∥AD,∴∠ADO=∠GOD,∴∠ADO=∠GDO,在△ADO和△HDO中,,∴△ADO≌△HDO(AAS),∴OA=OH,则此时圆O和CD相切,不合题意;综上所述,△ODG能成为等腰三角形,r=2.26.(1)解:如图1,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=8,∴,设⊙M的半径长为R,则,过M作MH⊥BC,垂足为点H,∴MH∥AC,∵MH∥AC,∴△BHM∽△BCA,∴,∵⊙M与直线BC相切,∴MA=MH,∴,∴,即.(2)如图2,∵AP=x,∴CP=4﹣x,∵CQ=2CP,∴CQ=8﹣2x,∴BQ=BC﹣CQ=8﹣(8﹣2x)=2x,过Q作QG⊥AB,垂足为点G,∵,∴,∴,同理:,∵PM⊥AB,∴∠AMP=90°,∴,∵AP=x,∴,∴,在Rt△QNG中,根据勾股定理得,QN2=NG2+QG2,∴,∴(0<x<4);(3)当点P在线段AC上,如图3,设以NQ为直径的⊙O与⊙M的另一个交点为点E,连接EN,MO,则MO⊥EN,∴∠NMO+∠ANE=90°,∵以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,即P、E、N在同一直线上,又∵PM⊥AB,MA=MN,∴PN=PA,∴∠PAN=∠ANE,∵∠ACB=90°,∴∠PAN+∠B=90°,∴∠NMO=∠B,连接AQ,∵M、O分别是线段AN、NQ的中点,∴MO∥AQ∴∠NMO=∠BAQ,∴∠BAQ=∠B,∴QA=QB,在Rt△QAC中,根据勾股定理得,QA2=AC2+QC2,∴(2x)2=42+(8﹣2x)2,∴,同理:当点P在线段AC的延长线上,,即线段AP的长为或.27.解:(1)如图1中,连接BE,过点D作DK⊥BC于K,过点B作BJ⊥CD于J.在Rt△CDK中,∵∠DKC=90°,CD=5,cos∠C==,∴CK=3,∵BC=6,∴BK=CK=3,∵AD∥BC,∠ABC=90°,∴∠A=90°∵DK⊥BC,∴∠A=∠ABC=∠DKB=90°,∴四边形ABKD是矩形,∴AD=BK=3,∴DB=DC=5,DK===4,∵S△DCB=•BC•DK=•CD•BJ,∴BJ=,∴DJ===,∵BD=BE,BJ⊥DE,∴DJ=JE=,∴EC=CD﹣DJ=JE=5﹣=,∴sin∠BDC===.(2)如图2中,∵AD∥BC,∴∠ADG=∠DBC,∵DB=DC,∴∠DBC=∠C,∴∠ADG=∠C,∵△ADG相似△BEC,∴有两种情形:当△ADG∽△BCE时,∴=,∴=,∴DG=,当△ADG∽△ECB时,=,=,∴DG=.(3)如图3中,过点B作BJ⊥PQ交于J,连接BJ,JH,JQ,过点J作JG⊥BH于G,过点Q作QK⊥JH于K.由题意:QB=QJ=y,BJ=BD=5,∵JB=JH,JG⊥BH,∴BG=GH=x,∴JG==,∵∠GBQ=∠BGK=∠QKG=90°,∴四边形BGKQ是矩形,∴BQ=GK=y,QK=GB=x,在Rt△QKJ中,∵JQ2=QK2+KJ2,∴y2=x2+(﹣y)2,∴y=.28.解:(1)∵,DC⊥AB,∴AC=BC,DC经过圆心,设拱桥的桥拱弧AB所在圆的圆心为O,∵AB=8,∴AC=BC=4,联结OA,设半径OA=OD=R,OC=OD﹣DC=R﹣2,∵OD⊥AB,∴∠ACO=90°,在Rt△ACO中,∵OA2=AC2+OC2,∴R2=(R﹣2)2+42,解之得R=5.答:桥拱所在圆的半径长为5米.(2)设OD与EF相交于点G,联结OE,∵EF∥AB,OD⊥AB,∴OD⊥EF,∴∠EGD=∠EGO=90°,在Rt△EGD中,,∴EG=3DG,设水面上升的高度为x米,即CG=x,则DG=2﹣x,∴EG=6﹣3x,在Rt△EGO中,∵EG2+OG2=OE2,∴(6﹣3x)2+(3+x)2=52,化简得x2﹣3x+2=0,解得x1=2(舍去),x2=1,答:水面上升的高度为1米.29.证明:(1)∵BP=PQ,∴∠PBQ=∠PQB,∵DP平分∠CPQ,∴∠CPD=∠QPD,∵∠CPQ=∠PBQ+∠PQB=2∠PBQ,∴∠CPD=∠PBQ=∠DPQ=∠PQB,∴DP∥BQ,∵DQ=PB,PQ=PB,∴DQ=QP,∴∠QDP=∠QPD=∠PQB=∠PBQ,又∵PB=DQ,∴△DPQ≌△BQP(AAS)∴DP=BQ,∴四边形BPDQ是平行四边形;(2)如图,设BC与⊙P的交点为E,连接DE,∵EP=PQ,∠DPE=∠DPQ,DP=DP,∴△DPE≌△DPQ(SAS),∴S△DPE=S△DPQ=y,DQ=DE,∵BP=x,∴PC=8﹣x,∵DP∥AB,∴△DCP∽△ACB,∴,∴,∴CD=(8﹣x),∴S△DPQ=y=×EP×CD=×x×(8﹣x)=﹣x2+3x(0<x<);(3)当DQ=AD时,∵AD=AC﹣CD,∴AD=6﹣(8﹣x)=x,∴DQ=DE=AD=x,∵DE2=DC2+CE2,∴(x)2=(6﹣x)2+(8﹣2x)2,∴x1=4,x2=(不合题意舍去),当AQ=DQ时,过点P作PF⊥AB于F,∵∠C=90°,AC=6,BC=8,∴AB===10,∵cos∠B==,∴,∴BF=x,∵PB=PQ,PF⊥AB,∴BQ=2BF=x,∴AQ=10﹣x,∴AQ=DQ=DE=10﹣x,∵DE2=DC2+CE2,∴(10﹣x)2=(6﹣x)2+(8﹣2x)2,∴x3=0(不合题意舍去),x4=,综上所述:BP的长为4和.30.解:(1)连接EO,交弦CD于点H,∵E为弧CD的中点,∴EO⊥AB,∵CD∥AB,∴OH⊥CD,∴CH=,连接CO,∵AB=10,CD=8,∴CO=5,CH=4,∴,∴EH=EO﹣OH=2,∵点F与点B重合,∴∠OBE=∠HGE=45°,∵PE⊥BE,∴∠HPE=∠HGE=45°,∴PE=GE,∴PH=HG=2,∴CP=CH﹣PH=4﹣2=2;(2)如图2,连接OE,交CD于H,∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE,∵∠PHE=∠EOF=90°,∴△PEH∽△EFO,∴,∵EH=2,FO=y,PH=4﹣x,EO=5,∴,∴.(3)如图3,过点P作PQ⊥AB,垂足为Q,∵GP=GF,∴∠GPF=∠GFP,∵CD∥AB,∴∠GPF=∠PFQ,∵PE⊥EF,∴PQ=PE,由(2)可知,△PEH∽△EFO,∴,∵PQ=OH=3,∴PE=3,∵EH=2,∴,∴,∴,∴.。
2018年中考数学必考知识点圆-文档资料
2018中考数学必考知识点-圆2018中考数学必考知识点-圆1圆的重要性质;2直线与圆、圆与圆的位置关系;③3与圆有关的角的定理;4与圆有关的比例线段定理。
一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:内角的一半: (右图)(解Rt△OAM可求出相关元素,、等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦。
专题24 圆的有关计算与证明(29题)(原卷版)--2024年中考数学真题分类汇编
专题24圆的有关计算与证明(29题)一、单选题1.(2024·安徽·中考真题)若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π2.(2024·贵州·中考真题)如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A .30πB .25πC .20πD .10π3.(2024·云南·中考真题)某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米4.(2024·四川甘孜·中考真题)如图,正六边形ABCDEF 内接于O ,1OA =,则AB 的长为()A .2B 3C .1D .125.(2024·广东广州·中考真题)如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是()A .311π8B .11π8C .26πD .26π36.(2024·四川遂宁·中考真题)工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积()A .1π6B .1π6C .2π3D .11π64-7.(2024·四川广安·中考真题)如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则 DE的长度为()A .π9B .5π9C .10π9D .25π98.(2024·山东威海·中考真题)如图,在扇形AOB 中,90AOB ∠=︒,点C 是AO 的中点.过点C 作CE AO ⊥交 AB 于点E ,过点E 作ED OB ⊥,垂足为点D .在扇形内随机选取一点P ,则点P 落在阴影部分的概率是()A .14B .13C .12D .23二、填空题9.(2024·四川成都·中考真题)如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为.10.(2024·黑龙江齐齐哈尔·中考真题)若圆锥的底面半径是1cm ,它的侧面展开图的圆心角是直角,则该圆锥的高为cm .11.(2024·吉林·中考真题)某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为2m (结果保留π).12.(2024·内蒙古呼伦贝尔·中考真题)为了促进城乡协调发展,实现共同富裕,某乡镇计划修建公路.如图、 AB 与 CD是公路弯道的外、内边线,它们有共同的圆心O ,所对的圆心角都是72︒,点A ,C ,O 在同一条直线上,公路弯道外侧边线比内侧边线多36米,则公路宽AC 的长是米.(π取3.14,计算结果精确到0.1)13.(2024·江苏盐城·中考真题)已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是.14.(2024·江苏扬州·中考真题)若用半径为10cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为cm .15.(2024·四川自贡·中考真题)龚扇是自贡“小三绝”之一.为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图).扇形外侧两竹条AB AC ,夹角为120︒.AB 长30cm ,扇面的BD 边长为18cm ,则扇面面积为2cm (结果保留π).16.(2024·甘肃·中考真题)甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是2cm .(结果用π表示)17.(2024·黑龙江绥化·中考真题)用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为cm .18.(2024·广东深圳·中考真题)如图,在矩形ABCD 中,2BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为.19.(2024·吉林长春·中考真题)一块含30︒角的直角三角板ABC 按如图所示的方式摆放,边AB 与直线l 重合,12cm AB =.现将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,则点A 经过的路径长至少为cm .(结果保留π)20.(2024·江苏苏州·中考真题)铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若23AB ==.(结果保留π)21.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片ABCD ,OM 为折痕,以点O 为圆心,OM 为半径作弧,分别交AD ,BC 于E ,F 两点,则 EF的长度为(结果保留π).22.(2024·黑龙江大兴安岭地·中考真题)若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是︒.23.(2024·吉林长春·中考真题)如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,DB 交AC 于点G ,连结AD .给出下面四个结论:①ABD DAC ∠=∠;②AF FG =;③当2DG =,3GB =时,142FG =④当 2BD AD =,6AB =时,DFG 3上述结论中,正确结论的序号有.三、解答题24.(2024·广东·中考真题)综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)25.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)26.(2024·山东·中考真题)如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作 DE 交AB 于点E ,以点B 为圆心,以BE 为半径作 EF 所交BC 于点F ,连接FD 交 EF于另一点G ,连接CG .(1)求证:CG 为 EF所在圆的切线;(2)求图中阴影部分面积.(结果保留π)27.(2024·福建·中考真题)如图,在ABC 中,90,BAC AB AC ∠=︒=,以AB 为直径的O 交BC 于点D ,AE OC ⊥,垂足为,E BE 的延长线交 AD 于点F .(1)求OEAE的值;(2)求证:AEB BEC △∽△;(3)求证:AD 与EF 互相平分.28.(2024·陕西·中考真题)问题提出(1)如图1,在ABC 中,15AB =,30C ∠=︒,作ABC 的外接圆O .则 ACB 的长为________;(结果保留π)问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点D ,E ,C ,线段AD AC ,和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且AE EC =,60DAB ∠=︒,120ABC ∠=︒,1200m AB =,900m AD BC ==,现要在湿地上修建一个新观测点P ,使60DPC ∠=︒.再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道PF PD PC ,,,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分.请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点A ,B ,C ,P ,D 在同一平面内,道路AB 与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)29.(2024·江苏连云港·中考真题)【问题情境】(1)如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转45°(如图2),这时候就容易发现大正方形面积是小正方形面积的__________倍.由此可见,图形变化是解决问题的有效策略;【操作实践】(2)如图3,图①是一个对角线互相垂直的四边形,四边a 、b 、c 、d 之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽象成图4.请你结合整个变化过程,直接写出图4中以矩形内一点P 为端点的四条线段之间的数量关系;【探究应用】(3)如图5,在图3中“④”的基础上,小昕将PDC △绕点P 逆时针旋转,他发现旋转过程中DAP ∠存在最大值.若8PE =,5PF =,当DAP ∠最大时,求AD 的长;(4)如图6,在Rt ABC △中,90C ∠=︒,点D 、E 分别在边AC 和BC 上,连接DE 、AE 、BD .若5AC CD +=,8BC CE +=,求AE BD +的最小值.。
中考数学真题分类汇编(第三期)专题28 解直角三角形试题(含解析)-人教版初中九年级全册数学试题
解直角三角形一.选择题1.(2018·某某市B卷)5.坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()【分析】作BM⊥ED交ED的延长线于M,⊥DM于N.首先解直角三角形Rt△CDN,求出,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,⊥DM于N.在Rt△CDN中,∵==,设=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴=8,DN=6,∵四边形BMNC是矩形,∴BM==8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.(2018·某某某某·3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A.B在同一水平面上).为了测量A.B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A.B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018·某某某某·2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二.填空题1. (2018·某某江汉·3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD.CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:182. (2018·某某荆州·3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.3.(2018·某某省某某市) 如图,某景区的两个景点A.B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C 处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD为100米,则两景点A.B间的距离为100+100米(结果保留根号).【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°.∵CD=100米,∴AD=CD=100米,D B=米,∴AB=AD+DB=100+100(米).故答案为:100+100.4. (2018·某某某某·3分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).【答案】300【解析】【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.【详解】如图,∵在Rt△ABD中,AD=110,∠BAD=45°,∴BD= AD•tan45° =110(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=110×≈190(m),∴BC=BD+CD=110+190=300(m),即该建筑物的高度BC约为300米,故答案为:300.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,熟练应用锐角三角函数关系是解题关键.5.(2018·某某某某·3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°.∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.故答案为:9.5.三.解答题1. (2018·某某贺州·8分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)【解答】解:过点C作CM⊥AB,垂足为M,在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即=,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A处与灯塔B相距109海里.2. (2018·某某某某·8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C.G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,在Rt△CMD中,通过解直角三角形可求出CM的长度,进而可得出MF、DN的长度,再在Rt△BDN、Rt△ADN中,利用解直角三角形求出BN、AN的长度,结合AB=AN+BN即可求出瀑布AB的高度.【解答】解:过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,如图所示.在Rt△CMD中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•sin40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB的高度约为45.4米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN的长度是解题的关键.3. (2018·某某某某·7分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).【分析】过C作CD垂直于AB,根据题意求出AD与BD的长,由AD+DB求出AB的长即可.【解答】解:过C作CD⊥AB,在Rt△ACD中,∠A=45°,∴△ACD为等腰直角三角形,∴AD=CD=AC=50海里,在Rt△BCD中,∠B=30°,∴BC=2CD=100海里,根据勾股定理得:BD=50海里,则AB=AD+BD=50+50≈193海里,则此时船锯灯塔的距离为193海里.【点评】此题考查了解直角三角形﹣方向角问题,熟练掌握各自的性质是解本题的关键.4.(2018·某某省某某·7分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE.DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.5.(2018·某某省某某·8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,X角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【分析】作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.6.(2018·某某省某某市)两栋居民楼之间的距离CD=30米,楼AC和B D均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.7.(2018·某某省某某市)(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A.B.C.D.M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8. (2018•呼和浩特•8分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)解:作DH⊥BC于H.设AE=x.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)2=6002,∴DH=60,BH=180,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x,∵又HC=ED,EC=DH,∴HC=x,EC=60,在Rt△ABC中,tan33°=,∴x=,∴AC=AE+EC=+60=.答:山顶A到地面BC的高度AC是米9. (2018•某某•8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)【分析】根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.【解答】解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.10. (2018•莱芜•9分)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C.E.D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠×0.9=0.72,AF=AB•cos∠×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴≈1.7,答:小水池的宽DE为1.7米.【点评】此题考查的知识点是解直角三角形的应用﹣仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.11.(2018·某某某某·6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB 的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=xm,则=xm,在Rt△AFM中,MF=,在Rt△H中,HN=,∴HF=MF+HN﹣MN=x+x﹣24,即8=x+x﹣24,解得,x≈11.7,∴AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m.12.(2018·某某某某·8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A.B和点C.D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.。
专题27 涉及圆的证明与计算问题(学生版)备战2021年中考数学专题复习精讲精练
专题27 涉及圆的证明与计算问题圆的证明与计算是中考必考点,也是中考的难点之一。
纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。
一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
2.圆心角:顶点在圆心上的角叫做圆心角。
圆心角的度数等于它所对弧的度数。
3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。
4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心,叫做三角形的外心。
外心是三角形三条边垂直平分线的交点。
外心到三角形三个顶点的距离相等。
5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。
6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
内心是三角形三个角的角平分线的交点。
内心到三角形三边的距离相等。
二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。
三、点和圆、线和圆、圆和圆的位置关系1. 点和圆的位置关系① 点在圆内点到圆心的距离小于半径② 点在圆上点到圆心的距离等于半径③ 点在圆外点到圆心的距离大于半径2.直线与圆有3种位置关系如果⊙O 的半径为r ,圆心O 到直线的距离为d ,那么① 直线和⊙O 相交;② 直线和⊙O 相切;③ 直线和⊙O 相离。
【精品】2018中考数学试题分类汇编考点28圆的有关概念含解析
2018中考数学试题分类汇编:考点28圆的有关概念一.选择题(共26小题)1.(2018•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.2.(2018•聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30° D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.3.(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm【分析】根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE即可得出AE的长度.【解答】解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.4.(2018•菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58° C.32° D.26°【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.【解答】解:如图,由OC⊥AB,得=,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°﹣∠3=90°﹣64°=26°,故选:D.5.(2018•白银)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30° C.45° D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.6.(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2 C.D.2【分析】根据垂径定理得到CH=BH, =,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【解答】解:∵OA⊥BC,∴CH=BH, =,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=,∴BC=2BH=2,故选:D.7.(2018•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60° C.80° D.100°【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.8.(2018•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60° C.30°或150°D.60°或120°【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求角度即可.【解答】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=,∴tan∠1=,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角的度数是60°或120°.故选:D.9.(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60° C.64° D.68°【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,故选:A.10.(2018•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.11.(2018•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C 点,则BC=()A.B.C.D.【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.12.(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28° C.33° D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.13.(2018•威海)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.14.(2018•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45° C.55° D.65°【分析】根据圆周角定理得到∠ABC=∠ADC=35°,∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,故选:C.15.(2018•淮安)如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80° C.110°D.140°【分析】作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.【解答】解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.16.(2018•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5 D.5【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.17.(2018•衢州)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70° C.65° D.35°【分析】直接根据圆周角定理求解.【解答】解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选:B.18.(2018•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C 的度数为()A.84°B.60° C.36° D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.19.(2018•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100°D.90°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.20.(2018•苏州)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.21.(2018•台湾)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2 B.﹣2C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.22.(2018•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC 于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B. cm C.2.5cm D. cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8,在Rt△EBC中,BC=,∵OF⊥BC,∴∠OFC=∠CEB=90°,∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=,故选:D.23.(2018•青岛)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55° C.35.5°D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.24.(2018•广州)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50° C.70° D.80°【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【解答】解:∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.25.(2018•遂宁)如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是()A.5 B.6 C.7 D.8【分析】根据垂径定理求出AD,根据勾股定理列式求出OD,根据三角形中位线定理计算即可.【解答】解:∵半径OC垂直于弦AB,∴AD=DB=AB=,在Rt△AOD中,OA2=(OC﹣CD)2+AD2,即OA2=(OA﹣1)2+()2,解得,OA=4∴OD=OC﹣CD=3,∵AO=OE,AD=DB,∴BE=2OD=6,故选:B.26.(2018•钦州三模)如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35° C.45° D.60°【分析】欲求∠ADC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【解答】解:∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB (垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.二.填空题(共13小题)27.(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14 cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.28.(2018•曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= n °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,∴∠DCE=∠A=n°故答案为:n29.(2018•南通模拟)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为 2 .【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.30.(2018•北京)如图,点A,B,C,D在⊙O上, =,∠CAD=30°,∠ACD=50°,则∠ADB= 70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB ﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.31.(2018•杭州)如图,AB是⊙O的直轻,点C是半径OA的中点,过点C作DE⊥AB,交⊙O于D,E两点,过点D作直径DF,连结AF,则∠DFA= 30°.【分析】利用垂径定理和三角函数得出∠CDO=30°,进而得出∠DOA=60°,利用圆周角定理得出∠DFA=30°即可.【解答】解:∵点C是半径OA的中点,∴OC=OD,∵DE⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=30°,故答案为:30°32.(2018•吉林)如图,A,B,C,D是⊙O上的四个点, =,若∠AOB=58°,则∠BDC= 29 度.【分析】根据∠BDC=∠BOC求解即可;【解答】解:连接OC.∵=,∴∠AOB=∠BOC=58°,∴∠BDC=∠BOC=29°,故答案为29.33.(2018•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C 三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),34.(2018•无锡)如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧上,且OA=AB,则∠ABC= 15°.【分析】根据等边三角形的判定和性质,再利用圆周角定理解答即可.【解答】解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB=90°,∴∠COA=90°﹣60°=30°,∴∠ABC=15°,故答案为:15°35.(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.36.(2018•黑龙江)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为 5 .【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.37.(2018•绍兴)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B走了15 步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少B走了 15步.故答案为15.38.(2018•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B= 60 度.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=20°,根据等腰三角形的性质解答即可.【解答】解:如图,连接OA,∵OA=OC,∴∠OAC=∠C=20°,∴∠OAB=60°,∵OA=OB,∴∠B=∠OAB=60°,故答案为:60.39.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10 cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共1小题)40.(2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.。
7.20几何压轴题(第3部分)-2018年中考数学试题分类汇编(word解析版)
第七部分专题拓展7.20 几何压轴题【一】知识点清单【二】分类试题汇编及参考答案与解析一、选择题1.(2018年贵州省遵义市-第12题-3分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.D.【知识考点】勾股定理;相似三角形的判定与性质.【思路分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答过程】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.【总结归纳】此题主要考查了勾股定理,相似三角形的判定和性质,平行线的性质,正确作出辅助线是解本题的关键.2.(2018年内蒙古鄂尔多斯市-第6题-3分)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于12CD为半径作弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE D.sin∠CBE【知识考点】三角形的面积;线段垂直平分线的性质;菱形的性质;作图—基本作图;解直角三角形.【思路分析】由作法得AE垂直平分CD,则∠AED=90°,CE=DE,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;利用AB=2DE得到S△ABE=2S△ADE;作EH⊥BC于H,如图,若AB=4,则可计算出CH=CE=1,EH=CH=,利用勾股定理可计算出BE=2;利用正弦的定义得sin∠CBE==.【解答过程】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A选项的说法正确;∵AB=2DE,∴S△ABE=2S△ADE,所以B选项的说法正确;作EH⊥BC于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,所以C选项的说法错误;sin∠CBE===,所以D选项的说法正确.故选:C.【总结归纳】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.3.(2018年江苏省无锡市-第8题-3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.3【知识考点】矩形的性质;切线的判定.【思路分析】连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OG可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.【解答过程】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OG,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.【总结归纳】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了矩形的性质.4.(2018年山东省潍坊市-第6题-3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l【知识考点】作图—基本作图;线段垂直平分线的性质;三角形的外接圆与外心;解直角三角形的应用.【思路分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答过程】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S △ABD =AB 2,∵AC=CD , ∴S △BDC =AB 2,故A 、B 、C 正确, 故选:D .【总结归纳】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 5.(2018年四川省南充市-第10题-3分)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE ⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH ⊥BE 于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .B .EF=2 C .cos ∠CEP=5D .HF 2=EF•CF 【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形. 【思路分析】首先证明BH=AH ,推出EG=BG ,推出CE=CB ,再证明△CEH ≌△CBH ,Rt △HFE ≌Rt △HFA ,利用全等三角形的性质即可一一判断. 【解答过程】解:连接EH .∵四边形ABCD 是正方形, ∴CD=AB═BC=AD=2,CD ∥AB , ∵BE ⊥AP ,CH ⊥BE , ∴CH ∥PA ,∴四边形CPAH 是平行四边形, ∴CP=AH , ∵CP=PD=1, ∴AH=PC=1, ∴AH=BH ,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,故选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,故选:D.【总结归纳】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题1.(2018年内蒙古鄂尔多斯市-第16题-3分)如图1,AF,BE是△ABC的中线,AF⊥BE,垂足为点P,设BC=a,AC=b,AB=c,则a2+b2=5c2,利用这一性质计算.如图2,在▱ABCD中,E,F,G分别是AD,BC,CD的中点,EB⊥EG于点E,AD=8,AB=则AF=.【知识考点】勾股定理;三角形中位线定理;平行四边形的性质.【思路分析】连接AC交EF于H,设BE与AF的交点为P,由点E、G分别是AD,CD的中点,得到EG是△ACD的中位线于是证出BE⊥AC,由四边形ABCD是平行四边形,得到AD∥BC,根据E,F分别是AD,BC的中点,得到AE=BF=CF=AD,证出四边形ABFE是平行四边形,证得EH=FH,推出EH,AH分别是△AFE的中线,由题目中的结论得即可得到结果.【解答过程】解:如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=4,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=2,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH(AAS),∴EH=FH,∴EP,AH分别是△AFE的中线,由a2+b2=5c2得:AF2+EF2=5AE2,∴AF2=5×42﹣(2)2=60,∴AF=2.故答案为:2.【总结归纳】本题考查了平行四边形的性质,勾股定理,三角形的中位线的性质,正确的作出辅助线是解题的关键.2.(2018年贵州省遵义市-第18题-4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.【知识考点】菱形的性质;翻折变换(折叠问题).【思路分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答过程】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.【总结归纳】本题考查的是翻转变换的性质、菱形的性质、勾股定理、解直角三角形,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.3.(2018年湖北省咸宁市-第16题-3分)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD2;其中正确的是.(把你认为正确结论的序号都填上).【知识考点】等边三角形的性质;菱形的判定与性质;轴对称的性质;旋转的性质.【思路分析】①根据对称的性质:对称点的连线被对称轴垂直平分可得:OM'是AC的垂直平分线,再由垂直平分线的性质可作判断;②作⊙O,根据四点共圆的性质得:∠ACD=∠E=60°,说明∠ACD是定值,不会随着α的变化而变化;③当α=30°时,即∠AOD=∠COD=30°,证明△AOC是等边三角形和△ACD是等边三角形,得OC=OA=AD=CD,可作判断;④先证明△ACD是等边三角形,当AC最大时,△ACD的面积最大,当AC为直径时最大,根据面积公式计算后可作判断.【解答过程】解:①∵A、C关于直线OM'对称,∴OM'是AC的垂直平分线,∴CD=AD,故①正确;②连接OC,由①知:OM'是AC的垂直平分线,∴OC=OA,∴OA=OB=OC,以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,则A、B、C都在⊙O上,∵∠MON=120°,∴∠BOE=60°,∵OB=OE,∴△OBE是等边三角形,∴∠E=60°,∵A、C、B、E四点共圆,∴∠ACD=∠E=60°,故②不正确;③当α=30°时,即∠AOD=∠COD=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=OA=AC,由①得:CD=AD,∴∠CAD=∠ACD=∠CDA=60°,∴△ACD是等边三角形,∴AC=AD=CD,∴OC=OA=AD=CD,∴四边形OADC为菱形;故③正确;④∵CD=AD,∠ACD=60°,∴△ACD是等边三角形,当AC最大时,△ACD的面积最大,∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°,∴△ACD面积的最大值是:AC2==,故④正确,所以本题结论正确的有:①③④故答案为:①③④.【总结归纳】本题是圆和图形变换的综合题,考查了轴对称的性质、四点共圆的性质、等边三角形的判定、菱形的判定、三角形面积及圆的有关性质,有难度,熟练掌握轴对称的性质是关键,是一道比较好的填空题的压轴题.4.(2018年江苏省无锡市-第18题-2分)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是.【知识考点】等边三角形的性质;含30度角的直角三角形;平行四边形的判定与性质.【思路分析】作辅助线,构建30度的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,∠EPH=30°,可得EH的长,计算a+2b=2OH,确认OH最大和最小值的位置,可得结论.【解答过程】解:过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.【总结归纳】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.5.(2018年江苏省苏州市-第18题-3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).【知识考点】垂线段最短;三角形中位线定理;菱形的性质;梯形.【思路分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答过程】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.【总结归纳】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.6.(2018年辽宁省大连市-第16题-3分)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF 的长为.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答过程】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【总结归纳】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.(2018年山东省潍坊市-第17题-3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按A B的长是.此作法进行下去,则20192018【知识考点】弧长的计算;规律型:点的坐标;一次函数图象上点的坐标特征.【思路分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答过程】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【总结归纳】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.8.(2018年浙江省嘉兴市舟山市-第16题-4分)如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.【知识考点】矩形的性质;勾股定理.【思路分析】先根据圆周角定理确定点P在以EF为直径的圆O上,且是与矩形ABCD的交点,先确定特殊点时AF的长,当F与A和B重合时,都有两个直角三角形.符合条件,即AF=0或4,再找⊙O与AD和BC相切时AF的长,此时⊙O与矩形边各有一个交点或三个交点,在之间运动过程中符合条件,确定AF的取值.【解答过程】解:∵△EFP是直角三角形,且点P在矩形ABCD的边上,∴P是以EF为直径的圆O与矩形ABCD的交点,①当AF=0时,如图1,此时点P有两个,一个与D重合,一个交在边AB上;②当⊙O与AD相切时,设与AD边的切点为P,如图2,此时△EFP是直角三角形,点P只有一个,当⊙O与BC相切时,如图4,连接OP,此时构成三个直角三角形,则OP⊥BC,设AF=x,则BF=P1C=4﹣x,EP1=x﹣1,∵OP∥EC,OE=OF,∴OG=EP1=,∴⊙O的半径为:OF=OP=,在Rt△OGF中,由勾股定理得:OF2=OG2+GF2,∴,解得:x=,∴当1<AF<时,这样的直角三角形恰好有两个,③当AF=4,即F与B重合时,这样的直角三角形恰好有两个,如图5,综上所述,则AF的值是:0或1<AF或4.故答案为:0或1<AF或4.【总结归纳】本题考查了矩形的性质的运用,勾股定理的运用,三角形中位线定理的运用,圆的性质的运用,分类讨论思想的运用,解答时运用勾股定理求解是关键,并注意运用数形结合的思想解决问题.三、解答题1.(2018年内蒙古鄂尔多斯市-第24题-12分)(1)【操作发现】如图1,将△ABC绕点A顺时针旋转60°,得到△ADE,连接BD,则∠ABD=度.(2)【类比探究】如图2,在等边三角形ABC内任取一点P,连接PA,PB,PC,求证:以PA,PB,PC的长为三边必能组成三角形.(3)【解决问题】如图3ABC内有一点P,∠APC=90°,∠BPC=120°,求△APC 的面积.(4)【拓展应用】如图4是A,B,C三个村子位置的平面图,经测量AC=4,BC=5,∠ACB=30°,P为△ABC 内的一个动点,连接PA,PB,PC.求PA+PB+PC的最小值.【知识考点】几何变换综合题.【思路分析】(1)【操作发现】:如图1中,只要证明△DAB是等边三角形即可;(2)【类比探究】:如图2中,以PA为边长作等边△PAD,使P、D分别在AC的两侧,连接CD.利用全等三角形的性质以及三角形的三边关系即可解决问题;(3)【解决问题】:如图3中,将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,只要证明∠PP′C=90°,利用勾股定理即可解决问题;(4)【拓展应用】:如图4中,先由旋转的性质得出△APC≌△EDC,则∠ACP=∠ECD,AC=EC=4,∠PCD=60°,再证明∠BCE=90°,然后在Rt△BCE中,由勾股定理求出BE的长度,即为PA+PB+PC的最小值;【解答过程】(1)【操作发现】解:如图1中,连接BD.∵△ABC绕点A顺时针旋转60°,得到△ADE,∴AD=AB,∠DAB=60°,∴△DAB是等边三角形,∴∠ABD=60°故答案为60.(2)【类比探究】证明:如图2中,以PA为边长作等边△PAD,使P、D分别在AC的两侧,连接CD.∵∠BAC=∠PAD=60°,∴∠BAP=∠CAD,∵AB=AC,AP=AD,∴△PAB≌△ACD(SAS),∴BP=CD,在△PCD中,∵PD+CD>PC,又∵PA=PD,∴AP+BP>PC.∴PA,PB,PC的长为三边必能组成三角形.(3)【解决问题】解:如图3中,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC,∵∠APC=90°,∴AP2+PC2=AC2,即(PC)2+PC2=()2,∴PC=2,∴AP=,∴S△APC=AP•PC=××2=.(4)【拓展应用】解:如图4中,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE.∵将△APC绕点C顺时针旋转60°,得到△EDC,∴△APC≌△EDC(旋转的性质),∴∠ACP=∠ECD,AC=EC=4,∠PCD=60°,∴∠ACP+∠PCB=∠ECD+∠PCB,∴∠ECD+∠PCB=∠ACB=30°,∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°,在Rt△BCE中,∵∠BCE=90°,BC=5,CE=4,∴BE===,即PA+PB+PC的最小值为;【总结归纳】本题属于几何变换综合题,考查了旋转变换,等边三角形的性质,勾股定理等知识,解题的关键是添加常用辅助线,构造全等三角形解决问题,用转化的思想思考问题,属于中考压轴题.2.(2018年湖北省襄阳市-第24题-10分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE 之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=BC=.【知识考点】相似形综合题.【思路分析】(1)①由GE⊥BC、GF⊥CD结合∠BCD=90°可得四边形CEGF是矩形,再由∠ECG=45°即可得证;②由正方形性质知∠CEG=∠B=90°、∠ECG=45°,据此可得=、GE∥AB,利用平行线分线段成比例定理可得;(2)连接CG,只需证△ACG∽△BCE即可得;(3)证△AHG∽△CHA得==,设BC=CD=AD=a,知AC=a,由=得AH= a、DH=a、CH=a,由=可得a的值.【解答过程】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.【总结归纳】本题主要考查相似形的综合题,解题的关键是掌握正方形的判定与性质、相似三角形的判定与性质等知识点.3.(2018年湖南省湘潭市-第25题-10分)如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是AB上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.【知识考点】圆的综合题.【思路分析】(1)①当∠AOM=60°时,所以△AMO是等边三角形,从而可知∠MOD=30°,∠D=30°,所以DM=OM=10;②过点M作MF⊥OA于点F,设AF=x,OF=10﹣x,利用勾股定理即可求出x的值.易证明△AMF∽△ADO,从而可知AD的长度,进而可求出MD的长度.(2)根据点M的位置分类讨论,然后利用圆周角定理以及圆内接四边形的性质即可求出答案.【解答过程】解:(1)①当∠AOM=60°时,∵OM=OA,∴△AMO是等边三角形,∴∠A=∠MOA=60°,∴∠MOD=30°,∠D=30°,∴DM=OM=10②过点M作MF⊥OA于点F,设AF=x,∴OF=10﹣x,∵AM=12,OA=OM=10,由勾股定理可知:122﹣x2=102﹣(10﹣x)2∴x=,∴AF=,∵MF∥OD,∴△AMF∽△ADO,∴,∴,∴AD=∴MD=AD﹣AM=(2)当点M位于之间时,连接BC,∵C是的中点,∴∠B=45°,∵四边形AMCB是圆内接四边形,此时∠CMD=∠B=45°,当点M位于之间时,连接BC,由圆周角定理可知:∠CMD=∠B=45°综上所述,∠CMD=45°【总结归纳】本题考查圆的综合问题,涉及圆周角定理,勾股定理,相似三角形的判定与性质,含30度角的直角三角形性质,解方程等知识,综合程度较高,需要学生灵活运用所学知识.4.(2018年湖南邵阳市-第25题-8分)如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OG=1,求ENGM的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)【知识考点】相似形综合题.【思路分析】(1)连接AC,由四个中点可知OE∥AC、OE=AC,GF∥AC、GF=AC,据此得出OE=GF、OE=GF,即可得证;(2)①由旋转性质知OG=OM、OE=ON,∠GOM=∠EON,据此可证△OGM∽△OEN得==;②连接AC、BD,根据①知△OGM∽△OEN,若要GM=EN只需使△OGM≌△OEN,添加使AC=BD 的条件均可以满足此条件.【解答过程】解:(1)如图1,连接AC,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OE∥AC、OE=AC,GF∥AC、GF=AC,∴OE=GF,OE=GF,∴四边形OEFG是平行四边形;(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴=,∴△OGM∽△OEN,∴==.②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=BD,∵AC=BD,∴OG=OE,∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴OG=OE、OM=ON,在△OGM和△OEN中,∵,∴△OGM≌△OEN(SAS),∴GM=EN.【总结归纳】本题主要考查相似形的综合题,解题的关键是熟练掌握中位线定义及其定理、平行四边形的判定、旋转的性质、相似三角形与全等三角形的判定与性质等知识点.5.(2018年江苏省淮安市-第26题-12分)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.【知识考点】四边形综合题.【思路分析】(1)根据“准互余三角形”的定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;【解答过程】解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠A+∠BAE=90°,∵∠A+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE=,∴BE=5﹣=.(3)如图②中,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD ,∠CBF=∠CBD , ∵∠ABD=2∠BCD ,∠BCD+∠CBD=90°, ∴∠ABD+∠DBC+∠CBF=180°, ∴A 、B 、F 共线, ∴∠A+∠ACF=90° ∴2∠ACB+∠CAB≠90°, ∴只有2∠BAC+∠ACB=90°, ∴∠FCB=∠FAC ,∵∠F=∠F , ∴△FCB ∽△FAC , ∴CF 2=FB•FA ,设FB=x , 则有:x (x+7)=122, ∴x=9或﹣16(舍弃), ∴AF=7+9=16, 在Rt △ACF 中,AC===20.【总结归纳】本题考查四边形综合题、相似三角形的判定和性质、“准互余三角形”的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.6.(2018年江苏省无锡市-第27题-10分)如图,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上. (1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若11A E EC =,求nm的值.【知识考点】轨迹;旋转的性质.【思路分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出==,可得CE=由=﹣1推出=,推出AC=•,推出BH=AC==•,可得m2﹣n2=6•,可得1﹣=6•,由此解方程即可解决问题;【解答过程】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵BD==,∴D到点D1所经过路径的长度==π.(2)∵△BCE∽△BA2D2,∴==,∴CE=∵=﹣1∴=,∴AC=•,∴BH=AC==•,∴m2﹣n2=6•,∴m4﹣m2n2=6n4,1﹣=6•,∴=(负根已经舍弃).【总结归纳】本题考查轨迹,旋转变换、解直角三角形、弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7.(2018年江苏省苏州市-第27题-10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,SS'=;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.【知识考点】三角形中位线定理;相似三角形的判定与性质.【思路分析】问题1:(1)先根据平行线分线段成比例定理可得:,由同高三角形面积的比等于对应底边的比,则==,根据相似三角形面积比等于相似比的平方得:==,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:=,分别表示和的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:===,根据相似三角形的性质得:=,可得结论;解法二:如图3,连接AC交EF于M,根据AD=BC,可得=,得:S△ADC=S,S△ABC=,由问题1的结论可知:=,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答过程】解:问题1:(1)∵AB=4,AD=3,∴BD=4﹣3=1,∵DE∥BC,∴,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,即,故答案为:;(2)解法一:∵AB=4,AD=m,∴BD=4﹣m,∵DE∥BC,∴==,∴==,∵DE∥BC,∴△ADE∽△ABC,∴==,∴===,即=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF∽△ABH,∴=,∴===,即=;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD∥BC,∴△OAD∽△OBC,∴,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF∥BC,由问题1的解法可知:===,∵==,∴=,∴===,即=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=BC,∴=,∴S△ADC=,∴S△ADC=S,S△ABC=,由问题1的结论可知:=,∵MF∥AD,∴△CFM∽△CDA,∴===,∴S△CFM=×S,∴S△EFC=S△EMC+S△CFM=+×S=,∴=.。
2018年江苏省常州市中考数学试卷-含答案解析
1 2018年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)﹣分)﹣33的倒数是()A .﹣.﹣3B 3 B 3 B..3C .﹣D .2.(2分)已知苹果每千克m 元,则2千克苹果共多少元?()A .m ﹣2B .m+2C m+2 C..D .2m3.(2分)下列图形中,哪一个是圆锥的侧面展开图?()A .B .C .D .4.(2分)一个正比例函数的图象经过(分)一个正比例函数的图象经过(22,﹣,﹣11),则它的表达式为()A .y=y=﹣﹣2xB .y=2xC .D .5.(2分)下列命题中,假命题是()A .一组对边相等的四边形是平行四边形B .三个角是直角的四边形是矩形C .四边相等的四边形是菱形D .有一个角是直角的菱形是正方形6.(2分)已知a 为整数,且,则a 等于()A .1B .2C .3D .47.(2分)如图,AB 是⊙是⊙O O 的直径,MN 是⊙是⊙O O 的切线,切点为N ,如果∠如果∠MNB=52MNB=52MNB=52°,°,则∠则∠NOA NOA 的度数为()A .7676°°B .5656°°C .5454°°D .5252°°8.(2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA 的0刻度固定在半圆的圆心O 处,刻度尺可以绕点O 旋转.从图中所示的图尺可读出sin sin∠∠AOB 的值是( )A .B .C .D .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2分)计算:分)计算:||﹣3|3|﹣﹣1= . 1010..(2分)化简:= .1111..(2分)分解因式:分)分解因式:3x 3x 2﹣6x+3= .1212..(2分)已知点P (﹣(﹣22,1),则点P 关于x 轴对称的点的坐标是轴对称的点的坐标是 . 1313..(2分)地球与月球的平均距离大约384000km 384000km,用科学计数法表示这个距离,用科学计数法表示这个距离为 km km..1414..(2分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是概率是 .1515..(2分)如图,在▱ABCD 中,∠中,∠A=70A=70A=70°,°,°,DC=DB DC=DB DC=DB,则∠,则∠,则∠CDB= CDB= .1616..(2分)如图,△分)如图,△ABC ABC 是⊙是⊙O O 的内接三角形,∠的内接三角形,∠BAC=60BAC=60BAC=60°,°,的长是,则⊙O 的半径是的半径是 .1717..(2分)下面是按一定规律排列的代数式:分)下面是按一定规律排列的代数式:a a 2,3a 4,5a 6,7a 8,…则第8个代数式是数式是 .1818..(2分)如图,在△分)如图,在△ABC ABC 纸板中,纸板中,AC=4AC=4AC=4,,BC=2BC=2,,AB=5AB=5,,P 是AC 上一点,过点P 沿直线剪下一个与△沿直线剪下一个与△ABC ABC 相似的小三角形纸板,如果有4种不同的剪法,那么AP 长的取值范围是长的取值范围是 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)1919..(6分)计算:分)计算:||﹣1|1|﹣﹣﹣(﹣(11﹣)0+4sin30+4sin30°.°.2020..(8分)解方程组和不等式组: (1)(2)2121..(8分)如图,把△分)如图,把△ABC ABC 沿BC 翻折得△翻折得△DBC DBC DBC.. (1)连接AD AD,则,则BC 与AD 的位置关系是的位置关系是 .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC 是平行四边形,写出添加的条件,并说明理由.2222..(8分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题: (1)本次抽样调查的样本容量是)本次抽样调查的样本容量是 ; (2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.2323..(8分)将图中的A 型、型、B B 型、型、C C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A 型矩形纸片的概率; (2)搅匀后先从中摸出1个盒子个盒子(不放回)(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接). 2424..(8分)如图,已知点A 在反比例函数y=(x >0)的图象上,过点A 作AC ⊥x 轴,垂足是C ,AC=OC AC=OC.一次函数.一次函数y=kx+b 的图象经过点A ,与y 轴的正半轴交于点B .(1)求点A 的坐标;(2)若四边形ABOC 的面积是3,求一次函数y=kx+b 的表达式.2525..(8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m AB=160m,,CD=40m CD=40m,再用测角仪测得∠,再用测角仪测得∠,再用测角仪测得∠CAB=30CAB=30CAB=30°,∠°,∠°,∠DBA=60DBA=60DBA=60°,求该段运°,求该段运河的河宽(即CH 的长).2626..(10分)阅读材料:各类方程的解法 求解一元一次方程,求解一元一次方程,根据等式的基本性质,根据等式的基本性质,根据等式的基本性质,把方程转化为把方程转化为x=a 的形式.的形式.求解二元求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”“转化”的数学思想,的数学思想,的数学思想,我们还可以解一些新的方程.我们还可以解一些新的方程.我们还可以解一些新的方程.例如,例如,例如,一元三次方程一元三次方程x 3+x2﹣2x=02x=0,,可以通过因式分解把它转化为x (x 2+x +x﹣﹣2)=0=0,,解方程x=0和x 2+x +x﹣﹣2=02=0,,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0=0,,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程=x 的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m AD=8m,宽,宽AB=3m AB=3m,小华把一根长为,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA BA,,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD PD、、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.2727..(10分)(1)如图1,已知EK 垂直平分BC BC,垂足为,垂足为D ,AB 与EK 相交于点F ,连接CF CF.求证:∠.求证:∠.求证:∠AFE=AFE=AFE=∠∠CFD CFD..(2)如图2,在Rt Rt△△GMN 中,∠中,∠M=90M=90M=90°,°,°,P P 为MN 的中点.①用直尺和圆规在GN 边上求作点Q ,使得∠,使得∠GQM=GQM=GQM=∠∠PQN PQN(保留作图痕迹,不要求(保留作图痕迹,不要求写作法);②在①的条件下,如果∠②在①的条件下,如果∠G=60G=60G=60°,那么°,那么Q 是GN 的中点吗?为什么?2828..(10分)如图,二次函数y=y=﹣﹣+bx+2的图象与x 轴交于点A 、B ,与y轴交于点C ,点A 的坐标为(﹣的坐标为(﹣44,0),P 是抛物线上一点(点P 与点A 、B 、C 不重合).(1)b= ,点B 的坐标是的坐标是 ; (2)设直线PB 与直线AC 相交于点M ,是否存在这样的点P ,使得PM PM::MB=1MB=1::2?若存在求出点P 的横坐标;若不存在,请说明理由;(3)连接AC AC、、BC BC,判断∠,判断∠,判断∠CAB CAB 和∠和∠CBA CBA 的数量关系,并说明理由.参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分在每小题所给出的四个选项中,只有一项是正确的) 1.(2分)﹣分)﹣33的倒数是(的倒数是( )A .﹣.﹣3B 3 B 3 B..3C .﹣D .【分析】根据倒数的定义可得﹣【分析】根据倒数的定义可得﹣33的倒数是﹣.【解答】解:﹣【解答】解:﹣33的倒数是﹣. 故选:故选:C C .【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2分)已知苹果每千克m 元,则2千克苹果共多少元?(千克苹果共多少元?( ) A .m ﹣2B .m+2C m+2 C..D .2m【分析】根据苹果每千克m 元,可以用代数式表示出2千克苹果的价钱. 【解答】解:∵苹果每千克m 元, ∴2千克苹果2m 元, 故选:故选:D D .【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.(2分)下列图形中,哪一个是圆锥的侧面展开图?(分)下列图形中,哪一个是圆锥的侧面展开图?( )A .B .C .D .【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形. 故选:故选:B B .【点评】此题考查了几何体的展开图,注意圆锥的侧面展开图是扇形.4.(2分)一个正比例函数的图象经过(分)一个正比例函数的图象经过(22,﹣,﹣11),则它的表达式为(,则它的表达式为( )A .y=y=﹣﹣2xB .y=2xC .D .【分析】设该正比例函数的解析式为y=kx y=kx((k ≠0),再把点(,再把点(22,﹣,﹣11)代入求出k 的值即可.【解答】解:设该正比例函数的解析式为y=kx y=kx((k ≠0), ∵正比例函数的图象经过点(∵正比例函数的图象经过点(22,﹣,﹣11), ∴2=2=﹣﹣k ,解得k=k=﹣﹣2,∴这个正比例函数的表达式是y=y=﹣﹣2x 2x.. 故选:故选:A A .【点评】本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.(2分)下列命题中,假命题是(分)下列命题中,假命题是( ) A .一组对边相等的四边形是平行四边形 B .三个角是直角的四边形是矩形 C .四边相等的四边形是菱形 D .有一个角是直角的菱形是正方形【分析】根据矩形、正方形、平行四边形、菱形的判定即可求出答案. 【解答】解:【解答】解:A A 、一组对边平行且相等的四边形是平行四边形,是假命题; B 、三个角是直角的四边形是矩形,是真命题; C 、四边相等的四边形是菱形,是真命题; D 、有一个角是直角的菱形是正方形,是真命题; 故选:故选:A A .【点评】【点评】本题考查菱形、本题考查菱形、本题考查菱形、矩形和平行四边形的判定与命题的真假区别,矩形和平行四边形的判定与命题的真假区别,矩形和平行四边形的判定与命题的真假区别,关键是根关键是根据矩形、正方形、平行四边形、菱形的判定解答.6.(2分)已知a 为整数,且,则a 等于(等于( )A .1B .2C .3D .4【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵【解答】解:∵a a 为整数,且,∴a=2a=2.. 故选:故选:B B .【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.(2分)如图,AB 是⊙是⊙O O 的直径,MN 是⊙是⊙O O 的切线,切点为N ,如果∠如果∠MNB=52MNB=52MNB=52°,°,则∠则∠NOA NOA 的度数为(的度数为( )A .7676°°B .5656°°C .5454°°D .5252°°【分析】【分析】先利用切线的性质得∠先利用切线的性质得∠先利用切线的性质得∠ONM=90ONM=90ONM=90°,°,则可计算出∠则可计算出∠ONB=38ONB=38ONB=38°,°,再利用等腰三角形的性质得到∠三角形的性质得到∠B=B=B=∠∠ONB=38ONB=38°,然后根据圆周角定理得∠°,然后根据圆周角定理得∠°,然后根据圆周角定理得∠NOA NOA 的度数. 【解答】解:∵【解答】解:∵MN MN 是⊙是⊙O O 的切线, ∴ON ON⊥⊥NM NM,, ∴∠∴∠ONM=90ONM=90ONM=90°,°,∴∠∴∠ONB=90ONB=90ONB=90°﹣∠°﹣∠°﹣∠MNB=90MNB=90MNB=90°﹣°﹣°﹣525252°°=38=38°,°, ∵ON=OB ON=OB,,∴∠∴∠B=B=B=∠∠ONB=38ONB=38°,°, ∴∠∴∠NOA=2NOA=2NOA=2∠∠B=76B=76°.°. 故选:故选:A A .【点评】【点评】本题考查了切线的性质:本题考查了切线的性质:本题考查了切线的性质:圆的切线垂直于经过切点的半径.圆的切线垂直于经过切点的半径.圆的切线垂直于经过切点的半径.也考查了圆也考查了圆周角定理.8.(2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA 的0刻度固定在半圆的圆心O 处,刻度尺可以绕点O 旋转.从图中所示的图尺可读出sin sin∠∠AOB 的值是( )A .B .C .D .【分析】如图,连接AD AD..只要证明∠只要证明∠AOB=AOB=AOB=∠∠ADO ADO,,可得sin sin∠∠AOB=sin AOB=sin∠∠ADO==;【解答】解:如图,连接AD AD..∵OD 是直径, ∴∠∴∠OAD=90OAD=90OAD=90°,°,∵∠∵∠AOB+AOB+AOB+∠∠AOD=90AOD=90°,∠°,∠°,∠AOD+AOD+AOD+∠∠ADO=90ADO=90°,°, ∴∠∴∠AOB=AOB=AOB=∠∠ADO ADO,, ∴sin sin∠∠AOB=sin AOB=sin∠∠ADO==,故选:故选:D D .【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(2分)计算:分)计算:||﹣3|3|﹣﹣1= 2 .【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值. 【解答】解:原式【解答】解:原式=3=3=3﹣﹣1=21=2.. 故答案为:故答案为:22【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.1010..(2分)化简:= 1 .【分析】原式利用同分母分式的减法法则计算即可. 【解答】解:原式【解答】解:原式===1=1,,故答案为:故答案为:11【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.1111..(2分)分解因式:分)分解因式:3x 3x 2﹣6x+3= 3(x ﹣1)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:【解答】解:3x 3x 2﹣6x+36x+3,,=3=3((x 2﹣2x+12x+1)), =3=3((x ﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,首先提取公因式,然后再用其他方法进行因式分解,然后再用其他方法进行因式分解,然后再用其他方法进行因式分解,同时因式分解要彻底,同时因式分解要彻底,同时因式分解要彻底,直到直到不能分解为止.1212..(2分)已知点P (﹣(﹣22,1),则点P 关于x 轴对称的点的坐标是轴对称的点的坐标是 (﹣(﹣22,﹣1) .【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【解答】解:点P (﹣(﹣22,1),则点P 关于x 轴对称的点的坐标是(﹣轴对称的点的坐标是(﹣22,﹣,﹣11), 故答案为:(﹣(﹣22,﹣,﹣11). 【点评】本题考查了关于x 轴对称的对称点,利用关于x 轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.1313..(2分)地球与月球的平均距离大约384000km 384000km,用科学计数法表示这个距离,用科学计数法表示这个距离为 3.843.84××105km km..【分析】科学记数法的一般形式为:【分析】科学记数法的一般形式为:a a ×10n,在本题中a 应为3.843.84,,10的指数为6﹣1=51=5..【解答】解:【解答】解:384 000=3.84384 000=3.84384 000=3.84××105km km..故答案为3.843.84××105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a||a|<<1010,,n 为整数,表示时关键要正确确定a 的值以及n 的值.1414..(2分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称, ∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是, 故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.1515..(2分)如图,在▱ABCD 中,∠中,∠A=70A=70A=70°,°,°,DC=DB DC=DB DC=DB,则∠,则∠,则∠CDB= CDB= 4040°° .【分析】根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【解答】解:∵四边形ABCD 是平行四边形, ∴∠∴∠A=A=A=∠∠C=70C=70°,°, ∵DC=DB DC=DB,,∴∠∴∠C=C=C=∠∠DBC=70DBC=70°,°,∴∠∴∠CDB=180CDB=180CDB=180°﹣°﹣°﹣707070°﹣°﹣°﹣707070°°=40=40°,°, 故答案为4040°.°.【点评】【点评】本题考查平行四边形的性质、本题考查平行四边形的性质、本题考查平行四边形的性质、等腰三角形的性质、等腰三角形的性质、等腰三角形的性质、三角形内角和定理等三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.1616..(2分)如图,△分)如图,△ABC ABC 是⊙是⊙O O 的内接三角形,∠的内接三角形,∠BAC=60BAC=60BAC=60°,°,的长是,则⊙O 的半径是的半径是 2 .【分析】连接OB OB、、OC OC,利用弧长公式转化为方程求解即可;,利用弧长公式转化为方程求解即可; 【解答】解:连接OB OB、、OC OC..∵∠∵∠BOC=2BOC=2BOC=2∠∠BAC=120BAC=120°,°,的长是,∴=,∴r=2r=2,, 故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理,弧长的计算等知识,解题的关键是熟练掌握弧长公式,属于中考常考题型.1717..(2分)下面是按一定规律排列的代数式:分)下面是按一定规律排列的代数式:a a 2,3a 4,5a 6,7a 8,…则第8个代数式是数式是 15a 16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵【解答】解:∵a a 2,3a 4,5a 6,7a 8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a 16.故答案为:故答案为:15a 15a 16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.1818..(2分)如图,在△分)如图,在△ABC ABC 纸板中,纸板中,AC=4AC=4AC=4,,BC=2BC=2,,AB=5AB=5,,P 是AC 上一点,过点P 沿直线剪下一个与△沿直线剪下一个与△ABC ABC 相似的小三角形纸板,如果有4种不同的剪法,那么AP 长的取值范围是长的取值范围是 3≤AP AP<<4 .【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP 的长的取值范围.【解答】解:如图所示,过P 作PD PD∥∥AB 交BC 于D 或PE PE∥∥BC 交AB 于E ,则△则△PCD PCD ∽△∽△ACB ACB 或△或△APE APE APE∽△∽△∽△ACB ACB ACB,, 此时0<AP AP<<4;如图所示,过P 作∠作∠APF=APF=APF=∠∠B 交AB 于F ,则△,则△APF APF APF∽△∽△∽△ABC ABC ABC,, 此时0<AP AP≤≤4;如图所示,过P 作∠作∠CPG=CPG=CPG=∠∠CBA 交BC 于G ,则△,则△CPG CPG CPG∽△∽△∽△CBA CBA CBA,, 此时,△此时,△CPG CPG CPG∽△∽△∽△CBA CBA CBA,,当点G 与点B 重合时,重合时,CB CB 2=CP =CP××CA CA,即,即22=CP =CP××4,∴CP=1CP=1,,AP=3AP=3,, ∴此时,∴此时,33≤AP AP<<4;综上所述,综上所述,AP AP 长的取值范围是3≤AP AP<<4. 故答案为:故答案为:33≤AP AP<<4.【点评】【点评】本题主要考查了相似三角形的性质,本题主要考查了相似三角形的性质,本题主要考查了相似三角形的性质,相似三角形的对应角相等,相似三角形的对应角相等,相似三角形的对应角相等,对应边对应边的比相等.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)1919..(6分)计算:分)计算:||﹣1|1|﹣﹣﹣(﹣(11﹣)0+4sin30+4sin30°.°.【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式【解答】解:原式=1=1=1﹣﹣2﹣1+41+4×× =1=1﹣﹣2﹣1+2 =0=0..【点评】此题主要考查了实数运算,正确化简各数是解题关键.2020..(8分)解方程组和不等式组: (1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 【解答】解:(1),①+②得:②得:x=2x=2x=2,,把x=2代入②得:代入②得:y=y=y=﹣﹣1,所以方程组的解为:;(2),解不等式①得:解不等式①得:x x ≥3; 解不等式②得:解不等式②得:x x ≥﹣≥﹣11, 所以不等式组的解集为:所以不等式组的解集为:x x ≥3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2121..(8分)如图,把△分)如图,把△ABC ABC 沿BC 翻折得△翻折得△DBC DBC DBC.. (1)连接AD AD,则,则BC 与AD 的位置关系是的位置关系是 BC BC⊥⊥AB .(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC 是平行四边形,写出添加的条件,并说明理由.【分析】(1)先由折叠知,)先由折叠知,AB=BD AB=BD AB=BD,∠,∠,∠ACB=ACB=ACB=∠∠DBC DBC,进而判断出△,进而判断出△,进而判断出△AOB AOB AOB≌△≌△≌△DOB DOB DOB,最,最后用平角的定义即可得出结论; (2)由折叠得出∠)由折叠得出∠ABC=ABC=ABC=∠∠DBC DBC,∠,∠,∠ACB=ACB=ACB=∠∠DCB DCB,再判断出∠,再判断出∠,再判断出∠ABC=ABC=ABC=∠∠ACB ACB,进而得出,进而得出∠ACB=ACB=∠∠DBC=DBC=∠∠ABC=ABC=∠∠DCB DCB,最后用两边分别平行的四边形是平行四边形.,最后用两边分别平行的四边形是平行四边形. 【解答】解:(1)如图, 连接AD 交BC 于O ,由折叠知,由折叠知,AB=BD AB=BD AB=BD,∠,∠,∠ACB=ACB=ACB=∠∠DBC DBC,, ∵BO=BO BO=BO,,∴△∴△ABO ABO ABO≌△≌△≌△DBO DBO DBO((SAS SAS)), ∴∠∴∠AOB=AOB=AOB=∠∠DOB DOB,, ∵∠∵∠AOB+AOB+AOB+∠∠DOB=180DOB=180°,°, ∴∠∴∠AOB=AOB=AOB=∠∠DOB=90DOB=90°,°,∴BC BC⊥⊥AD AD,,故答案为:故答案为:BC BC BC⊥⊥AD AD;;(2)添加的条件是AB=AC AB=AC,,理由:由折叠知,∠理由:由折叠知,∠ABC=ABC=ABC=∠∠DBC DBC,∠,∠,∠ACB=ACB=ACB=∠∠DCB DCB,, ∵AB=AC AB=AC,, ∴∠∴∠ABC=ABC=ABC=∠∠ACB ACB,,∴∠∴∠ACB=ACB=ACB=∠∠DBC=DBC=∠∠ABC=ABC=∠∠DCB DCB,, ∴AC AC∥∥BD BD,,AB AB∥∥CD CD,,∴四边形ABDC 是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△全等三角形的判定和性质,判断出△ABO ABO ABO≌△≌△≌△DBO DBO DBO((SAS SAS)是解本题的关键.)是解本题的关键.2222..(8分)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题: (1)本次抽样调查的样本容量是)本次抽样调查的样本容量是 100 ; (2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100100××30%=30人,4册的人数是100100﹣﹣3030﹣﹣4040﹣﹣20=10人,再画出即可;(3)先列出算式,再求出即可. 【解答】解:(1)4040÷÷40%=10040%=100(册)(册), 即本次抽样调查的样本容量是100100,, 故答案为:故答案为:100100100;;(2)如图:;(3)1200012000×(×(×(11﹣30%30%))=8400=8400(人)(人), 答:估计该市初中学生这学期课外阅读超过2册的人数是8400人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.2323..(8分)将图中的A 型、型、B B 型、型、C C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A 型矩形纸片的概率; (2)搅匀后先从中摸出1个盒子个盒子(不放回)(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接). 【分析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【解答】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是A 型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率==所求情况数与总情况数之比.2424..(8分)如图,已知点A 在反比例函数y=(x >0)的图象上,过点A 作AC ⊥x 轴,垂足是C ,AC=OC AC=OC.一次函数.一次函数y=kx+b 的图象经过点A ,与y 轴的正半轴交于点B .(1)求点A 的坐标;(2)若四边形ABOC 的面积是3,求一次函数y=kx+b 的表达式.【分析】(1)根据反比例函数k 值的几何意义可求点A 的坐标;(2)根据梯形的面积公式可求点B 的坐标,再根据待定系数法可求一次函数y=kx+b 的表达式.【解答】解:(1)∵点A 在反比例函数y=(x >0)的图象上,AC AC⊥⊥x 轴,AC=OC AC=OC,,∴AC AC••OC=4OC=4,, ∴AC=OC=2AC=OC=2,,∴点A 的坐标为(的坐标为(22,2); (2)∵四边形ABOC 的面积是3, ∴(∴(OB+2OB+2OB+2)×)×)×22÷2=32=3,, 解得OB=1OB=1,,∴点B 的坐标为(的坐标为(00,1), 依题意有,解得.故一次函数y=kx+b 的表达式为y=x+1x+1..【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k 值的几何意义、梯形的面积、待定系数法求一次函数解析式.2525..(8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m AB=160m,,CD=40m CD=40m,再用测角仪测得∠,再用测角仪测得∠,再用测角仪测得∠CAB=30CAB=30CAB=30°,∠°,∠°,∠DBA=60DBA=60DBA=60°,求该段运°,求该段运河的河宽(即CH 的长).【分析】过D 作DE DE⊥⊥AB AB,可得四边形,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm CH=DE=xm,利用锐,利用锐角三角函数定义表示出AH 与BE BE,由,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【解答】解:过D 作DE DE⊥⊥AB AB,可得四边形,可得四边形CHED 为矩形,∴HE=CD=40m HE=CD=40m,,设CH=DE=xm CH=DE=xm,,在Rt Rt△△BDE 中,∠中,∠DBA=60DBA=60DBA=60°,°,∴BE=xm xm,,在Rt Rt△△ACH 中,∠中,∠BAC=30BAC=30BAC=30°,°, ∴AH=xm xm,,由AH+HE+EB=AB=160m AH+HE+EB=AB=160m,得到,得到x+40+x=160x=160,, 解得:解得:x=30x=30,即CH=30m ,则该段运河的河宽为30m .【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.2626..(10分)阅读材料:各类方程的解法 求解一元一次方程,求解一元一次方程,根据等式的基本性质,根据等式的基本性质,根据等式的基本性质,把方程转化为把方程转化为x=a 的形式.的形式.求解二元求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”“转化”的数学思想,的数学思想,的数学思想,我们还可以解一些新的方程.我们还可以解一些新的方程.我们还可以解一些新的方程.例如,例如,例如,一元三次方程一元三次方程x 3+x2﹣2x=02x=0,,可以通过因式分解把它转化为x (x 2+x +x﹣﹣2)=0=0,,解方程x=0和x 2+x +x﹣﹣2=02=0,,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0=0,,x 2= ﹣2 ,x 3= 1 ;(2)拓展:用“转化”思想求方程=x 的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m AD=8m,宽,宽AB=3m AB=3m,小华把一根长为,小华把一根长为。
全国2018年中考数学真题分类汇编 第22讲 圆的基本性质
(分类)第22讲 圆的基本性质知识点1 圆的有关概念及性质 知识点2 垂径定理及其推论 知识点3 圆心角、弧、弦之间的关系知识点4 圆周角定理及推论 知识点5 圆内接四边形的性质知识点1 圆的有关概念及性质 知识点2 垂径定理及其推论(2018襄阳)如图,点A ,B ,C ,D 都在半径为2的⊙O 上,若OA ⊥BC , ∠CDA =30°,则弦BC 的长为( D )A .4B ..(2018枣庄)8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,6,2==BP AP ,030=∠APC ,则CD 的长为( C )A .15B .52C .152D .8(2018衢州)如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( D )A .3cmB cmC .2.5cm D(2018广州)7.如图4,AB 是圆O 的弦,OC ⊥AB,交圆O 于点C ,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( D )A. 40°B. 50°C. 70°D. 80°(2018威海)10.如图,O ☉的半径为5,AB 为弦,点C 为AB 的中点,若30ABC =∠°,则弦AB 的长为( D )A.12B.5 D.(2018•自贡)如图,若△ABC 内接于半径为R 的⊙O ,且∠A=60°,连接OB 、OC ,则边BC 的长为( D )A .B .C .D .(2018武汉)10.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( D ) A .32B .23C .235 D .265(2018安顺)9.已知O 的直径10CD cm =,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC的长为( C )A .B .C .或D .或(2018遂宁)如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若,则BE 的长是(B )A 、5B 、6C 、7D 、8(2018张家界)6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,cm CD cm OC 8,5==,则=AE ( A ) A cm 8 B cm 5 C cm 3 D cm 2(2018毕节)19.如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E,∠ACE 的度数为__30°____.(2018龙东地区)答案5(2018玉林)(2018嘉兴)14.如图,量角器的O 度刻度线为AB .将一矩形直尺与量角器部分重叠、使直尺一边与量角器相切于点C ,直尺另一边交量角器于点D A ,,量得cm AD 10=,点D 在量角器上的读数为︒60.则该直尺的宽度为(2018绍兴、义乌)13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB =∠°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了_______15_____步(假设1步为0.5米,结果保留整数).(1.732,π取3.142)(2018宜宾)15.如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E 且DE 交AC 于点F ,DB 交AC 于点G ,若EF AE =34, 则CGGB =5(2018孝感)答案:2或14(2018·金华/丽水).如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm.E O沿AD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm, ∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10-510 cm.【解答】(1)如图2,连结B 1C 1 , B 1C 1与AD 1相交于点E ,∵D 1是弓弦B 1C 1的中点, ∴AD 1=B 1D 1=C 1D 1=30cm ,由三点确定一个圆可知,D 1是弓臂B 1AC 1的圆心, ∵点A 是弓臂B 1AC 1的中点, ∴∠B 1D 1D=,B 1E=C 1E ,AD 1⊥B 1C 1 ,在Rt△B 1D 1E 中,B 1E= cm ,则 B 1C 1=2B 1E=30 cm 。
2018中考数学知识点:圆的相关定义
2018中考数学知识点:圆的相关定义
新一轮中考复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!
圆的相关定义:
1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。
这个定点叫做圆的圆心。
图形一周的长度,就是圆的周长。
2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。
直径所在的直线是圆的对称轴。
2018年中考数学考点总动员系列专题38与圆有关的概念含解析201804172151
考点三十八:与圆有关的概念聚焦考点☆温习理解1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、弦连接圆上任意两点的线段叫做弦。
(如图中的AB)3.直径经过圆心的弦叫做直径。
(如图中的CD)直径等于半径的2倍。
4.半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
5.弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)5、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
6、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
3、弦心距从圆心到弦的距离叫做弦心距。
名师点睛☆典例分类考点典例一、垂径定理【例1】(2017四川泸州第6题)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. 7B.2 7C.6 D.8【答案】B.【解析】试题解析:由题意,得OE=OB-AE=4-1=3,CE=CD= O C2O E2= 7,CD=2CE=2 7,故选B.考点:1.垂径定理;2.勾股定理.【点睛】根据“两条辅助线(半径和边心距),一个直角三角形,两个定理(垂径定理、勾股定理)”解决即可,做法可总结为:作垂直,连半径,用勾股。
【举一反三】(2017内蒙古呼和浩特第7题)如图,CD是A O的直径,弦AB CD,垂足为M,若AB12 OM: MD5:8A O,,则的周长为()A.26B.13C.96 D.39 105 5【答案】B考点:垂径定理.考点典例二、求边心距【例2】(2016贵州贵阳第8题)小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2 3 cm B.4 3 cm C.6 3 cm D.8 3 cm 【答案】B.考点:三角形的外接圆与外心;等边三角形的性质.【点睛】作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆 半径和特殊角,可求得边心距.考查了等边三角形的性质.注意:等边三角形的外接圆和内切 圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.【举一反三】如图,半径为 5的⊙A 中,弦 BC ,ED 所对的圆心角分别是∠BAC ,∠EAD. 已知 DE=6,∠BAC+ ∠EAD=180°,则弦 BC 的弦心距等于( )A. 412 B . 342 C . 4 D. 3【答案】D .考点:1.圆周角定理;2.全等三角形的判定和性质;3.垂径定理;4.三角形中位线定理.【分析】如答图,过点 A 作 AH ⊥BC 于 H ,作直径 CF ,连接 BF ,∵∠BAC+∠EAD=180°,∠BAC+∠BAF=180°,∴∠DAE=∠BAF.AD AB在△ADE和△ABF中,∵DAE BAF,AE AF∴△ADE≌△ABF(SAS).∴DE=BF=6.∵AH⊥BC,∴CH=BH.又∵CA=AF,∴AH为△CBF的中位线. ∴AH= 12BF=3.故选D.考点典例三、最短路线问题【例3】如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A.B.1 C.2 D.2【答案】A.【解析】作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,。
2018中考数学试题分类汇编考点28 圆的有关概念(含解析)
2018中考数学试题分类汇编:考点28圆的有关概念一.选择题(共26小题)1.(2018•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.2.(2018•聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,O C.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.3.(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm【分析】根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE即可得出AE的长度.【解答】解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.4.(2018•菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.【解答】解:如图,由OC⊥AB,得=,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°﹣∠3=90°﹣64°=26°,故选:D.5.(2018•白银)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.6.(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.2【分析】根据垂径定理得到CH=BH,=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【解答】解:∵OA⊥BC,∴CH=BH,=,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=,∴BC=2BH=2,故选:D.7.(2018•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.8.(2018•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求角度即可.【解答】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=,∴tan∠1=,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角的度数是60°或120°.故选:D.9.(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,故选:A.10.(2018•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.11.(2018•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.12.(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.13.(2018•威海)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.14.(2018•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°【分析】根据圆周角定理得到∠ABC=∠ADC=35°,∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,故选:C.15.(2018•淮安)如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°【分析】作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.【解答】解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.16.(2018•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.5【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.17.(2018•衢州)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°【分析】直接根据圆周角定理求解.【解答】解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选:B.18.(2018•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.19.(2018•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100°D.90°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.20.(2018•苏州)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.21.(2018•台湾)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.22.(2018•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC 于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8,在Rt△EBC中,BC=,∵OF⊥BC,∴∠OFC=∠CEB=90°,∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=,故选:D.23.(2018•青岛)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.24.(2018•广州)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【解答】解:∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.25.(2018•遂宁)如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是()A.5 B.6 C.7 D.8【分析】根据垂径定理求出AD,根据勾股定理列式求出OD,根据三角形中位线定理计算即可.【解答】解:∵半径OC垂直于弦AB,∴AD=DB=AB=,在Rt△AOD中,OA2=(OC﹣CD)2+AD2,即OA2=(OA﹣1)2+()2,解得,OA=4∴OD=OC﹣CD=3,∵AO=OE,AD=DB,∴BE=2OD=6,故选:B.26.(2018•钦州三模)如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35°C.45°D.60°【分析】欲求∠ADC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【解答】解:∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB(垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.二.填空题(共13小题)27.(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.28.(2018•曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=n°.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n29.(2018•南通模拟)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为2.【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.30.(2018•北京)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB ﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.31.(2018•杭州)如图,AB是⊙O的直轻,点C是半径OA的中点,过点C作DE⊥AB,交⊙O于D,E两点,过点D作直径DF,连结AF,则∠DFA=30°.【分析】利用垂径定理和三角函数得出∠CDO=30°,进而得出∠DOA=60°,利用圆周角定理得出∠DFA=30°即可.【解答】解:∵点C是半径OA的中点,∴OC=OD,∵DE⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=30°,故答案为:30°32.(2018•吉林)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 29度.【分析】根据∠BDC=∠BOC求解即可;【解答】解:连接O C.∵=,∴∠AOB=∠BOC=58°,∴∠BDC=∠BOC=29°,故答案为29.33.(2018•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C 三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),34.(2018•无锡)如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧上,且OA=AB,则∠ABC=15°.【分析】根据等边三角形的判定和性质,再利用圆周角定理解答即可.【解答】解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB=90°,∴∠COA=90°﹣60°=30°,∴∠ABC=15°,故答案为:15°35.(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.36.(2018•黑龙江)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.37.(2018•绍兴)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路A B.通过计算可知,这些市民其实仅仅少B走了15步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.38.(2018•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=60度.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=20°,根据等腰三角形的性质解答即可.【解答】解:如图,连接OA,∵OA=OC,∴∠OAC=∠C=20°,∴∠OAB=60°,∵OA=OB,∴∠B=∠OAB=60°,故答案为:60.39.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共1小题)40.(2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,F C.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接B D.利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接B D.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.。
中考数学知识考点:圆-word文档资料
2018中考数学知识考点:圆2018中考数学知识考点介绍了圆。
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
2018中考数学知识考点:圆1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2 圆的两条平行弦所夹的弧相等3.圆是以圆心为对称中心的中心对称图形4.圆是定点的距离等于定长的点的集合5.圆的内部可以看作是圆心的距离小于半径的点的集合6.圆的外部可以看作是圆心的距离大于半径的点的集合7.同圆或等圆的半径相等8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12.①直线L和⊙O相交 d②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线14.切线的性质定理圆的切线垂直于经过切点的半径15.推论1 经过圆心且垂直于切线的直线必经过切点16.推论2 经过切点且垂直于切线的直线必经过圆心17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18.圆的外切四边形的两组对边的和相等外角等于内对角19.如果两个圆相切,那么切点一定在连心线上20.①两圆外离d>R+r ②两圆外切 d=R+r③.两圆相交 R-rr)④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)21.定理相交两圆的连心线垂直平分两圆的公共弦22.定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24.正n边形的每个内角都等于(n-2)×180°/n25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长27.正三角形面积√3a/4 a表示边长28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=429.弧长计算公式:L=n兀R/18030.扇形面积公式:S扇形=n兀R^2/360=LR/231.内公切线长= d-(R-r) 外公切线长= d-(R+r)32.定理一条弧所对的圆周角等于它所对的圆心角的一半33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r小编为大家提供的2018中考数学知识考点,大家仔细阅读了吗?最后祝同学们学习进步。
2018届中考数学一轮复习讲义 第23讲与圆相关的概念
2018届中考数学一轮复习讲义第23讲与圆相关的概念【知识巩固】考点1圆的有关概念1.圆的定义(1)在平面上①到定点的距离等于定长的所有点组成的图形叫做圆,其中定点称为圆心,定长称为半径.(2)圆的内部可以看作是由到定点的距离小于定长的所有的点组成的图形.(3)圆的外部可以看作是由到定点的距离大于定长的所有的点组成的图形.2.圆的有关概念(1)弧:圆上任意两点间的部分叫做弧.小于半圆的弧叫②劣弧,大于半圆的弧叫③优弧.(2)弦:连接圆上任意两点间的线段叫做弦.经过圆心的弦叫做④直径,直径是特殊的弦.(3)等弧:在同圆或等圆中能够重合的弧叫做等弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上并且角的两边⑤都与圆相交的角叫做圆周角.(6)弦切角:顶点在圆上,⑥一边和圆相交、另一边和圆相切的角叫做弦切角.考点2:圆的对称性轴对称图形,又是中心对称图形,而且还具有⑦旋转不变性,圆的对称轴是直径所在的直线,它的对称中心是圆心.【典例解析】典例一、垂径定理(2017广西河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【考点】M5:圆周角定理;M2:垂径定理.【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.【变式训练】(2017呼和浩特)如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.D.【考点】M2:垂径定理.【分析】连接OA,根据垂径定理得到AM=AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=×13,于是得到结论.【解答】解:连接OA,∵CD为⊙O的直径,弦AB⊥CD,∴AM=AB=6,∵OM:MD=5:8,∴设OM=5x,DM=8x,∴OA=OD=13x,∴AM=12x=6,∴x=,∴OA=×13,∴⊙O的周长=2OA•π=13π,故选B.典例二、边心距计算(2017四川眉山)如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC=5cm.【考点】M2:垂径定理;KQ:勾股定理.【分析】连接OA,根据垂径定理求出AD,根据勾股定理R2=42+(R﹣2)2,计算求出R 即可.【解答】解:连接OA,∵OC⊥AB,∴AD=AB=4cm,设⊙O的半径为R,由勾股定理得,OA2=AD2+OD2,∴R2=42+(R﹣2)2,解得R=5∴OC=5cm.故答案为5.【变式训练】如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.=C.OE=DE D.∠DBC=90°【考点】垂径定理;圆周角定理.【分析】根据垂径定理及圆周角定理对各选项进行逐一分析即可.【解答】解:∵CD是⊙O的直径,弦AB⊥CD于E,∴AE=BE,=,故A、B正确;∵CD是⊙O的直径,∴∠DBC=90°,故D正确.故选C.【能力检测】1. (2017宁夏)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【分析】根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.【点评】本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.2.如图,A,B,C,D是⊙O上的四个点,AD∥BC.那么与的数量关系是()A.= B.>C.<D.无法确定【考点】M4:圆心角、弧、弦的关系.【分析】根据平行线的性质得∠DAC=∠ACB,根据圆周角定理得=.【解答】证明:连接AC,∵AD∥BC,∴∠DAC=∠ACB,∴=.故选:A.3.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°【考点】圆周角定理.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.4. (2017浙江湖州)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则的度数是140度.【考点】M5:圆周角定理;KH:等腰三角形的性质.【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【解答】解:连接AD、OD,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴∠BAD=∠CAD=∠BAC=20°,BD=DC,∴∠ABD=70°,∴∠AOD=140°∴的度数为140°;故答案为140.5.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=100°.【考点】圆周角定理.【分析】根据圆周角定理即可得出结论.【解答】解:∵2∠ACB=260°,∴∠AOB=360°﹣260°=100°.故答案为100°.6.如图,△ABC的三个顶点都在⊙O上,直径AD=6cm,∠DAC=2∠B,求AC的长.【考点】圆周角定理;等边三角形的判定与性质.【分析】先连接OC,根据AO=AC=OC,判定△AOC是等边三角形,进而得到AC=AO= AD=3cm.【解答】解:如图,连接OC,∵∠AOC=2∠B,∠DAC=2∠B,∴∠AOC=∠DAC,∴AO=AC,又∵OA=OC,∴△AOC是等边三角形,∴AC=AO=AD=3cm.7.如图,⊙O的直径AB垂直弦CD于点E,AB=8,∠A=22.5°,求CD的长.【考点】M2:垂径定理.【分析】根据圆周角定理得出∠COE的度数,在Rt△ACE中,由三角函数的定义得出CE,再由垂径定理得出CD即可.【解答】解:∵AB=8,∴OC=OA=4,∵∠A=22.5°,∴∠COE=2∠A=45°,∵直径AB垂直弦CD于E,∴,∴.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学试题分类汇编:考点28圆的有关概念一.选择题(共26小题)1.(2018•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.2.(2018•聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5°C.30° D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.3.(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm【分析】根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE即可得出AE的长度.【解答】解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.4.(2018•菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.【解答】解:如图,由OC⊥AB,得=,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°﹣∠3=90°﹣64°=26°,故选:D.5.(2018•白银)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15° B.30° C.45° D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.6.(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2 C.D.2【分析】根据垂径定理得到CH=BH, =,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【解答】解:∵OA⊥BC,∴CH=BH, =,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=,∴BC=2BH=2,故选:D.7.(2018•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.8.(2018•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30° B.60° C.30°或150°D.60°或120°【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求角度即可.【解答】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=,∴tan∠1=,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角的度数是60°或120°.故选:D.9.(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58° B.60° C.64° D.68°【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,故选:A.10.(2018•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55° B.110°C.120°D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.11.(2018•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C 点,则BC=()A.B.C.D.【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.12.(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24° B.28° C.33° D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.13.(2018•威海)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.14.(2018•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35° B.45° C.55° D.65°【分析】根据圆周角定理得到∠ABC=∠ADC=35°,∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,故选:C.15.(2018•淮安)如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70° B.80° C.110°D.140°【分析】作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.【解答】解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.16.(2018•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5 D.5【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.17.(2018•衢州)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75° B.70° C.65° D.35°【分析】直接根据圆周角定理求解.【解答】解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选:B.18.(2018•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84° B.60° C.36° D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.19.(2018•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80° B.120°C.100°D.90°【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.20.(2018•苏州)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.21.(2018•台湾)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8 D.﹣7【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.【解答】解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.22.(2018•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B. cm C.2.5cm D. cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8,在Rt△EBC中,BC=,∵OF⊥BC,∴∠OFC=∠CEB=90°,∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=,故选:D.23.(2018•青岛)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D 的度数是()A.70° B.55° C.35.5°D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.24.(2018•广州)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40° B.50° C.70° D.80°【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【解答】解:∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.25.(2018•遂宁)如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是()A.5 B.6 C.7 D.8【分析】根据垂径定理求出AD,根据勾股定理列式求出OD,根据三角形中位线定理计算即可.【解答】解:∵半径OC垂直于弦AB,∴AD=DB=AB=,在Rt△AOD中,OA2=(OC﹣CD)2+AD2,即OA2=(OA﹣1)2+()2,解得,OA=4∴OD=OC﹣CD=3,∵AO=OE,AD=DB,∴BE=2OD=6,故选:B.26.(2018•钦州三模)如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70° B.35° C.45° D.60°【分析】欲求∠ADC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【解答】解:∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB (垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.二.填空题(共13小题)27.(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14 cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.28.(2018•曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= n °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n29.(2018•南通模拟)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD ⊥BC于点D,则OD的长为 2 .【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.30.(2018•北京)如图,点A,B,C,D在⊙O上, =,∠CAD=30°,∠ACD=50°,则∠ADB= 70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB ﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.31.(2018•杭州)如图,AB是⊙O的直轻,点C是半径OA的中点,过点C作DE⊥AB,交⊙O于D,E两点,过点D作直径DF,连结AF,则∠DFA= 30°.【分析】利用垂径定理和三角函数得出∠CDO=30°,进而得出∠DOA=60°,利用圆周角定理得出∠DFA=30°即可.【解答】解:∵点C是半径OA的中点,∴OC=OD,∵DE⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=30°,故答案为:30°32.(2018•吉林)如图,A,B,C,D是⊙O上的四个点, =,若∠AOB=58°,则∠BDC= 29 度.【分析】根据∠BDC=∠BOC求解即可;【解答】解:连接OC.∵=,∴∠AOB=∠BOC=58°,∴∠BDC=∠BOC=29°,故答案为29.33.(2018•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C 在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),34.(2018•无锡)如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧上,且OA=AB,则∠ABC= 15°.【分析】根据等边三角形的判定和性质,再利用圆周角定理解答即可.【解答】解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB=90°,∴∠COA=90°﹣60°=30°,∴∠ABC=15°,故答案为:15°35.(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.36.(2018•黑龙江)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O 的半径为 5 .【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.37.(2018•绍兴)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B走了15 步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10,所以AB≈69(步),然后利用弧长公式计算出的长,最后求它们的差即可.【解答】解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少B走了 15步.故答案为15.38.(2018•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B= 60 度.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=20°,根据等腰三角形的性质解答即可.【解答】解:如图,连接OA,∵OA=OC,∴∠OAC=∠C=20°,∴∠OAB=60°,∵OA=OB,∴∠B=∠OAB=60°,故答案为:60.39.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10 cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共1小题)40.(2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.。